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Abstract

Oil incorporated plant residues are an important source of carbon inputs and its 

decomposition defines magnitudes of many soil processes. While soil properties, especially soil 

moisture levels, influence decomposition rates, the moisture level of plant residue itself can 

differ from that of the surrounding soil due to the so called "sponge effect" -water absorption by 

plant residue from the surrounding soil. Our study explored whether water absorption by plant 

residue varies depending on soil moisture and matric potential levels; and how soil 

characteristics and characteristics of the plant residue itself affect the magnitude of this effect. 

We examined water retention of two types of plant residue materials, namely, corn and soybean 

leaves, in soil materials with three contrasting particle size distributions (PSD); and analyzed 

water distribution patterns in the soil adjacent to the residue using X-ray computed micro-

tomography. The results demonstrated that the sponge effect was especially pronounced when 

soil moisture levels ranged from 0.15 to 0.40 cm3 cm-3 (~30-80% water filled pore space). The 

leaves were fully saturated with gravimetric water content levels exceeding 2.0 g g-1 even when 

the soil moisture level was only 0.15 cm3 cm-3. Subsequent increase in residue moisture level was 

achieved due to vertical swelling of residue and reached 3.0-4.0 g g-1at soil moisture levels >0.30 

cm3 cm-3. The sponge effect was greater in the coarse textured soil materials with lower soil 

water retention than in the fine textured soil material with high water retention; it was greater in 
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soybean than in corn, possibly due to greater porosity of soybean leaves. Our results indicate that 

plant residue fragments incorporated into soil likely create moisture microenvironments for 

microbial decomposers that differ from those of the surrounding soil; and which, in relatively dry 

soil, can be more beneficial for plant decomposition than what can be inferred from the 

information on moisture levels of the soil itself.

Keywords: water retention, plant residue, decomposition, soil.

Abbreviations: water filled pore space (WFPS), particle size distribution (PSD)

1. Introduction

Incorporation of plant residues in soil is an important contributor to soil fertility and 

sustainability. The use of agronomic practices that involve plant residue incorporation is 

continuously growing worldwide (Lal, 1997). Such practices, e.g., the use of green manures and 

cover crops, increase soil carbon sequestration, improve soil hydraulic properties, and reduce 

erosion (e.g., (Miguez and Bollero, 2005; Scholberg et al., 2010)), as well as potentially 

contribute to mitigation of greenhouse gas emissions (Liebig et al., 2012).

One of the key factors in defining C sequestration benefits as well as greenhouse gas 

emissions from soils subjected to plant residue incorporations is plant residue decomposition. 

Decomposition rates are affected by environmental factors, such as soil temperature, soil water 

content/potential, O2 supply, pH, inorganic nutrients (Swift et al., 1979), by residue's size and 

contact with soil (Fruit et al., 1999; Garnier et al., 2008), and by properties of the residue, such as 

C:N ratio, lignin content, etc. (Gunnarsson et al., 2008). 

The effect of soil moisture is of particular importance for plant residue decomposition as 

it affects production and activity of microbial extracellular enzymes (Sardans and Penuelas, 

2005; Sardans et al., 2008; Alarcon-Gutierrez et al., 2010), which are the main drivers of 

decomposition processes (Sinsabaugh and Moorhead, 1994; Moorhead and Sinsabaugh, 2000; 

Smart and Jackson, 2009; Waring, 2013). Decomposition is typically the highest when soil 

moisture levels are within 50-60% of water filled pore space (WFPS), a condition known to be 

optimal for microbial growth and metabolic activity (Sommers et al., 1981). Lower 
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decomposition rates are expected both in soils drier and wetter than the optimal WFPS range. 

However, despite an overall understanding of the mechanisms by which soil moisture influences 

plant residue decomposition (i.e. controlling motility, transport and activity of microorganisms, 

gas and nutrients fluxes in pore space, connectivity between pores populated by microorganisms 

and residue location, etc.), published results on relationships between soil moisture levels and 

decomposition remain controversial. Some studies report no decomposition response to water 

additions (Steinberger et al., 1990; Li et al., 2016a), while others observe positive response 

(Strojan et al., 1987; Austin and Vitousek, 2000; Yahdjian et al., 2006; Setia and Marschner, 

2013; Li et al., 2016b). Among proposed explanations for the discrepancies are differences in 

soil texture and structure of the studied soils (Adu and Oades, 1978; Gunnarsson et al., 2008), as 

well as masking effects of temperature, e.g. (Howard and Howard, 1979). 

An additional emerging explanation is a possibility that moisture level of plant residue 

can differ from that of the surrounding soil. Kravchenko et al. (2017) recently brought attention 

to this phenomenon, reporting that plant residue located in soil with 30-45% WFPS had 

gravimetric moisture levels as high as 150-250%. The authors referred to the phenomenon as the 

"sponge effect" and explained it by the absorption of water by the residue from the surrounding 

soil. Such absorption is possible due to strong capillary forces generated by fine pores within the 

residue. Indeed, in an early study, Sommers et al. (1981) demonstrated that decomposition of 

various plant residues in the absence of soil might occur at water potentials considerably lower 

than those in soils, thus suggesting that the water retention properties of the residue itself may 

play an important role in its decomposition. 

The possibility of water absorption by plant residue from the surrounding soil implies 

that conditions for decomposition within the residue might differ from those of the surrounding 

soil.  This would explain only modest success in using soil moisture for predicting soil processes 

that relay on plant residue decomposition, including greenhouse gas emissions (Groffman et al., 

2009; Ball, 2013). Understanding this phenomenon and possibly incorporating it in process-

based models has the potential to improve the accuracy in predicting a number of soil processes 

important for both soil management decisions and for future climate assessments. However, at 

present this phenomenon remains largely unexplored. Questions to consider: (i) does water 

absorption by plant residues vary depending on soil moisture and matric potential levels; and (ii) 
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how the soil characteristics and characteristics of the plant residue itself affect the magnitude of 

this effect.

The main hypothesis of the present study is that the water retention capacity of the plant 

residue incorporated into soil is greater than the water retention of the soil, leading to a sponge 

effect - water absorption by the residue from the surrounding soil. Our objectives are 1) to 

examine water retention of two types of plant residue materials, namely, corn and soybean leaves 

in soil materials with three contrasting particle size distributions (PSD), and 2) to explore water 

distribution patterns in the soil adjacent to the residue using X-ray computed micro-tomography 

(μCT).

2. Materials and Methods

2.1. Soil and plant residue sampling and analysis

Soil samples were taken in September 2016 from the Long Term Ecological Research 

(LTER) site located at Kellogg Biological Station in southwest Michigan, USA (85°24' W, 

42°24' N). The soil of the experimental site is fine-loamy, mixed, mesic Typic Hapludalf 

(Kalamazoo series) developed on glacial outwash. We sampled plots of the LTER’s biologically-

based agronomic treatment from three blocks of the LTER experiment. The treatment is in corn-

soybean-winter wheat rotation with cereal rye (Secale cereal L.) and clover (Trifolium pretense 

L.) cover crops. The treatment does not receive any chemical inputs. Rye cover crop is planted 

after corn harvest in fall, red clover is frost seeded into wheat in late winter. Cover crops are 

terminated and their residues are incorporated in soil by chisel plowing prior to main crop 

planting in spring. Additional details on soil, climatic, and management characteristics of the 

experimental site can be found in Robertson and Hamilton (Robertson and Hamilton, 2015). The 

biologically-based agronomic treatment was selected for this study since it receives substantial 

amounts of plant residues in the course of the rotation and, thus, relies on the decomposition of 

the residue of the legume cover crop for its main nutrient input and soil C sequestration 

(Syswerda et al., 2011).

Soil samples were collected from 0–15 cm depth and air-dried.  Air-dry soil was 

mechanically crashed and sieved with RO-TAP test sieve shaker (Model RX-29, OH, USA) for 

one minute to obtain three soil fractions with <0.05, 0.10–0.50 and 1.00–2.00 mm size ranges. 

We will refer to these fractions as fine, medium and coarse fractions, respectively. Particle size 
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distributions were measured in the three soil fractions using the pipet method (Gee and Or, 

2002), after dispersion in 5% sodium hexametaphosphate solution. For each fraction, three lab 

replicates were analyzed for data from each of the three LTER plots for a total of 9 

measurements per fraction. Particle diameter groups were <0.002, 0.002-0.005, 0.005-0.01, 0.01-

0.022, 0.022-0.05, 0.05–0.1, 0.1-0.25, 0.25-0.5, 0.5-1.0, and 1.0-2.0 mm. 

Leaves of corn and soybean plants were collected from experimental fields in summer of 

2016. The leaves were dried in a herbarium press; then, 8 mm and 22 mm diameter disks were 

cut from the leaves with a puncher for subsequent water retention and X-ray computed micro-

tomography (μCT) experiments. 

2.2. Soil Water Retention

Water retention was measured in the three soil fractions using a 15 Bar ceramic pressure 

plate extractor (Model CAT.#1500, Soilmoisture Equipment Corp, Santa Barbara, CA). For each 

fraction, three lab replicates were analyzed for data from each of the three LTER plots for a total 

of 9 measurements per fraction. The soil was placed into metal rings (10 mm height, 39 mm ID) 

and gradually saturated from the bottom overnight. The water retention was measured at 

saturation and at the pressure head levels of -56, -102, -336 -1020, -3060, -5608, -10200 and -

14080 cm. Additional measurements were conducted using controlled vapor pressure method 

(Nimmo and Winfield, 2002) in a desiccator with saturated solutions of CaCl2 to obtain soil 

water content at a pressure head level of -1.05·106 cm. We express pressure head levels as pF, 

which is a log10 of water pressure head in centimeters.

2.3. Leaf Water Retention Experiment

Leaf water retention was measured in soybean and corn leaves at six levels of WFPS, 

roughly corresponding 10%, 20%, 40%, 50%, 60% and 80%, as determined for each respective 

soil fraction based on its full saturation. Note that since the total soil volume decreases as soil 

dries during water retention experiment, it is not possible to precisely determine WFPS of each 

sample corresponding to each pressure head level. Thus, water retention results are reported in 

terms of soil water content levels, and approximate WFPS are only mentioned when discussing 

the results, in order to place the findings in perspective of this commonly used metric.
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For the measurements, we prepared soil columns with 22 mm diameter and 20 mm 

height. In each column, an air-dry leaf disk (22 mm in diameter) was placed between two soil 

layers, each layer 10 mm thick. Prior to leaf placement the soil layers were brought to the 

specified soil water content. The prepared samples were left overnight to reach an equilibrium 

between the moisture in the soil and in the leaves. Then, the leaves were separated from the soil, 

and gravimetric water content of the leaves was determined from the weights of wet leaves and 

after drying them for 48 hours at 60ºC. In addition, after drying, the leaves were ashed at 500ºC. 

The mass of ashed leaves was used to correct the leaf water content measurements for occasional 

soil particles attached to leaf surfaces (Blair, 1988). We report the resulting relationships 

between leaf gravimetric water contents and soil volumetric water contents, as well as 

relationships between leaf gravimetric water contents and pF. We used soil water retention 

curves measured individually for each soil fraction as described in 2.2 to convert soil water 

contents from this experiment into pF values.    

2.4. X-ray μCT scanning and image analysis

X-ray μCT was used to measure the leaf thickness and to examine the patterns of spatial 

distribution of water in the pore space and in the leaves.  The X-ray scanning was conducted on 

the bending magnet beam line, station 13-BM-D of the GeoSoilEnvironCARS at the Advanced 

Photon Source, Argonne National Laboratory, IL. We used potassium iodine as a dopant for 

visualization of the added liquid in soil and in leaves. Two scanning experiments were 

conducted.

The first experiment aimed at measuring volume of leaves when air-dry and when fully 

saturated in a solution. Four air-dry soybean and corn leaf disks (8 mm ID) were placed in tubes 

separated by plastic spacers and scanned at 28 keV energy with 4.03 μm resolution. Then, the 

tubes were filled with 10% KI solution, the leaves were allowed to saturate for 8 hours, and 

scanned again. The leaves were clearly visible on the images, thus we assessed their sizes by 

determining leaf thickness and diameter. For that, the thickness of each leaf disks was measured 

using line tool of ImageJ/Fiji software (Schindelin et al., 2012). Each leaf was measured at 15 

randomly selected locations. The leaf diameters were measured in 3-4 replications by rotating the 

leaf images. 
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The purpose of the second experiment was, first, to explore changes in leaf size when in 

contact with soil of different fractions at different soil water content levels and, second, to assess 

the spatial distribution of water in soil and leaves. This experiment was conducted using only 

soybean leaves. For each studied soil fraction we prepared soil micro-columns (8 mm diameter, 

10 mm height) with air-dry soybean leaf disks (8 mm in diameter) placed in the middle of the 

columns. Prior to the experiment, the air-dry leaf disks were scanned (28keV energy with 4.03 

μm resolution). During micro-column construction the soil received 10% solution of KI in the 

amounts needed to bring soil moisture levels of 0.1, 0.25, and 0.40 cm3 cm-3. The micro-column 

tubes were closed with rubber stoppers to prevent evaporation and allowed to equilibrate for 8 

hours. In order to visualize the liquid added to the soil, the micro-columns were scanned at two 

energies,  33.269 keV and 33. 069 keV, which are above and below the iodine K absorption 

edge, respectively. Subtraction of the images scanned at two energies visualized patterns of the 

iodine distribution and hence distribution of the liquid added to the system (Wildenschild et al., 

2013). The thickness and diameter of the leaves within the micro-columns was measured the 

same way as for the air-dry leaves.

The reconstructed image sequences were subject to 3D median filtering. The images 

produced by above and below absorption edge subtraction were then segmented using global 

threshold values estimated based on the applied amounts of iodine. When the porosity of the 

segmented samples exceeded the values measured in the soil fractions, the global threshold was 

set close to the Fiji default value with minor adjustments. 

2.5. Statistical analysis

For comparisons between the soil fractions in terms of soil PSDs and in terms of soil 

water retentions, the statistical models consisted of two fixed factors and their interaction. The 

first factor was soil fraction and the second factor was either particle size or pF level for soil 

particle size distribution and water retention data, respectively. The second factor was treated as 

a repeated measure factor with individual sample used as the subject of repeated measurements. 

The variance-covariance structure for the repeated measures factor was selected using Akaike 

Information Criterion as described in Milliken and Johnson (Milliken and Johnson, 2009). 

Because of substantial differences in variability at different particle size and pF levels all the 

selected variance-covariance structures were the structures that account for heterogeneous 
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variances. The statistical model also included the LTER experimental blocks as a random factor. 

Significant interaction effects were examined using analysis of simple effects, aka slicing 

(Winer, 1971). When simple effects of soil fraction within individual levels of either particle size 

or pF were found to be statistically significant (p<0.05), comparisons among the fractions were 

conducted using t-tests and least significant difference values were calculated for visual 

presentation on the figures. 

The relationships between leaf and soil water contents and between leaf water contents 

and pressure heads were assessed using analysis of covariance (ANCOVA) (Milliken and 

Johnson, 2001). We tested performance of polynomial regression models in describing the 

relationship between leaf water content and soil water contents/pressure heads as the models that 

would enable straightforward comparisons between plant types and soil fractions within 

ANCOVA framework. The relationships were found to be best described by a cubic regression. 

ANCOVA model included the effects of plant and fraction size and their interaction, as 

categorical variables, and soil water content, as a continuous covariate with separate linear, 

quadratic, and cubic terms for each plant and fraction. Comparisons between corn and soybean 

leaves and among the fractions were conducted at ten levels of soil moisture, ranging from 0.01 

cm3cm-3 to 0.50 cm3cm-3 in ~0.05 cm3cm-3 intervals.

Statistical analysis was conducted using PROC MIXED in SAS (SAS 9.4). The results 

with p-value less than 0.05 will be referred to as statistically significant, while those with p-

values in 0.05-0.1 range will be referred to as tendencies or trends.

3. Results 

3.1. Soil characteristics and water retention

As expected, the three studied soil fractions substantially differed in their PSDs (Fig. 1). 

The fine fraction was dominated by particles in 0.01-0.05 mm size range (~70%), while the 

medium fraction was dominated by particles in 0.25-0.5 mm size range (~40%). The coarse 

fraction consisted of soil particles ranging in size from < 2 μm to 2 mm, with relatively even 

proportions of all sizes present in the fraction. 

The observed differences in PSDs resulted in different water retention properties of the 

three fractions (Fig. 2). For the same pF values, water contents were the highest in the fine 
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fraction, the smallest in the medium fraction and intermediate in the coarse fraction. The 

differences between water contents were the greatest for pF values ranging from 1.7 to 3.0, 

followed by the differences for pF > 3.5. The differences between fine and medium soil fractions 

were statistically significant in the whole range of pF values (p<0.05). The differences between 

the fine and coarse fractions tended to be significant in the 2-3 pF range, and between the 

medium and coarse fractions for pF < 2.5 (p<0.1). 

3.2. Plant water retention

The water contents of soybean and corn leaves increased with increasing soil water 

content; however, the relationship between them was not linear (Fig. 3). Leaf water contents 

increased sharply as soil water content rose to 0.10-0.15 cm3cm-3, followed by only gradual 

increases as soil water contents increased to ~0.40 cm3cm-3, with then a tendency for sharper 

increase at soil water contents >0.40 cm3cm-3. These overall trends were present in both corn and 

soybean leaves and in all three studied fractions; however, the increase in leaf water contents in 

0.15-0.40 cm3cm-3 range of water contents was sharper in soybean leaves of medium and coarse 

fractions, than in the rest of the treatments. 

Water contents of corn and soybean leaves were not significantly different from each 

other at soil water contents <0.20 cm3cm-3. Water content of soybean leaves was higher than that 

of corn at 0.25-0.35 cm3cm-3 soil water contents in the large fraction and at >0.35 cm3cm-3 soil 

water contents in the medium fraction. 

Water content of soybean leaves in medium and large fractions were significantly higher 

than that in the fine fraction at soil moisture contents within 0.20-0.40 cm3cm-3 range. Water 

contents of corn leaves tended to be higher in medium and large fractions than in the fine 

fraction at soil moisture contents within 0.10-0.25 cm3cm-3 range (p<0.1). The differences 

between coarse and medium fractions were not statistically significant either in corn or in 

soybean leaves. 

Assuming that an equilibrium was achieved between pressure heads in soil and leaves 

during the overnight leaf saturation, we plotted leaf water contents vs. pF values corresponding 

to the water contents measured in the soil (Fig.4). To find the pF values we used a linear 

interpolation of the soil water retention curves shown in Fig. 2. The leaf water retention curves 
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were quite different from those for the soil (Fig. 4 and Fig. 2). Water content increased sharply 

and almost linearly from 0.1 g g-1 to 1.5 – 2.9 g g-1 in both soybean and corn leaves as pF values 

decreased from 6 to 4.8, followed by relatively gradual increase in leaf water content up to 4.2 g 

g-1 with decrease in pF values from 4.8 to 0 (Fig. 4). These trends were similar in the three 

studied soil fractions and in both corn and soybean leaves. There were no statistically significant 

differences across the pF values either between corn and soybean leaves or among different soil 

fractions (p<0.05). 

3.3. Plant porosity and swelling upon wetting

When air-dry, the soybean leaves were thicker than the corn leaves and had markedly 

higher porosity, 0.522 vs. 0.341 cm3 cm-3, respectively (Table 1). After full saturation, leaf 

thickness almost doubled in both crops. Porosity in soybean increased by a factor of 1.4, and in 

corn by a factor of 2, reaching ~ 0.7 cm3 cm-3 in both crops. 

No lateral swelling was observed on X-ray μCT images, suggesting that most of the leaf 

swelling took place perpendicular to the leaf’s plane. The swelling of soybean leaves, assessed as 

a ratio of the leaf thickness at a certain soil water content and the thickness of the same leaf air-

dry, depended on the soil fraction and soil water content levels (Fig. 5). As expected, leaf 

swelling increased with increasing soil water content and the maximum swelling occurred at soil 

water content of 0.4 cm3 cm-3. Leaf swelling was the greatest in medium and coarse soil 

fractions, where already at soil water content of 0.25 cm3 cm-3 leaf thickness reached that of full 

saturation in water. 

4. Discussion

Our results demonstrated presence of a sponge effect, i.e., water absorption by plant 

residues from the surrounding soil, across a wide range of soil moisture levels, in soil materials 

with contrasting physical characteristics, and in both studied plant species. The magnitude of this 

effect varied depending on soil moisture and matric potential levels (Figs. 3 and 4), however, 

there appeared to be a wide range of soil moisture and matric potential conditions across which 

residue water absorption remained relatively stable and fully saturated. Already when soil 

moisture level was at 0.15 cm3 cm-3 (approximately 30% WFPS) the residues were swelled and 
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fully saturated with gravimetric water content levels exceeding 2.0 g g-1. Upon subsequent 

increase in soil moisture, residue continued to swell and remained fully saturated with 

gravimetric moisture levels exceeding 3-4.0 g g-1.  

4.1. Sponge effect and factors influencing it

Our observations suggest that even in relatively dry soil, fragments of incorporated plant 

residue with their fine porous structure can absorb large amounts of moisture from the 

surrounding soil, which then fills the entire pore space of the residue. With further increase in 

soil moisture, the residue swells as additional water enters it; subsequently, the residue remains 

fully saturated and just grows in size (Fig. 5). Vertical swelling appeared to be the mechanism 

driving the increases in residue water content within the 0.2-0.4 cm3 cm-3 soil water content 

range. Specifically, at 0.25 cm3 cm-3 soil water contents, the average measured amount of water 

stored within a soybean leaf was equal to 3.4 mg, and the amount of water stored within the leaf 

as estimated from the volume change due to leaf's vertical swelling was only slightly different, 

3.1 mg.  At 0.40 cm3 cm-3 soil water content, both the measured and the swelling-estimated 

amounts of water stored within a soybean leaf were equal to 3.9 mg.

Water absorption by the residue can influence a number of soil processes, including plant 

residue decomposition. Even in relatively dry soil, plant residue fragments with their high 

amounts of absorbed water likely serve as micro-environments beneficial for microorganisms not 

only from perspective of nutrient supply, but also from perspective of adequate moisture levels. 

This phenomenon can explain some of the reported unexpectedly high plant residue 

decomposition results in relatively dry soils (Abera et al., 2014). Moreover, the micro-

environmental conditions associated with the residue appear to remain relatively consistent 

across a wide range of soil conditions, both in terms of water content and pF, as plant residue just 

increases in volume due to swelling, while empty pores of the surrounding soil provide for 

adequate gas diffusion. It can explain absence of soil moisture effects on plant residue 

decomposition at 30% vs. 45% WFPS in the study by Kravchenko et al. (2017, in press). It is 

when soil water content reached the levels limiting gas diffusion, in particular influx of O2, the 

anoxic conditions will start altering microbial activities within the residues. 
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The magnitude of the sponge effect was related to water retention characteristics of the 

surrounding soil, with lower absorption observed in the soil with higher water retention, i.e., fine 

fraction, and higher absorption in the soil with lower water retention, i.e., medium and coarse 

fractions (Fig. 3). The differences between the fractions in terms of the residue water contents 

were the biggest in the 0.2-0.4 cm3 cm-3 soil water content range – the range where the 

differences in soil water retentions among the fractions were also the greatest (Fig. 2). 

This tendency was present in both corn and soybean leaves, suggesting ubiquitous nature 

of the phenomenon. X-ray μCT analysis revealed that a substantial portion of medium and, 

especially, coarse soil fractions constituted of small aggregates, composed of particles in a 

variety of size groups (Fig. 6). Such composition resulted in presence of both fine intra-aggregate 

and coarse inter-aggregate pores in materials of these two fractions. The fine soil fraction was 

composed of relatively well-sorted fine material (Fig. 1) with no aggregation discernible at the 

studied resolution (4-5 μm). Thus, its pore space mostly consisted of fine pores with high 

capillary forces retaining soil moisture. Percentage of soil particles with size < 0.1 mm, which 

affected soil water retention in the range of high pressure heads, was almost the same in the 

medium and coarse soil fractions, resulting in their similar soil water retentions there. 

Abundance of sand/small stone particles of 0.25-0.50 mm size range in the medium fraction (Fig. 

1) was the likely reason for its somewhat lower water retention as compared to the large fraction 

in the medium pF levels. 

The magnitude of the sponge effect and the ranges of soil moisture levels and matric 

potentials at which it was most pronounced somewhat differed between corn and soybean, 

pointing to posisble role of the plant residue characteristics. Specifically, greater leaf water 

contents, as well as greater contrast between fine and coarse/medium fractions were observed in 

soybean than in corn leaves. Markedly higher porosity of soybean leaves in air-dry state (Table 

1) can be one of the reasons for the observed differences. However, as corn and soybean leaves 

swelled upon wetting, their porosities became very similar. It is possible that not only porosity, 

but also leaf swelling capacity determine the magnitude of the sponge effect and soil moisture 

conditions at which it is most pronounced. 

4.2. Possible mechanisms of sponge effect
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The relatively slow decrease in the residue water content within the pF range between 0 

and 5 was followed by the fast decrease for pF values > 5 in this study (Fig 4). Surprisingly, the 

leaf water content-potential relationships obtained for dead corn and soybean leaves here were 

very similar to those observed for live leaves in earlier studies. For example, experiments with a 

variety of plant species demonstrated that when water potentials increased from 0 to 4 pF the 

changes in water contents were relatively minor and constituted only 10-15%. 

However, they were then followed by much bigger changes in water contents (30-40%) at higher 

pF values. Such observations were reported for tomato and Japanese privet (Weatherley and 

Slatyer, 1957), bulrush millet (Begg et al., 1964), dogwood (Knipling, 1967), corn and sorghum 

(Sanchez and Kramer, 1971). Such relationships between relative water content and water 

potential were described using piecewise linear regressions (Whiteman and Wilson, 1963; 

Wilson, 1967). 

A number of studies also observed two distinct lines relating water content and energy 

state of the water (pressure) in leaf water retention (Gardner and Ehlig, 1965; Neumann et al., 

1974; Steudle and Zimmermann, 1977). Presence of two lines, i.e., two regimes in the 

relationship, was associated with changes in the elastic properties of the leaf cells when the 

turgor pressure dropped below a critical value, which corresponded to the breakpoint between 

the two lines (Gardner and Ehlig, 1965). At low pF values, the dominant mechanism of the water 

retention was the tensile strength of the leaf cell walls. At high pF values, the dominant 

mechanism was the osmotic potential of the cell solution (Neumann et al., 1974) and presence of 

plant cell regions with different elasticity or stress-hardening effect within cell walls due to 

tension (Steudle and Zimmermann, 1977). We are not aware whether and to which extent these 

mechanisms remain relevant to dry leaves. Yet, our results showed that the leaf thickness 

increased almost linearly with increase in soil water content from 0.1 to 0.4 cm3 cm-3 (Fig. 5), 

supporting observations regarding importance of leaf cell elasticity. 

4.3. Spatial patterns in water distribution within plant residue and soil

Analysis of X-ray μCT images demonstrated that the differences in PSDs and 

arrangements of soil particles within the three soil fractions resulted in different spatial patterns 

in soil pores and in water. At low soil water content (0.1 cm3 cm-3, WFPS ~20%), water 
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occupied very fine soil pores between soil particles in the fine fraction (Fig. 7a) and inside soil 

aggregates in the medium and coarse fractions (Fig. 7d and 7g). Water formed clusters in the 

pore space with plenty of air-filled interconnected pores around them. Consistent with the direct 

measurements (Fig. 3) soybean leaves were almost completely filled with water. Such patterns in 

water's spatial distribution likely created favorable conditions for gas diffusion to/from the 

residue. However, soil water potential of 5 pF (-10 bar) at this water content might have been 

limiting catabolic capacity of soil microorganisms (Swift et al., 1979). 

Optimum water potentials for soil organic matter decomposition are believed to be within 

the - 0.2 to - 0.5 bar (3.3 to 3.7 pF) range (Sommers et al., 1981), of which our soil moisture 

content of 0.25 cm3 cm-3 (WFPS ~50%) is a representation (Figs. 7b, 7e and 7h). At this 

condition, water is still clustered in the pore space, filling small and medium-size pores in all 

three fractions. However, much fewer interconnected air-filled pores can be visually detected on 

the images for this water content as compared to that of 0.10 cm3 cm-3. Importantly, only large 

inter-aggregate pores serve as pass-ways for airflow in the coarse soil fraction. Gas diffusion 

limitations likely can lead to less favorable conditions for decomposers in fine as compared to 

coarse fraction. This observation corroborates the results of slower corn leaf decomposition in 

fine as opposed to coarse soil fraction when incubated at 30-50% WFPS ((Negassa et al., 2015); 

Kravchenko et al., 2017 in press). 

Further increase in soil moisture content to 0.4 cm3 cm-3 considerably reduced air-filled 

porosity and, particularly, connected air flow pathways (Fig 7 c,f,i). This water content 

corresponded to pF values below 1.5 (Fig. 2), which is above the optimum range for soil 

microorganisms (Sommers et al., 1981).  

It is interesting to note that, while water menisci were observed on the contacts between 

plant residue and soil at 0.40 cm3 cm-3 water content, no visible water meniscus were present at 

soil water contents of 0.1 and 0.25 cm3 cm-3 (Fig. 7), even though the leaves themselves there 

adsorbed appreciable amounts of iodine solution. We believe that the meniscus between soil 

particles and leaves at low water contents existed for a very short period of time, when the leaves 

were placed in contact with soil, and disappeared soon after the leaves adsorbed the iodine 

solution. In absence of such menisci the opportunities for movement of microorganisms and 

transport of enzymes and decomposition products from residue into adjacent soil was probably 

somewhat limited. Moreover, the lack of menisci also probably limited movement of protozoa 
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from soil into the residue. Thus, a residue fragment might be likened to an island of processes 

and activities disparate of those taking place in soil. 

Conclusions

Our study demonstrated that soybean and corn leaves had different water retention 

properties from those of the surrounding soil. The leaves of both crops acted as sponges 

absorbing water from relatively dry soil and increasing their water contents via swelling soil 

moisture increased. This finding implies that plant residue fragments likely create 

microenvironments for microbial decomposers that differ from those of the surrounding soil; and 

which, in relatively dry soil, can be more beneficial for enzyme diffusion and plant 

decomposition than what can be inferred from the information on moisture levels of the soil 

itself.

Ability of plant residue to absorb water from the surrounding soil was affected by soil 

water retention capacity and was lower in fine-texture soil with high water retention than in the 

coarser textured soils with lower water retention. The differences in the magnitude of sponge 

effect in response to soil texture were present at a wide range of soil moisture conditions 

spanning 20-80% WFPS. 

Our results showed that soil properties might play a dua role in controlling activity of the 

microbial community in the soil, specifically via: (i) oxygen inflow to the decomposing material, 

and (ii) water saturation of the plant residue. It remains to be seen in further experimental studies 

to which extent these two mechanisms manifest itself in different soils and for plant residue of 

different origins and different decomposition duration.
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Captions

Figure 1. Particle size distributions of the fine (0.01–0.05 mm), medium (0.10–0.50 mm) and coarse 

(1.00–2.00 mm) soil fractions. Vertical lines represent standard errors (n=3). Grey bars represent least 

significant difference value (p<0.05) for each particle size.

Figure 2. Soil water retention measured in fine (0.01 – 0.05 mm), medium (0.1 – 0.5 mm) and coarse (1 

– 2 mm) fractions. Horizontal lines represent standard errors (n=3). Grey bars represent least significant 

difference (p<0.05) for each pF level. 

Figure 3. Relationships between soil and leaf water contents for soybean (a) and corn (b) leaves in fine 

(0.01 – 0.05 mm), medium (0.1 – 0.5 mm) and coarse (1 – 2 mm) fractions. Solid lines are cubic 

regression models fitted to the data in the course of ANCOVA. Grey bars represent least significant 

difference values for comparing plants and fractions (p<0.05) at selected soil water content levels.

Figure 4. Relationships between pF and leaf water contents for soybean (a) and corn (b) leaves in fine 

(0.01 – 0.05 mm), medium (0.1 – 0.5 mm) and coarse (1 – 2 mm) fractions.

Figure 5. Swelling of soybean leaves in fine (0.01 – 0.05 mm), medium (0.1 – 0.5 mm) and coarse (1 – 

2 mm) soil fractions at three levels of soil water content along with soybean leaf swelling after 

saturation in water. Dash lines mark air-dry leaf (100%) and water-saturated leaf (166%). 

Figure 6. X-ray CT images of (a) fine (0.01 – 0.05 mm), medium (0.1 – 0.5 mm) and coarse (1 – 2 mm) 

fractions of the dry (?) Kalamazoo soil. Dark areas on the images denote pore space, while bright areas 

denote the solids. 

Figure 7. Examples of spatial distributions of iodine solution in the soybean leaves and three soil 

fractions at three levels of soil saturation. Colors identify air (white), solids (black) and iodine solution 

(blue). 





















Table 1. Thickness and porosity of the corn and soybean leaves used in the study. The porosity is 

calculated assuming cellulose density of 1.5 g cm-3. Means ± standard deviation are shown (n = 4). 

Letters indicated statistically significant differences between corn and soybean means (P < 0.05).

Air-dry Water-saturated

Plant thickness porosity thickness porosity

μm cm3 cm-3 μm cm3 cm-3

Soybean 78.1 ± 2.1a 0.522 ± 0.060a 140.6 ± 4.1a 0.735 ± 0.030a

Corn 46.7 ± 2.4b 0.341 ± 0.044b 104.7 ± 13.0b 0.705 ± 0.024a


