

1
2
3
4
Moisture absorption by plant residue in soil

5
6 Turgut Kutlu ^{a,b}, Andrey K. Guber ^{a,*}, Mark L. Rivers ^c, Alexandra N. Kravchenko ^a

7
8
9
^a Department of Plant, Soil, and Microbial Sciences, Michigan State University, USA

10
11
12 Bilecik Seyh Edebali University, Soil Science Department, 11210 Bilecik, Turkey

13
14
15 Center for Advanced Radiation Sources, The University of Chicago, Argonne National Lab,
Lemont, Illinois, USA

16
17 *Corresponding author, address: Michigan State University, 1066 Bogue St., Room 584D, East
18
19 Lansing, MI 48824, phone: 517-355-0271 Ext. 269, email: akguber@msu.edu

20
21
22
23
Abstract

24
25 Oil incorporated plant residues are an important source of carbon inputs and its
26 decomposition defines magnitudes of many soil processes. While soil properties, especially soil
27 moisture levels, influence decomposition rates, the moisture level of plant residue itself can
28 differ from that of the surrounding soil due to the so called "sponge effect" -water absorption by
29 plant residue from the surrounding soil. Our study explored whether water absorption by plant
30 residue varies depending on soil moisture and matric potential levels; and how soil
31 characteristics and characteristics of the plant residue itself affect the magnitude of this effect.
32 We examined water retention of two types of plant residue materials, namely, corn and soybean
33 leaves, in soil materials with three contrasting particle size distributions (PSD); and analyzed
34 water distribution patterns in the soil adjacent to the residue using X-ray computed micro-
35 tomography. The results demonstrated that the sponge effect was especially pronounced when
36 soil moisture levels ranged from 0.15 to $0.40 \text{ cm}^3 \text{ cm}^{-3}$ ($\sim 30\text{-}80\%$ water filled pore space). The
37 leaves were fully saturated with gravimetric water content levels exceeding 2.0 g g^{-1} even when
38 the soil moisture level was only $0.15 \text{ cm}^3 \text{ cm}^{-3}$. Subsequent increase in residue moisture level was
39 achieved due to vertical swelling of residue and reached $3.0\text{-}4.0 \text{ g g}^{-1}$ at soil moisture levels >0.30
40 $\text{cm}^3 \text{ cm}^{-3}$. The sponge effect was greater in the coarse textured soil materials with lower soil
41 water retention than in the fine textured soil material with high water retention; it was greater in
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59 soybean than in corn, possibly due to greater porosity of soybean leaves. Our results indicate that
60 plant residue fragments incorporated into soil likely create moisture microenvironments for
61 microbial decomposers that differ from those of the surrounding soil; and which, in relatively dry
62 soil, can be more beneficial for plant decomposition than what can be inferred from the
63 information on moisture levels of the soil itself.
64
65

66
67
68 *Keywords: water retention, plant residue, decomposition, soil.*
69
70

71
72 *Abbreviations: water filled pore space (WFPS), particle size distribution (PSD)*
73
74

75 1. Introduction 76

77 Incorporation of plant residues in soil is an important contributor to soil fertility and
78 sustainability. The use of agronomic practices that involve plant residue incorporation is
79 continuously growing worldwide (Lal, 1997). Such practices, e.g., the use of green manures and
80 cover crops, increase soil carbon sequestration, improve soil hydraulic properties, and reduce
81 erosion (e.g., (Miguez and Bollero, 2005; Scholberg et al., 2010)), as well as potentially
82 contribute to mitigation of greenhouse gas emissions (Liebig et al., 2012).
83
84

85 One of the key factors in defining C sequestration benefits as well as greenhouse gas
86 emissions from soils subjected to plant residue incorporations is plant residue decomposition.
87 Decomposition rates are affected by environmental factors, such as soil temperature, soil water
88 content/potential, O₂ supply, pH, inorganic nutrients (Swift et al., 1979), by residue's size and
89 contact with soil (Fruit et al., 1999; Garnier et al., 2008), and by properties of the residue, such as
90 C:N ratio, lignin content, etc. (Gunnarsson et al., 2008).
91
92

93 The effect of soil moisture is of particular importance for plant residue decomposition as
94 it affects production and activity of microbial extracellular enzymes (Sardans and Penuelas,
95 2005; Sardans et al., 2008; Alarcon-Gutierrez et al., 2010), which are the main drivers of
96 decomposition processes (Sinsabaugh and Moorhead, 1994; Moorhead and Sinsabaugh, 2000;
97 Smart and Jackson, 2009; Waring, 2013). Decomposition is typically the highest when soil
98 moisture levels are within 50-60% of water filled pore space (WFPS), a condition known to be
99 optimal for microbial growth and metabolic activity (Sommers et al., 1981). Lower
100
101

113
114
115 decomposition rates are expected both in soils drier and wetter than the optimal WFPS range.
116
117 However, despite an overall understanding of the mechanisms by which soil moisture influences
118 plant residue decomposition (i.e. controlling motility, transport and activity of microorganisms,
119 gas and nutrients fluxes in pore space, connectivity between pores populated by microorganisms
120 and residue location, etc.), published results on relationships between soil moisture levels and
121 decomposition remain controversial. Some studies report no decomposition response to water
122 additions (Steinberger et al., 1990; Li et al., 2016a), while others observe positive response
123 (Strojan et al., 1987; Austin and Vitousek, 2000; Yahdjian et al., 2006; Setia and Marschner,
124 2013; Li et al., 2016b). Among proposed explanations for the discrepancies are differences in
125 soil texture and structure of the studied soils (Adu and Oades, 1978; Gunnarsson et al., 2008), as
126 well as masking effects of temperature, e.g. (Howard and Howard, 1979).
127
128

129 An additional emerging explanation is a possibility that moisture level of plant residue
130 can differ from that of the surrounding soil. Kravchenko et al. (2017) recently brought attention
131 to this phenomenon, reporting that plant residue located in soil with 30-45% WFPS had
132 gravimetric moisture levels as high as 150-250%. The authors referred to the phenomenon as the
133 "sponge effect" and explained it by the absorption of water by the residue from the surrounding
134 soil. Such absorption is possible due to strong capillary forces generated by fine pores within the
135 residue. Indeed, in an early study, Sommers et al. (1981) demonstrated that decomposition of
136 various plant residues in the absence of soil might occur at water potentials considerably lower
137 than those in soils, thus suggesting that the water retention properties of the residue itself may
138 play an important role in its decomposition.
139
140

141 The possibility of water absorption by plant residue from the surrounding soil implies
142 that conditions for decomposition within the residue might differ from those of the surrounding
143 soil. This would explain only modest success in using soil moisture for predicting soil processes
144 that rely on plant residue decomposition, including greenhouse gas emissions (Groffman et al.,
145 2009; Ball, 2013). Understanding this phenomenon and possibly incorporating it in process-
146 based models has the potential to improve the accuracy in predicting a number of soil processes
147 important for both soil management decisions and for future climate assessments. However, at
148 present this phenomenon remains largely unexplored. Questions to consider: (i) does water
149 absorption by plant residues vary depending on soil moisture and matric potential levels; and (ii)
150
151

169
170
171 how the soil characteristics and characteristics of the plant residue itself affect the magnitude of
172 this effect.
173

174 The main hypothesis of the present study is that the water retention capacity of the plant
175 residue incorporated into soil is greater than the water retention of the soil, leading to a sponge
176 effect - water absorption by the residue from the surrounding soil. Our objectives are 1) to
177 examine water retention of two types of plant residue materials, namely, corn and soybean leaves
178 in soil materials with three contrasting particle size distributions (PSD), and 2) to explore water
179 distribution patterns in the soil adjacent to the residue using X-ray computed micro-tomography
180 (μ CT).
181
182
183

184 2. Materials and Methods

185
186

187 2.1. Soil and plant residue sampling and analysis

188 Soil samples were taken in September 2016 from the Long Term Ecological Research
189 (LTER) site located at Kellogg Biological Station in southwest Michigan, USA ($85^{\circ}24' W$,
190 $42^{\circ}24' N$). The soil of the experimental site is fine-loamy, mixed, mesic Typic Hapludalf
191 (Kalamazoo series) developed on glacial outwash. We sampled plots of the LTER's biologically-
192 based agronomic treatment from three blocks of the LTER experiment. The treatment is in corn-
193 soybean-winter wheat rotation with cereal rye (*Secale cereal* L.) and clover (*Trifolium pretense*
194 L.) cover crops. The treatment does not receive any chemical inputs. Rye cover crop is planted
195 after corn harvest in fall, red clover is frost seeded into wheat in late winter. Cover crops are
196 terminated and their residues are incorporated in soil by chisel plowing prior to main crop
197 planting in spring. Additional details on soil, climatic, and management characteristics of the
198 experimental site can be found in Robertson and Hamilton (Robertson and Hamilton, 2015). The
199 biologically-based agronomic treatment was selected for this study since it receives substantial
200 amounts of plant residues in the course of the rotation and, thus, relies on the decomposition of
201 the residue of the legume cover crop for its main nutrient input and soil C sequestration
202 (Syswerda et al., 2011).
203
204

205 Soil samples were collected from 0–15 cm depth and air-dried. Air-dry soil was
206 mechanically crashed and sieved with RO-TAP test sieve shaker (Model RX-29, OH, USA) for
207 one minute to obtain three soil fractions with <0.05 , $0.10–0.50$ and $1.00–2.00$ mm size ranges.
208 We will refer to these fractions as fine, medium and coarse fractions, respectively. Particle size
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226
227 distributions were measured in the three soil fractions using the pipet method (Gee and Or,
228 2002), after dispersion in 5% sodium hexametaphosphate solution. For each fraction, three lab
229 replicates were analyzed for data from each of the three LTER plots for a total of 9
230 measurements per fraction. Particle diameter groups were <0.002, 0.002-0.005, 0.005-0.01, 0.01-
231 0.022, 0.022-0.05, 0.05-0.1, 0.1-0.25, 0.25-0.5, 0.5-1.0, and 1.0-2.0 mm.
232
233

234 Leaves of corn and soybean plants were collected from experimental fields in summer of
235 2016. The leaves were dried in a herbarium press; then, 8 mm and 22 mm diameter disks were
236 cut from the leaves with a puncher for subsequent water retention and X-ray computed micro-
237 tomography (μ CT) experiments.
238
239

240 2.2. *Soil Water Retention* 241

242 Water retention was measured in the three soil fractions using a 15 Bar ceramic pressure
243 plate extractor (Model CAT.#1500, Soilmoisture Equipment Corp, Santa Barbara, CA). For each
244 fraction, three lab replicates were analyzed for data from each of the three LTER plots for a total
245 of 9 measurements per fraction. The soil was placed into metal rings (10 mm height, 39 mm ID)
246 and gradually saturated from the bottom overnight. The water retention was measured at
247 saturation and at the pressure head levels of -56, -102, -336 -1020, -3060, -5608, -10200 and -
248 14080 cm. Additional measurements were conducted using controlled vapor pressure method
249 (Nimmo and Winfield, 2002) in a desiccator with saturated solutions of CaCl_2 to obtain soil
250 water content at a pressure head level of $-1.05 \cdot 10^6$ cm. We express pressure head levels as pF,
251 which is a \log_{10} of water pressure head in centimeters.
252
253

254 2.3. *Leaf Water Retention Experiment* 255

256 Leaf water retention was measured in soybean and corn leaves at six levels of WFPS,
257 roughly corresponding 10%, 20%, 40%, 50%, 60% and 80%, as determined for each respective
258 soil fraction based on its full saturation. Note that since the total soil volume decreases as soil
259 dries during water retention experiment, it is not possible to precisely determine WFPS of each
260 sample corresponding to each pressure head level. Thus, water retention results are reported in
261 terms of soil water content levels, and approximate WFPS are only mentioned when discussing
262 the results, in order to place the findings in perspective of this commonly used metric.
263
264

281
282
283 For the measurements, we prepared soil columns with 22 mm diameter and 20 mm
284 height. In each column, an air-dry leaf disk (22 mm in diameter) was placed between two soil
285 layers, each layer 10 mm thick. Prior to leaf placement the soil layers were brought to the
286 specified soil water content. The prepared samples were left overnight to reach an equilibrium
287 between the moisture in the soil and in the leaves. Then, the leaves were separated from the soil,
288 and gravimetric water content of the leaves was determined from the weights of wet leaves and
289 after drying them for 48 hours at 60°C. In addition, after drying, the leaves were ashed at 500°C.
290 The mass of ashed leaves was used to correct the leaf water content measurements for occasional
291 soil particles attached to leaf surfaces (Blair, 1988). We report the resulting relationships
292 between leaf gravimetric water contents and soil volumetric water contents, as well as
293 relationships between leaf gravimetric water contents and pF. We used soil water retention
294 curves measured individually for each soil fraction as described in 2.2 to convert soil water
295 contents from this experiment into pF values.
296
297

304
305 2.4. *X-ray μ CT scanning and image analysis*

306
307 X-ray μ CT was used to measure the leaf thickness and to examine the patterns of spatial
308 distribution of water in the pore space and in the leaves. The X-ray scanning was conducted on
309 the bending magnet beam line, station 13-BM-D of the GeoSoilEnviroCARS at the Advanced
310 Photon Source, Argonne National Laboratory, IL. We used potassium iodine as a dopant for
311 visualization of the added liquid in soil and in leaves. Two scanning experiments were
312 conducted.
313

314 The first experiment aimed at measuring volume of leaves when air-dry and when fully
315 saturated in a solution. Four air-dry soybean and corn leaf disks (8 mm ID) were placed in tubes
316 separated by plastic spacers and scanned at 28 keV energy with 4.03 μ m resolution. Then, the
317 tubes were filled with 10% KI solution, the leaves were allowed to saturate for 8 hours, and
318 scanned again. The leaves were clearly visible on the images, thus we assessed their sizes by
319 determining leaf thickness and diameter. For that, the thickness of each leaf disks was measured
320 using line tool of ImageJ/Fiji software (Schindelin et al., 2012). Each leaf was measured at 15
321 randomly selected locations. The leaf diameters were measured in 3-4 replications by rotating the
322 leaf images.
323
324

337
338
339
340 The purpose of the second experiment was, first, to explore changes in leaf size when in
341 contact with soil of different fractions at different soil water content levels and, second, to assess
342 the spatial distribution of water in soil and leaves. This experiment was conducted using only
343 soybean leaves. For each studied soil fraction we prepared soil micro-columns (8 mm diameter,
344 10 mm height) with air-dry soybean leaf disks (8 mm in diameter) placed in the middle of the
345 columns. Prior to the experiment, the air-dry leaf disks were scanned (28keV energy with 4.03
346 μm resolution). During micro-column construction the soil received 10% solution of KI in the
347 amounts needed to bring soil moisture levels of 0.1, 0.25, and $0.40 \text{ cm}^3 \text{ cm}^{-3}$. The micro-column
348 tubes were closed with rubber stoppers to prevent evaporation and allowed to equilibrate for 8
349 hours. In order to visualize the liquid added to the soil, the micro-columns were scanned at two
350 energies, 33.269 keV and 33. 069 keV, which are above and below the iodine K absorption
351 edge, respectively. Subtraction of the images scanned at two energies visualized patterns of the
352 iodine distribution and hence distribution of the liquid added to the system (Wildenschild et al.,
353 2013). The thickness and diameter of the leaves within the micro-columns was measured the
354 same way as for the air-dry leaves.
355
356

357 The reconstructed image sequences were subject to 3D median filtering. The images
358 produced by above and below absorption edge subtraction were then segmented using global
359 threshold values estimated based on the applied amounts of iodine. When the porosity of the
360 segmented samples exceeded the values measured in the soil fractions, the global threshold was
361 set close to the Fiji default value with minor adjustments.
362
363

364 2.5. Statistical analysis

365

366 For comparisons between the soil fractions in terms of soil PSDs and in terms of soil
367 water retentions, the statistical models consisted of two fixed factors and their interaction. The
368 first factor was soil fraction and the second factor was either particle size or pF level for soil
369 particle size distribution and water retention data, respectively. The second factor was treated as
370 a repeated measure factor with individual sample used as the subject of repeated measurements.
371 The variance-covariance structure for the repeated measures factor was selected using Akaike
372 Information Criterion as described in Milliken and Johnson (Milliken and Johnson, 2009).
373 Because of substantial differences in variability at different particle size and pF levels all the
374 selected variance-covariance structures were the structures that account for heterogeneous
375
376

393
394
395 variances. The statistical model also included the LTER experimental blocks as a random factor.
396
397 Significant interaction effects were examined using analysis of simple effects, aka slicing
398 (Winer, 1971). When simple effects of soil fraction within individual levels of either particle size
399 or pF were found to be statistically significant ($p < 0.05$), comparisons among the fractions were
400 conducted using t-tests and least significant difference values were calculated for visual
401 presentation on the figures.
402
403

404 The relationships between leaf and soil water contents and between leaf water contents
405 and pressure heads were assessed using analysis of covariance (ANCOVA) (Milliken and
406 Johnson, 2001). We tested performance of polynomial regression models in describing the
407 relationship between leaf water content and soil water contents/pressure heads as the models that
408 would enable straightforward comparisons between plant types and soil fractions within
409 ANCOVA framework. The relationships were found to be best described by a cubic regression.
410 ANCOVA model included the effects of plant and fraction size and their interaction, as
411 categorical variables, and soil water content, as a continuous covariate with separate linear,
412 quadratic, and cubic terms for each plant and fraction. Comparisons between corn and soybean
413 leaves and among the fractions were conducted at ten levels of soil moisture, ranging from 0.01
414 $\text{cm}^3\text{cm}^{-3}$ to $0.50 \text{ cm}^3\text{cm}^{-3}$ in $\sim 0.05 \text{ cm}^3\text{cm}^{-3}$ intervals.
415
416

417 Statistical analysis was conducted using PROC MIXED in SAS (SAS 9.4). The results
418 with p-value less than 0.05 will be referred to as statistically significant, while those with p-
419 values in 0.05-0.1 range will be referred to as tendencies or trends.
420
421

422 3. Results 423 424

425 3.1. Soil characteristics and water retention 426

427 As expected, the three studied soil fractions substantially differed in their PSDs (Fig. 1).
428 The fine fraction was dominated by particles in 0.01-0.05 mm size range ($\sim 70\%$), while the
429 medium fraction was dominated by particles in 0.25-0.5 mm size range ($\sim 40\%$). The coarse
430 fraction consisted of soil particles ranging in size from $< 2 \mu\text{m}$ to 2 mm, with relatively even
431 proportions of all sizes present in the fraction.
432
433

434 The observed differences in PSDs resulted in different water retention properties of the
435 three fractions (Fig. 2). For the same pF values, water contents were the highest in the fine
436 fraction, followed by the medium fraction, and the lowest in the coarse fraction.
437
438

449
450
451 fraction, the smallest in the medium fraction and intermediate in the coarse fraction. The
452 differences between water contents were the greatest for pF values ranging from 1.7 to 3.0,
453 followed by the differences for pF > 3.5. The differences between fine and medium soil fractions
454 were statistically significant in the whole range of pF values ($p<0.05$). The differences between
455 the fine and coarse fractions tended to be significant in the 2-3 pF range, and between the
456 medium and coarse fractions for pF < 2.5 ($p<0.1$).
457
458
459
460

461
462 *3.2. Plant water retention*
463
464

465 The water contents of soybean and corn leaves increased with increasing soil water
466 content; however, the relationship between them was not linear (Fig. 3). Leaf water contents
467 increased sharply as soil water content rose to $0.10\text{-}0.15\text{ cm}^3\text{cm}^{-3}$, followed by only gradual
468 increases as soil water contents increased to $\sim 0.40\text{ cm}^3\text{cm}^{-3}$, with then a tendency for sharper
469 increase at soil water contents $>0.40\text{ cm}^3\text{cm}^{-3}$. These overall trends were present in both corn and
470 soybean leaves and in all three studied fractions; however, the increase in leaf water contents in
471 $0.15\text{-}0.40\text{ cm}^3\text{cm}^{-3}$ range of water contents was sharper in soybean leaves of medium and coarse
472 fractions, than in the rest of the treatments.
473
474
475
476

477 Water contents of corn and soybean leaves were not significantly different from each
478 other at soil water contents $<0.20\text{ cm}^3\text{cm}^{-3}$. Water content of soybean leaves was higher than that
479 of corn at $0.25\text{-}0.35\text{ cm}^3\text{cm}^{-3}$ soil water contents in the large fraction and at $>0.35\text{ cm}^3\text{cm}^{-3}$ soil
480 water contents in the medium fraction.
481
482

483 Water content of soybean leaves in medium and large fractions were significantly higher
484 than that in the fine fraction at soil moisture contents within $0.20\text{-}0.40\text{ cm}^3\text{cm}^{-3}$ range. Water
485 contents of corn leaves tended to be higher in medium and large fractions than in the fine
486 fraction at soil moisture contents within $0.10\text{-}0.25\text{ cm}^3\text{cm}^{-3}$ range ($p<0.1$). The differences
487 between coarse and medium fractions were not statistically significant either in corn or in
488 soybean leaves.
489
490

491 Assuming that an equilibrium was achieved between pressure heads in soil and leaves
492 during the overnight leaf saturation, we plotted leaf water contents vs. pF values corresponding
493 to the water contents measured in the soil (Fig.4). To find the pF values we used a linear
494 interpolation of the soil water retention curves shown in Fig. 2. The leaf water retention curves
495
496
497
498
499

were quite different from those for the soil (Fig. 4 and Fig. 2). Water content increased sharply and almost linearly from 0.1 g g^{-1} to $1.5 - 2.9 \text{ g g}^{-1}$ in both soybean and corn leaves as pF values decreased from 6 to 4.8, followed by relatively gradual increase in leaf water content up to 4.2 g g^{-1} with decrease in pF values from 4.8 to 0 (Fig. 4). These trends were similar in the three studied soil fractions and in both corn and soybean leaves. There were no statistically significant differences across the pF values either between corn and soybean leaves or among different soil fractions ($p < 0.05$).

3.3. Plant porosity and swelling upon wetting

When air-dry, the soybean leaves were thicker than the corn leaves and had markedly higher porosity, $0.522 \text{ vs. } 0.341 \text{ cm}^3 \text{ cm}^{-3}$, respectively (Table 1). After full saturation, leaf thickness almost doubled in both crops. Porosity in soybean increased by a factor of 1.4, and in corn by a factor of 2, reaching $\sim 0.7 \text{ cm}^3 \text{ cm}^{-3}$ in both crops.

No lateral swelling was observed on X-ray μ CT images, suggesting that most of the leaf swelling took place perpendicular to the leaf's plane. The swelling of soybean leaves, assessed as a ratio of the leaf thickness at a certain soil water content and the thickness of the same leaf air-dry, depended on the soil fraction and soil water content levels (Fig. 5). As expected, leaf swelling increased with increasing soil water content and the maximum swelling occurred at soil water content of $0.4 \text{ cm}^3 \text{ cm}^{-3}$. Leaf swelling was the greatest in medium and coarse soil fractions, where already at soil water content of $0.25 \text{ cm}^3 \text{ cm}^{-3}$ leaf thickness reached that of full saturation in water.

4. Discussion

Our results demonstrated presence of a sponge effect, i.e., water absorption by plant residues from the surrounding soil, across a wide range of soil moisture levels, in soil materials with contrasting physical characteristics, and in both studied plant species. The magnitude of this effect varied depending on soil moisture and matric potential levels (Figs. 3 and 4), however, there appeared to be a wide range of soil moisture and matric potential conditions across which residue water absorption remained relatively stable and fully saturated. Already when soil moisture level was at $0.15 \text{ cm}^3 \text{ cm}^{-3}$ (approximately 30% WFPS) the residues were swelled and

561
562
563 fully saturated with gravimetric water content levels exceeding 2.0 g g^{-1} . Upon subsequent
564 increase in soil moisture, residue continued to swell and remained fully saturated with
565 gravimetric moisture levels exceeding $3-4.0 \text{ g g}^{-1}$.
566
567

568
569
570 *4.1. Sponge effect and factors influencing it*
571

572 Our observations suggest that even in relatively dry soil, fragments of incorporated plant
573 residue with their fine porous structure can absorb large amounts of moisture from the
574 surrounding soil, which then fills the entire pore space of the residue. With further increase in
575 soil moisture, the residue swells as additional water enters it; subsequently, the residue remains
576 fully saturated and just grows in size (Fig. 5). Vertical swelling appeared to be the mechanism
577 driving the increases in residue water content within the $0.2-0.4 \text{ cm}^3 \text{ cm}^{-3}$ soil water content
578 range. Specifically, at $0.25 \text{ cm}^3 \text{ cm}^{-3}$ soil water contents, the average measured amount of water
579 stored within a soybean leaf was equal to 3.4 mg, and the amount of water stored within the leaf
580 as estimated from the volume change due to leaf's vertical swelling was only slightly different,
581 3.1 mg. At $0.40 \text{ cm}^3 \text{ cm}^{-3}$ soil water content, both the measured and the swelling-estimated
582 amounts of water stored within a soybean leaf were equal to 3.9 mg.
583
584

585 Water absorption by the residue can influence a number of soil processes, including plant
586 residue decomposition. Even in relatively dry soil, plant residue fragments with their high
587 amounts of absorbed water likely serve as micro-environments beneficial for microorganisms not
588 only from perspective of nutrient supply, but also from perspective of adequate moisture levels.
589 This phenomenon can explain some of the reported unexpectedly high plant residue
590 decomposition results in relatively dry soils (Abera et al., 2014). Moreover, the micro-
591 environmental conditions associated with the residue appear to remain relatively consistent
592 across a wide range of soil conditions, both in terms of water content and pF, as plant residue just
593 increases in volume due to swelling, while empty pores of the surrounding soil provide for
594 adequate gas diffusion. It can explain absence of soil moisture effects on plant residue
595 decomposition at 30% vs. 45% WFPS in the study by Kravchenko et al. (2017, in press). It is
596 when soil water content reached the levels limiting gas diffusion, in particular influx of O_2 , the
597 anoxic conditions will start altering microbial activities within the residues.
598
599

617
618
619
620 The magnitude of the sponge effect was related to water retention characteristics of the
621 surrounding soil, with lower absorption observed in the soil with higher water retention, i.e., fine
622 fraction, and higher absorption in the soil with lower water retention, i.e., medium and coarse
623 fractions (Fig. 3). The differences between the fractions in terms of the residue water contents
624 were the biggest in the 0.2-0.4 cm³ cm⁻³ soil water content range – the range where the
625 differences in soil water retentions among the fractions were also the greatest (Fig. 2).
626
627

628 This tendency was present in both corn and soybean leaves, suggesting ubiquitous nature
629 of the phenomenon. X-ray μ CT analysis revealed that a substantial portion of medium and,
630 especially, coarse soil fractions constituted of small aggregates, composed of particles in a
631 variety of size groups (Fig. 6). Such composition resulted in presence of both fine intra-aggregate
632 and coarse inter-aggregate pores in materials of these two fractions. The fine soil fraction was
633 composed of relatively well-sorted fine material (Fig. 1) with no aggregation discernible at the
634 studied resolution (4-5 μ m). Thus, its pore space mostly consisted of fine pores with high
635 capillary forces retaining soil moisture. Percentage of soil particles with size < 0.1 mm, which
636 affected soil water retention in the range of high pressure heads, was almost the same in the
637 medium and coarse soil fractions, resulting in their similar soil water retentions there.
638
639 Abundance of sand/small stone particles of 0.25-0.50 mm size range in the medium fraction (Fig.
640 1) was the likely reason for its somewhat lower water retention as compared to the large fraction
641 in the medium pF levels.
642
643

644 The magnitude of the sponge effect and the ranges of soil moisture levels and matric
645 potentials at which it was most pronounced somewhat differed between corn and soybean,
646 pointing to possible role of the plant residue characteristics. Specifically, greater leaf water
647 contents, as well as greater contrast between fine and coarse/medium fractions were observed in
648 soybean than in corn leaves. Markedly higher porosity of soybean leaves in air-dry state (Table
649 1) can be one of the reasons for the observed differences. However, as corn and soybean leaves
650 swelled upon wetting, their porosities became very similar. It is possible that not only porosity,
651 but also leaf swelling capacity determine the magnitude of the sponge effect and soil moisture
652 conditions at which it is most pronounced.
653
654

655 4.2. Possible mechanisms of sponge effect
656
657

673
674
675
676 The relatively slow decrease in the residue water content within the pF range between 0
677 and 5 was followed by the fast decrease for pF values > 5 in this study (Fig 4). Surprisingly, the
678 leaf water content-potential relationships obtained for dead corn and soybean leaves here were
679 very similar to those observed for live leaves in earlier studies. For example, experiments with a
680 variety of plant species demonstrated that when water potentials increased from 0 to 4 pF the
681 changes in water contents were relatively minor and constituted only 10-15%.

682
683 However, they were then followed by much bigger changes in water contents (30-40%) at higher
684 pF values. Such observations were reported for tomato and Japanese privet (Weatherley and
685 Slatyer, 1957), bulrush millet (Begg et al., 1964), dogwood (Knippling, 1967), corn and sorghum
686 (Sanchez and Kramer, 1971). Such relationships between relative water content and water
687 potential were described using piecewise linear regressions (Whiteman and Wilson, 1963;
688 Wilson, 1967).

689
690 A number of studies also observed two distinct lines relating water content and energy
691 state of the water (pressure) in leaf water retention (Gardner and Ehlig, 1965; Neumann et al.,
692 1974; Steudle and Zimmermann, 1977). Presence of two lines, i.e., two regimes in the
693 relationship, was associated with changes in the elastic properties of the leaf cells when the
694 turgor pressure dropped below a critical value, which corresponded to the breakpoint between
695 the two lines (Gardner and Ehlig, 1965). At low pF values, the dominant mechanism of the water
696 retention was the tensile strength of the leaf cell walls. At high pF values, the dominant
697 mechanism was the osmotic potential of the cell solution (Neumann et al., 1974) and presence of
698 plant cell regions with different elasticity or stress-hardening effect within cell walls due to
699 tension (Steudle and Zimmermann, 1977). We are not aware whether and to which extent these
700 mechanisms remain relevant to dry leaves. Yet, our results showed that the leaf thickness
701 increased almost linearly with increase in soil water content from 0.1 to 0.4 cm³ cm⁻³ (Fig. 5),
702 supporting observations regarding importance of leaf cell elasticity.

703
704
705
706
707
708
709
710
711
712
713
714
715
716
717 *4.3. Spatial patterns in water distribution within plant residue and soil*

718
719 Analysis of X-ray μ CT images demonstrated that the differences in PSDs and
720 arrangements of soil particles within the three soil fractions resulted in different spatial patterns
721 in soil pores and in water. At low soil water content (0.1 cm³ cm⁻³, WFPS ~20%), water
722
723
724
725
726
727
728

729
730
731 occupied very fine soil pores between soil particles in the fine fraction (Fig. 7a) and inside soil
732 aggregates in the medium and coarse fractions (Fig. 7d and 7g). Water formed clusters in the
733 pore space with plenty of air-filled interconnected pores around them. Consistent with the direct
734 measurements (Fig. 3) soybean leaves were almost completely filled with water. Such patterns in
735 water's spatial distribution likely created favorable conditions for gas diffusion to/from the
736 residue. However, soil water potential of 5 pF (-10 bar) at this water content might have been
737 limiting catabolic capacity of soil microorganisms (Swift et al., 1979).
738
739

740 Optimum water potentials for soil organic matter decomposition are believed to be within
741 the - 0.2 to - 0.5 bar (3.3 to 3.7 pF) range (Sommers et al., 1981), of which our soil moisture
742 content of $0.25 \text{ cm}^3 \text{ cm}^{-3}$ (WFPS ~50%) is a representation (Figs. 7b, 7e and 7h). At this
743 condition, water is still clustered in the pore space, filling small and medium-size pores in all
744 three fractions. However, much fewer interconnected air-filled pores can be visually detected on
745 the images for this water content as compared to that of $0.10 \text{ cm}^3 \text{ cm}^{-3}$. Importantly, only large
746 inter-aggregate pores serve as pass-ways for airflow in the coarse soil fraction. Gas diffusion
747 limitations likely can lead to less favorable conditions for decomposers in fine as compared to
748 coarse fraction. This observation corroborates the results of slower corn leaf decomposition in
749 fine as opposed to coarse soil fraction when incubated at 30-50% WFPS ((Negassa et al., 2015);
750 Kravchenko et al., 2017 in press).
751
752

753 Further increase in soil moisture content to $0.4 \text{ cm}^3 \text{ cm}^{-3}$ considerably reduced air-filled
754 porosity and, particularly, connected air flow pathways (Fig 7 c,f,i). This water content
755 corresponded to pF values below 1.5 (Fig. 2), which is above the optimum range for soil
756 microorganisms (Sommers et al., 1981).
757
758

759 It is interesting to note that, while water menisci were observed on the contacts between
760 plant residue and soil at $0.40 \text{ cm}^3 \text{ cm}^{-3}$ water content, no visible water meniscus were present at
761 soil water contents of 0.1 and $0.25 \text{ cm}^3 \text{ cm}^{-3}$ (Fig. 7), even though the leaves themselves there
762 adsorbed appreciable amounts of iodine solution. We believe that the meniscus between soil
763 particles and leaves at low water contents existed for a very short period of time, when the leaves
764 were placed in contact with soil, and disappeared soon after the leaves adsorbed the iodine
765 solution. In absence of such menisci the opportunities for movement of microorganisms and
766 transport of enzymes and decomposition products from residue into adjacent soil was probably
767 somewhat limited. Moreover, the lack of menisci also probably limited movement of protozoa
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

785
786
787 from soil into the residue. Thus, a residue fragment might be likened to an island of processes
788 and activities disparate of those taking place in soil.
789
790
791
792

793 **Conclusions**

794

795 Our study demonstrated that soybean and corn leaves had different water retention
796 properties from those of the surrounding soil. The leaves of both crops acted as sponges
797 absorbing water from relatively dry soil and increasing their water contents via swelling soil
798 moisture increased. This finding implies that plant residue fragments likely create
800 microenvironments for microbial decomposers that differ from those of the surrounding soil; and
801 which, in relatively dry soil, can be more beneficial for enzyme diffusion and plant
803 decomposition than what can be inferred from the information on moisture levels of the soil
805 itself.
806
807

808 Ability of plant residue to absorb water from the surrounding soil was affected by soil
809 water retention capacity and was lower in fine-texture soil with high water retention than in the
810 coarser textured soils with lower water retention. The differences in the magnitude of sponge
811 effect in response to soil texture were present at a wide range of soil moisture conditions
813 spanning 20-80% WFPS.
814
815

816 Our results showed that soil properties might play a dual role in controlling activity of the
817 microbial community in the soil, specifically via: (i) oxygen inflow to the decomposing material,
818 and (ii) water saturation of the plant residue. It remains to be seen in further experimental studies
819 to which extent these two mechanisms manifest itself in different soils and for plant residue of
820 different origins and different decomposition duration.
821
822

823 **Acknowledgements**

824

825 This research was partly funded by the National Science Foundation's Long-Term Ecological
826 Research Program (DEB 1027253), by the National Science Foundation's Geobiology and Low
827 Temperature Geochemistry Program (Award no. 1630399), by the Department of Energy Great
828 Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494), by
829 Michigan State University's AgBioResearch (Project GREEN), and by Michigan State
830 University's Discretionary Funding Initiative. Portions of this work were performed at
831
832
833
834
835
836
837
838
839
840

841
842
843 GeoSoilEnviroCARS (The University of Chicago, Sector 13), Advanced Photon Source (APS),
844 Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science
845 Foundation - Earth Sciences (EAR - 1634415) and Department of Energy- GeoSciences (DE-
846 FG02-94ER14466). This research used resources of the Advanced Photon Source, a U.S.
847 Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of
848 Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

897
898
899
900
901 **References**

902 Abera, G., Wolde-Meskel, E., Bakken, L.R., 2014. Unexpected high decomposition of
903 legume residues in dry season soils from tropical coffee plantations and crop lands. *Agronomy*
904 for Sustainable Development

905 34, 667-676.

906 Adu, J.K., Oades, J.M., 1978. Physical Factors Influencing Decomposition of Organic
907 Materials in Soil Aggregates. *Soil Biology & Biochemistry* 10, 109-115.

908 Alarcon-Gutierrez, E., Floch, C., Ziarelli, F., Augur, C., Criquet, S., 2010. Drying-rewetting
909 cycles and gamma-irradiation effects on enzyme activities of distinct layers from a *Quercus ilex*
910 L. litter. *Soil Biology & Biochemistry* 42, 283-290.

911 Austin, A.T., Vitousek, P.M., 2000. Precipitation, decomposition and litter decomposability
912 of *Metrosideros polymorpha* in native forests on Hawai'i. *Journal of Ecology* 88, 129-138.

913 Ball, B.C., 2013. Soil structure and greenhouse gas emissions: a synthesis of 20 years of
914 experimentation. *European Journal of Soil Science* 64, 357-373.

915 Begg, J.E., Bierhuizen, J.F., R., L.E., Misra. D. K., Slatyer, R.O., Stern, W.R., 1964. Diurnal
916 energy and water exchanges in bulrush millet in an area of high solar radiation. *Agr. Meteorol.* 1,
917 294-312.

918 Fruit, L., Recous, S., Richard, G., 1999. Plant residue decomposition: Effect of soil porosity
919 and particle size. *Effect of Mineral-Organic-Microorganism Interaction on Soil and Freshwater*
920 Environments

921 189-196.

922 Gardner, W.R., Ehlig, C.F., 1965. Physical aspects of the internal water relations of plant
923 leaves. *Plant Physiol.* 40, 705-710.

924 Garnier, P., Cambier, C., Bousso, M., Masse, D., Chenu, C., Recous, S., 2008. Modeling the
925 influence of soil-plant residue contact on carbon mineralization: Comparison of a compartmental
926 approach and a 3D spatial approach. *Soil Biology & Biochemistry* 40, 2754-2761.

927 Gee, G.W., Or, D., 2002. Particle-size analysis, Methods of soil analysis. Part 4. Physical
928 methods. *Agron. Monogr.* 5. ASA and SSSA, Madison, WI, pp. 255-294.

929 Groffman, P.M., Butterbach-Bahl, K., Fulweiler, R.W., Gold, A.J., Morse, J.L., Stander,
930 E.K., Tague, C., Tonitto, C., Vidon, P., 2009. Challenges to incorporating spatially and
931 temporally explicit phenomena (hotspots and hot moments) in denitrification models.
932 *Biogeochemistry* 93, 49-77.

953
954
955 Guber, A.K., Shelton, D.R., Pachepsky, Y.A., 2005. Transport and retention of manure-
956 borne coliforms in soil. *Vadose Zone Journal* 4, 828-837.
957
958 Gunnarsson, S., Marstorp, H., Dahlin, A.S., Witter, E., 2008. Influence of non-cellulose
959 structural carbohydrate composition on plant material decomposition in soil. *Biology and*
960 *Fertility of Soils* 45, 27-36.
961
962 Howard, P.J.A., Howard, D.M., 1979. Respiration of Decomposing Litter in Relation to
963 Temperature and Moisture - Microbial Decomposition of Tree and Shrub Leaf Litter-2. *Oikos*
964 33, 457-465.
965
966 Knipling, E.B., 1967. Effect of leaf aging on water deficit-water potential relationships of
967 dogwood leaves growing in two environments. *Physiol. Plant.* 20, 65-72.
968
969 Lal, R., 1997. Residue management, conservation tillage and soil restoration for mitigating
970 greenhouse effect by CO₂-enrichment. *Soil & Tillage Research* 43, 81-107.
971
972 Li, Y.L., Ning, Z.Y., Cui, D., Mao, W., Bi, J.D., Zhao, X.Y., 2016a. Litter Decomposition in
973 a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen
974 Addition. *Plos One* 11.
975
976 Li, Z.Q., Zhao, B.Z., Zhang, J.B., 2016b. Effects of Maize Residue Quality and Soil Water
977 Content on Soil Labile Organic Carbon Fractions and Microbial Properties. *Pedosphere* 26, 829-
978 838.
979
980 Liebig, M.A., Franzluebbers, A.J., Follett, R.F., 2012. Agriculture and Climate Change:
981 Mitigation Opportunities and Adaptation Imperatives. *Managing Agricultural Greenhouse Gases:*
982 *Coordinated Agricultural Research through Gracenet to Address Our Changing Climate*, 3-11.
983
984 Miguez, F.E., Bollero, G.A., 2005. Review of corn yield response under winter cover
985 cropping systems using meta-analytic methods. *Crop Science* 45, 2318-2329.
986
987 Milliken, G.A., Johnson, D.E., 2001. *Analysis of Messy Data Volume III: Analysis of*
988 *covariance*, 1st ed. CRC Press, Boca Raton, FL.
989
990 Milliken, G.A., Johnson, D.E., 2009. *Analysis of Messy Data Volume I: Designed*
991 *Experiments*, 2nd ed. CRC Press.
992
993 Moorhead, D.L., Sinsabaugh, R.L., 2000. Simulated patterns of litter decay predict patterns
994 of extracellular enzyme activities. *Applied Soil Ecology* 14, 71-79.
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

1009
1010
1011
1012 Negassa, W., Guber, A.K., Kravchenko, A.N., Marsh, T.L., Hildebrandt, B., Rivers, M.L.,
1013 2015. Properties of soil pore space regulate pathways of plant residue decomposition and
1014 community structure of associated bacteria. *Plos One*.
1015
1016 Neumann, H.H., Thurtell, G.W., Stevenson, K.R., Beadle, C.L., 1974. Leaf Water-Content
1017 and Potential in Corn, Sorghum, Soybean, and Sunflower. *Canadian Journal of Plant Science* 54,
1018 185-195.
1019
1020
1021 Nimmo, J.R., Winfield, K.A., 2002. Controlled vapor pressure – Description and principles,
1022 in: Dane, J.H., Topp, G.C. (Eds.), *Methods of soil analysis, Part 4--Physical methods*. Soil
1023 Science Society of America Book Series No. 5, Madison, WI, pp. 710-711.
1024
1025
1026 Robertson, G.P., Hamilton, S.K., 2015. Long-term ecological research in agricultural
1027 landscapes at the Kellogg Biological Station LTER site: conceptual and experimental
1028 framework, in: Hamilton, S.K., Doll, J.E., Robertson, G.P. (Eds.), *The ecology of agricultural
1029 landscapes: long-term research on the path to sustainability*. Oxford University Press, New York,
1030 1031 New York, USA., pp. 1-32.
1032
1033
1034 Sanchez, M., Kramer, P.J., 1971. Behavior of Corn and Sorghum under Water Stress and
1035 during Recovery. *Plant Physiology* 48, 613-616.
1036
1037 Sardans, J., Penuelas, J., 2005. Drought decreases soil enzyme activity in a Mediterranean
1038 *Quercus ilex* L. forest. *Soil Biology & Biochemistry* 37, 455-461.
1039
1040 Sardans, J., Penuelas, J., Ogaya, R., 2008. Experimental drought reduced acid and alkaline
1041 phosphatase activity and increased organic extractable P in soil in a *Quercus ilex* Mediterranean
1042 forest. *European Journal of Soil Biology* 44, 509-520.
1043
1044
1045 Scholberg, J.M.S., Dogliotti, S., Leoni, C., Cherr, C.M., Zotarelli, L., Rossing, W.A.H.,
1046 2010. Cover Crops for Sustainable Agrosystems in the Americas. *Genetic Engineering,
1047 Biofertilisation, Soil Quality and Organic Farming* 4, 23-58.
1048
1049
1050 Setia, R., Marschner, P., 2013. Carbon mineralization in saline soils as affected by residue
1051 composition and water potential. *Biology and Fertility of Soils* 49, 71-77.
1052
1053 Sinsabaugh, R.L., Moorhead, D.L., 1994. Resource-Allocation to Extracellular Enzyme-
1054 Production - a Model for Nitrogen and Phosphorus Control of Litter Decomposition. *Soil
1055 Biology & Biochemistry* 26, 1305-1311. Smart, K.A., Jackson, C.R., 2009. Fine Scale Patterns in
1056 Microbial Extracellular Enzyme Activity during Leaf Litter Decomposition in a Stream and its
1057 Floodplain. *Microbial Ecology* 58, 591-598.
1058
1059
1060
1061
1062
1063
1064

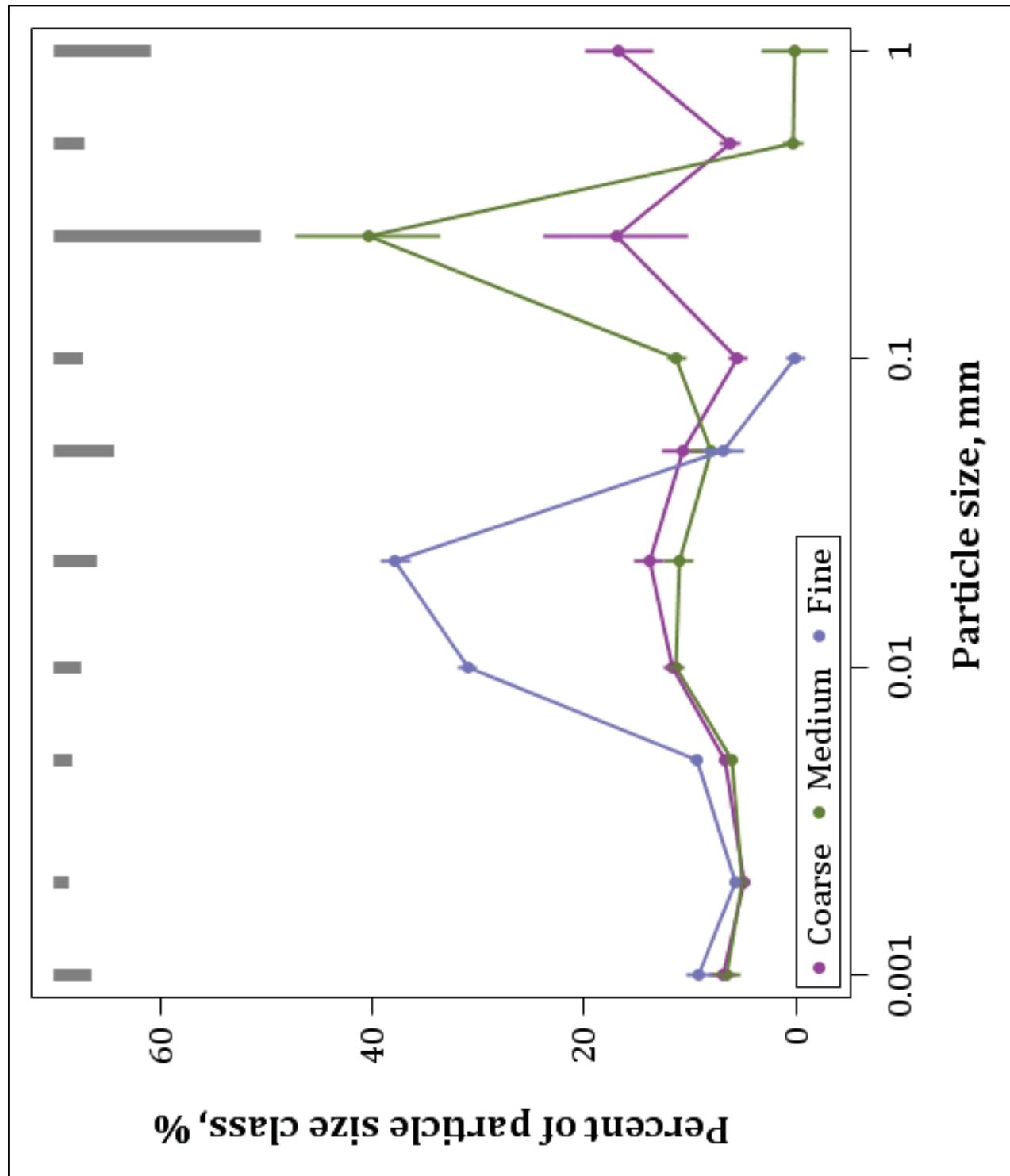
1065
1066
1067 Sommers, L.E., Gilmour, C.M., Wildung, R.E., Beck, S.M., 1981. The Effect of Water
1068 Potential on Decomposition Processes in Soils, in: Parr, J.F., Gardner, W.R., Elliott, L.F. (Eds.),
1069 Water Potential Relations in Soil Microbiology. SSSA Special Publication 9. Soil Science
1070 Society of America, Madison, WI.
1071
1072
1073
1074 Steinberger, Y., Shmida, A., Whitford, W.G., 1990. Decomposition Along a Rainfall
1075 Gradient in the Judean Desert, Israel. *Oecologia* 82, 322-324.
1076
1077 Steudle, E., Zimmermann, U., 1977. Effect of Turgor Pressure and Cell Size on the Wall
1078 Elasticity of Plant Cells. *Plant Physiol.* 59, 285-289.
1079
1080 Strojan, C.L., Randall, D.C., Turner, F.B., 1987. Relationship of Leaf Litter Decomposition
1081 Rates to Rainfall in the Mojave Desert. *Ecology* 68, 741-744.
1082
1083 Swift, M., Heal, O.W., Anderson, J.M., 1979. Decomposition in Terrestrial Ecosystems.
1084 University of California Press, California.
1085
1086 Syswerda, S.P., Corbin, A.T., Mokma, D.L., Kravchenko, A.N., Robertson, G.P., 2011.
1087 Agricultural Management and Soil Carbon Storage in Surface vs. Deep Layers. *Soil Science
1088 Society of America Journal* 75, 92-101.
1089
1090
1091 Waring, B.G., 2013. Exploring relationships between enzyme activities and leaf litter
1092 decomposition in a wet tropical forest. *Soil Biology & Biochemistry* 64, 89-95.
1093
1094 Weatherley, P.E., Slatyer, R.O., 1957. Relationship between Relative Turgidity and
1095 Diffusion Pressure Deficit in Leaves. *Nature* 179, 1085-1086.
1096
1097 Whiteman, P.C., Wilson, G.L., 1963. Estimation of Diffusion Pressure Deficit by
1098 Correlation with Relative Turgidity and Beta-Radiation Absorption. *Australian Journal of
1099 Biological Sciences* 16, 140-146.
1100
1101
1102 Wildenschild, D., Rivers, M.L., Porter, M.L., Iltis, G.C., Armstrong, R.T., Davit, Y., 2013.
1103 Using synchrotron-based x-ray microtomography and functional contrast agents in
1104 environmental applications., In: S.H, A., Hopmans, J.H. (Eds.), *Soil-Water-Root Processes:
1105 Advances in Tomography and Imaging*. Soil Science Society of America Special Publication 61,
1106 Madison, WI, pp. 1-22.
1107
1108 Wilson, I.W., 1967. The components of leaf water potential. II. Pressure potential and water
1109 potential. *Australian J. Biological Sciences* 20, 349-357.
1110
1111 Winer, B.J., 1971. *Statistical principles in Experimental Design*. McGraw-Hill, New York.
1112
1113
1114
1115
1116
1117
1118
1119
1120

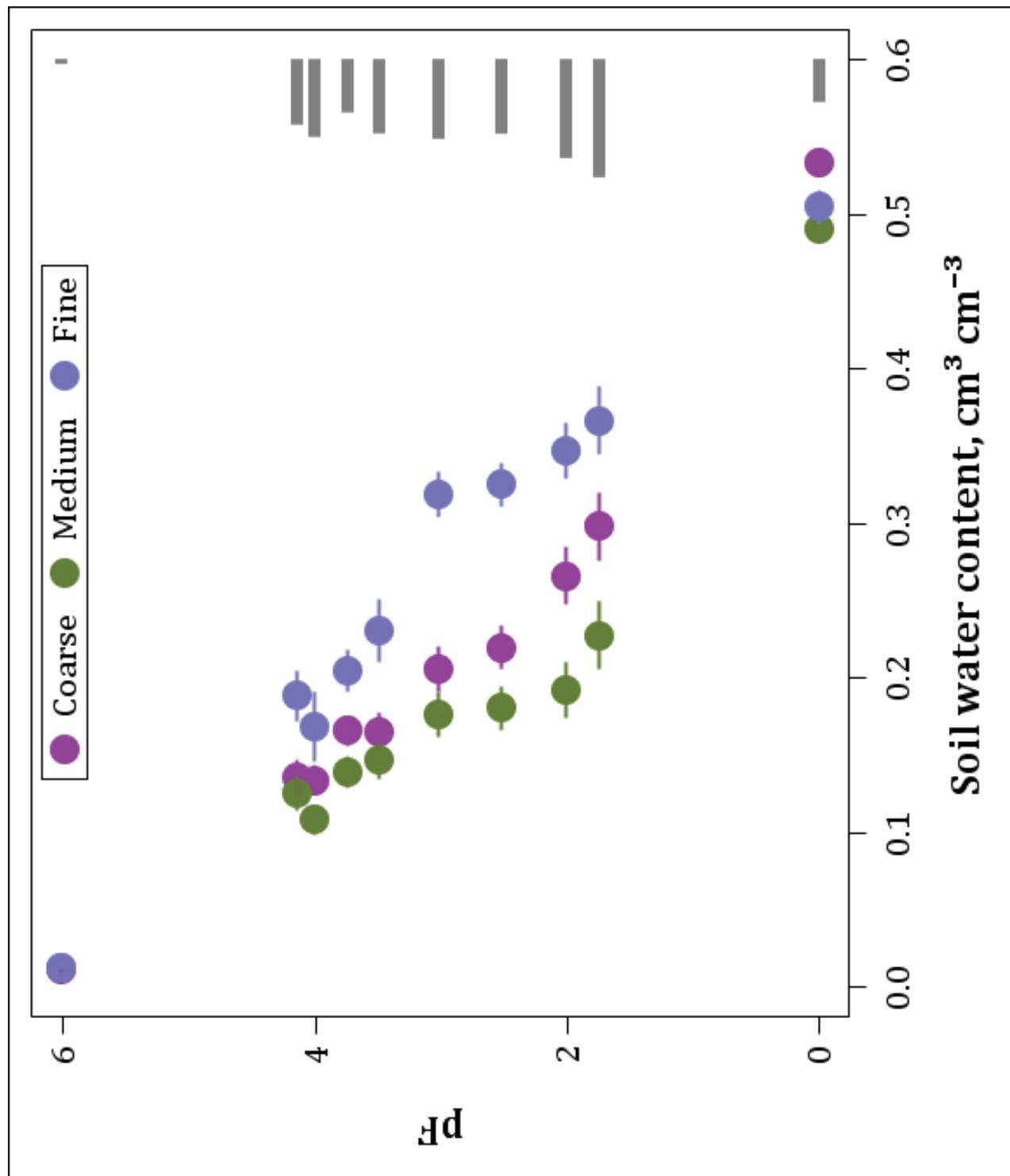
1121
1122
1123 Yahdjian, L., Sala, O., Austin, A.T., 2006. Differential controls of water input on litter
1124 decomposition and nitrogen dynamics in the Patagonian steppe. *Ecosystems* 9, 128-141.
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

Captions

Figure 1. Particle size distributions of the fine (0.01–0.05 mm), medium (0.10–0.50 mm) and coarse (1.00–2.00 mm) soil fractions. Vertical lines represent standard errors (n=3). Grey bars represent least significant difference value ($p<0.05$) for each particle size.

Figure 2. Soil water retention measured in fine (0.01 – 0.05 mm), medium (0.1 – 0.5 mm) and coarse (1 – 2 mm) fractions. Horizontal lines represent standard errors (n=3). Grey bars represent least significant difference ($p<0.05$) for each pF level.


Figure 3. Relationships between soil and leaf water contents for soybean (a) and corn (b) leaves in fine (0.01 – 0.05 mm), medium (0.1 – 0.5 mm) and coarse (1 – 2 mm) fractions. Solid lines are cubic regression models fitted to the data in the course of ANCOVA. Grey bars represent least significant difference values for comparing plants and fractions ($p<0.05$) at selected soil water content levels.


Figure 4. Relationships between pF and leaf water contents for soybean (a) and corn (b) leaves in fine (0.01 – 0.05 mm), medium (0.1 – 0.5 mm) and coarse (1 – 2 mm) fractions.

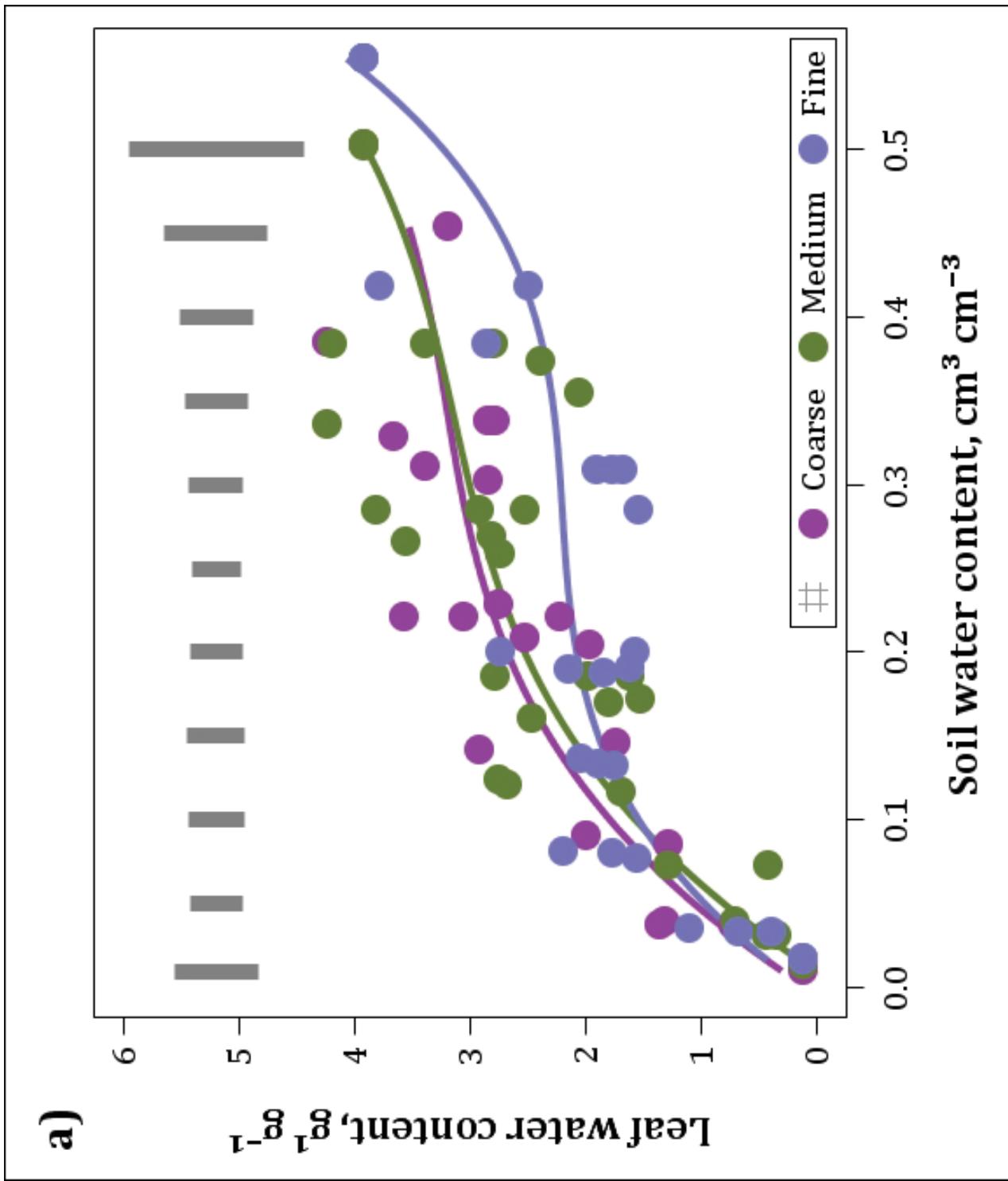
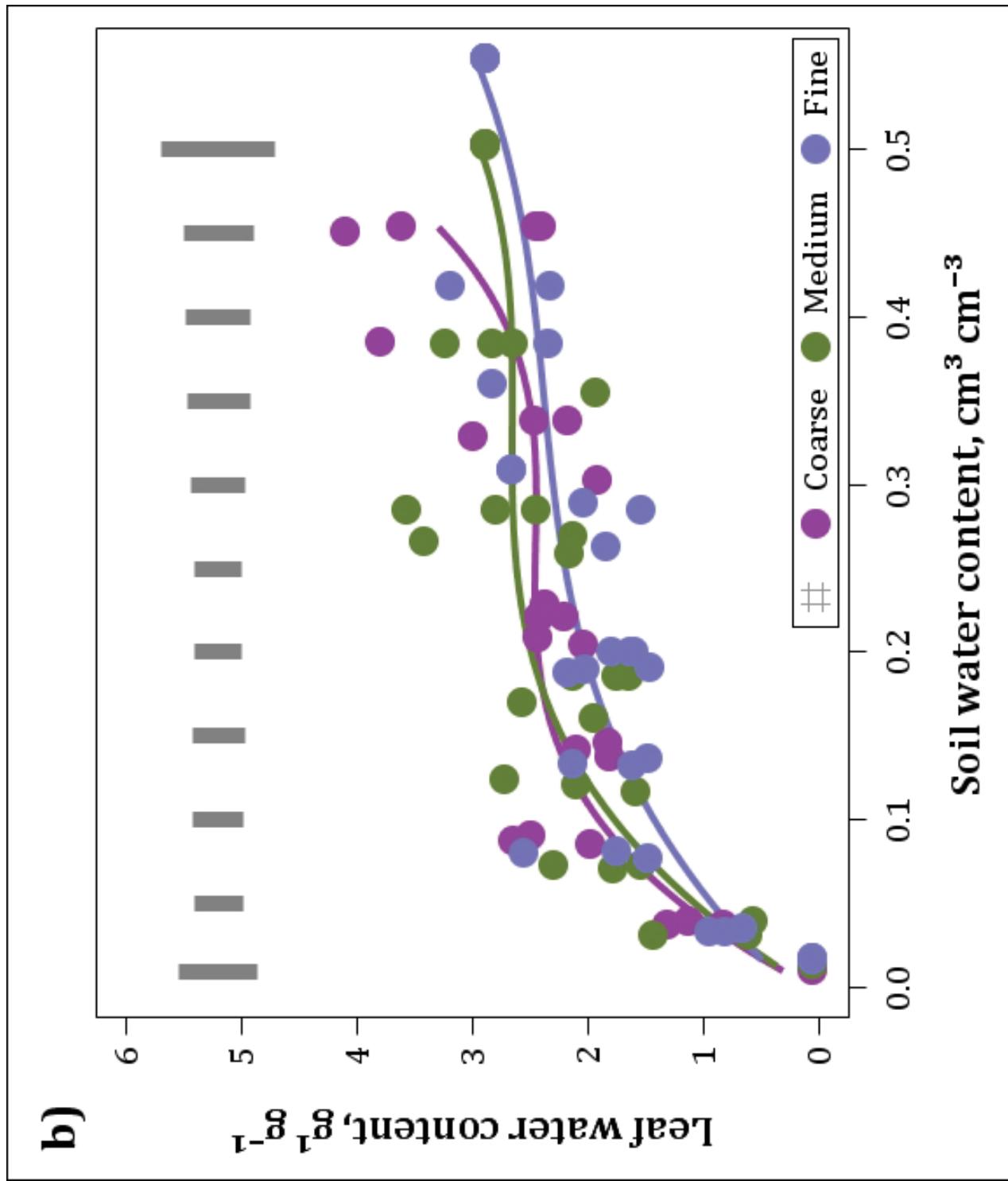
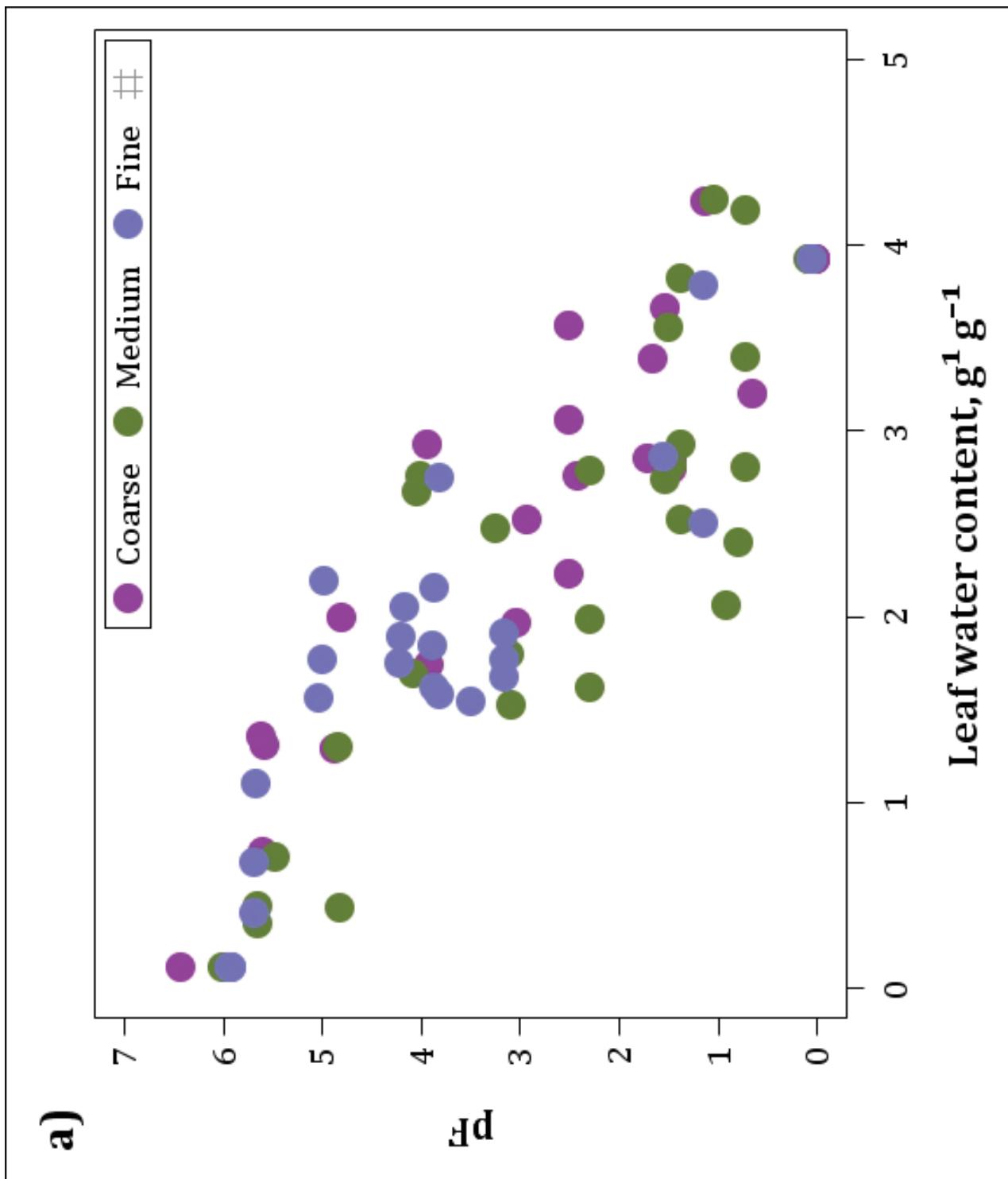
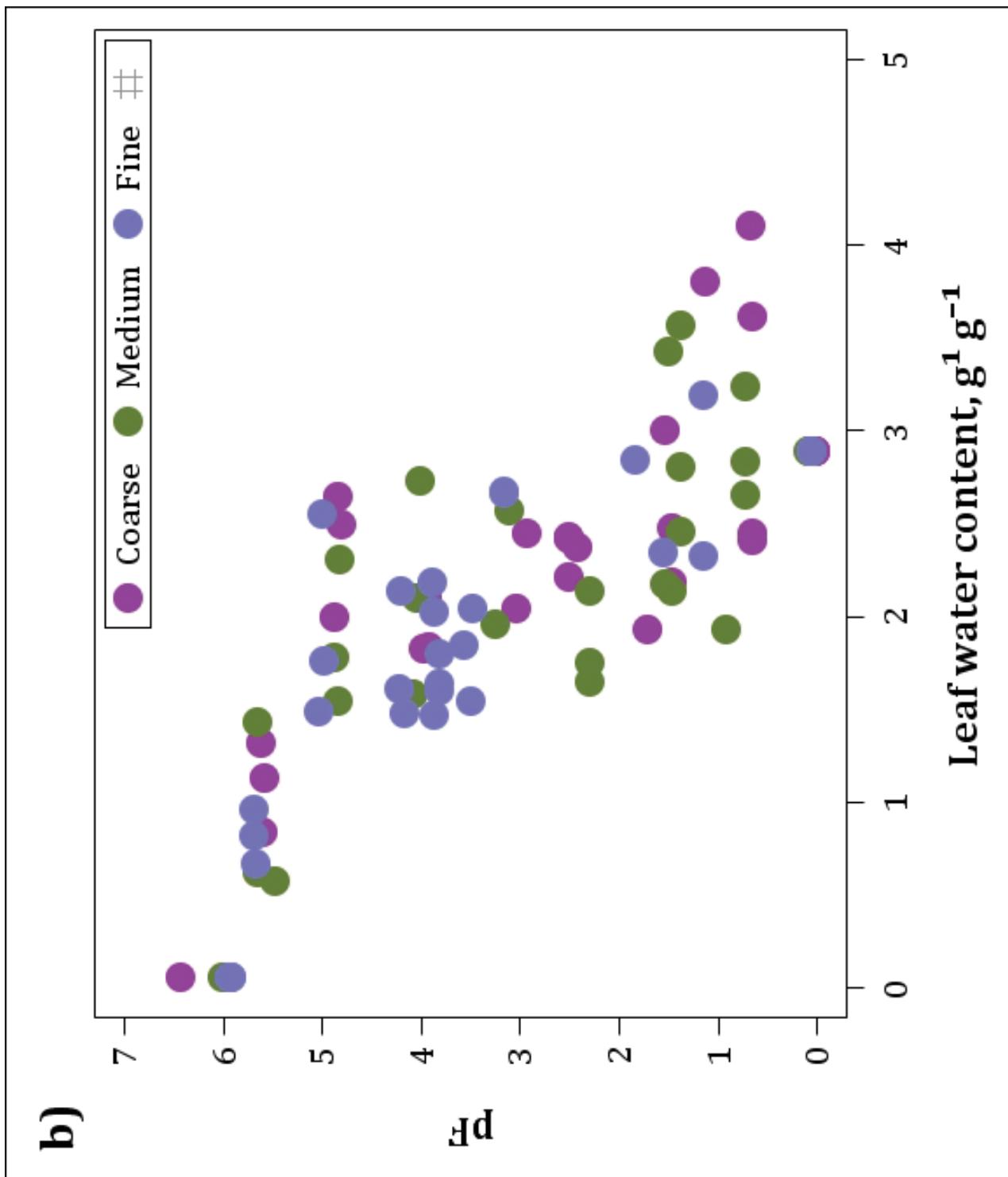
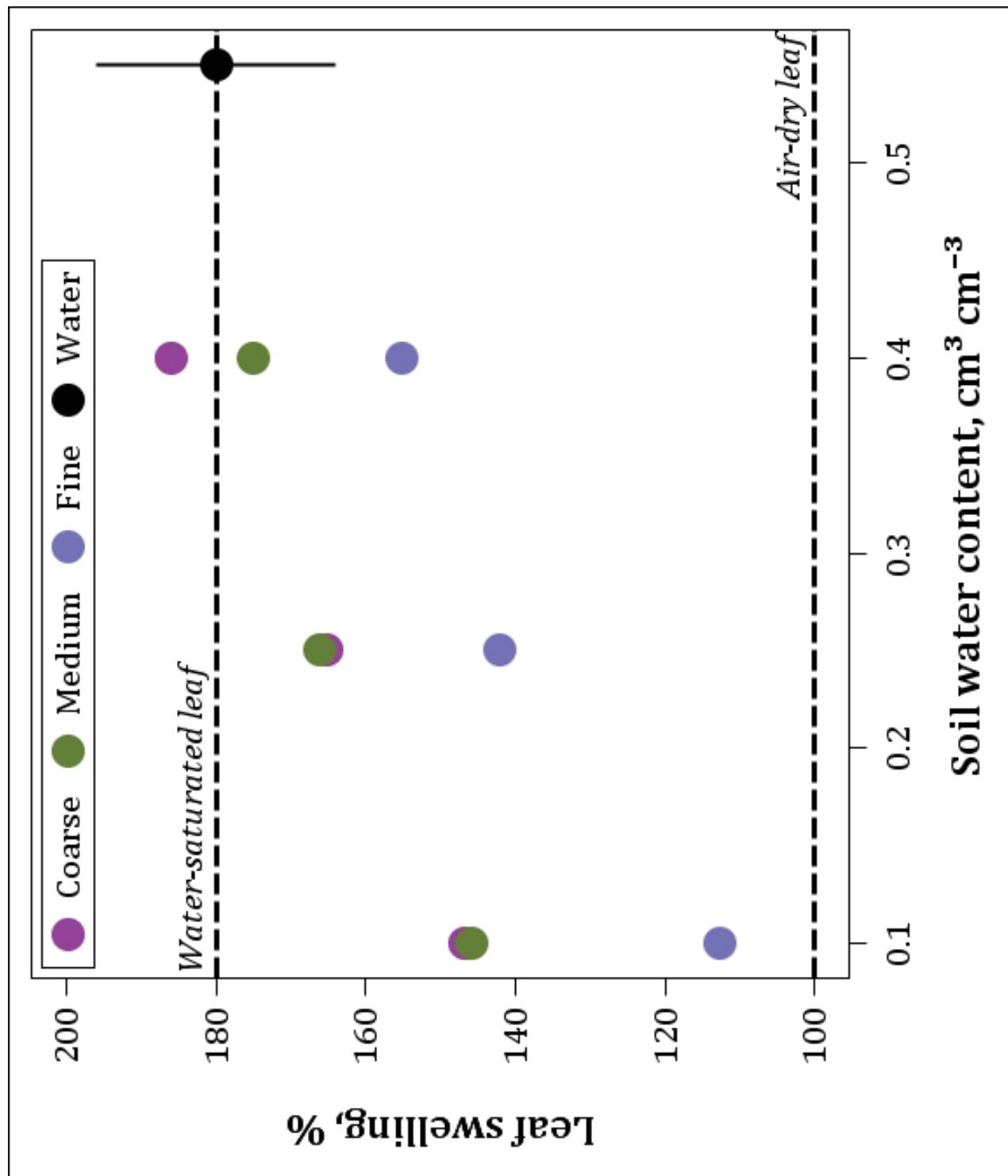

Figure 5. Swelling of soybean leaves in fine (0.01 – 0.05 mm), medium (0.1 – 0.5 mm) and coarse (1 – 2 mm) soil fractions at three levels of soil water content along with soybean leaf swelling after saturation in water. Dash lines mark air-dry leaf (100%) and water-saturated leaf (166%).

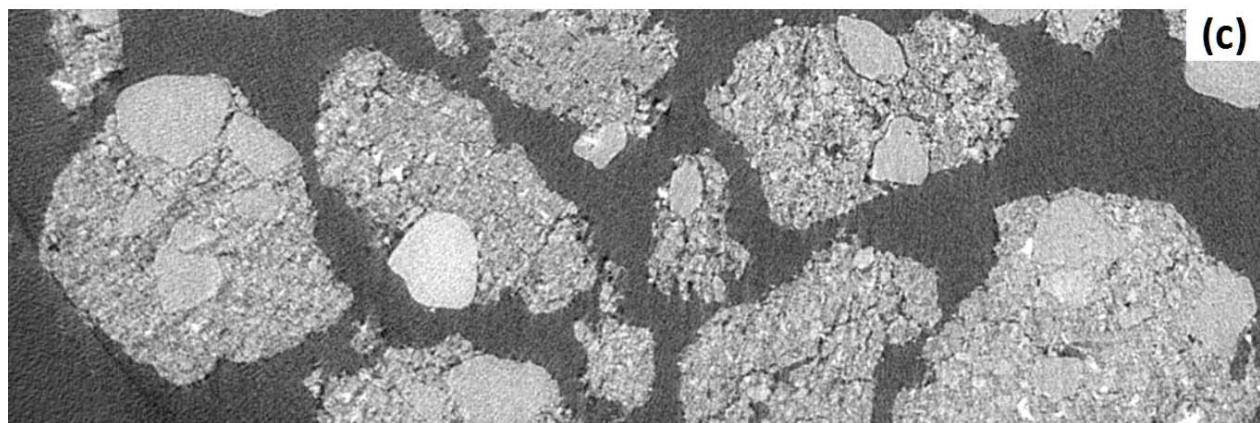
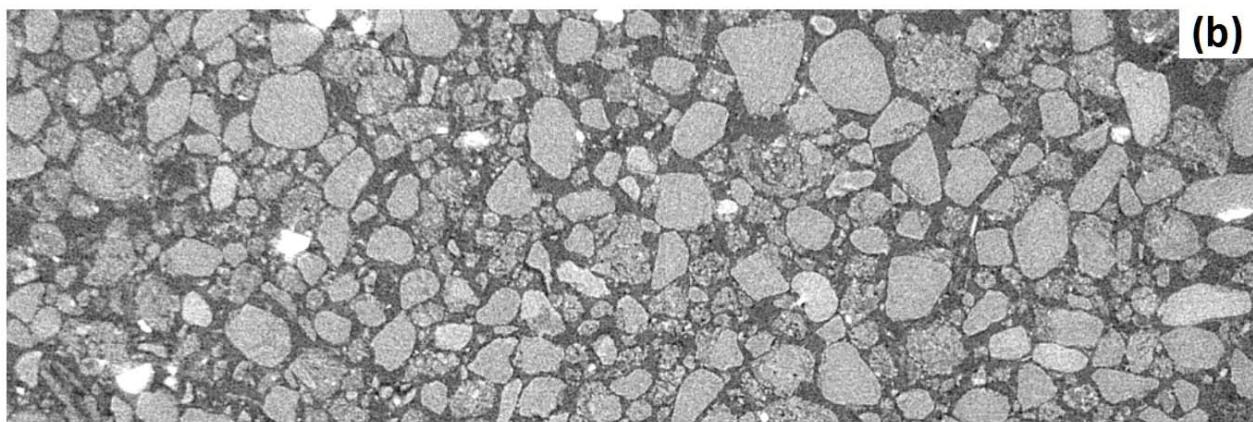
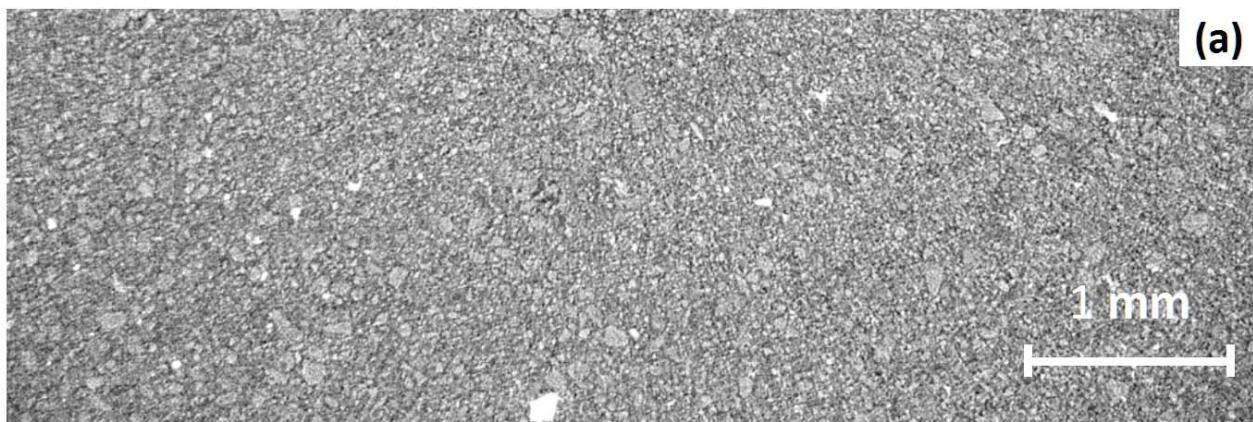
Figure 6. X-ray CT images of (a) fine (0.01 – 0.05 mm), medium (0.1 – 0.5 mm) and coarse (1 – 2 mm) fractions of the dry (?) Kalamazoo soil. Dark areas on the images denote pore space, while bright areas denote the solids.

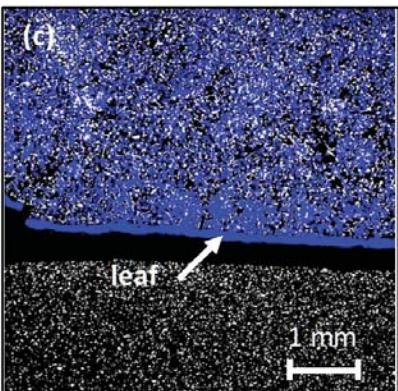
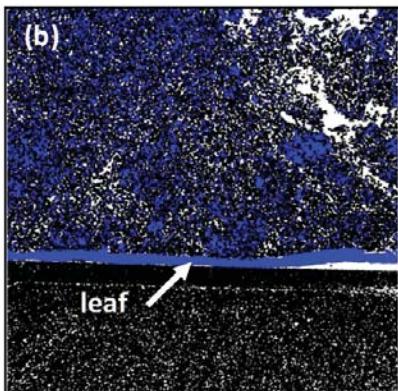
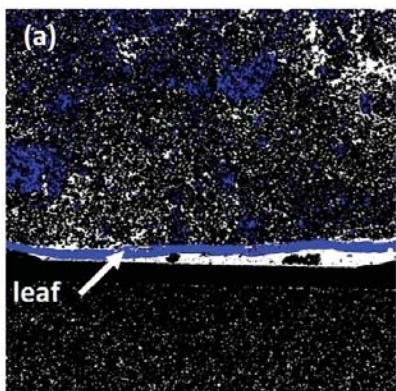

Figure 7. Examples of spatial distributions of iodine solution in the soybean leaves and three soil fractions at three levels of soil saturation. Colors identify air (white), solids (black) and iodine solution (blue).



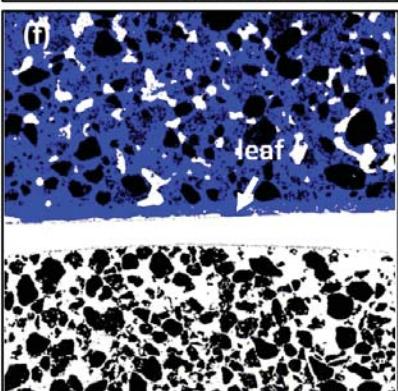
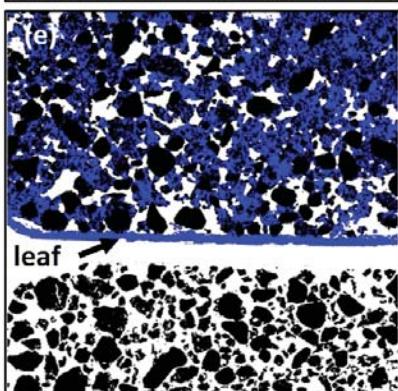
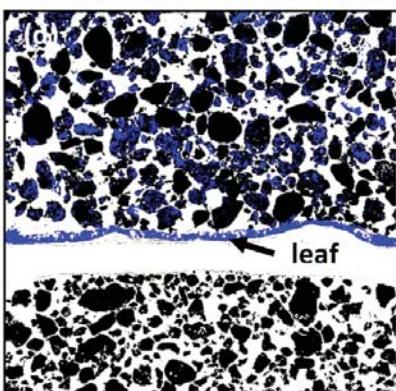







b)




Soil water content:

$0.10 \text{ cm}^3 \text{ cm}^{-3}$




$0.25 \text{ cm}^3 \text{ cm}^{-3}$

$0.40 \text{ cm}^3 \text{ cm}^{-3}$

$<0.05 \text{ mm}$

$0.1-0.5 \text{ mm}$

Soil fraction: 1-2 mm

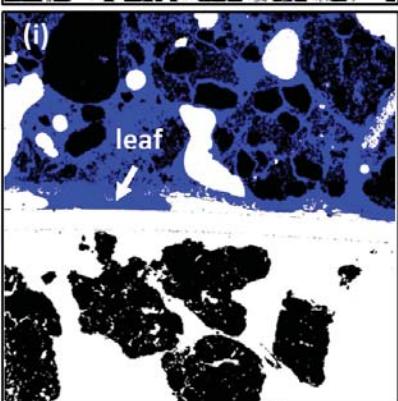
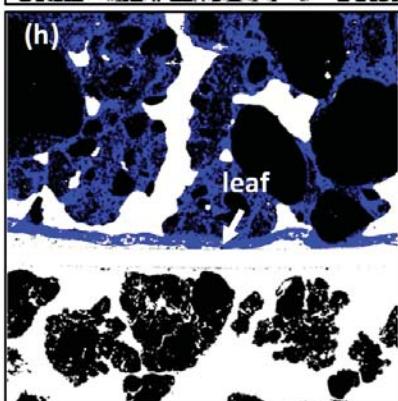
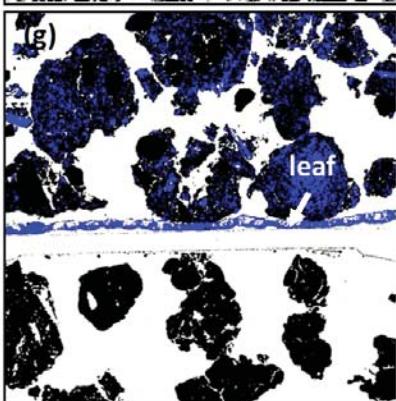




Table 1. Thickness and porosity of the corn and soybean leaves used in the study. The porosity is calculated assuming cellulose density of 1.5 g cm^{-3} . Means \pm standard deviation are shown ($n = 4$). Letters indicated statistically significant differences between corn and soybean means ($P < 0.05$).

Plant	Air-dry		Water-saturated	
	thickness	porosity	thickness	porosity
	μm	$\text{cm}^3 \text{cm}^{-3}$	μm	$\text{cm}^3 \text{cm}^{-3}$
Soybean	$78.1 \pm 2.1\text{a}$	$0.522 \pm 0.060\text{a}$	$140.6 \pm 4.1\text{a}$	$0.735 \pm 0.030\text{a}$
Corn	$46.7 \pm 2.4\text{b}$	$0.341 \pm 0.044\text{b}$	$104.7 \pm 13.0\text{b}$	$0.705 \pm 0.024\text{a}$