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Abstract

Motivation: With the development of droplet based systems, massive single cell transcriptome data has
become available, which enables analysis of cellular and molecular processes at single cell resolution and
is instrumental to understanding many biological processes. While state-of-the-art clustering methods
have been applied to the data, they face challenges in the following aspects: (1) the clustering quality still
needs to be improved; (2) most models need prior knowledge on number of clusters, which is not always
available; (3) there is a demand for faster computational speed.

Results: We propose to tackle these challenges with Parallelized Split Merge Sampling on Dirichlet
Process Mixture Model (the Para-DPMM model). Unlike classic DPMM methods that perform sampling
on each single data point, the split merge mechanism samples on the cluster level, which significantly
improves convergence and optimality of the result. The model is highly parallelized and can utilize the
computing power of high performance computing (HPC) clusters, enabling massive inference on huge
datasets. Experiment results show the model outperforms current widely used models in both clustering
quality and computational speed.

Availability: Source code is publicly available on https://github.com/tiehangd/Para_DPMM/
tree/master/Para_DPMM_package

1 Introduction as better approaches for transplant monitoring (Athanasiadis et al., 2017)
and detection of rare cell populations (Proserpio and Lonnberg, 2015).

Parallelized droplet based single cell transcriptomic profiling has achieved . ' i )
Cell clustering based on transcriptomic profiles plays an important

significant progress in recent years (Zheng et al., 2017). Compared to
traditional methods, parallelized droplet based systems utilize Gel bead
in EMulsion(GEM) to capture single cells in parallel (the co-occurrence
of multiple cells in one GEM is eliminated by controlling the dilution in
the reagent oil). The 3’ messenger RNA digital counting is performed
through the reading of unique molecular identifiers (UMI) in each GEM.
Massive parallelized droplet based systems have the following properties:

role in single cell analysis. It identifies and characterizes cell subtypes
from heterogeneous tissues and enhances understanding of cell identity
and functionality. Classic clustering methods such as K-means (Kanungo
et al., 2002), hierarchical clustering (Manning et al., 2008), spectral
clustering (Ng et al., 2001) can be applied directly to single cell clustering.
Given the high dimensionality of single cell data, a widely adopted
approach involves combining dimension reduction with classic clustering.
Common combinations of methods include t-SNE with K-means (Griin
et al., 2015), PCA with hierarchical clustering (Zurauskiene and Yau,
2016) and Rt-SNE with model based clustering (Fraley and Raftery, 2002;
Zurauskiene and Yau, 2016). The high dimensionality problem can also be
tackled by replacing Euclidean distances with similarity measures that are

(1) Samples are processed in parallel in microfluidic chip with multiple
channels, allowing the analysis of a much larger number of cells. (2)
The multiplet rate (rate of multiple cells in one GEM) is controlled to
be less than 2% by limiting dilution, and performs direct counting of
molecule copies using UML. (3) The detection result of UMI is minimally
affected by the composition of nucleobases and gene length, resulting in

low transcript bias. Because of these properties, parallelized droplet based Tobust in sparse high dimension space such as ranking on shared nearest

neighbors (SNN) (Satija et al., 2015), ward linkage (Guo et al., 2015), and

single cell transcriptomic profiling has resulted in the creation of mass ) ; - e
graph based clustering methods which perform graph partition by finding

single cell genomic datasets and lead to a number of advancements such . i A :
maximal cliques on the similarity matrix (Xu and Su, 2015). Other recent
works proposed to solve the problem with consensus clustering (Kiselev
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Fig. 1: Workflow of Para-DPMM Model

etal.,2017), regulon formation (Aibar et al., 2017), multi-kernel learning
(Wang et al., 2017). Imputation is shown to be effective for performance
improvement (Lin ef al., 2017). Dirichlet Mixture Model (DMM) is well
suited for single cell clustering as the discrete counting information in
the UMI matrix can be directly modeled through Multinomial distribution
and conjugate prior likelihood pairs result in efficient inference (Blei ez al.,
2003). Recent applications of DMM to single cell analysis have achieved
goodresults (DuVerle e al.,2016; Sun et al.,2017). However, there are still
challenges to be addressed: (1) There is demand for faster computational
speed for newly created mass single cell datasets, which can be realized
through parallelization and utilization of HPC clusters. However, standard
DPMM methods are difficult to parallelize. (2) For challenging tasks, as
shown in the experiment section, clustering quality can be significantly
improved. (3) Most methods are designed for continuous data, while
the scRNA-Seq data is formed of discrete UMI counts. Conversion of
the UMI counts to continuous measure would alter the straight-forward
interpretation and it is more appealing to directly model discrete data. (4)
Most methods need prior knowledge on the number of clusters (DuVerle
et al., 2016; Wang and Xu, 2015), which is not always available for
rawly processed single cell data and limits their ability to identify cellular
heterogeneity within the same cluster.

The Para-DPMM model proposed in this paper addresses these
limitations. Its inference is highly parallelized and can be readily
implemented on large HPC clusters, which results in high computational
speed. For large scaled datasets with tens of thousands of genes and cells,
such as the fresh PBMC 68K dataset used in our second case study,
the clustering is completed in a couple of minutes using 32 cores. The
model is able to automatically determine the number of clusters with
its nonparametric Bayesian setting. Its sampling is highly efficient. New
clusters are created by splitting existing clusters instead of setting aside a
single data point, which avoids going through the low probability density
regions in the sampling space and achieves fast convergence and improved
optimality. The model achieved more than 20% improvement on ARI
(adjusted rand index) for large challenging tasks over current widely used
models in the experiment.

These improvements are due to a split-merge Markov Chain Monte
Carlo (MCMC) inference algorithm that we developed for this problem.
Unlike variational approximation (Blei and Jordan, 2006; Kurihara
et al., 2007; Ji et al., 2017) or collapsed Gibbs sampling (Neal, 1992;
Escobar and West, 1995), the inference algorithm is a weight-instantiated

sampling method, in which cluster parameters are explicitly instantiated
as variables (Ishwaran and James, 2001; Ishwaran and Zarepour, 2002).
Variational approximation algorithms lend themselves to parallelization,
but are not guaranteed to converge to ground truth distribution. Collapsed
Gibbs sampling enables intra-cluster parallelization (Lovell et al., 2013;
Williamson et al., 2013), where the number of processes is parallelized
to be of the same order as the number of clusters. Its parallelization
level is relatively low. The split-merge sampling in Para-DPMM enables
inter-cluster parallelization (Favaro and Teh, 2013; Papaspiliopoulos and
Roberts, 2008; Chang and Fisher, 2013), in which threads running in
parallel are of the same order as data points, resulting in a high level of
parallelization. To improve sampling efficiency, new clusters are formed by
either splitting an existing cluster or merging two clusters together. Local
Gibbs sampling is performed inside each cluster to propose reasonable
split proposals with high acceptance ratio.

2 Method
2.1 Data and Model Framework

The output of the droplet-based single cell profiling pipeline is a matrix
storing UMI counts with rows indexing genes and columns indexing cells.
Each entry in this UMI matrix x3* is the UMI count of gene u barcoded in
cell 5. We use Z; to denote the expression of all genes in cell ¢ measured
in terms of read counts. Single cell clustering is performed on the UMI
matrix with size V' X N, where V is the total number of genes and N is
the total number of cells.

In the transcriptomic clustering model, the cluster assignment ¢; of
cell ¢ is the discrete hidden variable to be inferred based on observed
gene expression &;. The model is built on the Dirichlet process mixture
model (DPMM), which is the infinite form of the Dirichlet mixture model
(DMM). For detailed description of DPMM model please refer to Goriir
and Edward Rasmussen (2010). In the generative form of DPMM model,
with parameters é}c € RV, gene expression &; is generated based on the
Multinomial distribution

14
p(&ilei = k, 0)) = Multinomial(; |6x) ~ [ ] 057, )

u=1
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where 25:1 0k, = 1. Notation meaning is listed in Table 1. Priors for
é}c are accordingly set to be Dirichlet distribution with hyper parameter A

v
, r
Dirichlet(8j, |\) = 1“8;/‘;) [Tex! @
u=1

For posterior inference of c¢; given gene expression x;, the iterative
inference process can be described as

(71 o T TR 41) ~ p(7]E @) (©)

01 o p(T (1} 0k )p(Ok|N) VE € {1,.... K, K +1} @)

ci o< p(ei|m)p(File; = k, Ok) ®

where {71, ..., T } represents the mixing proportions of existing clusters

and 71 represents the proportion of next new cluster to be generated.

2.2 Efficient Parallel Sampling for the DPMM Model

Implementing parallel inference for the DPMM model is not trivial.
Careful examination of the dependence relationships among the variables
is necessary. While collapse Gibbs sampling (Neal, 2000) simplifies
the sampling process (when priors are conjugate to the likelihood), its
parallelization is not straight forward (Chang and Fisher, 2013) as data
points become directly dependent on each other after the cluster parameters
are integrated out. The cluster indicators ¢ can be seen as a fully connected
Markov Random Field (MRF) and can’t be parallelized based on proofs
in Gonzalez et al. (2011).

For the split merge sampling adopted in this paper, the cluster
parameters 0 are explicitly instantiated as variables. The cluster
assignments ¢ and cluster parameters @ can be mapped to a two coloring
MREF with one color being ¢ and the other being 6. Based on theorems in
Gonzalez et al. (2011), all cluster assignments ¢ can then be sampled
in parallel, as they are conditionally independent of each other given
é. Theoretically, the maximum number of computing cores that can be
utilized in parallel equals the number of data points.

Table 1. Notations

Notation Meaning

collection of cells

cluster assignments of cells

cluster parameters

mixing proportions in the Dirichlet process

Dirichlet hyper parameter for cluster parameters g

parameter for Chinese restaurant process

cluster assignment for cell ¢

collection of parameters for the multinomial distribution in cluster &
parameter for multinomial distribution of gene w in cluster k&

B2 0 > 3 o0 81

the gene expression of ith cell
o the UMI count of gene u in cell ¢
Zyxy  the gene expression of cells assigned to cluster k

8

local split subcluster assignment
parameters for local subclusters, » € {0, 1}
number of cells in cluster k

number of cells in subcluster 7, r € {0, 1}
total number of cells

current number of clusters in the model

SRz e

total number of genes

Sampling is inefficient in this naive parallel approach. It is difficult to
open new clusters as parameters sampled directly from the prior are usually

a poor fit of the data. Also, extremely large number of sampling steps are
needed for common scenarios such as: (1) dividing the current cluster into
more fine grained clusters; (2) transferring a significant portion of data
points in the current cluster to another cluster; (3) merging two clusters.
The naive approach has to go through a series of low probabilistic density
intermediate steps in the sampling space to reach the more optimized
setting. In real world applications where sampling time is limited, this
approach leads to sub-optimality.

The split merge sampling mechanism was adopted to solve this
problem. New clusters are created by splitting existing clusters, instead of
setting aside a single data point. This endows newly created clusters with
sensible parameters and data membership from the very beginning, and
avoids going through low probability intermediate states, thus leading to
faster convergence. To guarantee that the process converges to the desired
stationary state, a MCMC is built to satisfy the detailed balance by either
accepting or rejecting the splitting proposal. Merge moves are introduced
to make the Markov chain ergodic, its proposal is accepted based on a
separate acceptance ratio.

2.3 Inference through Split/Merge MCMC Sampling

The MCMC sampler is characterized by the states and acceptance ratio
of state transitions. For the Para-DPMM model, each state is defined as
S = {7, f,¢, Z}. For each update, the algorithm proposes a new state
S. = {R«, 04, &, Tx} which is reachable from the old state by either a
split or merge move. As the derivation for the two moves are similar, here
we take split move as example. The proposed state is either accepted or
rejected based on the acceptance ratio:

p(S.) (S1S.)
" p(S) 4(5-15) ©

where p(S) is the likelihood of the old state, p(S« ) is the likelihood of
the new state, g(.Sx|.S) is the transition probability from old state to new

p(S%,S) = min |1

state, and g(S|Sx) is the reversed transition probability. Updates with
this acceptance ratio satisfy the detailed balance of Markov chain and are
guaranteed to converge to the stationary state.

Derivation of the acceptance ratio is based on the specific split merge
mechanism we choose. The random split with binomial distribution is
straight forward, yet its performance is not satisfactory, as it doesn’t utilize
any information in the data points and the proposals are unlikely to be
reasonable. The acceptance ratio is usually very low in this scenario.

An improved method is to run local Gibbs sampling in each cluster to
learn cluster substructures before the split proposal. An additional indicator
variable ¢ = {0, 1} is assigned to each data point in cluster k to denote
which data points will be in the sub-clusters after the possible split. Local
Gibbs sampling computes the probability of assigning data points to either
side of the split:

p(Ei = rlé{r},ﬁivf{r}v é)
,ﬁ{r},ﬁip(fi‘e_ryéi =r)

= — _ 1 — — vr € {0,1}
g0}, ~iP(zi|00,E = 0) +7igqy,-p(Fil61, ¢ = 1)

(7

where €,y _; are the assignments to subcluster r excluding cell ¢ and
Ty}, —q is the number of cells in subcluster r excluding cell 7. Parameters
for local subclusters are then updated based on

0 o p(Z(,316-)p(0-1A) vr € {0,1} ®
where X is the Dirichlet hyper parameter for subcluster parameters 6.

The number of iterations for local Gibbs sampling involves a trade
off between accuracy and computational cost. In practice we found one
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Table 2. Performance Comparison on Different Data Scales
| S-Set M-Set L-Set
| ARI RI HI ARI RI HI ARI RI HI
Para-DPMM | 0.654 + 0.021 0.849 + 0.011 0.699 £ 0.023 | 0.670 & 0.012 0.855 £ 0.004 0.711 + 0.008 | 0.688 & 0.016 0.863 + 0.008 0.726 + 0.016
DIMM-SC | 0.578 +0.029 0.803 4 0.006 0.606 £ 0.012 | 0.352 +0.009 0.662 £+ 0.018 0.324 £ 0.036 | 0.331 £ 0.013 0.650 £+ 0.023 0.301 + 0.047
CellTree 0.270 + 0.006 0.637 &+ 0.015 0.274 £ 0.031 | 0.289 4+ 0.009 0.643 £ 0.016 0.285 £ 0.032 | 0.273 4 0.008 0.634 £+ 0.024 0.268 + 0.048
Seurat 0.503 +0.017 0.776 = 0.010 0.553 £ 0.019 | 0.576 4+ 0.032 0.815 £ 0.008 0.630 £ 0.015 | 0.463 £ 0.028 0.785 £+ 0.018 0.569 + 0.036
PCA-Reduce | 0.294 + 0.015 0.684 4+ 0.018 0.368 £ 0.036 | 0.284 + 0.016 0.681 & 0.021 0.363 £ 0.041 | 0.302 £+ 0.014 0.688 £ 0.016 0.376 £ 0.032
K-means 0.312+0.014 0.680 & 0.004 0.360 £ 0.008 | 0.302 + 0.007 0.678 &+ 0.012 0.355 £ 0.023 | 0.312 £ 0.019 0.683 £ 0.005 0.367 £ 0.010
SC3 0.602 + 0.018 0.823 4+ 0.006 0.646 £ 0.012 | 0.614 +0.026 0.828 £ 0.018 0.657 £ 0.036 | 0.640 & 0.017 0.840 £+ 0.010 0.680 + 0.020
SIMLR 0.203 + 0.014 0.606 & 0.006 0.212 £ 0.012 | 0.334 £ 0.011 0.699 £ 0.013 0.398 £ 0.026 | 0.381 4 0.008 0.724 £+ 0.012 0.449 + 0.024
CIDR 0.222 £ 0.011 0.605 £+ 0.014 0.209 £ 0.028 | 0.196 4+ 0.009 0.617 £+ 0.015 0.235 £ 0.030 | 0.205 £+ 0.016 0.628 £+ 0.009 0.255 + 0.018

iteration is already enough for the model to achieve decent performance.
Transition probability ¢(S*|.S) based on the local Gibbs sampling is a
product of conditional probabilities of assigning each observations € {k}
to a split mixture component as given by Eq. (7). The transition probability
from the new state back to old state ¢(.S].S*) is also needed. This reverse
transition is the merge operation. In contrast to the split operation which
has diversified splitting choices, the merge operation is deterministic as
there is only one way to merge two components into one component, S0
q(S]1S8*) =1.

To calculate the acceptance ratio in Eq. (6), we also need to

evaluate the ratio of likelihood between the new state and the old state
p(S*) (™)
p(S) p(S)
decomposed as

. According to the generative procedure of DPMM, can be

p(S*) _ p(Fe, 0, 8, )

p(S)  p(7.0,67)

_ p(F) p(ERs) p(B:]N) p(F:, 6x)
p(%) p(a7) p(BlN) p(F|e,0)

®

p(S*)
p(S)

can be readily derived from Eq. (9) to be

kg —1 fig, —
p(S*) _ Ty Ty
np—1
Tk

1 _ _
rOWV) [z O 0 T O
T I 0

14 i 14 @i
<Hie{k0} [Tu=1 eko,u> (HiE{kl} [lu=y 9k1a“>
(Hie{k} | 91&)

p(S)

(10)
The detailed derivation is included in the supplementary material.

2.4 Random Splits in Merge Moves

A key consideration when constructing the MCMC sampler is to avoid
the acceptance rate to be too small. For this reason, as mentioned in the
previous section, we replaced random split with local Gibbs sampling when
designing split moves. When the split is more reasonable, the likelihood of
the new state p(.S*) significantly increases, thus increasing the acceptance
rate. Merge moves can be seen as split moves going from the new state
back to the old state. To increase the acceptance rate of merge moves, we
should do exactly the opposite. And we included in the model a separate
pair of merge/split moves which is randomized to propose good merges
(as here the splitted cluster is the old state whose likelihood we are trying
to decrease). For randomized merge moves, as p(¢; = r(C{r}, i, T{r})

is simply % the ratio of transition probability becomes

SIS _ (1) an
q(S«18)  \2

The derivation of 1;5(%)) is similar to the split move.

Please note the split moves and merge moves that take place in the
model belong to two independent MCMC chains. The integrated dynamic
process thus formed is a rational MCMC with guaranteed convergence as
long as the atomic moves are selected randomly from the two chains and
each of the chains satisfies detailed balance (Tierney, 1994).

3 Performance in Cellular Heterogeneity Analysis

The Para-DPMM model was applied to the challenging task of
distinguishing three T cell types (CD4+/CD25+ regulatory T cells,
CD4+/CD45RA+/CD25- naive T cells and CD8+/CD45RA+ naive
cytotoxic T cells) similar to Sun et al. (2017). The data was provided
by 10X Genomics and is publicly available (Zheng et al., 2017). Three
data sets of different scales were used: (1) a set of 1200 cells with the
1000 top variable genes (small scale, referred to as S-Set below), (2) a set
of 3000 cells with the 3000 top variable genes (medium scale, referred
to as M-Set) and (3) a set of 6000 cells with the 5000 top variable genes
(large scale, referred to as L-Set). In these datasets, cells were randomly
selected from the population, we ensured that each cell type was equally
represented in the datasets. The top variable genes were selected based on
their standard deviations across the cell transcriptome profiles in the UMI
matrix.

We compared Para-DPMM '’s performance with other currently widely
used models, including Seurat (Satijaer al.,2015), CellTree (DuVerle et al.,
2016), PCA-Reduce (Zurauskiene and Yau, 2016), SC3 (Kiselev et al.,
2017), SIMLR (Wang et al., 2017), CIDR (Lin et al., 2017) and DIMM-
SC (Sun et al., 2017). For models needing prior knowledge on the number
of clusters, we set it to the ground truth value. The results are shown in
Table 2. The model’s performance was measured with three benchmarks:
Adjusted Rand Index (ARI), Rand Index (RI) and Hubert’s Index (HI).
Rand Index (RI) measures the similarity between two clusterings, it ranges
between 0 and 1 with a perfect match being scored 1. Adjusted Rand
Index (ARI) is the corrected-for-chance version of Rand Index, it scores
0 for random matches. Hubert’s Index (HI) (Hubert and Arabie, 1985) is
another popular metric for comparing partitions. It has the advantage of
probabilistic interpretation in addition to being corrected for chance. Its
value ranges between -1 and 1. The analysis below mainly refers to ARI
due to its wide adoption in the field.

As shown in Table 2, Para-DPMM outperformed all comparison
methods for a large margin on all experiment settings, and the trend
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Fig. 2: (a) Performance (ARI) with respect to different number of genes on S-Set. (b) Performance with respect to different number of cells on S-Set. (c)

Performance with respect to different number of genes on L-Set. (d) Performance with respect to different number of cells on L-Set.
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Fig. 3: (a) t-SNE visualization of Para-DPMM clustering on Fresh PBMC 68K dataset; (b) stability of the clustering result; (c) CD4+/CD25+ regulatory
T cell distribution; (d) CD4+/CD45ra+/CD25- naive T cell distribution; (e) CD8+/CD45ra+ naive cytotoxic T cell distribution; (f) CD14+ monocytes
distribution; (g) CD19+ B cell distribution; (h) CD34+ cell distribution; (i) CD4+ helper T cell distribution; (j) CD4+/CD45ro+ memory T cell distribution;
(k) CD56+ Natural Killer cell distribution; (1) CD8+ cytotoxic T cell distribution

is more significant in the large data setting (L-Set), where it achieved
approximately 5% improvement on ARI compared to SC3, and is more
than 20% better than the other comparison methods. We further applied
Para-DPMM to the full dataset, which includes 32,695 cells and 32,738
genes, where the model achieved a 71.47% score on ARIL.

As mentioned in the previous section, the performance improvement
is due to the split merge mechanism which enables the model to make
efficient moves in the sampling space and avoid being trapped in sub-
optimal situations. The underlying Dirichlet Process allows the model to
automatically decide the most appropriate number of clusters for the data,
and the parallelized sampling enhances the convergence speed.

We further explored the relationship of model performance with
different number of genes and cells. Results are presented in Fig. 2.
For the small scale setting, the performance slightly increased with gene
number (Fig. 2a), as the cell clusters are more distinguishable with the
added information. This result shows Para-DPMM’s ability to handle the
increasing dimensionality in data, as posterior inference of multinomial
model only involves multiplying one dimension at a time and naturally
circumvents the high dimensionality challenge. The DIMM-SC model
achieved good performance with number of genes less than 1000. The
Seurat algorithm performed better with the increase of the number of genes.
Its clustering is based on embedding cells to graphs and analyzing the
cliques formed. Increasing the number of genes made the edge weight
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more accurate. The performance of other comparison methods is not
significantly influenced by number of genes. For large scale setting, the
performance of Para-DPMM remained stable (Fig. (2¢) and Fig. (2d)). The
performance slightly improved when more genes were involved, as more
UMI counts are accumulated in the process and clusters becomes more
distinguishable.

4 Analysis on Fresh PBMC 68K Dataset

In order to demonstrate our model’s ability to deal with real world large
datasets, in this case study we applied Para-DPMM to a publicly available
fresh PBMC 68K dataset'. The dataset is composed of 68K freshly
processed peripheral blood mononuclear cells obtained from one donor.
Samples are divided between T cells(> 80%), NK cells(~ 6%), B
cells(~ 6%) and myeloid cells(~ 7%). Clustering analysis on the data
reveals proportion of each cell types, identifies cell types with similar
transcriptome profiles, finds finer grained subtypes in existing categories
and discovers rare cell populations.

The results of the Para-DPMM clustering can be seen in Fig. (3a).
Our model divided the data points into 9 clusters, a result close to the 10
clusters identified with human expert knowledge (Zheng et al., 2017). The
clustering is in accordance with the boundaries of clusters visualized in the
t-SNE plot. To test the stability of the clustering we repeated the process 50
times and measured the probability of each cell being assigned to different
clusters. As illustrated in Fig. (3b), the clusters were quite stable, though
there was some uncertainty on the intersection regions of cluster 1 with 6
and cluster 3 with 5. We also tested the influence of hyper parameter o on
the clustering result, and found different values of o had little effect on the
clustering when ranging from 0.1 to 1. The reason for this robustness lies
in the relative strength of prior (compared to likelihood) in determining
posterior cluster distribution. Given the high dimensionality (number of
genes) of the dataset, the likelihood dominates the posterior distribution
in the sampling process and the small difference caused by different « in
the prior distribution is negligible.

Since there is no available ground truth cell labeling for this dataset to
obtain detailed knowledge about the specific cell types which compose the
clusters, we resorted to 10 purified cell populations' of the cell types that
were previously identified in this dataset using human expert knowledge.
The cell type’s gene expression profile was obtained by averaging the
profiles of each purified population. The cell type assignment was based
on the covariance between profiles of the cell types and samples. The
distribution of each cell type is visualized in Fig. (3¢c) to Fig. (31). CD14+
monocytes, CD19+ B cells and CD56+ NK cells were easily separated
from other cell types. On the other hand, we observed a significant overlap
of CD4+4/CD45+/CD25- naive T cell, CD8+/CD45ra+ naive cytotoxic T
cells and CD4+/CD45+ memory cells on the t-SNE plot.

These cell type distributions easily explain certain clusters, more
specifically clusters 2, 3 and 7, which are composed mostly of CD19+
B cells, CD56+ NK cells and CD14+ monocytes respectively. Other
clusters are composed of multiple cell types. Cluster 6 is a combination of
CD4+/CD45+/CD25- naive T cells and CD8+/CD45ra+ naive cytotoxic T
cells, clusters 1 and 5 also contain a significant amount of these cell types
while being mainly composed of CD4+/CD25+ regulatory T cells.

We found that three pairs of cells were largely overlapping in the
clusters, namely CD4+/CD45ro+ memory T with CD34+ cells, CD8+
cytotoxic T with CD4+/CD45ra+/CD25- naive T cells and CD56+ Natural
Killer with CD4+/CD25+ regulatory T cells. We further tested our model’s
ability to distinguish these three pairs of cells. 2,000 cells from each

IPublicly available on https: //support .10xgenomics . com/
single-cell-gene—-expression/datasets

category were randomly selected and clustered based on the 16,000
genes with top expression variation. Results are presented in Table
3. The performance of SC3 was comparable to Para-DPMM for the
CD4+CDA45ro+/CD34+ pair. Para-DPMM achieved better performance
than all comparison methods in the other two pairs. We found it was
significantly easier to distinguish between CD56+ Natural Killer and
CD4+/CD25+ regulatory T cells than the other two pairs.

5 Applicable Scenario Analysis

The Para-DPMM model should be applied to datasets created with UMI
based techniques. In UMI labeling based systems, the UMI counts are
independent of transcript length and is suitable to model with Multinomial
distribution. As illustrated in Islam er al. (2013) and Phipson et al.
(2017), earlier non-UMI based techniques introduced bias during the
cDNA amplification phase, the resulting expression matrix is correlated
with transcript length and normalizations used in RPKM and FPKM are
necessary. For these datasets, clustering methods based on continuous
similarity measures such as Seurat, SC3 and PCA-Reduce are more
appropriate choices.

Current droplet-based single cell sequencing techniques has the drop
out phenomenon, where not all transcriptome information is captured
during the cell reads. This results in a sparser expression matrix when
the sequencing depth is not deep enough. To test the robustness of
Para-DPMM regarding to varying sequencing depth, we measured the
model performance on different data scales (S-Set, M-Set and L-Set) with
sequencing depth ranging from 3,000 to 30,000 reads per cell. As shown
in Fig. 4, the model performance is highly correlated with sequencing
depth when reads per cell is less than 10,000, and performance is stable
after sequencing depth reaches 18,000 reads per cell. The recommended
minimum sequencing depth for 10X platform is 50,000 reads per cell
(Baran-Gale et al., 2017), which lies well inside the model’s robust region.

0.2

——S-Set

——M-Set

L-Set
0.6 1.2 1.8 2.4 3
Reads per Cell %104

Fig. 4: Influence of Sequencing Depth on Model Performance

6 Scalability Analysis on Parallel Computing
Clusters

In this section, we analyze the scalability of the model. Para-DPMM was
implemented on a HPC cluster built with the BeeGFS system, the model
uses the OpenMP framework and is able to run in parallel on multiple cores
in one node. We tested the model’s scalability with up to 32 cores. Further
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Table 3. Performance Comparison on Pairwise PBMC Cell Types
| CD4+CD45r0+/CD34+ CD8+/CD4+CD45ra+CD25- CD56+/CD4+CD25+
| ARI RI HI ARI RI HI ARI RI HI
Para-DPMM | 0.706 + 0.008 0.853 + 0.019 0.706 + 0.037 | 0.750 & 0.010 0.875 + 0.018 0.750 £ 0.035 | 0.990 £ 0.003 0.995 + 0.002 0.990 + 0.004
DIMM-SC | 0.672 £ 0.014 0.836 + 0.021 0.672 £ 0.042 | 0.562 4= 0.017 0.781 £ 0.024 0.562 & 0.048 | 0.971 & 0.004 0.985 + 0.003 0.971 £ 0.007
CellTree 0.250 + 0.018 0.625 £0.016 0.250 + 0.031 | 0.161 +0.015 0.580 £ 0.017 0.161 4 0.034 | 0.782 + 0.015 0.891 £ 0.019 0.782 + 0.038
Seurat 0.432 +0.021 0.716 £ 0.024 0.432 +0.048 | 0.286 + 0.024 0.643 £+ 0.006 0.286 + 0.012 | 0.581 +0.017 0.790 £ 0.027 0.581 + 0.054
PCA-Reduce | 0.621 £ 0.004 0.811 +0.020 0.621 £ 0.040 | 0.459 4 0.012 0.729 £ 0.019 0.459 £ 0.038 | 0.528 & 0.010 0.764 £+ 0.016 0.528 £ 0.032
K-Means 0.202 +0.013 0.601 £ 0.005 0.202 #+ 0.010 | 0.143 + 0.018 0.572 £ 0.004 0.143 4 0.008 | 0.746 + 0.014 0.873 = 0.017 0.746 + 0.034
SC3 0.702 + 0.024 0.867 £+ 0.013 0.734 & 0.026 | 0.728 + 0.013 0.879 £ 0.008 0.758 & 0.016 | 0.980 & 0.004 0.991 £ 0.002 0.982 + 0.004
SIMLR 0.465 + 0.015 0.761 £ 0.017 0.522 +0.034 | 0.376 & 0.011 0.721 £ 0.008 0.443 +0.017 | 0.726 + 0.017 0.878 & 0.013 0.756 + 0.026
CIDR 0.684 +0.009 0.859 £ 0.007 0.719 4+ 0.014 | 0.430 + 0.012 0.745 £+ 0.006 0.491 +0.012 | 0.823 +0.011 0.921 £ 0.005 0.842 + 0.011

improvement on parallelization is possible if the model is extended with
the MPI framework, which is not in the scope of this paper. We requested
64GB RAM for all experiment settings.

We recorded the model’s computing time on variating number of cores
for different dataset sizes, results are shown in Fig. (5). The trade off
between the gain and cost of parallelization is clearly exemplified on the
small dataset (S-Set, shown in Fig. (5a)), where fastest computing speed
was achieved with 8 computing cores, after which computing became
slower as the number of cores further increased. The cost of parallelization
came from coordination between different threads, including parallel
tasks creation, 1/O of the shared memory and communications between
threads, which eventually offsets the gains. Fig. (5a) demonstrates it is not
necessary to use more than 8 cores for training on the small dataset. The
strength of parallelized implementation becomes evident when dealing
with large scaled datasets, such as the PBMC 68K data. As shown in
Fig. (5¢), the computing speed is approximately 12 times faster when
using 32 cores compared to a single core. The computing time is initially
inversely proportional to the number of cores, and then gradually converge
to constant time.

Based on Amdahl’s Law

Speed Up = (12)

+ 8

zlv

where P denotes the parallelized portion in the code, N denotes number
of cores and S = 1 — P denotes the serial portion in the code, the
parallelization ratio of the model implementation is as high as 91%.

We also compared other models’ computing speed?with Para-DPMM
(Table 4). For fairness, the measurements include only running time and
exclude time for data I/0O and dimension reduction (in Seurat). All models
were run on 8 cores and towards convergence. Para-DPMM and CellTree
are significantly faster than other comparison methods. Para-DPMM is
about 30% faster than CellTree on small data setting and 40% on large
settings.

7 Discussion

As shown in the experiments, the Para-DPMM model scales well with
different dataset size (Table 2) and with variating data dimensionality (Fig.
2). This scalability and versatility enables its possible wide application
on real world genomic systems. Clustering analysis on the fresh PBMC
dataset (Fig. 3a) identified cells with similar transcriptome profiles and

ZPlease note the computing time is significantly affected by factors at
software engineering level. This comparison should only serve as guidance
for real world applications, and not to be used for inferring algorithm
complexity.

helped uncover finer grained heterogeneous structures for each cell type.
As illustrated in the applicable scenario analysis (section 5), the model
should only be applied to UMI-based datasets.

To cope with the large scaled single cell transcriptomic datasets, the
model’s inference process is highly parallelized and ready for applications
in large computing clusters. This parallelization is achieved by explicitly
instantiating the cluster parameters of the model and makes data points
conditionally independent of each other. While the model can potentially
utilize as many computing cores as the number of data points, 32 cores are
generally enough for current large datasets (Fig. 5¢).

The split-merge mechanism is adopted in the model to significantly
improve convergence and optimality of the result. The integrated split-
merge process is formed with two independent MCMC chains which
generates high acceptance ratio for both split and merge moves. We
performed detailed comparison with current widely used methods, and
Para-DPMM model simultaneously achieved significant improvements on
both clustering accuracy and computing speed. The model’s performance
increases with higher dimensionality of the data, and it automatically infers
number of clusters from the dataset without using prior knowledge.

Several extensions of the Para-DPMM model are possible. For single
cell datasets created from heterogeneous sources (e.g. PBMC cells from
multiple individuals), the model could be extended to include hierarchical
processes to discover fine grained substructures in the clusters. Given the
availability of purified cell populations, the clustering accuracy could be
further improved with semi-supervised guidance. We will explore these
possible extensions in the near future.
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