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ABSTRACT

The traffic volume on road segments is a vital property of the
transportation efficiency. City-wide traffic volume information can
benefit people with their everyday life, and help the government on
better city planning. However, there are no existing methods that
can monitor the traffic volume of every road, because they are either
too expensive or inaccurate. Fortunately, nowadays we can collect
a large amount of urban data which provides us the opportunity to
tackle this problem. In this paper, we propose a novel framework to
infer the city-wide traffic volume information with data collected
by loop detectors and taxi trajectories. Although these two data
sets are incomplete, sparse and from quite different domains, the
proposed spatio-temporal semi-supervised learning model can take
the full advantages of both data and accurately infer the volume
of each road. In order to provide a better interpretation on the
inference results, we also derive the confidence of the inference
based on spatio-temporal properties of traffic volume. Real-world
data was collected from 155 loop detectors and 6,918 taxis over a
period of 17 days in Guiyang China. The experiments performed
on this large urban data set demonstrate the advantages of the
proposed framework on correctly inferring the traffic volume in a
city-wide scale.
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1 INTRODUCTION

During the rapid urbanization process, cities are facing numerous
challenges in meeting the needs of their growing populations, espe-
cially in the transportation system. Fortunately, urban computing
methods [28] can help us tackle these issues by using the large
amount of data generated in cities. Obviously, being aware of the
city-wide traffic volume, i.e. the number of vehicles traversing on ev-
ery road segment, is the first step to solve the urban transportation
problems. It can bring great convenience to the residents by helping
them avoid congested roads. In addition, the traffic volume infor-
mation is also very important for the government in city planning,
such as detecting bottle-neck roads, intervening on congestions,
and estimating vehicles’ pollution emissions.

Existing volume monitoring methods use loop detectors, surveil-
lance cameras or taxi trajectory data, but they all fail to provide a
city-wide volume estimation. Specifically, loop detectors (certain
sensors buried under the pavements) and surveillance cameras are
expensive and thus difficult to be scaled up to cover the whole city
area. As for the taxi trajectories, their occurrence on the streets
is only a biased sample of the entire traffic volume, because their
operating time and behaviors are quite different from the general
population.

In this work, we propose to infer the city-wide volume informa-
tion with both loop detector and taxi trajectory data. By making
the best use of both data sets, we can achieve a better volume esti-
mation on a city scale. However, this is a nontrivial problem faced
with great challenges. Firstly, although loop detectors can provide
accurate volume information, the data collected is very sparse and
incomplete because very few roads are affordable to be equipped
with loop detectors. In order to infer the volume information for
those road segments without loop detectors, we can first construct
an affinity graph to characterize the similarities among roads, then
propagate the knowledge of the road segments with loop detector
to other segments. However, constructing the affinity graph is also
a difficult task, because we do not possess the knowledge of road
similarities with respect to volume values. To solve this problem, we
first infer the city-wide travel speed from the taxi trajectory data,
and learn the daily speed patterns for each road segment. Based
on our observations in the real world data, the speed patterns co-
evolve with volume patterns, and nearby roads with similar speed
patterns are likely to follow similar volume patterns. This allows
us to learn the similarity among road segments with respect to the
speed pattern, then utilize it to form the spatial affinity graph. In
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Figure 1: Proposed Framework

addition to the spatial domains, we also build connections among
recent and periodical time slots in the affinity graph. With the
learned affinity graph, we design a graph-based semi-supervised
learning method which captures the spatio-temporal properties
of traffic volume, thus achieving a city-wide volume estimation.
Furthermore, we propose practical confidence measurements with
spatio-temporal smoothness property and graph-structure property.
These measurements will provide end users a better interpretation
on the inference results.

In summary, we propose a novel framework to infer the city-wide
volume information with both loop detector and taxi trajectory data.
The contributions are summarized as follows.

e We propose a spatio-temporal semi-supervised learning
model to tackle the data sparsity problem associated with
loop detectors and taxi trajectories. Daily speed patterns are
learned from taxi trajectories, and it is utilized to construct
the affinity graph among roads. As a result, the knowledge
from two different domains are fused in this framework to
infer a city-wide volume information.

We propose practical confidence estimation measurements

with the spatio-temporal smoothness property and graph-

structure property.

e We conduct extensive experiments on real-world data which
was collected with 155 loop detectors and 6,918 taxis over a
period of 17 days. The results demonstrate the advantages of
the proposed framework on correctly inferring the city-wide
traffic volume.

The rest of the paper is organized as follows. We describe the
overview of the framework in Section 2. Components of the frame-
work are detailed in Section 3, and experiments are shown in Section
4. We review the related work in Section 5 then conclude the paper
in Section 6.

2 OVERVIEW

In this section, we first introduce several preliminary concepts that
will be used throughout the work, formally define the problem that
we aim to solve, then describe the proposed framework in Figure 1.

2.1 Preliminary

Definition 2.1. Traffic Volume of a road segment is the total num-
ber of vehicles traversing through it during a fixed time window.

The total traffic volume of each road is determined by two factors,
the number of lanes and the average volume on each lane. In this
paper, we aim to infer the per-lane volume for road segments, then
the corresponding total traffic volume can be easily derived by
multiplying with the number of lanes.

Definition 2.2. Loop Detectors, or “inductive-loop traffic detec-
tors”, are sensors buried under the pavements. They can detect
vehicles passing or arriving at a certain point, thus the traffic vol-
ume information can be derived by aggregating the loop detector’s
readings over a certain time window.

Note that, although loop detectors can generate accurate volume
information, they are so expensive that the government can imple-
ment only on a small number of road segments. For example, only
155 road segments are equipped with loop detectors, while there
are totally 19165 road segments in the urban area of Guiyang. This
is far from sufficient in terms of acquiring the city-wide volume
information.

Definition 2.3. Trajectory (Tr) of a taxicab is a sequence of time-
ordered spatial points, Tr : py — p2 — -+ — pp where each
point p has a geo-spatial coordination set / and a time stamp ¢, i.e.,

p=(1).

Definition 2.4. Point of Interest (POI) is a specific location that
someone may find useful. In this work, they represent venues in the



physical world, e.g., banks and shopping malls. Each POI is associ-
ated with properties such as name, address, coordinates, category
and etc.

Definition 2.5. Road Network is a graph-based data structure
where road segments are connected to each other. Each road seg-
ment is represented as a directed edge with two terminal points.

2.2 Problem Formulation

Given the loop detector data collected from a small portion of roads,
the taxi trajectory data, and urban context data sets (i.e., point of
interests, road network, and weather conditions), the Objective is
to estimate the traffic volume of any road within the city area at
any time slot.

2.3 Framework Overview

Figure 1 presents the proposed framework. The major components
are: city-wide travel speed estimation, volume affinity graph con-
struction, affinity graph edge weight learning, Spatio-Temporal
Semi-Supervised Learning (ST-SSL) and inference confidence es-
timation. The details of each component will be elaborated in the
Section 3.

Briefly speaking, we first map the GPS trajectories onto a road
network with map matching algorithm [14], and infer the average
travel speed on all road segments with travel speed estimation
method [21]. Then daily speed patterns of each road are learned,
and the volume affinity graph can be constructed with those pat-
terns together with features extracted from POI and road network.
Once we construct the affinity graph and learn the edge weights,
the proposed spatio-temporal semi-supervised learning algorithm
is performed to infer the city-wide traffic volume for each road
segment. Finally, in order to provide a better interpretation on the
inference results, we provide confidence estimation measurements
with spatio-temporal smoothness and graph-structure properties.

In the following section, we will detail every component of the
proposed framework and demonstrate the reasons behind our de-
sign.

3 METHODOLOGY
3.1 City-wide Travel Speed Estimation

The taxi trajectories by themselves cannot generate the city-wide
traffic volume information directly. Although their occurrences on
the road surface can be recognized as a sample of the total volume, it
is only a very small and biased sample. The reason is obvious, their
operating time and behaviors are quite different from the general
population. Fortunately, we can derive a city-wide travel speed on
each road segment from the trajectories with existing methods, and
the travel speed is a good factor that correlates with the volume.
In our framework, GPS coordinates are mapped onto the road
network with map matching method [14] and the average travel
speed of roads covered by the trajectory can be calculated. However,
the taxis can only cover limited road segments for any given time
period. In order to estimate the travel speed on all road segments,
we perform a city-wide travel speed estimation method [21] with
the context based collaborative filtering. By this means, we can
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Figure 2: Typical Speed and Volume Patterns

derive an accurate estimation of the travel speed on each road
segment of the urban area.

3.2 Urban Context and Speed Pattern
Extraction

Many urban context information has correlations or impacts on
the traffic volume, thus can help us with the inference task. For
example, POIs reveal the functionalities of an area, and obviously a
shopping mall would attract more visits than other places. Similarly,
properties of road networks and weather condition also affect the
traffic volume.

With the collected data, we can extract three sets of urban fea-
tures: geographic features of road segments, speed pattern features,
and weather features.

Geographic features of a road segment. For each road segment,
we can extract features from the road network and the nearby POI
data.

e Road network features: Road length, level, direction, number
of lanes, speed constraint, number of connections and tortuosity
(i.e., the ratio between road length and Euclidean distance between
the two terminals).

e POI features: For any given road segment, within a distance
of 200 meters around its two terminals, we can calculate the distri-
bution of POIs across ten categories. These categories are: Schools,
Companies and Offices, Banks and ATMs, Malls and Shopping,
Restaurants, Gas stations and Vehicle, Scenic spot, Hotels and Resi-
dences, Transportations, Entertainments and Living.

Speed pattern features. For each road segment, we can derive
two features from its speed pattern:

e Daily speed pattern. Given the historical record of travel speed
on each road segment, we can derive a daily speed pattern by
averaging it by day.
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e Daily average speed. Calculated by further average over the
daily speed pattern.

The speed pattern features play important roles when inferring
the traffic volume. Although we have many urban features extracted,
unfortunately, none of them has direct relationship with the volume
value of a road segment. However, the speed patterns usually co-
evolve with the volume patterns, and this means that roads with
similar average speed and speed patterns are more likely to follow
similar volume patterns. Several typical speed patterns are shown in
Figure 2 together with their volume patterns. As a result, the speed
patterns can help us determine the similarities among roads with
respect to the volume. More specifically, the Pearson coefficient
between any two series of daily speed patterns can measure the
similarity between these two roads under this context.

Weather features. For any given time slot, we can collect the
weather features from monitoring stations, such as temperature,
humidity, weather conditions (categorized as cloudy, foggy, rainy,
sunny and snowy) and etc. Among these, the weather conditions
have the most direct impact on the traffic volume. One obvious
example is that volume patterns would be similar on days with
extreme weather conditions, such as heavy snow or heavy rain.

3.3 Volume Affinity Graph Construction

The proposed ST-SSL model is a graph-based semi-supervised learn-
ing model. Its success depends on not only the model itself, but also
the corresponding affinity graph. We first define the affinity graph
in the following.

Definition 3.1. Affinity Graph (Figure 3) is a multi-layer weighted
graph where each layer denotes a time slot. Each node in the graph
is the lane volume of a road segment , i.e. average volume per
lane, on one specific time slot. There are edges connecting among
the nodes, and their weights represent the correlations among the
nodes. Edges within the same time slot are “spatial” correlations
and those between different time slots are “temporal” correlations.
The node set V.= L U U, where L is the set of nodes whose volume
are known (or “Labelled”), in other words, those road segments
with loop detectors. U is the set of nodes whose volume are not
known (or “Unlabellded”).

Current Layer

400 \ \ :

350+ 1
300+ 1

w250+ |

E

S 200 |

&

** 150 1
100 |

50+ ]

0 Il Il
50 100 150 200

# Neighbors
Figure 4: Number of Neighbors Histogram

Spatial and temporal knowledge play important roles in the
construction of the affinity graph. By connecting nodes with de-
liberately designed spatio-temporal rules, we encode those prior
knowledge into the affinity graph.

Spatial Affinity Graph. Within each time slot, the construction
of the spatial affinity graph consists of the following parts:

e Edge between nearby road segments. Common sense tells us
that road segments in nearby areas are likely to have similar traf-
fic conditions. Based on this observation, for each road segment,
we select its nearby roads (e.g., within 300 meters) as candidates.
However, a road segment may have too many nearby neighbors.
As shown in Figure 4, there are quite a few roads with more than
50 neighbors. Then it is not reasonable to assume that all these
nearby roads have similar lane volume. In order to deal with this
problem, we further filter the candidates with road segments’ daily
speed patterns. Specifically, we filter several (e.g., 20) road segments
from the candidate set with the most similar daily average speed,
then further filter a small set (e.g., 10) with the similar daily speed
patterns. By this means, we connect road segments that share the
similar traffic patterns.

o Edge between reachable road segments. Some road segments
are relatively long, and the previous rule may only extract too few
neighbors. However, road segments within several hops (e.g., 2
or 3 hops) are likely to share similar volume. Based on this idea,
we extract nodes within several hops as candidates, then filter the
candidate set by their speed patterns as described above.

e Edge to similar road segments with loop detectors. The loop de-
tectors provide very reliable volume readings. In order to make the
best use of these data, we build edges between a road segment and
a few others that equip loop detectors with similar traffic patterns.
This is also achieved by filtering the daily speed patterns.

Temporal Affinity Graph. For nodes on different temporal layers,
the construction of edges consists of the following parts:

o Edge between recent layers. Obviously, the volume values would
not change dramatically in a relatively short time period. The idea
here is to build edges between nodes in nearby temporal neighbors,
for example, within 30 minutes.

e Edge between periodical temporal layers. For each road segment,
the volume follows a regular pattern every day, every week, and
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even every season. Figure 5 shows the volume value of a road
during a 10-day interval. The daily and weekly periodical pattern
can be easily depicted. Based on this observation, we connect road
segments with all of their periodical neighbors.

o Edge between layers with extreme weather conditions. The traf-
fic volume would follow similar patterns when encountered with
extreme weather conditions, such as heavy snow and heavy rain.
As a result, we build edges among temporal layers under similar
extreme weather conditions.

Graph Edge Weight Learning. After constructing the affinity
graph, we should learn the edge weights in the graph which rep-
resents the volume similarity among nodes. The basic idea is that
two nodes should have similar lane volume patterns if they share
similar urban features, and vice versa. However, urban features may
have different correlations with the volume patterns which can be
learned from the data. Specifically, the spatial edge weights are
calculated in the following process:

e Step 1: Normalize the feature values f; for all features i. This
is achieved by feature standardization which makes the values of
each feature in the data have zero-mean and unit-variance, i.e.,

_ fi—mean(fi)
fi= "y

e Step 2: For each feature i, calculate the Pearson correlation
corry, between the feature value differences |Af;| and lane volume
value differences |Ax|. Specifically, for any two roads u and v with
loop detector readings on the same temporal layer, the lane volume
value difference is |Axy, | = |xy — x|, and the feature value differ-
ence is |Afi(u,v)| = |fi(u) — fi(v)|. Then with all the loop detector
data, we can calculate the Pearson correlation denoted by corry,.
In other words, corry, measures the impact of different features on
the volume values.

e Step 3: Calculate spatial edge weight a, ,, between any two
roads u and v as follows:

auv = exp = ) corry, x| fi(w) = fi()| (1)

1

In addition, it is easy to be noticed that nodes in temporal neigh-
bors should have similar lane volume. Thus, we set the temporal
edge weights as 1.

3.4 Spatio-Temporal Semi-Supervised Learning

Based on the constructed volume affinity graph and the learned edge
weights, we propose a graph-based semi-supervised learning model
(ST-SSL) which incorporates the knowledge of spatio-temporal
volume patterns. Generally speaking, there are several advantages
of the proposed method. First, the ST-SSL model can make good
use of the observed volume information by loop detectors, and infer
all missing volume values in the graph. Second, ST-SSL assures that
nodes with similar feature values should have similar lane volume
values, which is achieved by learning the edge weights. Third, ST-
SSL follows the spatio-temporal prior knowledge which makes it
behave under physical constraints.

The first rule that we take into consideration is the change rate
similarity of spatial neighbors. Assume that there are totally T
temporal layers in the graph, and x;,(t) denotes the lane volume of
road u on time slot ¢. The corresponding loss function is

Axu(t)  Axp(t) |2
xu(t-1) xp(t-1))°

Ls = Z ay, (
teT (u,v)€E

@)

where Ax(t) = x(t)—x(t—1). This rule captures the fact that volume
of the correlated roads usually has similar change rates over time.
For example, during the morning rush hours, many vehicles would
take similar routes to work and it makes the volume around working
areas increase at the same time.

The second rule is that volume on consecutive and periodical
time slots should be similar. Let corr(t) represents the set of cor-
related temporal layers with time ¢, and it contains recent and
periodical layers. Then the corresponding loss function is

Le=) > > Grult) = xu(e)’ 3)

teT cecorr(t)uel

By putting the equations (2) and (3) together, we have the loss
function of the proposed ST-SSL model

Lstsst = Ls+ Ly
Ty Axu(t) _ Axo(t) |*
““’“(xuu—l) xolt = 1)

€T (u,0)eE

va)y Y D -x@) @

teT cecorr(t)uelU

where « is a hyper-parameter which gives different emphases on
the two terms. Then our goal is to find the lane volume for all roads
X = {xy|u € V}, such that the loss function (4) is minimized

X =arg n}}n LsTssL ©)

In order to solve the above problem, we adopt an iterative update
algorithm. By taking the partial derivative of LgTssr with respect
to x5 (t) and let it be zero, we get

ZuEN(v) #2;((?,1) +a Zcecorr(t) xo(t +¢)

xp(t) =
ZueN(v) % +aC



where N(v) represents the set of nodes that are connected with v,
and C = |corr(t)| is the number of correlated temporal layers with
time t.

By carefully examining the equation (6), we can observe that it
successfully captures the spatio-temporal properties of the traffic
volume. Specifically, the volume of one road segment is correlated
with its spatial neighbors because they have similar volume change
rates, as shown by the first term of the nominator. In addition, it also
correlates with its temporal neighbors because it changes smoothly
over time, as shown by the second term of the nominator. Overall,
the inference of traffic volume is a weighted average over spatial
and temporal components.

3.5 Inference Confidence Estimation

The inference confidence is a vital problem that haunts many learn-
ing methods, especially for semi-supervised algorithms. Tradition-
ally, for the purpose of evaluation, we can divide the labelled data
into training and evaluation sets, but this would further reduce the
amount of data for inference. In this section, we propose to use
the property of spatio-temporal smoothness and graph structure
to determine the confidence of the inference results. Because of
their generality, these measurements can also be applied to other
spatio-temporal and/or graph-based models.

Spatio-temporal Smoothness Confidence. In many real world ap-
plications, the target variables would not change dramatically over
both temporal and spatial dimensions. For example, the temper-
ature usually changes gradually over time and geo-space. With
respect to the traffic volume, Figure 6 shows that it tends to have
similar values in recent time slot and locations. Specifically, Figure
6(a) presents the volume differences as time goes on. It is obvious
that the volume values on recent and periodical time slots are more
similar; Figure 6(b) demonstrates the volume ratio with different
spatial distances. This shows that nearby roads should have similar
lane volume values.

With the above observations, we define a confidence metric on
the spatio-temporal smoothness as follows:

Definition 3.2. Spatio-temporal Smoothness Confidence (CsT).
For any given node v in the affinity graph G, we assume the value of
its correlated nodes follows a normal distribution N(y, o2), where
u and o can be estimated accordingly. Then the spatio-temporal
smoothness confidence of the node v is defined as

Xp < H
P(x > xy Nx < xy —2p) = 2(1 = CDF(xy)), Xou =t
7

P(x < xy Nx > 2p — xp) = 2CDF(xy),
Cst =

Graph Structure Confidence. In graph-based semi-supervised
learning methods, the knowledge of labelled data is propagated
through the affinity graph. However, some unlabelled nodes might
be connected to labelled nodes directly or with larger edge weights,
and some others may connect to labelled nodes remotely or with
smaller edge weights. Following this path, we define a graph struc-
ture based confidence measurement. The basic idea is that nodes
connected to labelled data with higher weights should receive more
confidence, and vice versa.
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Definition 3.3. Graph structure confidence (Cg). For any given
node v in the affinity graph G, we calculate the edge weights be-
tween v and its connected nodes with volume labels. Then we take
the maximum weight as the graph structure confidence.

Moreover, a typical method of aggregating these two measure-
ments is using F-measure as follows
Fg=(1+ B2 ZCST—CG
p?-Cst +Cg
where we can assign different weights on these measurements with
parameter f.

®)

4 EXPERIMENTS

The proposed framework is evaluated with a real-world data and
its practical usage is demonstrated. In the following, we introduce
the data sets, the baselines, and the performance measurements for
the volume inference. Then the results are shown and discussed.

4.1 Data Set

All the data is collected in Guiyang, a south-west city of China.
There are totally 155 road segments deployed with loop detectors,
and Figure 7(a) shows their locations in the road network. These
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loop detectors generate timely readings about vehicles passing by,
and we aggregate them into traffic volume values for every 20
minutes. We also collect real-time GPS readings of 6,918 taxicabs.
Figure 7(b) shows the heatmap of taxi appearances on the road
where the frequency decreases from color red to green. Both the
loop detector data and taxi trajectories are collected during the
period of March 16 to April 1, 2016.

We also collected road network and POI data in Guiyang, and
there are totally 19,165 road segments in the road network. The
corresponding features are extracted as described in the Section
3.2.

4.2 Baselines

In this experiment, we compared the proposed ST-SSL algorithm
with several supervised and semi-supervised methods.

o Linear regression (LR). A linear regression model is trained
with all the extracted features.

o Artificial neural network (ANN). We train an multi-layer per-
ceptron using back propagation with no activation function in the
output layer.

e Random forest regression (RF). A random forest is a meta es-
timator that fits a number of classifying decision trees on various
sub-samples of the dataset and uses averaging to improve the pre-
dictive accuracy and control over-fitting.

e Basic semi-supervised learning model [30] (Basic-SSL). This is
a classical semi-supervised learning model, and its loss function
is L=y au,o(xy — xp)?. Compared with the proposed model,
this baseline does not consider the spatio-temporal patterns.

4.3 Performance Measurements

Because volume values varies a lot on different roads, the absolute
values of Mean Square Error and Mean Absolute Error are not
reasonable measurements for the inference performance. This is
because the final errors will be biased towards roads with higher
volume values, and this is unfair for many roads that only have
relatively low volume. In order to avoid the aforementioned bias,
we use the following metrics to judge the performance of each
method:

® MSPE: Root Mean Square Percentage Errors. For each road, the
percentage volume error is defined as its error divided by the ground
truth value. This measures how much errors are made compared

with the ground truths. Then for all the roads in evaluation data
set, we calculate the root of the mean squared relative errors as the
MSPE.

e Var )y spg: Variance of the MSPE. For each method, we ran the
experiment several times, and the variance of their MSPE represents
the robust of the corresponding method.

® MAPE: Mean Absolute Percentage Errors. Similarly, it measures
the overall absolute relative errors between each method’s outputs
and the ground truths. This is calculated by averaging the absolute
difference of relative errors.

e Varprapg: Variance of the MAPE. For each method, we ran
the experiment several times, and the variance of their MAPE rep-
resents the robust of the corresponding method.

4.4 Evaluation Results

In the following, we perform extensive experiments on the proposed
method, and demonstrate its advantages with the results.

Inference Accuracy. To compare the performance of all the meth-
ods on the volume inference accuracy, we conduct experiments on
the urban data set in Guiyang. In this experiment, 80% of all the
volume data collected from loop detectors are treated as training
data, and the rest is used for testing.

In real-world applications, loop detectors may malfunction occa-
sionally and those readings will be discarded. This results in missing
values at some time slots, and poses more challenge on the volume
inference task. For the rest of this section, we refer “undetected
road inference” as the problem of inferring the volume of roads
without loop detectors, and “missing observation recovery” as
the problem of inferring the missing volume of roads with loop de-
tectors. In order to test the performance on both of the two volume
inference tasks, we simulate the scenarios as follows. In the former
task, we randomly select the volume records from all roads with
80% percentage as the training data; while for the later task, we
randomly select 80% roads and treat their readings as the training
data, and test on the remaining 20% roads. The results are shown
in Table 1. It clearly shows the better performance of ST-SSL in
both tasks compared with all the baselines. As can be expected,
the inference accuracy on “missing observation recovery” is quite
lower than that on task “undetected road inference”. Because it is
easier to infer the volume value of a road if we have some historical
observations, and vice versa. In addition, the proposed method has
great robust since the variance of MSPE and MAPE are always
near to 0.

Vary the number of spatial neighbors The performance of
graph-based semi-supervised models is affected by the graph struc-
ture. In this experiment, we vary the number of spatial neighbors
of each node in the affinity graph, and see how it affects the volume
inference. From Table 2, we can see that ST-SSL performs similarly
with different number of neighbors. The reason is two-folded. On
one hand, the edge weights of our affinity graph are learned intelli-
gently. This means that even though we build many edges among
the nodes, they can distinguish the importance of the correlations
wisely with the learned edge weights. On the other hand, the pro-
posed ST-SSL method incorporates spatio-temporal patterns in the
model, and this helps to achieve a good volume inference. In com-
parison, although Basic-SSL performs worse than the proposed



Table 1: Volume Inference Accuracy

Undetected Road Inference

Missing Observation Recovery

Method MSPE MAPE Varyspe Varyape MSPE MAPE Varyspe VaryapE
LR 5.951 2.068 0.306 0.079 6.124 1.695 0.053 0.000
RF 2.542 1.116 0.169 0.043 1.054 0.357 0.007 0.000
ANN 7.887 2.356 0.407 0.608 2.058 0.646 0.174 0.003
Basic-SSL 3.215 1.342 0.257 0.044 0.759 0.288 0.002 0.000
ST-SSL 0.952 0.915 0.001 0.000 0.503 0.179 0.004 0.000
Table 2: Performance Varying # Spatial Neighbors
2 w ; ;
# Spatial Neighbors ==RMSE
Method 10 20 30 40 50 18 ®MAE |
Basic-SSL  3.131 2523 1.853 1.959 1.3988
ST-SSL 0.895 0.940 0.886 0.906 0.887

method, the performance of Basic-SSL gets better when the graph
has more spatial neighbors in the affinity graph. This proves that
the proposed Spatio-temporal semi-supervised learning requires
less information passed through the graph, because it genuinely
incorporates those prior knowledge.

Table 3: Performance Varying Training:Testing

Training:Testing

Method 0.5:0.5 0.6:04 0.7:03 0.8:0.2
LR 5308 5.673 4314  4.280
RF 2.840  2.790 2.139 1.639

ANN 6.067 5206  3.819  4.059
Basic-SSL 3370  3.955 3,519  3.374
ST-SSL 0.943 1.220 0.940 0.935

Vary the spatio-temporal factor a. In equation (4), hyper-
parameter « is a factor that gives different weights on the spatial
and temporal terms. More emphasis will be put onto the temporal
term with a larger @, and vice versa. In fact, this factor is application
dependent because the two terms in equation (4) are not normal-
ized. In order to evaluate the effect of « on the inference errors, we
perform experiments with different & and the results are shown
in the Figure 8. As depicted from the figure, the inference error
can reach reasonably low when the « is within a certain range, i.e.,
around 1 in this case. However, both larger or smaller values have
negative effects on the inference results.

Vary the data size. We also conduct experiment with different
amount of data. The data size is varied from 6 hours to 15 days, and
the inference accuracies of all methods are aggregated in Table 4.
Obviously, the propose method ST-SSL performs consistently well
over baselines under all the settings. This means that no matter how
much data we have, ST-SSL can give quite accurate estimations
on the volume information. On the contrary, supervised learning

0.8 : ‘ :
0.01 0.1 1 10 100

alpha

Figure 8: Vary Spatio-temporal Factor o

based models cannot provide meaningful estimations. This is be-
cause the urban features only correlate with the traffic volume in
a very obscure way, such that baselines cannot learn meaningful
relationships between those features and the traffic volume.

Vary the ratio of training and testing data. The results are
shown in Table 3. Similar with what we have discussed, ST-SSL
performs quite well even with very few collected volume data. In
addition, although supervised methods perform better when given
more training data, they still cannot catch up with the proposed
method.

Visualization of Inference Confidence In Figure 9, we display
the confidence on a map for the end users. Each mark represents
the confidence level of a road segment. Levels of confidence are
represented with different colors (green represents the most confi-
dent and red represents the least confident). In addition, users can
zoom in and out to see the details.

Convergence. The proposed method converges quickly after only
a few iterations which is shown in Figure 10. This demonstrates
the efficiency of the proposed method.

5 RELATED WORK

5.1 Traffic Condition Inference

Loop detectors [11, 15, 18, 22] and surveillance cameras [20, 23]
are traditional equipments in traffic condition monitoring. On the
bright side, the volume of a road can be directly extracted from these



Table 4: Performance (MSPE) w.r.t. Varying Data Size

Undetected Road Inference

Method 6h 12h 18h 1d 3d 5d 10d 15d
LR 1.850 3.155 3.451 4.280 5.558 5.322 5.951 4.775
RF 2.086 2.971 2.850 1.639 2.672 2.072 2.542 1.875

ANN 2.527 3.898 3.734 4.059 5.497 3.998 7.887 4.313
Basic-SSL 2.112 3.131 3.204 3.374 3.737 3.117 3.215 2.687
ST-SSL 0.917 0.895 0.980 0.935 0.948 0.969 0.952 0.955

Missing Observation Recovery

6h 12h 18h 1d 3d 5d 10d 15d

LR 2.735 2.830 3.062 4.738 4.8388 4.536 5.124 4.720
RF 0.820 1.549 1.419 1.363 1.275 1.085 1.054 0.944
ANN 3.999 2.455 2.775 3.180 2.579 1.982 2.058 1.802
Basic-SSL 0.825 0.922 0.912 1.032 0.950 0.788 0.759 0.658
ST-SSL 0.382 0.412 0.508 0.639 0.510 0.507 0.503 0.483

Figure 9: Visualization of Inference Confidence

devices. They are mainly used to predict the future volume of a road
segment with filtering-based models [18, 22] or time series models
[13]. However, the data sparsity problem is critical and it is hard to
infer the volume of a city-wide area, because they are too expensive
to deploy across the whole city. Fundamental diagram [4-6, 8, 15,
25] characterizes the relationship among traffic density, speed and
volume. But this approach requires great amount of training data
to learn the relationships, which is unrealistic for our problem.
Moreover, there is a unique relationship for each road, such that
it makes the city-wide estimation infeasible. In recent researches,
more attentions have been put onto the traffic condition estimation
with floating car data [9, 10, 19, 21, 24, 26, 27, 32], where vehicles
are equipped with GPS sensors and collect geo-spatial coordinates
on the move. After mapping the trajectories onto the road network,
it is easy to derive the average travel speed [21, 26] on some of
the road segments. However, infer the traffic volume with floating
car data is nontrivial, because the cars are only a small and biased

sample of the total traffic volume (e.g. taxi trajectories). In [19], the
authors first estimate the travel speed on each road, then adopt
an unsupervised Bayesian model to learn the volume. However,
it is hard to learn a universal model for all the road segments
with handcrafted Bayesian network. [1] explored the possibility of
learning a regression model with floating cars’ occurrence, but it
still cannot solve the sparsity problem. In addition, this work also
proved that the floating cars are biased sample because the taxi
distribution usually under-estimates the volume on rush hours and
over-estimates otherwise. Compared with the existing work, the
proposed framework in this paper handles both the floating car
data and loop detector data wisely, and can derive city-wide volume
information with more accuracy.

5.2 Semi-supervised Learning

Supervised learning models use “labelled” data to build a model,
then apply on the unlabelled data for inference. However, acquir-
ing enough labelled data in real-world applications is quite diffi-
cult, sometimes impossible. Semi-supervised learning (SSL) models
[31] addresses this problem by exploiting unlabelled data to help
with the learning performance. There have been extensive research
on this field, and many models are proposed. Generative models
[16, 17] usually treat the class labels of the unlabelled data as miss-
ing values and employ the EM algorithm to conduct maximum
likelihood estimation; Low-density separation models [7] use a
maximum margin algorithm, such as support vector machines, to
push the decision boundary away from the unlabelled points. Graph-
based models are learned to find the minimum cut of the graph
for the classification tasks [2, 3], and to propagate the knowledge
across the graph for the continuous prediction tasks [12, 29, 30]. In
this paper, we adopt the graph-based semi-supervised model which
is suitable for inferring the continuous values, and can propagate
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Figure 10: Convergence

the volume knowledge collected by loop detector across the affinity
graph.

6 CONCLUSIONS

In this paper, we propose a framework to infer the city-wide traf-
fic volume information with loop detectors and taxi trajectories.
However, both of these data are incomplete, sparse, and from quite
different domains. In order to solve these problems, we propose a
spatio-temporal semi-supervised learning model to tackle the data
sparsity problem associated with loop detectors. In addition, the
knowledge from trajectories is also integrated by learning the traffic
patterns and utilize it to construct the affinity graph. The experi-
ment was conducted on real-world data and the results demonstrate
advantages of the proposed framework on inferring the city-wide
traffic volume.
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