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ABSTRACT

The traffic volume on road segments is a vital property of the

transportation efficiency. City-wide traffic volume information can

benefit people with their everyday life, and help the government on

better city planning. However, there are no existing methods that

canmonitor the traffic volume of every road, because they are either

too expensive or inaccurate. Fortunately, nowadays we can collect

a large amount of urban data which provides us the opportunity to

tackle this problem. In this paper, we propose a novel framework to

infer the city-wide traffic volume information with data collected

by loop detectors and taxi trajectories. Although these two data

sets are incomplete, sparse and from quite different domains, the

proposed spatio-temporal semi-supervised learning model can take

the full advantages of both data and accurately infer the volume

of each road. In order to provide a better interpretation on the

inference results, we also derive the confidence of the inference

based on spatio-temporal properties of traffic volume. Real-world

data was collected from 155 loop detectors and 6,918 taxis over a

period of 17 days in Guiyang China. The experiments performed

on this large urban data set demonstrate the advantages of the

proposed framework on correctly inferring the traffic volume in a

city-wide scale.
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1 INTRODUCTION

During the rapid urbanization process, cities are facing numerous

challenges in meeting the needs of their growing populations, espe-

cially in the transportation system. Fortunately, urban computing

methods [28] can help us tackle these issues by using the large

amount of data generated in cities. Obviously, being aware of the

city-wide traffic volume, i.e. the number of vehicles traversing on ev-

ery road segment, is the first step to solve the urban transportation

problems. It can bring great convenience to the residents by helping

them avoid congested roads. In addition, the traffic volume infor-

mation is also very important for the government in city planning,

such as detecting bottle-neck roads, intervening on congestions,

and estimating vehicles’ pollution emissions.

Existing volume monitoring methods use loop detectors, surveil-

lance cameras or taxi trajectory data, but they all fail to provide a

city-wide volume estimation. Specifically, loop detectors (certain

sensors buried under the pavements) and surveillance cameras are

expensive and thus difficult to be scaled up to cover the whole city

area. As for the taxi trajectories, their occurrence on the streets

is only a biased sample of the entire traffic volume, because their

operating time and behaviors are quite different from the general

population.

In this work, we propose to infer the city-wide volume informa-

tion with both loop detector and taxi trajectory data. By making

the best use of both data sets, we can achieve a better volume esti-

mation on a city scale. However, this is a nontrivial problem faced

with great challenges. Firstly, although loop detectors can provide

accurate volume information, the data collected is very sparse and

incomplete because very few roads are affordable to be equipped

with loop detectors. In order to infer the volume information for

those road segments without loop detectors, we can first construct

an affinity graph to characterize the similarities among roads, then

propagate the knowledge of the road segments with loop detector

to other segments. However, constructing the affinity graph is also

a difficult task, because we do not possess the knowledge of road

similarities with respect to volume values. To solve this problem, we

first infer the city-wide travel speed from the taxi trajectory data,

and learn the daily speed patterns for each road segment. Based

on our observations in the real world data, the speed patterns co-

evolve with volume patterns, and nearby roads with similar speed

patterns are likely to follow similar volume patterns. This allows

us to learn the similarity among road segments with respect to the

speed pattern, then utilize it to form the spatial affinity graph. In
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Figure 1: Proposed Framework

addition to the spatial domains, we also build connections among

recent and periodical time slots in the affinity graph. With the

learned affinity graph, we design a graph-based semi-supervised

learning method which captures the spatio-temporal properties

of traffic volume, thus achieving a city-wide volume estimation.

Furthermore, we propose practical confidence measurements with

spatio-temporal smoothness property and graph-structure property.

These measurements will provide end users a better interpretation

on the inference results.

In summary, we propose a novel framework to infer the city-wide

volume information with both loop detector and taxi trajectory data.

The contributions are summarized as follows.

• We propose a spatio-temporal semi-supervised learning

model to tackle the data sparsity problem associated with

loop detectors and taxi trajectories. Daily speed patterns are

learned from taxi trajectories, and it is utilized to construct

the affinity graph among roads. As a result, the knowledge

from two different domains are fused in this framework to

infer a city-wide volume information.

• We propose practical confidence estimation measurements

with the spatio-temporal smoothness property and graph-

structure property.

• We conduct extensive experiments on real-world data which

was collected with 155 loop detectors and 6,918 taxis over a

period of 17 days. The results demonstrate the advantages of

the proposed framework on correctly inferring the city-wide

traffic volume.

The rest of the paper is organized as follows. We describe the

overview of the framework in Section 2. Components of the frame-

work are detailed in Section 3, and experiments are shown in Section

4. We review the related work in Section 5 then conclude the paper

in Section 6.

2 OVERVIEW

In this section, we first introduce several preliminary concepts that

will be used throughout the work, formally define the problem that

we aim to solve, then describe the proposed framework in Figure 1.

2.1 Preliminary

Definition 2.1. Traffic Volume of a road segment is the total num-

ber of vehicles traversing through it during a fixed time window.

The total traffic volume of each road is determined by two factors,

the number of lanes and the average volume on each lane. In this

paper, we aim to infer the per-lane volume for road segments, then

the corresponding total traffic volume can be easily derived by

multiplying with the number of lanes.

Definition 2.2. Loop Detectors, or “inductive-loop traffic detec-

tors”, are sensors buried under the pavements. They can detect

vehicles passing or arriving at a certain point, thus the traffic vol-

ume information can be derived by aggregating the loop detector’s

readings over a certain time window.

Note that, although loop detectors can generate accurate volume

information, they are so expensive that the government can imple-

ment only on a small number of road segments. For example, only

155 road segments are equipped with loop detectors, while there

are totally 19165 road segments in the urban area of Guiyang. This

is far from sufficient in terms of acquiring the city-wide volume

information.

Definition 2.3. Trajectory (Tr ) of a taxicab is a sequence of time-

ordered spatial points, Tr : p1 → p2 → · · · → pn where each

point p has a geo-spatial coordination set l and a time stamp t , i.e.,
p = (l , t).

Definition 2.4. Point of Interest (POI ) is a specific location that

someone may find useful. In this work, they represent venues in the



physical world, e.g., banks and shopping malls. Each POI is associ-

ated with properties such as name, address, coordinates, category

and etc.

Definition 2.5. Road Network is a graph-based data structure

where road segments are connected to each other. Each road seg-

ment is represented as a directed edge with two terminal points.

2.2 Problem Formulation

Given the loop detector data collected from a small portion of roads,

the taxi trajectory data, and urban context data sets (i.e., point of

interests, road network, and weather conditions), the Objective is

to estimate the traffic volume of any road within the city area at

any time slot.

2.3 Framework Overview

Figure 1 presents the proposed framework. The major components

are: city-wide travel speed estimation, volume affinity graph con-

struction, affinity graph edge weight learning, Spatio-Temporal

Semi-Supervised Learning (ST-SSL) and inference confidence es-

timation. The details of each component will be elaborated in the

Section 3.

Briefly speaking, we first map the GPS trajectories onto a road

network with map matching algorithm [14], and infer the average

travel speed on all road segments with travel speed estimation

method [21]. Then daily speed patterns of each road are learned,

and the volume affinity graph can be constructed with those pat-

terns together with features extracted from POI and road network.

Once we construct the affinity graph and learn the edge weights,

the proposed spatio-temporal semi-supervised learning algorithm

is performed to infer the city-wide traffic volume for each road

segment. Finally, in order to provide a better interpretation on the

inference results, we provide confidence estimation measurements

with spatio-temporal smoothness and graph-structure properties.

In the following section, we will detail every component of the

proposed framework and demonstrate the reasons behind our de-

sign.

3 METHODOLOGY

3.1 City-wide Travel Speed Estimation

The taxi trajectories by themselves cannot generate the city-wide

traffic volume information directly. Although their occurrences on

the road surface can be recognized as a sample of the total volume, it

is only a very small and biased sample. The reason is obvious, their

operating time and behaviors are quite different from the general

population. Fortunately, we can derive a city-wide travel speed on

each road segment from the trajectories with existing methods, and

the travel speed is a good factor that correlates with the volume.

In our framework, GPS coordinates are mapped onto the road

network with map matching method [14] and the average travel

speed of roads covered by the trajectory can be calculated. However,

the taxis can only cover limited road segments for any given time

period. In order to estimate the travel speed on all road segments,

we perform a city-wide travel speed estimation method [21] with

the context based collaborative filtering. By this means, we can
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Figure 2: Typical Speed and Volume Patterns

derive an accurate estimation of the travel speed on each road

segment of the urban area.

3.2 Urban Context and Speed Pattern
Extraction

Many urban context information has correlations or impacts on

the traffic volume, thus can help us with the inference task. For

example, POIs reveal the functionalities of an area, and obviously a

shopping mall would attract more visits than other places. Similarly,

properties of road networks and weather condition also affect the

traffic volume.

With the collected data, we can extract three sets of urban fea-

tures: geographic features of road segments, speed pattern features,

and weather features.

Geographic features of a road segment. For each road segment,

we can extract features from the road network and the nearby POI

data.

• Road network features: Road length, level, direction, number

of lanes, speed constraint, number of connections and tortuosity

(i.e., the ratio between road length and Euclidean distance between

the two terminals).

• POI features: For any given road segment, within a distance

of 200 meters around its two terminals, we can calculate the distri-

bution of POIs across ten categories. These categories are: Schools,

Companies and Offices, Banks and ATMs, Malls and Shopping,

Restaurants, Gas stations and Vehicle, Scenic spot, Hotels and Resi-

dences, Transportations, Entertainments and Living.

Speed pattern features. For each road segment, we can derive

two features from its speed pattern:

• Daily speed pattern. Given the historical record of travel speed

on each road segment, we can derive a daily speed pattern by

averaging it by day.



Figure 3: Affinity Graph Structure

• Daily average speed. Calculated by further average over the

daily speed pattern.

The speed pattern features play important roles when inferring

the traffic volume. Althoughwe havemany urban features extracted,

unfortunately, none of them has direct relationship with the volume

value of a road segment. However, the speed patterns usually co-

evolve with the volume patterns, and this means that roads with

similar average speed and speed patterns are more likely to follow

similar volume patterns. Several typical speed patterns are shown in

Figure 2 together with their volume patterns. As a result, the speed

patterns can help us determine the similarities among roads with

respect to the volume. More specifically, the Pearson coefficient

between any two series of daily speed patterns can measure the

similarity between these two roads under this context.

Weather features. For any given time slot, we can collect the

weather features from monitoring stations, such as temperature,

humidity, weather conditions (categorized as cloudy, foggy, rainy,

sunny and snowy) and etc. Among these, the weather conditions

have the most direct impact on the traffic volume. One obvious

example is that volume patterns would be similar on days with

extreme weather conditions, such as heavy snow or heavy rain.

3.3 Volume Affinity Graph Construction

The proposed ST-SSLmodel is a graph-based semi-supervised learn-

ing model. Its success depends on not only the model itself, but also

the corresponding affinity graph. We first define the affinity graph

in the following.

Definition 3.1. Affinity Graph (Figure 3) is a multi-layer weighted

graph where each layer denotes a time slot. Each node in the graph

is the lane volume of a road segment , i.e. average volume per

lane, on one specific time slot. There are edges connecting among

the nodes, and their weights represent the correlations among the

nodes. Edges within the same time slot are “spatial” correlations

and those between different time slots are “temporal” correlations.

The node set V = L ∪U , where L is the set of nodes whose volume

are known (or “Labelled”), in other words, those road segments

with loop detectors. U is the set of nodes whose volume are not

known (or “Unlabellded”).
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Spatial and temporal knowledge play important roles in the

construction of the affinity graph. By connecting nodes with de-

liberately designed spatio-temporal rules, we encode those prior

knowledge into the affinity graph.

Spatial Affinity Graph. Within each time slot, the construction

of the spatial affinity graph consists of the following parts:

• Edge between nearby road segments. Common sense tells us

that road segments in nearby areas are likely to have similar traf-

fic conditions. Based on this observation, for each road segment,

we select its nearby roads (e.g., within 300 meters) as candidates.

However, a road segment may have too many nearby neighbors.

As shown in Figure 4, there are quite a few roads with more than

50 neighbors. Then it is not reasonable to assume that all these

nearby roads have similar lane volume. In order to deal with this

problem, we further filter the candidates with road segments’ daily

speed patterns. Specifically, we filter several (e.g., 20) road segments

from the candidate set with the most similar daily average speed,

then further filter a small set (e.g., 10) with the similar daily speed

patterns. By this means, we connect road segments that share the

similar traffic patterns.

• Edge between reachable road segments. Some road segments

are relatively long, and the previous rule may only extract too few

neighbors. However, road segments within several hops (e.g., 2

or 3 hops) are likely to share similar volume. Based on this idea,

we extract nodes within several hops as candidates, then filter the

candidate set by their speed patterns as described above.

• Edge to similar road segments with loop detectors. The loop de-

tectors provide very reliable volume readings. In order to make the

best use of these data, we build edges between a road segment and

a few others that equip loop detectors with similar traffic patterns.

This is also achieved by filtering the daily speed patterns.

Temporal Affinity Graph. For nodes on different temporal layers,

the construction of edges consists of the following parts:

• Edge between recent layers. Obviously, the volume values would

not change dramatically in a relatively short time period. The idea

here is to build edges between nodes in nearby temporal neighbors,

for example, within 30 minutes.

• Edge between periodical temporal layers. For each road segment,

the volume follows a regular pattern every day, every week, and
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even every season. Figure 5 shows the volume value of a road

during a 10-day interval. The daily and weekly periodical pattern

can be easily depicted. Based on this observation, we connect road

segments with all of their periodical neighbors.

• Edge between layers with extreme weather conditions. The traf-

fic volume would follow similar patterns when encountered with

extreme weather conditions, such as heavy snow and heavy rain.

As a result, we build edges among temporal layers under similar

extreme weather conditions.

Graph Edge Weight Learning. After constructing the affinity

graph, we should learn the edge weights in the graph which rep-

resents the volume similarity among nodes. The basic idea is that

two nodes should have similar lane volume patterns if they share

similar urban features, and vice versa. However, urban features may

have different correlations with the volume patterns which can be

learned from the data. Specifically, the spatial edge weights are

calculated in the following process:

• Step 1: Normalize the feature values fi for all features i . This
is achieved by feature standardization which makes the values of

each feature in the data have zero-mean and unit-variance, i.e.,

fi :=
fi−mean(fi )

std (fi )
.

• Step 2: For each feature i , calculate the Pearson correlation

corrfi between the feature value differences |Δfi | and lane volume

value differences |Δx |. Specifically, for any two roads u and v with

loop detector readings on the same temporal layer, the lane volume

value difference is |Δxu,v | = |xu − xv |, and the feature value differ-
ence is |Δfi (u,v)| = | fi (u) − fi (v)|. Then with all the loop detector

data, we can calculate the Pearson correlation denoted by corrfi .
In other words, corrfi measures the impact of different features on

the volume values.

• Step 3: Calculate spatial edge weight au,v between any two

roads u and v as follows:

au,v = exp

(
−
∑
i

corrfi × | fi (u) − fi (v)|

)
(1)

In addition, it is easy to be noticed that nodes in temporal neigh-

bors should have similar lane volume. Thus, we set the temporal

edge weights as 1.

3.4 Spatio-Temporal Semi-Supervised Learning

Based on the constructed volume affinity graph and the learned edge

weights, we propose a graph-based semi-supervised learning model

(ST-SSL) which incorporates the knowledge of spatio-temporal

volume patterns. Generally speaking, there are several advantages

of the proposed method. First, the ST-SSL model can make good

use of the observed volume information by loop detectors, and infer

all missing volume values in the graph. Second, ST-SSL assures that

nodes with similar feature values should have similar lane volume

values, which is achieved by learning the edge weights. Third, ST-

SSL follows the spatio-temporal prior knowledge which makes it

behave under physical constraints.

The first rule that we take into consideration is the change rate

similarity of spatial neighbors. Assume that there are totally T
temporal layers in the graph, and xu (t) denotes the lane volume of

road u on time slot t . The corresponding loss function is

Ls =
∑
t ∈T

∑
(u,v)∈E

au,v

(
Δxu (t)

xu (t − 1)
−

Δxv (t)

xv (t − 1)

)2
, (2)

where Δx(t) = x(t)−x(t−1). This rule captures the fact that volume

of the correlated roads usually has similar change rates over time.

For example, during the morning rush hours, many vehicles would

take similar routes towork and it makes the volume aroundworking

areas increase at the same time.

The second rule is that volume on consecutive and periodical

time slots should be similar. Let corr (t) represents the set of cor-
related temporal layers with time t , and it contains recent and

periodical layers. Then the corresponding loss function is

Lt =
∑
t ∈T

∑
c ∈corr (t )

∑
u ∈U

(xu (t) − xu (c))
2 (3)

By putting the equations (2) and (3) together, we have the loss

function of the proposed ST-SSL model

LST SSL = Ls + Lt

=
∑
t ∈T

∑
(u,v)∈E

au,v

(
Δxu (t)

xu (t − 1)
−

Δxv (t)

xv (t − 1)

)2

+α
∑
t ∈T

∑
c ∈corr (t )

∑
u ∈U

(xu (t) − xu (c))
2 (4)

where α is a hyper-parameter which gives different emphases on

the two terms. Then our goal is to find the lane volume for all roads

X = {xu |u ∈ V }, such that the loss function (4) is minimized

X = argmin
X

LST SSL (5)

In order to solve the above problem, we adopt an iterative update

algorithm. By taking the partial derivative of LST SSL with respect

to xv (t) and let it be zero, we get

xv (t) =

∑
u ∈N (v)

au,vxu (t )

xu (t−1)xv (t−1)
+ α

∑
c ∈corr (t ) xv (t + c)∑

u ∈N (v)
au,v

x 2
v (t−1)

+ αC
(6)



where N (v) represents the set of nodes that are connected with v ,
and C = |corr (t)| is the number of correlated temporal layers with

time t .
By carefully examining the equation (6), we can observe that it

successfully captures the spatio-temporal properties of the traffic

volume. Specifically, the volume of one road segment is correlated

with its spatial neighbors because they have similar volume change

rates, as shown by the first term of the nominator. In addition, it also

correlates with its temporal neighbors because it changes smoothly

over time, as shown by the second term of the nominator. Overall,

the inference of traffic volume is a weighted average over spatial

and temporal components.

3.5 Inference Confidence Estimation

The inference confidence is a vital problem that haunts many learn-

ing methods, especially for semi-supervised algorithms. Tradition-

ally, for the purpose of evaluation, we can divide the labelled data

into training and evaluation sets, but this would further reduce the

amount of data for inference. In this section, we propose to use

the property of spatio-temporal smoothness and graph structure

to determine the confidence of the inference results. Because of

their generality, these measurements can also be applied to other

spatio-temporal and/or graph-based models.

Spatio-temporal Smoothness Confidence. In many real world ap-

plications, the target variables would not change dramatically over

both temporal and spatial dimensions. For example, the temper-

ature usually changes gradually over time and geo-space. With

respect to the traffic volume, Figure 6 shows that it tends to have

similar values in recent time slot and locations. Specifically, Figure

6(a) presents the volume differences as time goes on. It is obvious

that the volume values on recent and periodical time slots are more

similar; Figure 6(b) demonstrates the volume ratio with different

spatial distances. This shows that nearby roads should have similar

lane volume values.

With the above observations, we define a confidence metric on

the spatio-temporal smoothness as follows:

Definition 3.2. Spatio-temporal Smoothness Confidence (CST ).
For any given nodev in the affinity graphG , we assume the value of

its correlated nodes follows a normal distribution N (μ,σ 2), where

μ and σ can be estimated accordingly. Then the spatio-temporal

smoothness confidence of the node v is defined as

CST =

{
P(x < xv ∩ x > 2μ − xv ) = 2CDF (xv ), xv < μ

P(x > xv ∩ x < xv − 2μ) = 2(1 −CDF (xv )), xv ≥ μ

(7)

Graph Structure Confidence. In graph-based semi-supervised

learning methods, the knowledge of labelled data is propagated

through the affinity graph. However, some unlabelled nodes might

be connected to labelled nodes directly or with larger edge weights,

and some others may connect to labelled nodes remotely or with

smaller edge weights. Following this path, we define a graph struc-

ture based confidence measurement. The basic idea is that nodes

connected to labelled data with higher weights should receive more

confidence, and vice versa.
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Figure 6: Spatio-temporal smoothness of volume

Definition 3.3. Graph structure confidence (CG ). For any given

node v in the affinity graph G, we calculate the edge weights be-
tween v and its connected nodes with volume labels. Then we take

the maximum weight as the graph structure confidence.

Moreover, a typical method of aggregating these two measure-

ments is using F-measure as follows

Fβ = (1 + β2) ·
CST ·CG

β2 ·CST +CG
(8)

where we can assign different weights on these measurements with

parameter β .

4 EXPERIMENTS

The proposed framework is evaluated with a real-world data and

its practical usage is demonstrated. In the following, we introduce

the data sets, the baselines, and the performance measurements for

the volume inference. Then the results are shown and discussed.

4.1 Data Set

All the data is collected in Guiyang, a south-west city of China.

There are totally 155 road segments deployed with loop detectors,

and Figure 7(a) shows their locations in the road network. These



(a) Detector Locations (b) Trajectory Heatmap

Figure 7: Loop Detectors and Taxi Trajectories

loop detectors generate timely readings about vehicles passing by,

and we aggregate them into traffic volume values for every 20

minutes. We also collect real-time GPS readings of 6,918 taxicabs.

Figure 7(b) shows the heatmap of taxi appearances on the road

where the frequency decreases from color red to green. Both the

loop detector data and taxi trajectories are collected during the

period of March 16 to April 1, 2016.

We also collected road network and POI data in Guiyang, and

there are totally 19,165 road segments in the road network. The

corresponding features are extracted as described in the Section

3.2.

4.2 Baselines

In this experiment, we compared the proposed ST-SSL algorithm

with several supervised and semi-supervised methods.

• Linear regression (LR). A linear regression model is trained

with all the extracted features.

• Artificial neural network (ANN ). We train an multi-layer per-

ceptron using back propagation with no activation function in the

output layer.

• Random forest regression (RF ). A random forest is a meta es-

timator that fits a number of classifying decision trees on various

sub-samples of the dataset and uses averaging to improve the pre-

dictive accuracy and control over-fitting.

• Basic semi-supervised learning model [30] (Basic-SSL). This is

a classical semi-supervised learning model, and its loss function

is L =
∑
u,v au,v (xu − xv )

2. Compared with the proposed model,

this baseline does not consider the spatio-temporal patterns.

4.3 Performance Measurements

Because volume values varies a lot on different roads, the absolute

values of Mean Square Error and Mean Absolute Error are not

reasonable measurements for the inference performance. This is

because the final errors will be biased towards roads with higher

volume values, and this is unfair for many roads that only have

relatively low volume. In order to avoid the aforementioned bias,

we use the following metrics to judge the performance of each

method:

•MSPE: Root Mean Square Percentage Errors. For each road, the

percentage volume error is defined as its error divided by the ground

truth value. This measures how much errors are made compared

with the ground truths. Then for all the roads in evaluation data

set, we calculate the root of the mean squared relative errors as the

MSPE.

• VarMSPE : Variance of the MSPE. For each method, we ran the

experiment several times, and the variance of theirMSPE represents

the robust of the corresponding method.

•MAPE:Mean Absolute Percentage Errors. Similarly, it measures

the overall absolute relative errors between each method’s outputs

and the ground truths. This is calculated by averaging the absolute

difference of relative errors.

• VarMAPE : Variance of the MAPE. For each method, we ran

the experiment several times, and the variance of their MAPE rep-

resents the robust of the corresponding method.

4.4 Evaluation Results

In the following, we perform extensive experiments on the proposed

method, and demonstrate its advantages with the results.

Inference Accuracy. To compare the performance of all the meth-

ods on the volume inference accuracy, we conduct experiments on

the urban data set in Guiyang. In this experiment, 80% of all the

volume data collected from loop detectors are treated as training

data, and the rest is used for testing.

In real-world applications, loop detectors may malfunction occa-

sionally and those readings will be discarded. This results in missing

values at some time slots, and poses more challenge on the volume

inference task. For the rest of this section, we refer “undetected

road inference” as the problem of inferring the volume of roads

without loop detectors, and “missing observation recovery” as

the problem of inferring the missing volume of roads with loop de-

tectors. In order to test the performance on both of the two volume

inference tasks, we simulate the scenarios as follows. In the former

task, we randomly select the volume records from all roads with

80% percentage as the training data; while for the later task, we

randomly select 80% roads and treat their readings as the training

data, and test on the remaining 20% roads. The results are shown

in Table 1. It clearly shows the better performance of ST-SSL in

both tasks compared with all the baselines. As can be expected,

the inference accuracy on “missing observation recovery” is quite

lower than that on task “undetected road inference”. Because it is

easier to infer the volume value of a road if we have some historical

observations, and vice versa. In addition, the proposed method has

great robust since the variance of MSPE and MAPE are always

near to 0.

Vary the number of spatial neighbors The performance of

graph-based semi-supervised models is affected by the graph struc-

ture. In this experiment, we vary the number of spatial neighbors

of each node in the affinity graph, and see how it affects the volume

inference. From Table 2, we can see that ST-SSL performs similarly

with different number of neighbors. The reason is two-folded. On

one hand, the edge weights of our affinity graph are learned intelli-

gently. This means that even though we build many edges among

the nodes, they can distinguish the importance of the correlations

wisely with the learned edge weights. On the other hand, the pro-

posed ST-SSL method incorporates spatio-temporal patterns in the

model, and this helps to achieve a good volume inference. In com-

parison, although Basic-SSL performs worse than the proposed



Table 1: Volume Inference Accuracy

Undetected Road Inference Missing Observation Recovery

Method MSPE MAPE VarMSPE VarMAPE MSPE MAPE VarMSPE VarMAPE

LR 5.951 2.068 0.306 0.079 6.124 1.695 0.053 0.000

RF 2.542 1.116 0.169 0.043 1.054 0.357 0.007 0.000

ANN 7.887 2.356 0.407 0.608 2.058 0.646 0.174 0.003

Basic-SSL 3.215 1.342 0.257 0.044 0.759 0.288 0.002 0.000

ST-SSL 0.952 0.915 0.001 0.000 0.503 0.179 0.004 0.000

Table 2: Performance Varying # Spatial Neighbors

# Spatial Neighbors

Method 10 20 30 40 50

Basic-SSL 3.131 2.523 1.853 1.959 1.3988

ST-SSL 0.895 0.940 0.886 0.906 0.887

method, the performance of Basic-SSL gets better when the graph

has more spatial neighbors in the affinity graph. This proves that

the proposed Spatio-temporal semi-supervised learning requires

less information passed through the graph, because it genuinely

incorporates those prior knowledge.

Table 3: Performance Varying Training:Testing

Training:Testing

Method 0.5:0.5 0.6:0.4 0.7:0.3 0.8:0.2

LR 5.308 5.673 4.314 4.280

RF 2.840 2.790 2.139 1.639

ANN 6.067 5.206 3.819 4.059

Basic-SSL 3.370 3.955 3.519 3.374

ST-SSL 0.943 1.220 0.940 0.935

Vary the spatio-temporal factor α . In equation (4), hyper-

parameter α is a factor that gives different weights on the spatial

and temporal terms. More emphasis will be put onto the temporal

term with a larger α , and vice versa. In fact, this factor is application
dependent because the two terms in equation (4) are not normal-

ized. In order to evaluate the effect of α on the inference errors, we

perform experiments with different α and the results are shown

in the Figure 8. As depicted from the figure, the inference error

can reach reasonably low when the α is within a certain range, i.e.,

around 1 in this case. However, both larger or smaller values have

negative effects on the inference results.

Vary the data size. We also conduct experiment with different

amount of data. The data size is varied from 6 hours to 15 days, and

the inference accuracies of all methods are aggregated in Table 4.

Obviously, the propose method ST-SSL performs consistently well

over baselines under all the settings. This means that no matter how

much data we have, ST-SSL can give quite accurate estimations

on the volume information. On the contrary, supervised learning
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Figure 8: Vary Spatio-temporal Factor α

based models cannot provide meaningful estimations. This is be-

cause the urban features only correlate with the traffic volume in

a very obscure way, such that baselines cannot learn meaningful

relationships between those features and the traffic volume.

Vary the ratio of training and testing data. The results are

shown in Table 3. Similar with what we have discussed, ST-SSL

performs quite well even with very few collected volume data. In

addition, although supervised methods perform better when given

more training data, they still cannot catch up with the proposed

method.

Visualization of Inference Confidence In Figure 9, we display

the confidence on a map for the end users. Each mark represents

the confidence level of a road segment. Levels of confidence are

represented with different colors (green represents the most confi-

dent and red represents the least confident). In addition, users can

zoom in and out to see the details.

Convergence. The proposed method converges quickly after only

a few iterations which is shown in Figure 10. This demonstrates

the efficiency of the proposed method.

5 RELATEDWORK

5.1 Traffic Condition Inference

Loop detectors [11, 15, 18, 22] and surveillance cameras [20, 23]

are traditional equipments in traffic condition monitoring. On the

bright side, the volume of a road can be directly extracted from these



Table 4: Performance (MSPE) w.r.t. Varying Data Size

Undetected Road Inference

Method 6h 12h 18h 1d 3d 5d 10d 15d

LR 1.850 3.155 3.451 4.280 5.558 5.322 5.951 4.775

RF 2.086 2.971 2.850 1.639 2.672 2.072 2.542 1.875

ANN 2.527 3.898 3.734 4.059 5.497 3.998 7.887 4.313

Basic-SSL 2.112 3.131 3.204 3.374 3.737 3.117 3.215 2.687

ST-SSL 0.917 0.895 0.980 0.935 0.948 0.969 0.952 0.955

Missing Observation Recovery

6h 12h 18h 1d 3d 5d 10d 15d

LR 2.735 2.880 3.062 4.738 4.888 4.536 5.124 4.720

RF 0.820 1.549 1.419 1.363 1.275 1.085 1.054 0.944

ANN 3.999 2.455 2.775 3.180 2.579 1.982 2.058 1.802

Basic-SSL 0.825 0.922 0.912 1.032 0.950 0.788 0.759 0.658

ST-SSL 0.382 0.412 0.508 0.639 0.510 0.507 0.503 0.483

Figure 9: Visualization of Inference Confidence

devices. They are mainly used to predict the future volume of a road

segment with filtering-based models [18, 22] or time series models

[13]. However, the data sparsity problem is critical and it is hard to

infer the volume of a city-wide area, because they are too expensive

to deploy across the whole city. Fundamental diagram [4–6, 8, 15,

25] characterizes the relationship among traffic density, speed and

volume. But this approach requires great amount of training data

to learn the relationships, which is unrealistic for our problem.

Moreover, there is a unique relationship for each road, such that

it makes the city-wide estimation infeasible. In recent researches,

more attentions have been put onto the traffic condition estimation

with floating car data [9, 10, 19, 21, 24, 26, 27, 32], where vehicles

are equipped with GPS sensors and collect geo-spatial coordinates

on the move. After mapping the trajectories onto the road network,

it is easy to derive the average travel speed [21, 26] on some of

the road segments. However, infer the traffic volume with floating

car data is nontrivial, because the cars are only a small and biased

sample of the total traffic volume (e.g. taxi trajectories). In [19], the

authors first estimate the travel speed on each road, then adopt

an unsupervised Bayesian model to learn the volume. However,

it is hard to learn a universal model for all the road segments

with handcrafted Bayesian network. [1] explored the possibility of

learning a regression model with floating cars’ occurrence, but it

still cannot solve the sparsity problem. In addition, this work also

proved that the floating cars are biased sample because the taxi

distribution usually under-estimates the volume on rush hours and

over-estimates otherwise. Compared with the existing work, the

proposed framework in this paper handles both the floating car

data and loop detector data wisely, and can derive city-wide volume

information with more accuracy.

5.2 Semi-supervised Learning

Supervised learning models use “labelled” data to build a model,

then apply on the unlabelled data for inference. However, acquir-

ing enough labelled data in real-world applications is quite diffi-

cult, sometimes impossible. Semi-supervised learning (SSL) models

[31] addresses this problem by exploiting unlabelled data to help

with the learning performance. There have been extensive research

on this field, and many models are proposed. Generative models

[16, 17] usually treat the class labels of the unlabelled data as miss-

ing values and employ the EM algorithm to conduct maximum

likelihood estimation; Low-density separation models [7] use a

maximum margin algorithm, such as support vector machines, to

push the decision boundary away from the unlabelled points. Graph-

based models are learned to find the minimum cut of the graph

for the classification tasks [2, 3], and to propagate the knowledge

across the graph for the continuous prediction tasks [12, 29, 30]. In

this paper, we adopt the graph-based semi-supervised model which

is suitable for inferring the continuous values, and can propagate
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the volume knowledge collected by loop detector across the affinity

graph.

6 CONCLUSIONS

In this paper, we propose a framework to infer the city-wide traf-

fic volume information with loop detectors and taxi trajectories.

However, both of these data are incomplete, sparse, and from quite

different domains. In order to solve these problems, we propose a

spatio-temporal semi-supervised learning model to tackle the data

sparsity problem associated with loop detectors. In addition, the

knowledge from trajectories is also integrated by learning the traffic

patterns and utilize it to construct the affinity graph. The experi-

ment was conducted on real-world data and the results demonstrate

advantages of the proposed framework on inferring the city-wide

traffic volume.
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