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Abstract— This paper presents a continuous-time
semidefinite-programming method for bounding statistics
of stochastic processes governed by stochastic differential-
algebraic equations with trigonometric and polynomial
nonlinearities. Upper and lower bounds on the moments are
then computed by solving linear optimal control problems
for an auxiliary linear control system in which the states
and inputs are systematically constructed vectors of mixed
algebraic-trigonometric moments. Numerical simulations
demonstrate how the method can be applied to solve moment-
closure problems in representative systems described by
stochastic differential algebraic equation models.

I. INTRODUCTION

Stochastic differential equations can represent phenom-

ena from domains such as finance [1], biology [2], [3],

and physics [2]. Important insights into the dynamics of a

stochastic system can be obtained from statistical quantities

such as the mean and variance. However, aside from lin-

ear systems, such quantities typically cannot be computed

exactly. For more complex systems, it is desirable to find

methods that can yield approximate values of desired statisti-

cal quantities with provable guarantees about approximation

quality. This paper presents an optimization-based method

to bound the statistics of stochastic processes governed by a

particular class of stochastic differential-algebraic equations

involving trigonometric and polynomial nonlinearities.

A. Contribution

This paper extends the analysis results from [4] and its

precursor [5]. In particular, the work in [4] developed a

method to compute upper and lower bounds on the moments

of stochastic processes by solving auxiliary linear optimal

control problems. When the gap between the upper and lower

bounds is small, the method guarantees that the true value

lies in a small interval. That method, however, is limited to

problems whose dynamics are defined by polynomials. Thus,

the number of compelling problems that it can address is

limited. This work extends those results by: 1) encompassing

stochastic differential-algebraic equations, and 2) allowing

for mixtures of algebraic and trigonometric polynomials.

In this work, we show how the extended method can be

used to analyze stochastic volatility models from finance,

a pendulum with noise, and a single-machine infinite-bus

power system model. Work still remains to improve the

scalability of the method, but initial results indicate that the
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technique often converges to tight upper and lower bounds

on the statistical quantity of interest.

B. Related Work

Most closely related to this work are the results of [6],

which gives a method for bounding stationary moments

of stochastic processes defined by polynomials. The main

differences between this work and the current paper are that

1) this work focuses on transient dynamics of moments, and

2) it encompasses cases beyond polynomials.

Other closely related work includes the occupation mea-

sure framework for analysis and control of stochastic pro-

cesses [7]–[9]. The key difference is that the method here

examines stochastic processes pointwise in time, while oc-

cupation measures examines them across time. This differ-

ence leads to quite different optimization problems. Another

related method based on barrier certificates is given in [10].

This work is also related to work on moment closure [11]–

[14]. As in this work, moment closure methods study the

dynamics of moments to estimate statistics of a stochastic

process. The difference between moment closure methods

and this method is that moment closure methods compute

point estimates of moments, while this method produces

upper and lower bounds.

C. Outline

The paper is organized as follows. Section II introduces

the class of problems as well as a collection of running

examples. Section III presents the optimization method for

stochastic analysis. Section IV applies the method to the

running examples. Finally, conclusions and future work are

discussed in Section V.

II. FUNDAMENTALS

In this section, we first outline pertinent notation. Fol-

lowing this, we describe the stochastic differential algebraic

equation model, and formalize the notion of mixed algebraic-

trigonometric polynomials.

A. Notation

Stochastic processes are denoted by bold symbols x(t).
The notation dx(t) denotes the increment: dx(t) = x(t +
dt) − x(t). The process w(t) is a Brownian motion with

mean 0 and covariance tI . (I is the identity matrix.) The

expectation of a random variable, x, is denoted by E[x]. The

set of real numbers is denoted by R while the set of non-

negative integers is denoted by N. For a matrix M , M � 0
denotes that M is symmetric and positive semidefinite.
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B. Stochastic Differential Algebraic Equations

In this paper we will develop methods to analyze statis-

tical properties of stochastic differential-algebraic equations

(SDAEs) of the form:

dx(t) = f(x(t),y(t))dt+ g(x(t),y(t))dw(t), (1a)

0 = a(x(t),y(t)). (1b)

Assume that x(t) ∈ R
DX and y(t) ∈ R

DY . In order for

the equality constraint to be solvable, we will assume that

a(x(t),y(t)) ∈ R
DY and that

∂a(x(t),y(t))
∂y

is invertible along

the trajectories of the system.

For the system (1), we will develop optimization-based

methods for approximating expectations of the form:

E

[

h(x(T ),y(T )) +

∫ T

0

c(x(t),y(t))dt

]

. (2)

In particular, the main contribution of this paper is a method

for generating a sequence of lower bounds L1 ≤ L2 ≤ · · ·

and upper bounds · · · ≤ U2 ≤ U1 such that:

Li ≤ E

[

h(x(T ),y(T )) +

∫ T

0

c(x(t),y(t))dt

]

≤ Ui. (3)

This paper extends the settings to which the methodology

in [4] can be applied. While [4] considered controlled jump

diffusions in which all of the functions are polynomial, here:

• An algebraic constraint is included so that the method

can handle differential algebraic systems.

• The functions f , g, a, c, and h can include a mixture

of trigonometric and polynomial functions.

For simplicity, we do not consider jumps or external control

inputs, but these could also be incorporated.

C. Algebraic-trigonometric Polynomials

Formally, the functions f , g, a, c, and h must belong

to the class of mixed algebraic-trigonometric polynomials

over z = [x, y]� ∈ R
DZ . A mixed algebraic-trigonometric

polynomial, ψ(z), is a function that can be expanded as

ψ(z) =
∑

m,n

ψc
m,n

DZ
∏

i=1

(zmi

i cos(nizi))

+
∑

m,n

ψs
m,n

DZ
∏

i=1

(zmi

i sin(nizi)),

(4)

where m and n are vectors in N
DZ , and only finitely many of

the coefficients ψc
m,n and ψs

m,n are non-zero. If the function

is vector/matrix valued, then the coefficients ψc
m,n and ψs

m,n

are constant vectors/matrices of appropriate dimension.

The natural basis functions are given by the functions
∏DZ

i=1(z
mi

i cos(nizi)) and
∏DZ

i=1(z
mi

i sin(nizi)).
Several interesting systems can be posed as special cases

of (1) with functions defined according to (4). Below, three

running examples are described.

Example 1 (Heston’s Stochastic Volatility Model):

Stock prices are commonly modeled as a geometric

Brownian motion. The variance parameter is known as the

volatility. Heston’s stochastic volatility model, [15], captures

the setting where the volatility itself can be random:

dS(t) = μS(t)dt+
√

ν(t)S(t)dw1(t), (5a)

dν(t) = κ(θ − ν(t))dt+ ξ
√

ν(t)dw2(t). (5b)

Here, S(t) represents the stock price, ν(t) represents the

volatility, and μ, κ, θ, and ξ are constant parameters. He-

ston’s model (5), can be cast in the form (1) (i.e., using

only polynomial variables) by representing
√

ν(t) with an

algebraic equality constraint:

dS(t) = μS(t)dt+ y(t)S(t)dw1(t), (6a)

dν(t) = κ(θ − ν(t))dt+ ξy(t)dw2(t), (6b)

0 = y(t)2 − ν(t). (6c)

It can be shown that if ν(0) > 0, then ν(t) > 0, ∀t ≥

0 whenever 2κθ ≥ ξ, [16]. In this case, the solvability

condition ∂
∂y

(y(t)2 − ν(t)) �= 0 holds ∀t ≥ 0.

Example 2 (Noisy Pendulum): A simple model with

trigonometric functions is given by a pendulum with noisy

torque:

dθ(t) = v(t)dt (7a)

dv(t) = −(α sin(θ(t)) + βv(t))dt+ σdw(t) (7b)

Here θ(t) is the angle of the pendulum, v(t) is the angular

velocity, and α, σ, and β are constants.

Example 3 (Single-Machine Infinite-Bus): This exam-

ple studies a popular power system model known as the

single-machine infinite-bus. This system models the inter-

connection between a single generator and an infinitely

large power grid. Stochasticity arises from variable loads

connected to the generator. The model is given by:

dδ(t) = ωs(ω(t)− 1)dt (8a)

dω(t) =
1

M

(

PM −
EV (t)

XG

sin(δ(t)− θ(t))

−D(ω(t)− 1)
)

dt (8b)

dPL(t) = aP (PL0 − PL(t)) + σdw1(t) (8c)

dQL(t) = aQ(QL0 −QL(t)) + σdw2(t) (8d)

0 = PL(t)−
EV

XG

sin(δ(t)− θ(t)) +
VsV (t)

XL

sin(θ(t))

(8e)

0 = QL(t) +
XGXL

XG +XL

V (t)2 (8f)

−
EV (t)

XG

cos(δ(t)− θ(t))−
VsV (t)

XL

cos(θ(t)). (8g)

Here δ(t) is the generator phase angle and ω(t) is normalized

generator frequency, relative to the nominal normalized value

of 1. The stochastic real and reactive power injections are

given by PL(t) and QL(t), respectively. For a deeper dis-

cussion of this model, see [17], and for stochastic extensions

see [18], [19]. While the model is similar to that from [18],

we model the loads as Ornstein-Uhlenbeck processes, as

suggested in [20].
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III. CONTROL OF THE MOMENTS

This section shows how the statistics of the states in (1)

can be bounded by solving an optimal control problem

with respect to its moments. Subsections III-A and III-B

give background results for the construction of the auxil-

iary control problem. Subsection III-C describes the control

system, and Subsection III-D describes the auxiliary states

of the running examples. Finally, Section III-E describes the

corresponding optimal control problem.

A. Closure Properties

The following result establishes that the mixed algebraic-

trigonometric polynomials introduced in (4) are closed under

the operations of addition, multiplication, and differentiation.

The proof is an application of standard trigonometric iden-

tities, and is omitted.

Lemma 1: Let φ(z) and ψ(z) be scalar-valued mixed

algebraic trigonometric polynomials with finite expansions

of the form in (4). Then, the following functions also have

finite expansions of the form in (4):

φ(z) + ψ(z); φ(z)ψ(z);
∂φ(z)

∂zi
, ∀i = 1, . . . , DZ . (9)

B. Generators

For any smooth function φ : R
DX → R, a classical

result in stochastic differential equations, [1], shows that the

dynamics of E[φ(x(t))] is given by:

d

dt
E[φ(x(t))] = E[Lφ(x(t),y(t))], (10)

where Lφ is the generator of φ, and is defined by:

Lφ(x, y) =
∂φ(x)

∂x
f(x, y) (11)

+
1

2
Tr

(

∂2φ(x)

∂x2
g(x, y)g(x, y)�

)

.

If φ(x), f(x, y), and g(x, y) are all mixed algebraic-

trigonometric polynomials, then the closure properties of

Lemma 1 imply that so is the generator Lφ(x, y).

C. Auxilliary Linear Control System

In this section we will see how (10) can be used to define

an auxilliary deterministic linear control system. The states

of this auxilliary system will be means of so-called test

functions. Recalling that x ∈ R
DX , we define the auxiliary

state, X (t) by:

X (t) = E

⎡

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

1
φ1(x(t))

...

φP (x(t))

⎤

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎦

, (12)

where the test-functions have the form:

φj(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

DX
∏

i=1

x
m

j

i

i cos(nj
ixi)

DX
∏

i=1

x
m

j

i

i sin(nj
ixi)

. (13)

Recalling that z = [x, y]� ∈ R
DZ , the input for the auxiliary

system, U(t) takes the form:

U(t) = E

⎡

⎢

⎣

⎡

⎢

⎣

ψ1(z(t))
...

ψQ(z(t))

⎤

⎥

⎦

⎤

⎥

⎦
, (14)

where the functions ψj(z) have the form:

ψj(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

DZ
∏

i=1

z
m

j

i

i cos(nj
izi)

DZ
∏

i=1

z
m

j

i

i sin(nj
izi)

. (15)

The moments X (t) and U(t) are chosen so that Lemmas 2,

3, and 4 below hold. More detailed discussion of the choice

of X (t) and U(t) is given at the end of Section III-E. For the

special case of pure polynomial systems with no algebraic

equality constraints, versions of the lemmas are presented

in [4]. The proof of Lemma 2 is sketched, while the other

proofs are omitted for space.

The first of the lemmas shows how to construct a determin-

istic linear DAE from the moments of the original stochastic

DAE (1). For the lemma, recall that the equality constraint

function a(x, y) takes values in R
DY .

Lemma 2: Consider the dynamics from (1). Let X (t) be

the vector of moments defined in (12), let U(t) be the

auxiliary control process from (14), and let R(x, y) be a

mixed algebraic-trigonometric polynomial matrix with values

in S ×DY , for some S ≥ 1. Then, there are corresponding

constant matrices A ∈ R
(P+1)×(P+1), B ∈ R

(P+1)×Q,

C ∈ R
S×(P+1), and D ∈ R

S×Q such that ∀t ≥ 0

Ẋ (t) = AX (t) +BU(t) (16a)

0 = CX (t) +DU(t). (16b)

Proof Sketch: Since φj(x), f(z), and g(z) are all mixed

algebraic-trigonometric polynomials, as in (4), the generator

Lφj(z) has an expansion of the form (4). Thus, (10) implies

that the matrices A and B exist as long as U(t) contains

all the terms arising from the generators Lφj(z) that are not

moments in X (t).
Since a(x(t),y(t)) = 0 for all t ≥ 0, we must have

that R(x(t),y(t))a(x(t),y(t)) = 0 as well. Thus, there are

matrices C and D such that

E[R(x(t),y(t))a(x(t),y(t))] = CX (t) +DU(t) = 0.

As above, we assume that U(t) contains the required terms.

The next lemma shows that the cost can be cast as a linear

function of the moments in X (t) and U(t).
Lemma 3: There exist constant row vectors F ∈ R

1×P+1,

G ∈ R
1×Q, H ∈ R

1×P+1, and J ∈ R
1×P+1 such that

E

[

h(x(T ),y(T )) +

∫ T

0

c(x(t),y(t))dt

]

=

HX (T ) + JU(T ) +

∫ T

0

(FX (t) +GU(t)) dt. (17)

This final lemma establishes a linear matrix inequality that

must be satisfied by the moments of the SDAE, (1).
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Lemma 4: Let v1(x(t),y(t)), . . . , vm(x(t),y(t)) be any

collection of mixed algebraic-trigonometric polynomials.

There is an affine matrix-valued function M such that the

following holds:

〈

⎡

⎢

⎣

v1(x(t),y(t))
...

vm(x(t),y(t))

⎤

⎥

⎦

⎡

⎢

⎣

v1(x(t),y(t))
...

vm(x(t),y(t))

⎤

⎥

⎦

T
〉

= M(X (t),U(t)) � 0. (18)

D. Test Functions for Running Examples

Recall that the auxiliary state X (t) is composed of

expected values of a collection of test functions. In this

subsection, we will describe the test functions of the running

examples as well as their generators. We will see that in each

case, the dynamics of the test functions are not closed. This

means the dynamics cannot be described by a finite set of

differential equations of other test functions.
Example 4 (Heston’s Stochastic Volatility Model):

For this model, our test functions will take the form

φ(S, ν) = Smνn where m and n are non-negative integers.

Combining (5) with (11) shows that:

L(Smνn) = mμSmνn + nSmνn−1κ(θ − ν) (19)

+
1

2
m(m− 1)Smνn+1 +

1

2
n(n− 1)ξ2Smνn−1.

Note that when m ≥ 2, L(Smνn) depends on the mono-

mial Smνn+1. In this case, the moments are not closed

because (10) implies the dynamics of S(t)mν(t)n will

always depend on a higher-order moment.
Example 5 (Noisy Pendulum): In the case of the noisy

pendulum, our test functions will take the form φ(θ, v) =
cos(mθ)vn and φ(θ, v) = sin(mθ)vn. Combining (7) with

(11) shows that:

L(cos(mθ)vn) = −m sin(mθ)vn+1

− n cos(mθ)vn−1(α sin(θ) + βv)

+
1

2
n(n− 1)σ2 cos(mθ)vn−2. (20)

The case of sin(mθ)vn is similar. Thus, if m ≥ 1 and n ≥ 0,

the test function will always depend on a function of the form

cos(mθ)vn+1 or sin(mθ)vn+1. So, again the dynamics are

not closed.
Example 6 (Single-Machine Infinite Bus): For the

single-machine infinite-bus model, we take our test

functions to be of the form:

φ(x) =

{

cos(iδ)ωjP k
LQ

l
L

sin(iδ)ωjP k
LQ

l
L.

(21)

The dynamics of this model, (8), contain a variant of the

pendulum model in the first two dynamic equations. As such,

the dynamics of the test functions are not closed.
According to the basis conventions described in the paper,

the terms cos(δ−θ) and sin(δ−θ) are interpreted as “second-

order” polynomials. This is because representing them using

expansions of the form (4) requires products. For example:

sin(δ − θ) = sin(δ) cos(θ)− cos(δ) sin(θ).

This means that the terms V (t) sin(δ(t) − θ(t)) and

V (t) cos(δ(t)−θ(t)) are considered third-order. When com-

puting the approximate dynamics for this problem we get

simpler representations by introducing extra variables with

equality constraints to reduce the degree of the problem:

c(t) = cos(δ(t)− θ(t)), s(t) = sin(δ(t)− θ(t)). (22)

Note that these variables enable us to represent the whole

system using basis elements of order 2 or less.

In order to construct the auxiliary inputs, we consider basis

functions that are products of the form φ(x)ψ(y), where φ(x)
has the form from (21) and ψ(y) has the form:

ψ(y) =

{

cos(iθ)V jcksl

sin(iθ)V jcksl.

E. The Auxilliary Optimal Control Problem

The following is the main theoretical result of the paper.

It is analogous to the main result of [4], which applies to

stochastic control problems defined by polynomials. For-

mally, the main difference is that this problem has algebraic

equality constraints corresponding to 0 = a(x(t),y(t)).

Theorem 1: Let A, B, C, D, F , G, H , J , and M be the

terms defined in Lemmas 2 – 4. Consider the corresponding

continuous-time semidefinite program:

minimize
X(t),U(t)

HX(T ) + JU(T ) +

∫ T

0

(FX(t) +GU(t)) dt

(23a)

subject to Ẋ(t) = AX(t) +BU(t) (23b)

0 = CX(t) +DU(t) (23c)

X(0) = X (0) (23d)

U(0) = U(0) (23e)

M(X(t), U(t)) � 0 ∀t ∈ [0, T ]. (23f)

The optimal value for this problem is always a lower bound

on the expected value from (2), provided that the corre-

sponding moments exist. If the number of constraints in the

linear problem, (23), is increased (either by: i) adding more

test functions to X (t), ii) increasing the number of equality

constraints from (23c), or iii) adding more semidefinite

constraints), the value of (23) cannot decrease.

Proof Sketch: Lemmas 2 and 4 imply that the true

expected values in X (t) and U(t) must satisfy all of the

constraints in the semidefinite program, and Lemma 3 im-

plies that the desired expected value from (2) is calculated

via the objective function. Thus, the minimizing value must

be a lower bound on the true expected value. The lower

bound cannot decrease with more constraints because the

set of feasible solutions becomes more constrained.

By changing the objective to a maximization, we get

another continuous-time semidefinite program to compute

an upper bound on the desired expectation, (2). With the

maximization and minimization problems at hand, we can

obtain upper and lower bounds as described in (3).
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The optimal control problem, (23), has a large amount of

flexibility in how it is posed. In our numerical examples, we

use the following recipe, which can be automated:

• Fix some order k and let v(x, y) be a vector of basis

functions up to order k.

• Construct the outer product v(x, y)v(x, y)�, which will

contain basis functions up to order 2k.

• Construct X (t) by using all test functions φ(x) such

that the basis functions of the generators Lφ(x, y) are

contained in the outer product matrix v(x, y)v(x, y)�.

• For each equality constraint function ai(x, y), find all of

the basis functions b(x, y) such that basis functions of

b(x, y)ai(x, y) are contained in the outer product ma-

trix, v(x, y)v(x, y)�. Let R(x, y)a(x, y) be the vector

with rows given by the b(x, y)ai(x, y) terms.

This recipe ensures that for a fixed outer product matrix,

v(x, y)v(x, y)�, maximal sets of dynamics constraints and

equality constraints are used.

IV. NUMERICAL SIMULATIONS

Here we show numerical results for the running examples.
Example 7 (Heston’s Stochastic Volatility Model): The

variance of prices is commonly desired. The variance of

the price is given by var(S(t)) = E[S(t)2]−E[S(t)]2. The

mean of the price can be computed analytically since

d

dt
E[S(t)] = μE[S(t)] =⇒ E[S(t)] = eµtE[S(0)].

So, in order to estimate the variance, it suffices to estimate

the second moment E[S(t)2]. However, as discussed in

Example 4, there is no finite set of differential equations

for the second moment.
To get an estimate of the second moment, we used the

method of this paper to compute bounds on the quantity:

E

[

∫ T

0
S(t)2dt

]

. See Fig. 1. Despite the lack of closed

moments, the predicted upper and lower bounds are nearly

exact when moments up to degree 6 are used.
Simulations were performed using an Euler-Maryuama

scheme. The linear dynamics, (23b), were discretized via a

pseudospectral method [21]. The optimization was performed

via CVXPY [22] using the SDP solver SCS [23].
Example 8 (Noisy Pendulum): In the noisy pendulum,

the horizontal position of the pendulum end is given by

sin(θ(t)) while the vertical position is given by cos(θ(t)).
As described in Example 5, no finite set of test function dif-

ferential equations can describe the dynamics of E[sin(θ(t))]
and E[cos(θ(t))]. Figure 2 depicts the predictions. The

predictions were found by bounding the following values:

E

[

sin(θ(T )) +

∫ T

0

sin(θ(t))dt

]

,

E

[

cos(θ(T )) +

∫ T

0

cos(θ(t))dt

]

.

Similar to Example 7, the simulation is via Euler-

Maryuama, optimal control discretization via the pseu-

dospectral method, and the optimization performed with

CVXPY and SCS.

0.0 0.2 0.4 0.6 0.8 1.0

Tim e

0

1

2

3

4

5

6

[S
(t
)2
]

Lower

Upper

Monte Carlo

Fig. 1: Second moment of price for Heston’s Stochastic

Volatility model. Upper and lower bounds were computed

using moments up to degree 4 and 6, respectively. The green

dashed lines give the lower bounds and the red dotted lines

give the upper bounds. When moments of degree 6 are

used, the predictions are nearly identical, and predict the

average trajectory closely. The blue line depicts the average

of 105 simulations, while the filled boundary represents ±

one standard error of the mean. The model parameters were

μ = 0.1, κ = 1, θ = 0.5, and ξ = 0.5 and the initial

conditions were S(0) = 1 and ν(0) = 1.
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Fig. 2: Expected values of the horizontal position, sin(θ(t)),
and height, cos(θ(t)), of the pendulum were computed using

mixed moments up to degree 6. The red dotted line is

the predicted upper bound, the green dashed line is the

predicted lower bound. The solid blue line is the mean of 500
simulations and the filled space represents ± one standard

error of the mean. The model parameters were α = 1,

β = 0.5, and σ = 0.5 and the initial conditions were

θ(0) = 0 and v(0) = 1.

Example 9 (Single-Machine Infinite-Bus): Now we de-

scribe how the method from Subsection III-E can be applied

to the single-machine infinite-bus system. For this problem,

we wish to examine the fluctuations of generator frequency

around its nominal normalized value of 1.

We construct an outer product matrix that contains all of

the basis functions described in Example 6 up to second
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Fig. 3: This figure shows predicted bounds on the mean

of the generator frequency, E[ω(t)]. The green dashed line

shows the predicted lower bound and the red dotted line

shows the predicted upper bound. The solid blue line gives

the mean of 100 simulations and the filled space represents

± one standard error of the mean. For this problem, even

the second-order basis functions lead to a large optimization

problem. At this low order, only fairly crude bounds can be

obtained. The simulation is initialized with δ(0) = 1, ω(0) =
0.98, PL(0) = PL0, QL(0) = QL0, and the algebraic

variables are initialized by root finding. The parameters are

set as ωs = 377, D = 2, M = 7, E = 1.1, Pm = 0.8,

XG = 0.45, XL = 0.5, Vs = 1, PL0 = 1, QL0 = 0.5,

aP = aQ = 0.01, and σ = 1.

order. Employing the new variables c(t) and s(t) introduced

in (22) ensures that the generator only uses terms up to

second order. Constraints were found via the recipe in

Subsection III-E. The results are shown in Fig. 3.
The stochastic simulations for this problem were computed

via the method from [20]. The linear dynamics, (23b),

were discretized via the Euler method. The optimization

was performed via a large-scale semidefinite programming

method under development by the first author. These methods

were used because pseudospectral methods and SCS showed

slow convergence.

V. CONCLUSION

This paper presented a method for bounding statistics of

stochastic processes via continuous-time semidefinite pro-

gramming. The main contribution over previous work is

the ability to handle stochastic differential-algebraic equa-

tions defined by mixed algebraic-trigonometric polynomials.

These extensions make the method applicable to a rich set

of stochastic process models of theoretical and practical

interest. For systems with few variables and low degrees,

the method gives accurate predictions of statistical quantities.

However, for larger systems, the algorithms currently do not

scale well and only crude bounds can be obtained. Future

work will focus on analyzing the discretization schemes and

improving the scaling of the method.
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[20] F. Milano and R. Zárate-Miñano, “A systematic method to model

power systems as stochastic differential algebraic equations,” IEEE

Transactions on Power Systems, vol. 28, no. 4, pp. 4537–4544, 2013.
[21] I. M. Ross and M. Karpenko, “A review of pseudospectral optimal

control: from theory to flight,” Annual Reviews in Control, vol. 36,
no. 2, pp. 182–197, 2012.

[22] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization.” To appear in Journal of Machine
Learning Research, 2016.

[23] B. ODonoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization
via operator splitting and homogeneous self-dual embedding.” To
appear in Journal of Optimization Theory and Applications, 2016.

Acknowledgments

S. V. Dhople was supported in part by the National Science

Foundation through grant CyberSEES 1442686.

2460


