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Abstract—This  paper presents a  continuous-time
semidefinite-programming method for bounding statistics
of stochastic processes governed by stochastic differential-
algebraic equations with trigonometric and polynomial
nonlinearities. Upper and lower bounds on the moments are
then computed by solving linear optimal control problems
for an auxiliary linear control system in which the states
and inputs are systematically constructed vectors of mixed
algebraic-trigonometric moments. Numerical simulations
demonstrate how the method can be applied to solve moment-
closure problems in representative systems described by
stochastic differential algebraic equation models.

I. INTRODUCTION

Stochastic differential equations can represent phenom-
ena from domains such as finance [1], biology [2], [3],
and physics [2]. Important insights into the dynamics of a
stochastic system can be obtained from statistical quantities
such as the mean and variance. However, aside from lin-
ear systems, such quantities typically cannot be computed
exactly. For more complex systems, it is desirable to find
methods that can yield approximate values of desired statisti-
cal quantities with provable guarantees about approximation
quality. This paper presents an optimization-based method
to bound the statistics of stochastic processes governed by a
particular class of stochastic differential-algebraic equations
involving trigonometric and polynomial nonlinearities.

A. Contribution

This paper extends the analysis results from [4] and its
precursor [5]. In particular, the work in [4] developed a
method to compute upper and lower bounds on the moments
of stochastic processes by solving auxiliary linear optimal
control problems. When the gap between the upper and lower
bounds is small, the method guarantees that the true value
lies in a small interval. That method, however, is limited to
problems whose dynamics are defined by polynomials. Thus,
the number of compelling problems that it can address is
limited. This work extends those results by: 1) encompassing
stochastic differential-algebraic equations, and 2) allowing
for mixtures of algebraic and trigonometric polynomials.
In this work, we show how the extended method can be
used to analyze stochastic volatility models from finance,
a pendulum with noise, and a single-machine infinite-bus
power system model. Work still remains to improve the
scalability of the method, but initial results indicate that the
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technique often converges to tight upper and lower bounds
on the statistical quantity of interest.

B. Related Work

Most closely related to this work are the results of [6],
which gives a method for bounding stationary moments
of stochastic processes defined by polynomials. The main
differences between this work and the current paper are that
1) this work focuses on transient dynamics of moments, and
2) it encompasses cases beyond polynomials.

Other closely related work includes the occupation mea-
sure framework for analysis and control of stochastic pro-
cesses [7]-[9]. The key difference is that the method here
examines stochastic processes pointwise in time, while oc-
cupation measures examines them across time. This differ-
ence leads to quite different optimization problems. Another
related method based on barrier certificates is given in [10].

This work is also related to work on moment closure [11]—
[14]. As in this work, moment closure methods study the
dynamics of moments to estimate statistics of a stochastic
process. The difference between moment closure methods
and this method is that moment closure methods compute
point estimates of moments, while this method produces
upper and lower bounds.

C. Outline

The paper is organized as follows. Section II introduces
the class of problems as well as a collection of running
examples. Section III presents the optimization method for
stochastic analysis. Section IV applies the method to the
running examples. Finally, conclusions and future work are
discussed in Section V.

II. FUNDAMENTALS

In this section, we first outline pertinent notation. Fol-
lowing this, we describe the stochastic differential algebraic
equation model, and formalize the notion of mixed algebraic-
trigonometric polynomials.

A. Notation

Stochastic processes are denoted by bold symbols x(t).
The notation da(t) denotes the increment: dx(t) = x(t +
dt) — x(t). The process w(t) is a Brownian motion with
mean 0 and covariance tI. (I is the identity matrix.) The
expectation of a random variable, x, is denoted by E[x|. The
set of real numbers is denoted by R while the set of non-
negative integers is denoted by N. For a matrix M, M = 0
denotes that M is symmetric and positive semidefinite.
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B. Stochastic Differential Algebraic Equations

In this paper we will develop methods to analyze statis-
tical properties of stochastic differential-algebraic equations
(SDAEs) of the form:

dae(t) = f(2(t), y(1))dt + g(=(1),
0= a(z(t),y(t))- (1b)

Assume that z(t) € RPX and y(t) € RPY. In order for
the equality constraint to be solvable, we will assume that
a(z(t),y(t)) € RPY and that %W is invertible along
the trajectories of the system.

For the system (1), we will develop optimization-based
methods for approximating expectations of the form:

y(t)dw(t),  (la)

E

T
h(a(T), y(T)) + / c<m<t>,y<t>>dt]. @

In particular, the main contribution of this paper is a method
for generating a sequence of lower bounds £; < £5 <
and upper bounds - - - < 4y < 44y such that:

£ <E

h(@(T), y(T)) + / (@ (t), y(H)dt| < i ()

This paper extends the settings to which the methodology
in [4] can be applied. While [4] considered controlled jump
diffusions in which all of the functions are polynomial, here:
o An algebraic constraint is included so that the method
can handle differential algebraic systems.
o The functions f, g, a, ¢, and h can include a mixture
of trigonometric and polynomial functions.
For simplicity, we do not consider jumps or external control
inputs, but these could also be incorporated.

C. Algebraic-trigonometric Polynomials

Formally, the functions f, g, a, ¢, and h must belong
to the class of mixed algebraic-trigonometric polynomials
over z = [z,y]T € RPZ. A mixed algebraic-trigonometric
polynomial, v (z), is a function that can be expanded as

Z w’l’ﬂ n H

=1

+2 v e

i=1

M cos(n;z;))
“4)

Misin(n;z;)),

where m and n are vectors in NPZ, and only finitely many of
the coefficients ¢y, ,, and vy, ,, are non-zero. If the function
is vector/matrix valued then the coefficients Y and g,
are constant vectors/matrices of appropriate dimension. '

The natural basis functions are given by the functions
127 (2 cos(niz;)) and T[27 (2™ sin(niz;)).

Several interesting systems can be posed as special cases
of (1) with functions defined according to (4). Below, three
running examples are described.

Example 1 (Heston’s Stochastic Volatility Model):
Stock prices are commonly modeled as a geometric
Brownian motion. The variance parameter is known as the

volatility. Heston’s stochastic volatility model, [15], captures
the setting where the volatility itself can be random:

dS(t) = pS(t)dt + /v(t)S(t)dw(t) (52)
dv(t) = k(0 — v(t))dt + £/ v(t)dwa(t) (5b)

Here, S(t) represents the stock price, v(t) represents the
volatility, and u, k, 6, and £ are constant parameters. He-
ston’s model (5), can be cast in the form (1) (i.e., using
only polynomial variables) by representing +/v(t) with an
algebraic equality constraint:

dS(t) = uS(t)dt + y(t)S(t)dw, (t), (6a)
dv(t) = ( v(t))dt + Ey(t)dws(t), (6b)
0=y(t)* —v(t). (6¢)

It can be shown that if ©(0) > O, then v(t) > 0, Vt >
0 whenever 2x6 > &, [16]. In this case, the solvability
condition 8%(1/@)2 —v(t)) # 0 holds Vt > 0.

Example 2 (Noisy Pendulum): A simple model with
trigonometric functions is given by a pendulum with noisy

torque:

de(t) = v(t)dt
dv(t) = —(asin(0(t)) + fv(t))dt + odw(t)

(72)
(7b)

Here 6(t) is the angle of the pendulum, v(t) is the angular
velocity, and «, o, and § are constants.

Example 3 (Single-Machine Infinite-Bus): This exam-
ple studies a popular power system model known as the
single-machine infinite-bus. This system models the inter-
connection between a single generator and an infinitely
large power grid. Stochasticity arises from variable loads
connected to the generator. The model is given by:

do(t) = ws(w(t) — 1)dt (8a)
deo(t) = %(PM _ BV G - e

— D(w(t) —1))dt (8b)

dPL(t) ap(PLo —PL(t))+adw1(t) (8¢c)

dQ (1) = a@(Qro — QL(t)) + odws(t) (8d)
0= Pp(t) — —sin(d(t) — O(t)) + %(t) sin((t))

(8e)

0=Qt)+ %V(w2 (8)

V() VsV (t)
X, cos(0(t) — 0(t)) — X, cos(0(t)). (8g)

Here d(t) is the generator phase angle and w(t) is normalized
generator frequency, relative to the nominal normalized value
of 1. The stochastic real and reactive power injections are
given by P (t) and Q) (t), respectively. For a deeper dis-
cussion of this model, see [17], and for stochastic extensions
see [18], [19]. While the model is similar to that from [18],
we model the loads as Ornstein-Uhlenbeck processes, as
suggested in [20].
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III. CONTROL OF THE MOMENTS

This section shows how the statistics of the states in (1)
can be bounded by solving an optimal control problem
with respect to its moments. Subsections III-A and III-B
give background results for the construction of the auxil-
iary control problem. Subsection III-C describes the control
system, and Subsection III-D describes the auxiliary states
of the running examples. Finally, Section III-E describes the
corresponding optimal control problem.

A. Closure Properties

The following result establishes that the mixed algebraic-
trigonometric polynomials introduced in (4) are closed under
the operations of addition, multiplication, and differentiation.
The proof is an application of standard trigonometric iden-
tities, and is omitted.

Lemma 1: Let ¢(z) and (z) be scalar-valued mixed
algebraic trigonometric polynomials with finite expansions
of the form in (4). Then, the following functions also have
finite expansions of the form in (4):

9¢(2)
6Zi

D(2) +9(2); (2)1(2);

B. Generators

NVi=1,....,Dz. (9

For any smooth function ¢ : RPX — R, a classical
result in stochastic differential equations, [1], shows that the
dynamics of E[¢(x(t))] is given by:

d
S Elo(@(®)] = E[Lo(2(1), y(1))]; (10)
where Lo is the generator of ¢, and is defined by:
Lotay) = 20D f(z ) (a
2
+ %Tr (aai(f)g(%y)g(x,yf) :

If ¢(x), f(x,y), and g(x,y) are all mixed algebraic-
trigonometric polynomials, then the closure properties of
Lemma 1 imply that so is the generator Lo(x,y).

C. Auxilliary Linear Control System

In this section we will see how (10) can be used to define
an auxilliary deterministic linear control system. The states
of this auxilliary system will be means of so-called test
functions. Recalling that z € RPX, we define the auxiliary
state, X'(t) by:

1
1 (a(t))
X(t)=E . , (12)
¢p(x(t))
where the test-functions have the form:
Dx i )
[l z; * cos(n]x;)
¢i(@) =4y (13)
I1 z, ¢ sin(nlz;)
i=1

Recalling that z = [z,y] " € RPZ, the input for the auxiliary
system, U(¢) takes the form:

1 (2(1))
Ut) =E : ) (14
Vq(z(t))
where the functions 1;(z) have the form:
Dz J .
2" cos(nlz;)
¥i(2) =9, , , (15)
[1 2" sin(n]z)

i=1

The moments X'(¢) and U(t) are chosen so that Lemmas 2,
3, and 4 below hold. More detailed discussion of the choice
of X(t) and U(t) is given at the end of Section III-E. For the
special case of pure polynomial systems with no algebraic
equality constraints, versions of the lemmas are presented
in [4]. The proof of Lemma 2 is sketched, while the other
proofs are omitted for space.

The first of the lemmas shows how to construct a determin-
istic linear DAE from the moments of the original stochastic
DAE (1). For the lemma, recall that the equality constraint
function a(x,y) takes values in RPY .

Lemma 2: Consider the dynamics from (1). Let X(t) be
the vector of moments defined in (12), let U(t) be the
auxiliary control process from (14), and let R(x,y) be a
mixed algebraic-trigonometric polynomial matrix with values
in S X Dy, for some S > 1. Then, there are corresponding
constant matrices A € RETHX(P+H) B ¢ REFH*Q
C € RS**Y and D € R*9 such that ¥t > 0

X(t) = AX(t) + BU(t) (16a)

0= CX(t) + DUL). (16b)

Proof Sketch: Since ¢;(x), f(z), and g(z) are all mixed

algebraic-trigonometric polynomials, as in (4), the generator

L¢;(z) has an expansion of the form (4). Thus, (10) implies

that the matrices A and B exist as long as U(t) contains

all the terms arising from the generators L¢;(z) that are not

moments in X(¢).

Since a(z(t),y(t)) = 0 for all ¢ > 0, we must have

that R(x(t), y(t))a(x(t),y(t)) = 0 as well. Thus, there are
matrices C' and D such that

E[R(x(t),y(t))a(z(t),y(t))] = CX(t) + DU(t) = 0.

As above, we assume that I/ (¢) contains the required terms. i
The next lemma shows that the cost can be cast as a linear
function of the moments in X (¢) and U(¢).
Lemma 3: There exist constant row vectors F' € R1*P+1
G e R¥>™Q, H e RY*PHL gnd J € R¥>P+L guch thar

E

T
(D) () + [ C(m(t),y(t))dt] _

HX(T) + JU(T) + T(FX(t)+GU(t))dt. (17)

This final lemma establishe% a linear matrix inequality that
must be satisfied by the moments of the SDAE, (1).
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Lemma 4: Let vi(x(t),y(t)),...,vm(x(t),y(t)) be any
collection of mixed algebraic-trigonometric polynomials.
There is an affine matrix-valued function M such that the
following holds:

vi(x(t),y(1)]"

< or((t), y(t)) >
om((t), (1))
= M(X(t),U(t)) = 0.

D. Test Functions for Running Examples

om(2(t), y(1))
(18)

Recall that the auxiliary state X'(t) is composed of
expected values of a collection of test functions. In this
subsection, we will describe the test functions of the running
examples as well as their generators. We will see that in each
case, the dynamics of the test functions are not closed. This
means the dynamics cannot be described by a finite set of
differential equations of other test functions.

Example 4 (Heston’s Stochastic Volatility Model):

For this model, our test functions will take the form
¢(S,v) = S™v™ where m and n are non-negative integers.
Combining (5) with (11) shows that:

L(S™v™) = muS™v" +nS™v" k(0 — v) (19)
+ %m(m —1)Ssmy 4 %n(n —1)g2smynL,

Note that when m > 2, L(S™v™) depends on the mono-
mial S™v" 1. In this case, the moments are not closed
because (10) implies the dynamics of S(¢t)™v(t)" will
always depend on a higher-order moment.

Example 5 (Noisy Pendulum): In the case of the noisy
pendulum, our test functions will take the form ¢(0,v) =
cos(mB)v™ and ¢(6,v) = sin(md)v™. Combining (7) with
(11) shows that:

L(cos(mB)v™) = —m sin(m@)v™

— ncos(mf)v"™ (asin(h) + Bv)

n—2

+ %n(n — 1)0? cos(mf)v (20

The case of sin(m#)v" is similar. Thus, if mm > 1 and n > 0,
the test function will always depend on a function of the form
cos(m@)v™ 1 or sin(mf)v™*1. So, again the dynamics are
not closed.

Example 6 (Single-Machine Infinite Bus): For the

single-machine infinite-bus model, we take our test
functions to be of the form:
cos(id)w? PFQ!
p(x) =1 (i0)? e 1)
sin(id)w? PFQY .

The dynamics of this model, (8), contain a variant of the
pendulum model in the first two dynamic equations. As such,
the dynamics of the test functions are not closed.
According to the basis conventions described in the paper,
the terms cos(d—0) and sin(d—6) are interpreted as “second-
order” polynomials. This is because representing them using
expansions of the form (4) requires products. For example:

sin(é — 0) = sin(d) cos(#) — cos(d) sin(6).

This means that the terms V(¢)sin(d(t) — 6(t)) and
V(t) cos(6(t)—0(t)) are considered third-order. When com-
puting the approximate dynamics for this problem we get
simpler representations by introducing extra variables with
equality constraints to reduce the degree of the problem:

c(t) = cos(d(t) — 0(t)), s(t) =sin(d(t) —6(t)). (22)
Note that these variables enable us to represent the whole
system using basis elements of order 2 or less.
In order to construct the auxiliary inputs, we consider basis
functions that are products of the form ¢(x)¥(y), where ¢(x)

has the form from (21) and v (y) has the form:

cos( icksl
Y(y) = { i

sin(i0) V7 cFst.
E. The Auxilliary Optimal Control Problem

The following is the main theoretical result of the paper.
It is analogous to the main result of [4], which applies to
stochastic control problems defined by polynomials. For-
mally, the main difference is that this problem has algebraic
equality constraints corresponding to 0 = a(x(t), y(t)).

Theorem 1: Let A, B, C, D, F, G, H, J, and M be the
terms defined in Lemmas 2 — 4. Consider the corresponding
continuous-time semidefinite program:

T
minimize HX (T) + JU(T) + / (FX(t)+ GU(t))dt
X (1),U(t) 0

(23a)
subject to X (t) = AX(t) + BU(t) (23b)
0=CX(t)+ DU(t) (23¢)
X(0) = X(0) (23d)
U(0) = U(0) (23¢)
M(X(t),U(t)) =0 VYte[0,T). (23f)

The optimal value for this problem is always a lower bound
on the expected value from (2), provided that the corre-
sponding moments exist. If the number of constraints in the
linear problem, (23), is increased (either by: i) adding more
test functions to X (t), ii) increasing the number of equality
constraints from (23c), or iii) adding more semidefinite
constraints), the value of (23) cannot decrease.

Proof Sketch: Lemmas 2 and 4 imply that the true
expected values in A'(t) and U(¢) must satisfy all of the
constraints in the semidefinite program, and Lemma 3 im-
plies that the desired expected value from (2) is calculated
via the objective function. Thus, the minimizing value must
be a lower bound on the true expected value. The lower
bound cannot decrease with more constraints because the
set of feasible solutions becomes more constrained. [ ]

By changing the objective to a maximization, we get
another continuous-time semidefinite program to compute
an upper bound on the desired expectation, (2). With the
maximization and minimization problems at hand, we can
obtain upper and lower bounds as described in (3).
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The optimal control problem, (23), has a large amount of
flexibility in how it is posed. In our numerical examples, we
use the following recipe, which can be automated:

o Fix some order k and let v(x,y) be a vector of basis

functions up to order k.

o Construct the outer product v(x,y)v(z,y) ", which will
contain basis functions up to order 2k.

o Construct X (t) by using all test functions ¢(z) such
that the basis functions of the generators L¢(x,y) are
contained in the outer product matrix v(z,y)v(z,y)".

o For each equality constraint function a;(x, ), find all of
the basis functions b(z,y) such that basis functions of
b(x,y)a;(x,y) are contained in the outer product ma-
trix, v(z,y)v(z,y) . Let R(x,y)a(r,y) be the vector
with rows given by the b(z, y)a;(x,y) terms.

This recipe ensures that for a fixed outer product matrix,
v(z,y)v(z,y) ", maximal sets of dynamics constraints and
equality constraints are used.

IV. NUMERICAL SIMULATIONS

Here we show numerical results for the running examples.

Example 7 (Heston’s Stochastic Volatility Model): The
variance of prices is commonly desired. The variance of
the price is given by var(S(t)) = E[S(¢)?] — E[S(¢)]?. The
mean of the price can be computed analytically since

d
ZES@®)] = LE[S()] = E[S(t)] = M'E[S(0)].
So, in order to estimate the variance, it suffices to estimate
the second moment E[S(¢)%]. However, as discussed in
Example 4, there is no finite set of differential equations
for the second moment.

To get an estimate of the second moment, we used the

method of this paper to compute bounds on the quantity:
E {fOT S(t)zdt}. See Fig. 1. Despite the lack of closed
moments, the predicted upper and lower bounds are nearly
exact when moments up to degree 6 are used.

Simulations were performed using an Euler-Maryuama
scheme. The linear dynamics, (23b), were discretized via a
pseudospectral method [21]. The optimization was performed
via CVXPY [22] using the SDP solver SCS [23].

Example 8 (Noisy Pendulum): In the noisy pendulum,
the horizontal position of the pendulum end is given by
sin(@(t)) while the vertical position is given by cos(6(t)).
As described in Example 5, no finite set of test function dif-
ferential equations can describe the dynamics of E[sin(6(t))]
and E[cos(6(t))]. Figure 2 depicts the predictions. The
predictions were found by bounding the following values:

T
E sin(O(T))+/O sin(O(t))dt]7

E

T
cos(G(T))+/ cos(B(t))dt] .
0

Similar to Example 7, the simulation is via Euler-
Maryuama, optimal control discretization via the pseu-
dospectral method, and the optimization performed with
CVXPY and SCS.

T
- - Lower

Upper
— Monte Carlo

0.0 0.2 0.4 0.6 0.8 1.0
Time

Fig. 1: Second moment of price for Heston’s Stochastic
Volatility model. Upper and lower bounds were computed
using moments up to degree 4 and 6, respectively. The green
dashed lines give the lower bounds and the red dotted lines
give the upper bounds. When moments of degree 6 are
used, the predictions are nearly identical, and predict the
average trajectory closely. The blue line depicts the average
of 10° simulations, while the filled boundary represents +
one standard error of the mean. The model parameters were
w =201k =1,60 = 0.5, and £ = 0.5 and the initial
conditions were S(0) =1 and v(0) = 1.

Time

Fig. 2: Expected values of the horizontal position, sin(0(¢)),
and height, cos(0(t)), of the pendulum were computed using
mixed moments up to degree 6. The red dotted line is
the predicted upper bound, the green dashed line is the
predicted lower bound. The solid blue line is the mean of 500
simulations and the filled space represents £ one standard
error of the mean. The model parameters were a = 1,
B8 = 0.5, and ¢ = 0.5 and the initial conditions were
0(0) =0 and v(0) = 1.

Example 9 (Single-Machine Infinite-Bus): Now we de-
scribe how the method from Subsection III-E can be applied
to the single-machine infinite-bus system. For this problem,
we wish to examine the fluctuations of generator frequency
around its nominal normalized value of 1.

We construct an outer product matrix that contains all of
the basis functions described in Example 6 up to second
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1.04

- - Lower
»»»»» Upper

102 __ Monte Carlo

— 1.00
3
Ky 0.98
0.96 | T-. ]
094 L L L L -
0.0 0.2 0.4 0.6 0.8 1.0

Time

Fig. 3: This figure shows predicted bounds on the mean
of the generator frequency, E[w(t)]. The green dashed line
shows the predicted lower bound and the red dotted line
shows the predicted upper bound. The solid blue line gives
the mean of 100 simulations and the filled space represents
=+ one standard error of the mean. For this problem, even
the second-order basis functions lead to a large optimization
problem. At this low order, only fairly crude bounds can be
obtained. The simulation is initialized with 6(0) = 1, w(0) =
0.98, P1(0) = Pro, Q.(0) = Qro, and the algebraic
variables are initialized by root finding. The parameters are
setas wys =377, D =2, M =7, F =11, P,, = 0.8,
Xg =045, X, =05, Vy, =1, Pro = 1, Qo = 0.5,
ap =ag = 0.01, and o = 1.

order. Employing the new variables ¢(t) and s(t¢) introduced
in (22) ensures that the generator only uses terms up to
second order. Constraints were found via the recipe in
Subsection III-E. The results are shown in Fig. 3.

The stochastic simulations for this problem were computed
via the method from [20]. The linear dynamics, (23b),
were discretized via the Euler method. The optimization
was performed via a large-scale semidefinite programming
method under development by the first author. These methods
were used because pseudospectral methods and SCS showed
slow convergence.

V. CONCLUSION

This paper presented a method for bounding statistics of
stochastic processes via continuous-time semidefinite pro-
gramming. The main contribution over previous work is
the ability to handle stochastic differential-algebraic equa-
tions defined by mixed algebraic-trigonometric polynomials.
These extensions make the method applicable to a rich set
of stochastic process models of theoretical and practical
interest. For systems with few variables and low degrees,
the method gives accurate predictions of statistical quantities.
However, for larger systems, the algorithms currently do not
scale well and only crude bounds can be obtained. Future
work will focus on analyzing the discretization schemes and
improving the scaling of the method.
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