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Approximate moment dynamics for polynomial and
trigonometric stochastic systems
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Abstract— Stochastic dynamical systems often contain non-
linearities that make it hard to compute probability density
functions or statistical moments of these systems. For the
moment computations, nonlinearities lead to the well-known
problem of unclosed moment dynamics, i.e., differential equa-
tions that govern the time evolution of moments up to a certain
order may contain some moments of higher order. Moment
closure techniques are used to find an approximate, closed
system of equations for the moment dynamics, but their usage
is rather limited for systems with continuous states particularly
when the nonlinearities are non-polynomials. Here, we extend a
moment closure technique based on derivative matching, which
was originally proposed for polynomial stochastic systems with
discrete states, to continuous state stochastic differential equa-
tions with both polynomial and trigonometric nonlinearities.

I. INTRODUCTION

Stochastic dynamical systems appear in numerous contexts
in physics, engineering, finance, economics, and biology
(see, e.g., [1]-[5]). In terms of mathematical characterization,
the most useful quantity in analysis of stochastic systems
is the probability density function (pdf). However, obtaining
the pdf is analytically intractable for most systems. So, either
numerical techniques, such as Monte Carlo simulation, are
employed to compute the pdf [6], [7], or a less ambitious
goal of computing only a few lower order moments (mean,
variance, etc.) is pursued.

For stochastic systems defined over polynomials, the time
evolution of its moments is given by a system of coupled
ordinary differential equations (ODEs). However, a major
drawback is that the ODEs for moments up to a given order
may consist of terms involving higher-order moments. This
is known as the problem of moment closure, and a typical
approach to overcome it is to truncate the system of ODEs to
a finite system of equations and close the moment equations
using some sort of approximation for a given moment in
terms of moments of lower order [8]-[13]. If the system
under consideration involves nonlinearities such as trigono-
metric functions, then the differential equations describing
the moments involve moments of nonlinear functions of the
state. In such cases, usage of moment closure schemes is
rather limited.
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Numerous moment closure techniques have been proposed
for systems with polynomial dynamics. Some of these tech-
niques make prior assumptions on the distribution of the
system, while others attempt to find a linear or nonlinear ap-
proximation of the moment dynamics [14], [15]. One method
that falls in the latter category is the derivative matching
based closure [9]. Here, a nonlinear approximation of a given
moment is obtained in terms of lower order moments by
matching the derivatives of the original moment dynamics
with the proposed approximate dynamics at some initial time.
This method has been widely used in approximating moment
dynamics of biochemical reaction systems that are described
via discrete states [9]. Given the attention received by this
approach and its better performance as compared to several
other moment closure schemes [11], [16], we apply it to
close moments for nonlinear stochastic systems described
via stochastic differential equations (SDEs). We further ex-
tend the method to include trigonometric functions in the
dynamics. Our results show that the derivative matching
technique provides reasonably good approximation to the
moment dynamics.

Remainder of the paper is organized as follows. In section
I, we describe the moment dynamics for a stochastic sys-
tem described via SDEs, and motivate the moment closure
problem. In section III, we discuss the derivative matching
moment closure technique for SDEs. We illustrate the tech-
nique via examples in section I'V. The paper is concluded in
section V, along with a few directions for future research.

Notation: Vectors and matrices are denoted in bold. The
set of real numbers and non-negative integers are respectively
denoted by R and Z>q. The expectation is represented by
angled-brackets, ().

II. MOMENT DYNAMICS OF A STOCHASTIC SYSTEM
Consider a stochastic system described via the stochastic

differential equation (SDE)

T € R is the state vector; f(x,t) =
[fi(m,t) ... fu(z,t)] :R™ x [0,00) = R" and g(x,t) =
[gl(ac,t)...gn(alr;,z‘ﬂT : R™ x [0,00) — R™ describe the
system dynamics; and w; is the Weiner process satisfying

2

where I is an n x n Identity matrix. We further assume that
sufficient mathematical requirements for the existence of the
solution to (1) are satisfied (see, e.g., [5]).

where & = [21... 2,

(dwy) =0, (dw,dw/) =1dt,
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The moments of an SDE can be obtained using the well-
known Itd formula [5]. This formula states that for any
smooth scalar-valued function h(x(t))

’ oh(a(t)
Gt = (PO s aln)
e g (Wg(w(t))g(:c(t)f», 3

where ah(gfc(t)) and 82}:9(;2@)) respectively denote the gradient

and the Hessian of h(x(t)) with respect to .
Let h(x) be a monomial of the form

h(x) = a7 xg"

g =™, (4)
where m = [m; ... mn]T € 7%, then (h(x)) represents a
moment of . For a given m, we represent the moment by
[t = {x[™). Using (3), dynamics of ji,, evolves as per

The sum 2?21 my; is referred to as the order of the moment.

As long as f(x,t) and g(«,t) are linear in &, a moment
of a certain order is a linear combination of other moments
of the same or smaller order [15]. Hence, if we construct
a vector p consisting of all moments up to the M*™ order
moments of &, its time evolution is captured by the solution
of the following system of linear differential equations:

dp
—_— = A . 6
5 = atAn (6)
T
Here, p = [le JI—. Nmk] , My € ngVp €

{1,2,...,k} is assumed to be a vector of k elements. The
vector a and the matrix A are determined by the form of
f(x,t) and g(a,t). Under some mild assumptions, standard
tools from linear systems theory can be used to obtain
solution to (6), and it is given by

p(t) = A" a+ e (u(0) + A 'a). (7

Remark 1: 1t is easy to see that there are (m + n —
1)!/(m!(n — 1)!) moments of order m. Therefore, the di-
mension of the vector p in (6) is given by

M
_Z(m-l-n—l)!_(M—i—n)!_
k_m:1 m!(n—1)!  M!n! ®

Without loss of generality, we can assume that the elements
in p are stacked up in graded lexicographical order. That is,
the first n elements in g are the moments of first order, next
n(n + 1)/2 elements are moments of the second order, and
SO on.

In general, when f(x,t) and g(«,t) are polynomials in a,
the time derivative of a moment might depend on moments

of order higher than it. The moment equations in (6) can be
accordingly modified to a general form

d

d—’;za+AN+Bﬁ, )
where & € R" is a vector of moments of order greater than
or equal to M + 1.

The solution to (9) is generally obtained by approximat-
ing the higher order moments in f& as, possibly nonlinear,
functions of lower order moments in p. The approximation
might be made by assuming some underlying distribution,
or by applying some other physical principle [14], [15].
Essentially moment closure methods translate to finding an
approximation of (9) by a system of equations

dv

e =a+ Av + By(v),

v = [V,

(10a)
17, (10b)

Vmg Vm,,

where the function i : R¥ — R” is chosen such that pu(t) ~
v(t). Here, M is called the order of truncation.

If the functions f(a,t) are not polynomials, then it may
not be possible to obtain a convenient form like (9) for the
moments. In Section IV, we will consider a system with
trigonometric nonlinearities and perform moment closure for
it. In the next section, we first discuss the derivative matching
closure scheme for SDEs.

III. DERIVATIVE MATCHING MOMENT CLOSURE
TECHNIQUE FOR SDES

In this section, we describe the derivative matching based
moment closure technique for SDEs. As the name suggests,
the closure is performed by matching time derivatives of
p(t) and w(t). This technique has been widely applied
to discrete—state continuous—time systems [9], [17]. The
derivative matching technique attempts to approximate ()
by some v(t) such that a sufficiently large number of their
derivatives match point-wise. The idea being that if the
values of these two vectors at some time ¢y are equal, and
their derivatives up to certain order also match, then they
would closely follow each other for some time interval after
to. More precisely, for each § >0 and N € Z>p, 3T € R
such that if

d'u(t) d'v(t)
p(to) = v(to) = dti oG , (1D
t=to t=to
hold for some ¢y € [0,00) and ¢ = 1,2,..., N, then
[(t) —v(@)|| <6, Vte [to, T]. (12)

Further, one can obtain the bound in (12) for the interval
[to, o0) under appropriate asymptotic conditions [18].

To construct the closed moment dynamics, we follow
similar steps as [9]. Consider a vector M € ZZ such that
L7 is an element in 1. We approximate ui7y as a function
of elements in the vector p. Denoting the corresponding
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approximation of psm in @(p) by ¢m(p), the following
separable form is considered

k
Sm(p) = [T (um,)™" (13)
p=1

where «,, are appropriately chosen constants. Generally
speaking, (11) is a strong requirement and it is not possible
to find the coefficients o, such that it holds for every initial
condition. We, therefore, consider a relaxation of this by
seeking o, such that the derivatives match for a deterministic
initial condition x(tp) = xo.

Next, we state a theorem showing that the coefficients «,
can be obtained by solving a system of linear equations. Be-
fore that, we define a short-hand notation that is used in the

N R N T
theorem. For two vectors m — [ml Mo mn] S
y 9 9 o 1T
7%, and = [ e ] € 7%, we have the
following notation

Ch =CCcpz---Con, (14a)
where .
Clh — l!(h;l)l’h 2 l’ (14b)
0,h <.

Theorem 1: For each element uz7 of the vector f, assume
that the corresponding moment closure function ¢z (,,) in the
vector @(p) is chosen according to equation (13) with the
coefficients «, chosen as the unique solution to the following
system of linear equations

k
ci = a,Cpmrl. s=12 k(15
p=1

Then, for every initial condition x(tp) = o € R™, we have
that

dp(t du(t
plio) = ulty) = B A0 (162
t=to t=to
d?p(t) d*v(t)
2 T Tae (16b)
t=to

t=t
Proof: 1t is sufficient to prove that for each element =
of f& and its corresponding moment closure function ¢z (pt),
we have the following:

prm(to) = dm(p(to)), (17a)
dpim(r) _ dom(p(t))
dt B dt (17)
t=to t=to

We first show that equation (17a) holds. Since initial condi-
tions are x(ty) = xo with probability one, we have

p(to) = ™, (182)

k
m(u(t0) = T ()" = 2™ g
p=1

Recall Remark 1, that without loss of generality, the mo-
ments in vector g can be assumed to be stacked in graded

lexicographical order. Thus, the first n elements of p are
moments of order one. This allows us to write

m=[cm . cm ....cm] (19)
m, = [Cr.CTr, . O] Wp=1,2,....k, (19b)

where a vector m; € Z%,,7 = 1,2,...,n has 1 at the
it" position, and rest of the elements are zero. Using these
relations, and (14a) for s = 1,2,...,n, we obtain
k
m = QM. (20)
p

Il
-

Substituting this result in (18a) proves equation (17a).
Next, we prove that (17b) holds. For this part, we assume

that ©o = [2o1, Zoz, - - - ,a:(m]T € R™. Consider
démm(p(t))
—au (21a)
t=to
dl"mp (t)
— bm{alto)) 3y =t (21b)
" =1 b Hmy, (tO)
k
m—m, dﬂlmp (t)
p=1 t=to

-
. _ n
Assuming my, = [mp1 My Mpn| € L%, we can

d t
use equation (5) to obtain the expression for lelit”() =
— This enables us to write
domm(p(t))

—_ 22
7 (22a)
t=to
n k
[m] Zp:l QpMip;
= —_— i t
T ; oo fi(xo,to)+
n k
1 m 2 p1 OpMpi(myp; — 1)
im([)m] Z L 1'2 (g(mo,to)gT(mo,to))ii—F
i=1 01
n k
1 m D p1 OpMpiThip; T
— _— t to))...
25'30 ”2::1 ToiT0; (g(l’o, 0)g (o, 0))13
i#j
(22b)
Comparing this with the expression for d‘é—tﬁ computed
at t = tg, which can be_rcalculated from (5) and assuming
m= My, Ma,...,My| € 7%, we require:
k
apMmy; = T, (23a)
p=1
k
T T 1 7 i 1
Zai’ Mpi(Mp ) _m (m )’ (23b)
2 2
p=1
b My M m;m
pilllpj _ Tl 23
Zap 2 92 (230)
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Note that (23a) is nothing but the relation in (20) written
element-wise. Further, we had assumed that the vector p
has its elements stacked up in graded lexicographical order
(Remark 1). In particular, the moments of second order start
with the (n + 1)!" element. In that case, the equality in
(23b) follows when relations in (19a)—(19b) are used in (14a)
fors =n+1,2n+1,---,n%2 + 1 (ie., the second order
moments with one of the exponents as 2 and rest of them as
zeros). Likewise, (23c) holds for the rest of the second order
moments wherein two exponents are 1 and rest are zeros. B

Remark 2: 1t is worth noting that when the derivative—
matching technique is applied for a discrete-state process,
there is an error in matching the first two derivatives [9].
However, in case of a continuous state stochastic differen-
tial equation, the first two derivatives are matched exactly.
Another important difference between discrete state systems,
and continuous state systems is that in the latter, the first two
derivatives are matched exactly regardless of the form of f
and g whereas in the former, one needs to assume polynomial
form for the rates at which the states are changed.

IV. NUMERICAL VALIDATION

In this section, we illustrate the derivative matching tech-
nique on two examples. The first example is a Van der
Pol oscillator that frequently arises in many engineering
applications [19]. In this case, the system dynamics consists
of polynomial functions of the state vector. The second
example is a swinging pendulum subject to white noise. In
this example, the dynamics consist of polynomial functions
in one state and a trigonometric function for the other state.
We show that the derivative matching technique can be
straightforwardly applied to the second example.

A. Van der Pol oscillator
In the deterministic setting, the Van der Pol oscillator is
governed by the following second-order differential equation
d?x

d
e e(l— x2)d—f + w2z = Acos(wyt),

(24)

— Simulation results

— = Derivative matching
01

0.05

0.05F
0.1 ‘ ‘ ‘
[ 0.02 0.04 0.06
Time (mins)
Fig. 1. Derivative matching technique replicates the oscillations of the Van

der Pol oscillator quite reasonably. For this plot, the parameters values are
A = 2.5, wp, = wyg = 1207, and € = 0.1 . The initial conditions are taken
as x1 (0) = xQ(O) =0.1.

where € is the bifurcation parameter, w, is the natural
frequency, w, is the force frequency and A is the force
amplitude. A possible stochastic description of the oscillator
could be to assume that the force is noisy, i.e., the actuators
that apply the force also add a zero mean noise to the system.
By choosing 1 =  and 29 = %, the oscillator dynamics
could be written as

dxy =xodt, (25a)
dzy = (e(1 — 27)zs — wizy)) dt
+ (Acos(wgt)dt + Adw;. (25b)

Suppose we are interested in the dynamics of (x1). To this
end, we write moment dynamics of this oscillator up to order
two

d<dxt1> — (za), (26a)
d<;;2> = e((z2) — (2222)) — w2 (x1) + Acos(wyt), (26b)
d<d$j> — 2(z12), (26¢)
d<f> = 2¢((a}) — (2123)) — 2wy (w122)
+2A(z2) cos(wgt) + A2, (26d)
% = (zim3) + e({z122) — (¥329)) — w2 (2])
+ A(z1) cos(wgt). (26¢)

As expected, the nonlinearities in the dynamics mani-
fest in unclosed moment dynamics, and the moment equa-
tions up to order two depend upon third and fourth
order moments. In terms of notations in (9), we have

T _
no= [<$1> (z2) <T/%> (z122) <$§>] »and @ =
[(zf22) (2fa3) (2iz2)]

Applying the derivative matching closure as described in
Section III, we seek approximations of each element of 1
in terms of those of p as in (13). Solving (15) for each of
these yields the following approximations

(2225) ~ <f2<>21§§>> 2, (27a)
o oy _ (o) (z1ze)* (23)
<I’1{E2> ~ <LI,‘1>4<J)2>4 ) (27b)
22)3 (21 25)3
(x325) ~ {21)°{a <;>1>2<x2>2> (27¢)

Using the approximations from (27) in (26), we obtain a
closed set of moment equations. Fig. 1 compares the solution
of (x1) with that of numerical simulations. Our results show
an almost perfect match between the system with closure
approximation and numerical simulations.

A caveat of the proposed derivative matching approxima-
tion is that, as in (27), the means of states appear in the
denominator. Since the oscillator states repeatedly cross zero,
it is possible that some of these moments approach zero. To
avoid this, we add a small term ¢ to the denominator of
approximations.
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B. Swinging Pendulum

In the deterministic setting, dynamics of a simple pendu-
lum are given by

d*6

k do .

p7e) + oo + %sm@ =0,
where g is the acceleration due to gravity, [ is the length of
the pendulum, and 6 is the angular displacement [20]. We
also consider friction in our system, with friction constant
k. In the stochastic formulation, we could consider that the
dynamics are affected by white noise that arises due to
random interaction of the pendulum with air molecules. This
term scales inversely with mass of the pendulum m, i.e., the
interaction with gas particles is negligible for a large mass.
By choosing 1 = 6 and z5 = %, the dynamics of the
pendulum can be represented as

(28)

dIl =T dt, (293)

k 1
de = (—1‘2 — ?Sinx1> dt + *dwt' (29b)
m

m
Here we have the trigonometric function sinx;, which
gives rise to nonlinear behavior. To illustrate how derivative
matching closure can be used in this context, we approximate
(sinzy). To this end, we use Euler’s relation
. e.jwl — efjajl
siny) = ————

1 2] )
and carry out a change of variables in the It6 formula to write
the moment dynamics such that the moments of x5 appear
in the form of monomials, and moments of x; appearing in
the form of complex exponentials.

(30)

W) j(eman), el
A o), G1b
Wa) - Epey 4 180my ~ 180my aig
W =j(ed™a3) — %@jl‘lxﬁ
+%%<62g’11>7%%, (31d)
d<€_;:1$2> _ <e—jm1x2> -~ %@ 310
dgf%> = —2=(a3) + j (e a2)
i)+ eI
d<€le> — 9 (X1 2) (31g)
d(e;:wl) — 25l 2jw1x2> (31h)

One way to interpret the above mixed complex expo-
nential monomial moment dynamics is to think that since

all moments of x5 are generated by taking expectations of
the monomials 1,79, 23,..., we could consider the terms
e’®1 and e~J*! as two different variables. The mixed mo-
ments can then be generated by taking expectation of the
products of the complex exponentials 1,e 71, =221
(or 1,e9%1 23%1 ) with the monomials 1, 29,3, .. .. The
order of the mixed moment can be thought of as the sum of
powers of the monomials and complex exponentials.

Given the above interpretation, the moment dynam-
ics in (31) are not closed. As per notation in (9), we
have p = [(e7) (e7371) (15) ... (23)]", and @ =
[(e2123) (e~921a3) (eo1a,) <€72jx1x2>]f An impor-
tant point to note is that since e77*1eJ*1 = 1, there is no need
to consider their cross-moments. Thus, we only consider
cross moments of e7%1 with zo, and e/*1 with zs.

Next, we use the derivative matching scheme to approx-
imate moments in g as nonlinear functions of moments up
to order 2. For instance, consider the moment <ej‘”1x§>. The
aim of closure is to approximate this moment as

(e a3) m (7™ )™ (7™ ap) ™ (22) (23)™"

Performing derivative matching approach as explained in
Section III results in

(32)

; 2
(3) (eF1s)
<er1> <x2>2
With a similar approach, we can approximate the other
moments in the vector [

(a3 »

(33)

(a3) (i)’

<€*jx1x§>% ey <x2>2 , (34a)
pger - (€3) (e101ay)®
<e J a?2> R (2) (e<7w1>2 (34b)
‘ 2071\ (g=im1p,\?
o <

The results show that derivative matching provides reason-
ably accurate approximation of the moment dynamics (Fig.
2).

V. CONCLUSION

In this paper, we extended the derivative matching based
moment approximation method to stochastic dynamical sys-
tems with continuous state. We further illustrated that the
method is not limited to polynomial dynamics, and it can be
used to study systems that contain trigonometric functions. It
would be interesting to extend the technique to other forms
of mixed functions, and also include differential algebraic
inequalities. This would open possibilities of using the mo-
ment closure techniques to study a variety of nonlinearities,
and has potential applications in power systems analysis. In
addition, while in this paper we just considered continuous
dynamics modeled through SDEs, many models contain
both continuous dynamics and random discrete events [21]—
[24]. Deriving derivative matching closure for such hybrid
systems will be another avenue of research. Finally, we
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m =10,k = 10,1 = 10,9 = 10, x,(0) = 3, x,(0) = 3

1
051 é
5 “.“~‘_. ----------- l/’
ol [ N
— Derivative matching
051 — 95% confidence intervals
A ; ; ;
0 5 . 10 15
Time (mins)
m=4,k=51=5,9=10,x,(0) = 1.8,x,(0) =5
47
057

(Sin(x,))

0.5 . .
—Derivative matching
—95% confidence intervals
-1 L 1 1 J
G ® Time (mins) ' 18
Fig. 2.  Derivative Matching provides accurate approximation of the

nonlinear function (sin(x1)). For comparison purpose, 95% confidence
interval of the dynamics as obtained from numerical simulation.

note that despite the promising results obtained by closure
approximations, generally there are no guarantees on the
errors of the closure approximation. Future work will carry
out a detailed error analysis using other methods of finding
bounds on moments [25], [26].
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