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Abstract— Stochastic dynamical systems often contain non-
linearities that make it hard to compute probability density
functions or statistical moments of these systems. For the
moment computations, nonlinearities lead to the well-known
problem of unclosed moment dynamics, i.e., differential equa-
tions that govern the time evolution of moments up to a certain
order may contain some moments of higher order. Moment
closure techniques are used to find an approximate, closed
system of equations for the moment dynamics, but their usage
is rather limited for systems with continuous states particularly
when the nonlinearities are non-polynomials. Here, we extend a
moment closure technique based on derivative matching, which
was originally proposed for polynomial stochastic systems with
discrete states, to continuous state stochastic differential equa-
tions with both polynomial and trigonometric nonlinearities.

I. INTRODUCTION

Stochastic dynamical systems appear in numerous contexts

in physics, engineering, finance, economics, and biology

(see, e.g., [1]–[5]). In terms of mathematical characterization,

the most useful quantity in analysis of stochastic systems

is the probability density function (pdf). However, obtaining

the pdf is analytically intractable for most systems. So, either

numerical techniques, such as Monte Carlo simulation, are

employed to compute the pdf [6], [7], or a less ambitious

goal of computing only a few lower order moments (mean,

variance, etc.) is pursued.

For stochastic systems defined over polynomials, the time

evolution of its moments is given by a system of coupled

ordinary differential equations (ODEs). However, a major

drawback is that the ODEs for moments up to a given order

may consist of terms involving higher-order moments. This

is known as the problem of moment closure, and a typical

approach to overcome it is to truncate the system of ODEs to

a finite system of equations and close the moment equations

using some sort of approximation for a given moment in

terms of moments of lower order [8]–[13]. If the system

under consideration involves nonlinearities such as trigono-

metric functions, then the differential equations describing

the moments involve moments of nonlinear functions of the

state. In such cases, usage of moment closure schemes is

rather limited.
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Numerous moment closure techniques have been proposed

for systems with polynomial dynamics. Some of these tech-

niques make prior assumptions on the distribution of the

system, while others attempt to find a linear or nonlinear ap-

proximation of the moment dynamics [14], [15]. One method

that falls in the latter category is the derivative matching

based closure [9]. Here, a nonlinear approximation of a given

moment is obtained in terms of lower order moments by

matching the derivatives of the original moment dynamics

with the proposed approximate dynamics at some initial time.

This method has been widely used in approximating moment

dynamics of biochemical reaction systems that are described

via discrete states [9]. Given the attention received by this

approach and its better performance as compared to several

other moment closure schemes [11], [16], we apply it to

close moments for nonlinear stochastic systems described

via stochastic differential equations (SDEs). We further ex-

tend the method to include trigonometric functions in the

dynamics. Our results show that the derivative matching

technique provides reasonably good approximation to the

moment dynamics.

Remainder of the paper is organized as follows. In section

II, we describe the moment dynamics for a stochastic sys-

tem described via SDEs, and motivate the moment closure

problem. In section III, we discuss the derivative matching

moment closure technique for SDEs. We illustrate the tech-

nique via examples in section IV. The paper is concluded in

section V, along with a few directions for future research.

Notation: Vectors and matrices are denoted in bold. The

set of real numbers and non-negative integers are respectively

denoted by R and Z≥0. The expectation is represented by

angled-brackets, 〈〉.

II. MOMENT DYNAMICS OF A STOCHASTIC SYSTEM

Consider a stochastic system described via the stochastic

differential equation (SDE)

dx = f(x, t) dt+ g(x, t) dwt, (1)

where x =
[

x1 . . . xn

]�
∈ R

n is the state vector; f(x, t) =
[

f1(x, t) . . . fn(x, t)
]�

: Rn × [0,∞) → R
n and g(x, t) =

[

g1(x, t) . . . gn(x, t)
]�

: Rn × [0,∞) → R
n describe the

system dynamics; and wt is the Weiner process satisfying

〈dwt〉 = 0,
〈

dwt dw
�
t

〉

= I dt, (2)

where I is an n×n Identity matrix. We further assume that

sufficient mathematical requirements for the existence of the

solution to (1) are satisfied (see, e.g., [5]).
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The moments of an SDE can be obtained using the well-

known Itô formula [5]. This formula states that for any

smooth scalar-valued function h(x(t))

d

dt
〈h(x(t))〉 =

〈

∂h(x(t))

∂x
f(x(t))

+
1

2
Tr

(

∂2h(x(t))

∂x2
g(x(t))g(x(t))�

)〉

, (3)

where
∂h(x(t))

∂x
and

∂2h(x(t))
∂x2 respectively denote the gradient

and the Hessian of h(x(t)) with respect to x.

Let h(x) be a monomial of the form

h(x) = xm1

1 xm2

2 . . . xmn

n =: x[m], (4)

where m =
[

m1 . . .mn

]�
∈ Z

n
≥0, then 〈h(x)〉 represents a

moment of x. For a given m, we represent the moment by

μm =
〈

x[m]
〉

. Using (3), dynamics of μm evolves as per

dμm

dt
=

n
∑

i=1

〈

fi
∂x[m]

∂xi

〉

+
1

2

n
∑

i=1

n
∑

j=1

〈

(gg�)ij
∂2x[m]

∂xi∂xj

〉

. (5)

The sum
∑n

j=1 mj is referred to as the order of the moment.

As long as f(x, t) and g(x, t) are linear in x, a moment

of a certain order is a linear combination of other moments

of the same or smaller order [15]. Hence, if we construct

a vector μ consisting of all moments up to the M th order

moments of x, its time evolution is captured by the solution

of the following system of linear differential equations:

dμ

dt
= a+Aμ. (6)

Here, μ =
[

μm1
μm2

. . . μmk

]�
,mp ∈ Z

n
≥0, ∀p ∈

{1, 2, . . . , k} is assumed to be a vector of k elements. The

vector a and the matrix A are determined by the form of

f(x, t) and g(x, t). Under some mild assumptions, standard

tools from linear systems theory can be used to obtain

solution to (6), and it is given by

μ(t) = −A−1a+ eAt
(

μ(0) +A−1a
)

. (7)

Remark 1: It is easy to see that there are (m + n −
1)!/(m!(n − 1)!) moments of order m. Therefore, the di-

mension of the vector μ in (6) is given by

k =

M
∑

m=1

(m+ n− 1)!

m!(n− 1)!
=

(M + n)!

M !n!
− 1. (8)

Without loss of generality, we can assume that the elements

in μ are stacked up in graded lexicographical order. That is,

the first n elements in μ are the moments of first order, next

n(n+ 1)/2 elements are moments of the second order, and

so on.

In general, when f(x, t) and g(x, t) are polynomials in x,

the time derivative of a moment might depend on moments

of order higher than it. The moment equations in (6) can be

accordingly modified to a general form

dμ

dt
= a+Aμ+Bμ, (9)

where μ ∈ R
r is a vector of moments of order greater than

or equal to M + 1.

The solution to (9) is generally obtained by approximat-

ing the higher order moments in μ as, possibly nonlinear,

functions of lower order moments in μ. The approximation

might be made by assuming some underlying distribution,

or by applying some other physical principle [14], [15].

Essentially moment closure methods translate to finding an

approximation of (9) by a system of equations

dν

dt
= a+Aν +Bϕ(ν), (10a)

ν =
[

νm1
νm2

. . . νmk

]�
, (10b)

where the function ϕ : Rk → R
r is chosen such that μ(t) ≈

ν(t). Here, M is called the order of truncation.

If the functions f(x, t) are not polynomials, then it may

not be possible to obtain a convenient form like (9) for the

moments. In Section IV, we will consider a system with

trigonometric nonlinearities and perform moment closure for

it. In the next section, we first discuss the derivative matching

closure scheme for SDEs.

III. DERIVATIVE MATCHING MOMENT CLOSURE

TECHNIQUE FOR SDES

In this section, we describe the derivative matching based

moment closure technique for SDEs. As the name suggests,

the closure is performed by matching time derivatives of

μ(t) and ν(t). This technique has been widely applied

to discrete–state continuous–time systems [9], [17]. The

derivative matching technique attempts to approximate μ(t)
by some ν(t) such that a sufficiently large number of their

derivatives match point-wise. The idea being that if the

values of these two vectors at some time t0 are equal, and

their derivatives up to certain order also match, then they

would closely follow each other for some time interval after

t0. More precisely, for each δ > 0 and N ∈ Z≥0, ∃ T ∈ R

such that if

μ(t0) = ν(t0) =⇒
diμ(t)

dti

∣

∣

∣

∣

∣

t=t0

=
diν(t)

dti

∣

∣

∣

∣

∣

t=t0

, (11)

hold for some t0 ∈ [0,∞) and i = 1, 2, . . . , N , then

‖μ(t)− ν(t)‖ ≤ δ, ∀t ∈ [t0, T ]. (12)

Further, one can obtain the bound in (12) for the interval

[t0,∞) under appropriate asymptotic conditions [18].

To construct the closed moment dynamics, we follow

similar steps as [9]. Consider a vector m ∈ Z
n
≥0 such that

μm is an element in μ. We approximate μm as a function

of elements in the vector μ. Denoting the corresponding
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approximation of μm in ϕ(μ) by φm(μ), the following

separable form is considered

φm(μ) =
k
∏

p=1

(

μmp

)αp
, (13)

where αp are appropriately chosen constants. Generally

speaking, (11) is a strong requirement and it is not possible

to find the coefficients αp such that it holds for every initial

condition. We, therefore, consider a relaxation of this by

seeking αp such that the derivatives match for a deterministic

initial condition x(t0) = x0.

Next, we state a theorem showing that the coefficients αp

can be obtained by solving a system of linear equations. Be-

fore that, we define a short-hand notation that is used in the

theorem. For two vectors m̂ =
[

m̂1 m̂2 . . . m̂n

]�
∈

Z
n
≥0 and m̆ =

[

m̆1 m̆2 . . . m̆n

]�
∈ Z

n
≥0, we have the

following notation

Cm̂
m̆ := Cm̂1

m̆1
Cm̂2

m̆2
· · ·Cm̂n

m̆n
, (14a)

where

Ch
l =

{

h!
l!(h−l)! , h ≥ l,

0, h < l.
(14b)

Theorem 1: For each element μm of the vector μ, assume

that the corresponding moment closure function φm(µ) in the

vector ϕ(μ) is chosen according to equation (13) with the

coefficients αp chosen as the unique solution to the following

system of linear equations

C
[m]
[ms]

=

k
∑

p=1

αpC
[mp]

[ms]
, s = 1, 2, · · · , k. (15)

Then, for every initial condition x(t0) = x0 ∈ R
n, we have

that

μ(t0) = ν(t0) =⇒
dμ(t)

dt

∣

∣

∣

∣

∣

t=t0

=
dν(t)

dt

∣

∣

∣

∣

∣

t=t0

(16a)

=⇒
d2μ(t)

dt2

∣

∣

∣

∣

∣

t=t0

=
d2ν(t)

dt2

∣

∣

∣

∣

∣

t=t0

. (16b)

Proof: It is sufficient to prove that for each element μm

of μ and its corresponding moment closure function φm(μ),
we have the following:

μm(t0) = φm(μ(t0)), (17a)

dμm(t)

dt

∣

∣

∣

∣

∣

t=t0

=
dφm(μ(t))

dt

∣

∣

∣

∣

∣

t=t0

. (17b)

We first show that equation (17a) holds. Since initial condi-

tions are x(t0) = x0 with probability one, we have

μm(t0) = x
[m]
0 , (18a)

φm(μ(t0)) =

k
∏

p=1

(

x
[mp]
0

)αp

= x
[
∑

k
p=1

αpmp]

0 . (18b)

Recall Remark 1, that without loss of generality, the mo-

ments in vector μ can be assumed to be stacked in graded

lexicographical order. Thus, the first n elements of μ are

moments of order one. This allows us to write

m =
[

Cm
m1

,Cm
m2

, . . . ,Cm
mn

]�
, (19a)

mp =
[

Cmp

m1
,Cmp

m2
, . . . ,Cmp

mn

]�
, ∀p = 1, 2, . . . , k, (19b)

where a vector mi ∈ Z
n
≥0, i = 1, 2, . . . , n has 1 at the

ith position, and rest of the elements are zero. Using these

relations, and (14a) for s = 1, 2, . . . , n, we obtain

m =

k
∑

p=1

αpmp. (20)

Substituting this result in (18a) proves equation (17a).

Next, we prove that (17b) holds. For this part, we assume

that x0 =
[

x01, x02, . . . , x0n

]�
∈ R

n. Consider

dφm(μ(t))

dt

∣

∣

∣

∣

∣

t=t0

(21a)

= φm(μ(t0))

k
∑

p=1

αp

dμmp (t)

dt

∣

∣

∣

t=t0

μmp
(t0)

(21b)

=
k

∑

p=1

αpx
[m−mp]
0

dμmp
(t)

dt

∣

∣

∣

∣

∣

t=t0

. (21c)

Assuming mp =
[

mp1 mp2 . . . mpn

]�
∈ Z

n
≥0, we can

use equation (5) to obtain the expression for
dμmp

(t)

dt
=

d
〈

x[mp]
〉

dt
. This enables us to write

dφm(μ(t))

dt

∣

∣

∣

∣

∣

t=t0

(22a)

= x
[m]
0

n
∑

i=1

∑k
p=1 αpmpi

x0i
fi(x0, t0)+

1

2
x
[m]
0

n
∑

i=1

∑k
p=1 αpmpi(mpi − 1)

x2
0i

(

g(x0, t0)g
�(x0, t0)

)

ii
+

1

2
x
[m]
0

n
∑

i,j=1
i �=j

∑k
p=1 αpmpimpj

x0ix0j

(

g(x0, t0)g
�(x0, t0)

)

ij
.

(22b)

Comparing this with the expression for dμm

dt
computed

at t = t0, which can be calculated from (5) and assuming

m =
[

m1,m2, . . . ,mn

]�
∈ Z

n
≥0, we require:

k
∑

p=1

αpmpi = mi, (23a)

k
∑

p=1

αp

mpi(mpi − 1)

2
=

mi(mi − 1)

2
, (23b)

k
∑

p=1

αp

mpimpj

2
=

mimj

2
. (23c)
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Note that (23a) is nothing but the relation in (20) written

element-wise. Further, we had assumed that the vector μ

has its elements stacked up in graded lexicographical order

(Remark 1). In particular, the moments of second order start

with the (n + 1)th element. In that case, the equality in

(23b) follows when relations in (19a)–(19b) are used in (14a)

for s = n + 1, 2n + 1, · · · , n2 + 1 (i.e., the second order

moments with one of the exponents as 2 and rest of them as

zeros). Likewise, (23c) holds for the rest of the second order

moments wherein two exponents are 1 and rest are zeros.

Remark 2: It is worth noting that when the derivative–

matching technique is applied for a discrete-state process,

there is an error in matching the first two derivatives [9].

However, in case of a continuous state stochastic differen-

tial equation, the first two derivatives are matched exactly.

Another important difference between discrete state systems,

and continuous state systems is that in the latter, the first two

derivatives are matched exactly regardless of the form of f

and g whereas in the former, one needs to assume polynomial

form for the rates at which the states are changed.

IV. NUMERICAL VALIDATION

In this section, we illustrate the derivative matching tech-

nique on two examples. The first example is a Van der

Pol oscillator that frequently arises in many engineering

applications [19]. In this case, the system dynamics consists

of polynomial functions of the state vector. The second

example is a swinging pendulum subject to white noise. In

this example, the dynamics consist of polynomial functions

in one state and a trigonometric function for the other state.

We show that the derivative matching technique can be

straightforwardly applied to the second example.

A. Van der Pol oscillator

In the deterministic setting, the Van der Pol oscillator is

governed by the following second-order differential equation

d2x

dt2
− ε(1− x2)

dx

dt
+ ω2

nx = A cos(ωgt), (24)

 

Derivative matching            Simulation results 

Time (mins) 

Fig. 1. Derivative matching technique replicates the oscillations of the Van
der Pol oscillator quite reasonably. For this plot, the parameters values are
A = 2.5, ωn = ωg = 120π, and ε = 0.1 . The initial conditions are taken
as x1(0) = x2(0) = 0.1.

where ε is the bifurcation parameter, ωn is the natural

frequency, ωg is the force frequency and A is the force

amplitude. A possible stochastic description of the oscillator

could be to assume that the force is noisy, i.e., the actuators

that apply the force also add a zero mean noise to the system.

By choosing x1 = x and x2 = dx
dt

, the oscillator dynamics

could be written as

dx1 =x2dt, (25a)

dx2 =
(

ε(1− x2
1)x2 − ω2

nx1)
)

dt

+ (A cos(ωgt)dt+Adwt. (25b)

Suppose we are interested in the dynamics of 〈x1〉. To this

end, we write moment dynamics of this oscillator up to order

two

d〈x1〉

dt
= 〈x2〉, (26a)

d〈x2〉

dt
= ε(〈x2〉 − 〈x2

1x2〉)− ω2
n〈x1〉+A cos(ωgt), (26b)

d〈x2
1〉

dt
= 2〈x1x2〉, (26c)

d〈x2
2〉

dt
= 2ε(〈x2

2〉 − 〈x2
1x

2
2〉)− 2ω2

n〈x1x2〉

+ 2A〈x2〉 cos(ωgt) +A2, (26d)

d〈x1x2〉

dt
= 〈x2

1x2〉+ ε(〈x1x2〉 − 〈x3
1x2〉)− ω2

n〈x
2
1〉

+A〈x1〉 cos(ωgt). (26e)

As expected, the nonlinearities in the dynamics mani-

fest in unclosed moment dynamics, and the moment equa-

tions up to order two depend upon third and fourth

order moments. In terms of notations in (9), we have

μ =
[

〈x1〉 〈x2〉
〈

x2
1

〉

〈x1x2〉
〈

x2
2

〉]�
, and μ =

[

〈x2
1x2〉 〈x

2
1x

2
2〉 〈x

3
1x2〉

]�
.

Applying the derivative matching closure as described in

Section III, we seek approximations of each element of μ

in terms of those of μ as in (13). Solving (15) for each of

these yields the following approximations

〈x2
1x2〉 ≈

〈x2
1〉〈x1x2〉

2

〈x1〉2〈x2〉
, (27a)

〈x2
1x

2
2〉 ≈

〈x2
1〉〈x1x2〉

4〈x2
2〉

〈x1〉4〈x2〉4
, (27b)

〈x3
1x2〉 ≈

〈x2
1〉

3〈x1x2〉
3

〈x1〉6〈x2〉2
. (27c)

Using the approximations from (27) in (26), we obtain a

closed set of moment equations. Fig. 1 compares the solution

of 〈x1〉 with that of numerical simulations. Our results show

an almost perfect match between the system with closure

approximation and numerical simulations.

A caveat of the proposed derivative matching approxima-

tion is that, as in (27), the means of states appear in the

denominator. Since the oscillator states repeatedly cross zero,

it is possible that some of these moments approach zero. To

avoid this, we add a small term δ to the denominator of

approximations.
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B. Swinging Pendulum

In the deterministic setting, dynamics of a simple pendu-

lum are given by

d2θ

dt2
+

k

m

dθ

dt
+

g

l
sin θ = 0, (28)

where g is the acceleration due to gravity, l is the length of

the pendulum, and θ is the angular displacement [20]. We

also consider friction in our system, with friction constant

k. In the stochastic formulation, we could consider that the

dynamics are affected by white noise that arises due to

random interaction of the pendulum with air molecules. This

term scales inversely with mass of the pendulum m, i.e., the

interaction with gas particles is negligible for a large mass.

By choosing x1 = θ and x2 = dθ
dt

, the dynamics of the

pendulum can be represented as

dx1 =x2dt, (29a)

dx2 =

(

−
k

m
x2 −

g

l
sinx1

)

dt+
1

m
dwt. (29b)

Here we have the trigonometric function sinx1, which

gives rise to nonlinear behavior. To illustrate how derivative

matching closure can be used in this context, we approximate

〈sinx1〉. To this end, we use Euler’s relation

sinx1 =
ejx1 − e−jx1

2j
, (30)

and carry out a change of variables in the Itô formula to write

the moment dynamics such that the moments of x2 appear

in the form of monomials, and moments of x1 appearing in

the form of complex exponentials.

d〈ejx1〉

dt
= j

〈

ejx1x2

〉

, (31a)

d〈e−jx1〉

dt
= −j

〈

e−jx1x2

〉

, (31b)

d〈x2〉

dt
= −

k

m
〈x2〉+

j

2

g

l
〈ejx1〉 −

j

2

g

l
〈e−jx1〉 (31c)

d〈ejx1x2〉

dt
= j

〈

ejx1x2
2

〉

−
k

m
〈ejx1x2〉

+
j

2

g

l
〈e2jx1〉 −

j

2

g

l
, (31d)

d〈e−jx1x2〉

dt
= −j

〈

e−jx1x2
2

〉

−
k

m
〈e−jx1x2〉

−
j

2

g

l
〈e−2jx1〉+

j

2

g

l
, (31e)

d〈x2
2〉

dt
= −2

k

m
〈x2

2〉+ j
g

l
〈ejx1x2〉

− j
g

l
〈e−jx1x2〉+

1

m2
, (31f)

d〈e2jx1〉

dt
= 2j

〈

e2jx1x2

〉

, (31g)

d〈e−2jx1〉

dt
= −2j

〈

e−2jx1x2

〉

. (31h)

One way to interpret the above mixed complex expo-

nential monomial moment dynamics is to think that since

all moments of x2 are generated by taking expectations of

the monomials 1, x2, x
2
2, . . ., we could consider the terms

ejx1 and e−jx1 as two different variables. The mixed mo-

ments can then be generated by taking expectation of the

products of the complex exponentials 1, e−jx1 , e−2jx1 , . . .
(or 1, ejx1 , e2jx1 , . . .) with the monomials 1, x2, x

2
2, . . .. The

order of the mixed moment can be thought of as the sum of

powers of the monomials and complex exponentials.

Given the above interpretation, the moment dynam-

ics in (31) are not closed. As per notation in (9), we

have μ =
[〈

ejx1

〉 〈

e−jx1

〉

〈x2〉 . . .
〈

x2
2

〉]�
, and μ =

[〈

ejx1x2
2

〉 〈

e−jx1x2
2

〉 〈

e2jx1x2

〉 〈

e−2jx1x2

〉]�
. An impor-

tant point to note is that since e−jx1ejx1 = 1, there is no need

to consider their cross-moments. Thus, we only consider

cross moments of e−jx1 with x2, and ejx1 with x2.

Next, we use the derivative matching scheme to approx-

imate moments in μ as nonlinear functions of moments up

to order 2. For instance, consider the moment
〈

ejx1x2
2

〉

. The

aim of closure is to approximate this moment as
〈

ejx1x2
2

〉

≈
〈

ejx1

〉α1
〈

ejx1x2

〉α2

〈x2〉
α3

〈

x2
2

〉α4

. (32)

Performing derivative matching approach as explained in

Section III results in

〈

ejx1x2
2

〉

≈

〈

x2
2

〉

〈ejx1〉

〈

ejx1x2

〉2

〈x2〉
2 . (33)

With a similar approach, we can approximate the other

moments in the vector μ

〈

e−jx1x2
2

〉

≈

〈

x2
2

〉

〈e−jx1〉

〈

e−jx1x2

〉2

〈x2〉
2 , (34a)

〈

e2jx1x2

〉

≈

〈

e2jx1

〉

〈x2〉

〈

ejx1x2

〉2

〈ejx1〉
2 , (34b)

〈

e−2jx1x2

〉

≈

〈

e−2jx1

〉

〈x2〉

〈

e−jx1x2

〉2

〈e−jx1〉
2 . (34c)

The results show that derivative matching provides reason-

ably accurate approximation of the moment dynamics (Fig.

2).

V. CONCLUSION

In this paper, we extended the derivative matching based

moment approximation method to stochastic dynamical sys-

tems with continuous state. We further illustrated that the

method is not limited to polynomial dynamics, and it can be

used to study systems that contain trigonometric functions. It

would be interesting to extend the technique to other forms

of mixed functions, and also include differential algebraic

inequalities. This would open possibilities of using the mo-

ment closure techniques to study a variety of nonlinearities,

and has potential applications in power systems analysis. In

addition, while in this paper we just considered continuous

dynamics modeled through SDEs, many models contain

both continuous dynamics and random discrete events [21]–

[24]. Deriving derivative matching closure for such hybrid

systems will be another avenue of research. Finally, we
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Fig. 2. Derivative Matching provides accurate approximation of the
nonlinear function 〈sin(x1)〉. For comparison purpose, 95% confidence
interval of the dynamics as obtained from numerical simulation.

note that despite the promising results obtained by closure

approximations, generally there are no guarantees on the

errors of the closure approximation. Future work will carry

out a detailed error analysis using other methods of finding

bounds on moments [25], [26].
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[1] E. Allen, Modeling with Itô stochastic differential equations, vol. 22.
Springer Science & Business Media, 2007.

[2] R. Lande, S. Engen, and B.-E. Saether, Stochastic population dynamics

in ecology and conservation. Oxford University Press on Demand,
2003.

[3] A. G. Malliaris, Stochastic methods in economics and finance, vol. 17.
North-Holland, 1982.

[4] C. Gardiner, “Handbook of stochastic methods for physics, chemistry
and the natural sciences,” Applied Optics, vol. 25, p. 3145, 1986.

[5] B. Øksendal, Stochastic differential equations. Springer, 2003.
[6] J. P. Hespanha, “A model for stochastic hybrid systems with ap-

plication to communication networks,” Nonlinear Analysis: Theory,

Methods & Applications, vol. 62, pp. 1353–1383, 2005.

[7] A. Julius and G. Pappas, “Approximations of stochastic hybrid sys-
tems,” IEEE Transactions on Automatic Control, vol. 54, pp. 1193–
1203, 2009.

[8] C. H. Lee, K. Kim, and P. Kim, “A moment closure method for
stochastic reaction networks,” Journal of Chemical Physics, vol. 130,
p. 134107, 2009.

[9] A. Singh and J. P. Hespanha, “Approximate moment dynamics for
chemically reacting systems,” IEEE Transactions on Automatic Con-

trol, vol. 56, pp. 414–418, 2011.
[10] C. S. Gillespie, “Moment closure approximations for mass-action

models,” IET Systems Biology, vol. 3, pp. 52–58, 2009.
[11] M. Soltani, C. A. Vargas-Garcia, and A. Singh, “Conditional moment

closure schemes for studying stochastic dynamics of genetic circuits,”
IEEE Transactions on Biomedical Systems and Circuits, vol. 9,
pp. 518–526, 2015.

[12] J. Zhang, L. DeVille, S. Dhople, and A. Dominguez-Garcia, “A max-
imum entropy approach to the moment closure problem for stochastic
hybrid systems at equilibrium,” in Proc. of the 53rd IEEE Conf. on

Decision and Control, Los Angeles, CA, pp. 747–752, 2014.
[13] A. Singh and J. P. Hespanha, “Stochastic analysis of gene regulatory

networks using moment closure,” in Proc. of the 2007 Amer. Control

Conference, New York, NY, 2006.
[14] C. Kuehn, Moment Closure–A Brief Review. Understanding Complex

Systems, Springer, 2016.
[15] L. Socha, Linearization Methods for Stochastic Dynamic Systems.

Lecture Notes in Physics 730, Springer-Verlag, Berlin Heidelberg,
2008.

[16] M. Soltani, C. A. Vargas-Garcia, N. Kumar, R. Kulkarni, and A. Singh,
“Approximate statistical dynamics of a genetic feedback circuit,”
Proc. of the 2015 Amer. Control Conference, Chicago, IL, pp. 4424–
4429, 2015.

[17] A. Singh and J. P. Hespanha, “Lognormal moment closures for
biochemical reactions,” in Proceedings of the 45th Conference on

Decision and Control, pp. 2063–2068, 2006.
[18] J. P. Hespanha, “Polynomial stochastic hybrid systems,” in Hybrid

Systems: Computation and Control, pp. 322–338, 2005.
[19] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to

physics, biology, chemistry, and engineering. Westview press, 2014.
[20] H. K. Khalil, Nonlinear systems, vol. 3. Prentice Hall, NJ, 1996.
[21] J. Hespanha, “Modelling and analysis of stochastic hybrid systems,”

IEE Proceedings Control Theory and Applications, vol. 153, pp. 520–
535, 2006.

[22] A. R. Teel, A. Subbaraman, and A. Sferlazza, “Stability analysis for
stochastic hybrid systems: A survey,” Automatica, vol. 50, no. 10,
pp. 2435–2456, 2014.

[23] J. Hu, J. Lygeros, and S. Sastry, “Towards a theory of stochastic hybrid
systems,” in Hybrid Systems: Computation and Control, Lecture Notes
in Computer Science, pp. 160–173, Springer, 2000.

[24] M. Soltani and A. Singh, “Moment-based analysis of stochastic hybrid
systems with renewal transitions,” Automatica, vol. 84, pp. 62–69,
2017.

[25] K. R. Ghusinga, C. A. Vargas-Garcia, A. Lamperski, and A. Singh,
“Exact lower and upper bounds on stationary moments in stochastic
biochemical systems,” Physical Biology, vol. 14, 2017.

[26] A. Lamperski, K. R. Ghusinga, and A. Singh, “Analysis and control
of stochastic systems using semidefinite programming over moments,”
arXiv preprint arXiv:1702.00422, 2017.

1869


