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There are many settings in which a principal performs a task by delegating it to an agent, who searches
over possible solutions and proposes one to the principal. This describes many aspects of the workflow
within organizations, as well as many of the activities undertaken by regulatory bodies, who often obtain
relevant information from the parties being regulated through a process of delegation. A fundamental tension
underlying delegation is the fact that the agent’s interests will typically differ — potentially significantly
— from the interests of the principal, and as a result the agent may propose solutions based on their own
incentives that are inefficient for the principal. A basic problem, therefore, is to design mechanisms by which
the principal can constrain the set of proposals they are willing to accept from the agent, to ensure a certain
level of quality for the principal from the proposed solution.

In this work, we investigate how much the principal loses — quantitatively, in terms of the objective they
are trying to optimize — when they delegate to an agent. We develop a methodology for bounding this loss of
efficiency, and show that in a very general model of delegation, there is a family of mechanisms achieving a
universal bound on the ratio between the quality of the solution obtained through delegation and the quality
the principal could obtain in an idealized benchmark where they searched for a solution themself. Moreover,
it is possible to achieve such bounds through mechanisms with a natural threshold structure, which are thus
structurally simpler than the optimal mechanisms typically considered in the literature on delegation. At
the heart of our framework is an unexpected connection between delegation and the analysis of prophet
inequalities, which we leverage to provide bounds on the behavior of our delegation mechanisms.

CCS Concepts: « Theory of computation — Design and analysis of algorithms; « Applied computing
— Economics;

Additional Key Words and Phrases: Delegated search, prophet inequalities.

1 INTRODUCTION

There are many settings in which a decision-maker is faced with a difficult problem that they cannot
solve on their own, and so they instead approach it in two steps: they first delegate the search for
possible solutions to an agent who is able to invest more time in the process, and then they evaluate
the solution(s) that the agent proposes. One concrete example arises in organizations or firms,
where the management may delegate the search for solutions to a division that reports to them,
ultimately making a decision on the solution that is proposed by the division [2, 6, 18]. A second
example arises in regulation, where a governmental agency needs to decide whether there is a way
to structure a proposed corporate merger in a way that is compatible with regulatory guidelines;
the companies seeking to merge study possible ways of structuring the merger, propose one or
more to the regulator, and seek the regulator’s approval. In this way, the search over structures for
the merger has implicitly been delegated from the regulator to the companies, with the regulator

Authors’ addresses: Jon Kleinberg, Cornell University, Ithaca, NY, 14853, USA; Robert Kleinberg, Cornell University, Ithaca,
NY, 14853, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

ACM EC’18, June 18-22, 2018, Ithaca, NY, USA. ACM ISBN 978-1-4503-5829-3/18/06...$15.00
https://doi.org/10.1145/3219166.3219205

287


https://doi.org/10.1145/3219166.3219205

Session 5b: Prophet Inequalities ACM EC’18, June 18-22, 2018, Ithaca, NY, USA.

retaining decision-making control over the the proposed solution [11, 20]. A similar scenario could
be described for regulation in other settings, where a company may be searching over possible
solutions that comply with environmental law, employment law, or other guidelines.

The interesting tension in all these situations is that the decision-maker who delegates the
task (henceforth referred to as the “principal”) has a particular objective function that they are
seeking to optimize; but the agent who actually performs the task might have interests that are not
directly aligned with the principal’s. For example, in the regulatory context, the regulator (acting
as principal) may reasonably suspect that a merger proposed by a set of companies (acting as
the agent) will be structured in a way that strongly benefits the companies, even if other feasible
structures would have been better for the market or for society as a whole. Similarly, a group within
an organization tasked with solving a problem may well preferentially search for a solution that
benefits them in particular. Given this natural set of incentives, how should the principal structure
the delegation to the agent so as to ensure that the solution the agent proposes performs well under
the principal’s own objective function?

A rich literature has developed in economics around the formalization and analysis of delegation,
focusing on this tension between the conflicting objectives of the principal and the agent; see
Holmstrom [13, 14] for influential early research, and [3-6] for recent work. A dominant theme
in this line of work is that the principal does not offer monetary compensation to the agent as a
way of favoring certain proposed solutions over others (though see Krishna and Morgan [17]); this
is consistent with the motivating applications, in which for example regulators in many contexts
can accept or reject proposals from companies, but cannot selectively offer varying amounts of
compensation to these companies based on the content of the proposal. This lack of monetary
transfers between the parties imparts a fundamental structure to the problem, in which the principal
can simply define a mechanism implicitly specifying the subset of all “eligible” proposals that they
are willing to accept, and the agent is then incentivized to search for solutions that are good for
them but that also lie in this eligible set. A long line of work has gone into determining the structure
of eligible sets that produce optimal mechanisms for the principal, yielding constructions that are
often quite intricate [3, 6, 19].

The Present Work. Given how broadly delegation is used across a range of contexts, it is inter-
esting to consider how precarious a process it is — the principal is ceding control of their search
problem to an agent whose interests might be completely misaligned with their own, and the only
leverage the principal has is to accept or reject the solution that is eventually proposed. How much
does the principal give up — quantitatively, measured in terms of the objective they are trying to
optimize — when they delegate to an agent? Is there some robust, intrinsic reason why things don’t
turn out as badly as we might fear? And how do the answers to these questions depend on what
the principal is actually able to observe about the agent’s solution — including how much effort the
agent put into finding the solution, and how good it is not just for the principal but also for the
agent?

In their most natural formulation, these are inherently comparative questions, since they seek to
relate the solution quality obtained through delegation to the solution quality in an alternate, ideal
setting where delegation was not necessary. As such, they address an issue fundamentally distinct
from the primary focus of the existing literature on delegation, which as noted above has centered
on characterizing mechanisms that produce optimal delegation for the principal, without this type
of comparative evaluation.

There is a natural benchmark to use for our comparison: we could measure the quality of the
outcome under delegation versus the quality of the solution that the principal could obtain were
they to perform the search task themself, investing the same level of effort in the search that the
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agent does. Now, there are many settings where it may be too costly or otherwise infeasible for the
principal to actually conduct this search, but this benchmark nonetheless provides a conceptual
reference point to make clear how much payoff to the principal is lost through delegation. In this
sense, it plays the role of an optimal point of comparison, much like the role of the intractable
optimum in an approximation algorithm or the societal optimum in a price-of-anarchy analysis.

In this paper we develop a methodology to bound the performance of delegated search, relative
to the benchmark in which the principal searches for a solution on their own. Our methodology
builds on a set of links that we identify between bounds on delegated search and the analysis of
some fundamental models of decision-making under uncertainty — in particular, a surprisingly
strong connection between delegated search and bounds on prophet inequalities. The connections
between these formalisms turn out be quite natural and useful, but to our knowledge they have not
been previously identified in either of the literatures on delegated search or on prophet inequalities.
This connection not only provides bounds on the quality of delegated solutions relative to an ideal
benchmark; it also shows that strong bounds can be obtained using eligible sets that are structurally
very simple — in a number of cases defined simply by a carefully chosen threshold rule — and
hence in contrast with the complex constructions associated with optimal mechanisms.

Overview of Models

A Distributional Model. We begin by describing the models in which we perform our analysis.
Our main model, which is essentially the one considered in Armstrong and Vickers [6], has the
principal and the agent agree that the agent will consider n candidate solutions and propose one
to the principal; n thus represents the level of effort that the agent commits to the problem. The
principal will only see the solution that is proposed, not the other n —1 that the agent also considers.

What does it means for the agent to consider a candidate solution? We assume that the solutions
belong to an abstract space Q with a probability measure on it, and the agent’s search for a solution
consists of performing n independent and identically distributed draws from €, resulting in a set of
candidate solutions @y, s, . .., 0, € Q." Each solution w; drawn by the agent has a quality for the
principal, denoted x(w;), and a possibly different quality for the agent, denoted y(w;). The agent
selects one of its candidate solutions, say w;, to present to the principal. (Below, we will discuss
the contrast between the model in which the principal is able to determine both x(w;) and y(«w;) —
the value to both the agent and themself — for the proposed solution, and the model in which the
principal is only able to determine x(w;).)

Now, if the principal imposed no constraint on the agent’s behavior, then the agent would
simply choose the solution w; that maximizes y(w;), and the principal would receive whatever
corresponding x(w;) value resulted from this choice. To improve on this, the principal could specify
at the outset that they will only accept w values that satisfy some predicate on x(w;) and (in the case
that they can determine it) y(w;); we will refer to the set of all w satisfying the principal’s predicate
as the eligible set of solutions. It is thus in the agent’s interest to propose a solution belonging to
the eligible set; we ask whether one can design eligible sets that provide provable bounds on the
expected quality of the solution to the principal, relative to the scenario in which the principal
simply were to draw n times from Q and select the sampled solution w with maximum x(w).

A Binary Model. In our first, distributional model, the agent draws a set of candidate solutions
w1, - . . , Wy that the principal cannot observe, and then must choose one to present to the principal.
This models a setting in which the agent explores a design space and cannot fully anticipate which

Later we will also consider the case in which different draws by the agent can come from different probability measures

on Q; for example, this can model the case in which the agent is a group of n employees in an organization, and the i
solution is drawn by the i" agent, who may have a different distribution over solutions from the j agent.
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w; it will encounter until it begins this exploration. But we can also imagine settings where the
principal and agent both know that the set of potential options comes from a large discrete set
W1, W2, . . . , Wy, and the only question is which of these options is actually feasible to implement.
For example, there may be m standard ways of structuring a merger in a given industry, and the
only question is which are possible for the companies in question.

We model this version with publicly known binary options as follows. There is a set of options
W1, W2, . . . , W, and for each i, there is a known probability p; > 0 such that option w; is feasible
with probability p;, and infeasible otherwise. If option w; turns out to be feasible, then it produces a
known payoff of x(w;) for the principal and a known payoff y(w;) for the agent; if it turns out to
be infeasible, then it produces a payoff of 0 for both. The only way to evaluate the feasibility of
option w; is to pay a cost of ¢; to investigate it.

The principal delegates to the agent the task of proposing a feasible option, which the principal
can either accept or reject. The principal will not be able to see which options the agent decides
to pay to evaluate as part of this task, but again the principal can specify a predicate defining the
eligible subset of w; that they will accept. Subject to this constraint, the agent then must decide how
to evaluate options in a way that maximizes its own benefit y(w;) from the option w; it proposes,
minus the evaluation cost. Here too we evaluate the principal’s payoff relative to the scenario in
which they performed the evaluation of options themself. We also consider an extension of this
model in which there is a budget of n < m on the number of options that the agent can evaluate —
a constraint analogous to the bound on the number of samples the agent can evaluate in our first
distributional model.

Overview of Results

We begin by showing that for an arbitrary instance of the distributional model, there is a mechanism
the principal can specify to the agent so that the principal’s expected payoff from delegation is
within a factor of 2 of the expected payoff they’d receive were they able to search for the solution by
themself. (If the principal were to search by themself, they would examine n candidate solutions and
choose the one that was best for them.) This mechanism only requires knowledge of the principal’s
x(w;) values, not the agent’s y(w;) values, and it has a very simple structure: depending on the
distribution of values, it can be written as a threshold rule with either a weak threshold, in which
the principal only accepts proposals w for which x(w) > 6 for some 0, or a strict threshold, in
which the principal only accepts proposals w for which x(w) > 6 for some 6. In the case when
x(w) and y(w) are distributed independently with no point masses, the factor of 2 in this bound
can be improved to e/(e — 1).

There are several things worth remarking on about this result. First, the fact that arbitrary
instances of the problem have mechanisms providing provable guarantees of this form suggests
a qualitative argument for the robustness of delegation: no matter how misaligned the agent’s
interests are, the principal can ensure an absolute bound on how much is lost in the quality of the
solution. Second, the mechanism that achieves this bound is very simple and detail-free, consisting
of just a (weak or strict) threshold on the quality of the solution for the principal. And third, the
mechanism requires knowledge of n (the number of samples drawn by the agents) but not the
values y(w). In this sense, it suggests that it is more important for the principal to know how much
effort the agent has spent on the search (via n) than to know how good the proposed solution is for
the agent (via y(w)).

A connection to prophet inequalities. These results on threshold mechanisms and their guar-
antees follow from a general result at the heart of our analysis — a close connection between
bounds for delegated search and prophet inequalities. Prophet inequalities are guarantees for the
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following type of decision under uncertainty: we see a sequence of values sy, sy, . . ., S, in order,
with s; drawn from a distribution S;, and when we see the value s; we must irrevocably decide
whether to stop and accept s;, or continue (in the hope of finding a better value in the future).
Research on prophet inequalities has established the non-trivial fact that it is possible to design
rules whose expected payoff comes within a constant fraction of the maximum achievable by a
decision-maker who could see all the realized values sy, ss, . . ., s, in advance.

Prophet inequalities tend to be established by designing carefully constructed threshold rules,
in which the decision-maker accepts s; if and only if s; (weakly or strictly) exceeds a specified
threshold 6; that can depend on the position i. The key component of our analysis is to establish
a close, though subtle, technical connection between delegated search and prophet inequalities:
roughly speaking, the sequence of values x(w;), x(w,), . . ., x(w,) sampled by the agent from the set
of possible solutions Q plays the role of the process generating si, sz, . . . , sp; and the principal and
the agent jointly — through the principal’s specification of the threshold and the agent’s incentive
to obey it — play the role of the decision-maker who uses a threshold rule for deciding when to
stop. Again, the notion of “stopping” here is a bit oblique, since the principal never sees the full
sequence x(w1), x(wsz), . . ., x(wy,) that the agent generates; this is the sense in which the stopping
rule is jointly constructed by the behavior of the principal and the agent together.

Stronger bounds for independent values. Using this connection to threshold rules for prophet
inequalities, we can design a much more powerful policy for the principal in the case when the
values of x(w) and y(w) on a draw o from Q are distributed independently, and when the principal
can see both x(w;) and y(w;) (rather than only x(w;)) in the solution w; proposed by the agent.

To do this, we begin with a stopping rule from the prophet inequality literature achieving an
expected payoff that is at least 0.745 times the optimum when the distributions of the s; values
are independent and identically distributed [1, 9, 12, 15]. This stopping rule uses a sequence of
thresholds 6; that decrease with i, making the decision-maker naturally more prone to stop and
accept a value as the end of the sequence nears — effectively following the idea that one should
only accept a value early if it’s very good.

In the context of delegated search when the principal can observe both x(w;) and y(w;) for a
proposed solution w;, a related concept is useful for designing mechanisms: the principal should
only accept a solution w; with y(w;) very large if x(w;) is very large as well. The analogy between
requiring strong incentive to accept a value with large y(w;) in delegated search and requiring
strong incentive to accept a value early in the sequence in the prophet inequality context can be
made precise, and it reveals that the y(w;) values (over the set of candidate solutions considered
by the agent) can be used as a kind of “continuous time” parameter for deriving a threshold: if
we think of the candidate solution w; as arriving at continuous time y(w;), then we can derive a
threshold function 6(-) in which the principal only accepts w; if x(w;) (weakly or strictly) exceeds
0(y(w;)).” In this sense, the principal and agent again jointly construct the stopping rule, with
the agent’s payoff providing a type of synthetic temporal ordering that is useful in formulating a
threshold policy.

Bounds for the binary model. We also use the connection to prophet inequalities to derive
bounds for the binary model, where the agent pays to evaluate the feasibility of pairs from a known
list of options wy, w2, . .., wn,. Here too the principal can designate a predefined eligible set of
proposals so that the mechanism that accepts any eligible proposed w; yields an expected payoff
that is within a factor of two of the benchmark in which the principal performs the search on their

ZWe observe that this continuous time defined by the y(w;) runs “in reverse,” in the sense that large values of y(w;), like
small values of time, place stricter demands on the x(w;) values that can be accepted.
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own. However, the eligibility criterion in this case is subtler: it depends not only on the principal’s
assessment of the proposal’s quality, x(w;), but also on the cost ¢; and the a priori probability of
feasibility, p;.

To establish this bound, we draw on both prophet inequality bounds and on work of Kleinberg et
al for the box problem [16, 22]; by considering an ordering of the options by the notion of reservation
price (or, equivalently, strike price) defined in those works, we can establish a provable guarantee
that correctly handles not only the payoff arising from the x(w;) and y(w;) values but also the cost
incurred by the agent in evaluating the feasibility of options.

Finally, we derive similar bounds in the more general case where the agent also has a budget of
n < m on the number of options they can evaluate. The approach using reservation prices does not
directly extend to this case, but we show that by combining the approach of Kleinberg et al. [16]
with bounds for stochastic optimization due to Asadpour and Nazerzadeh [7], we can obtain more
general bounds for a budgeted variant of the box problem that contains the case we need for our
delegated search guarantee.

We note that it would be a natural open question to consider a variant of the problem combining
characteristics of the two main versions we consider here: as in the distributional model, the agent
performs independent draws from a space Q; but as in the binary model, the agent does not have a
fixed bound n on the number of allowed draws, instead incurring a cost to perform each draw that
must be traded off against the eventual payoff from the sample selected.

Further Discussion of Related Work on Delegation

The theory of delegation in the economics literature is often viewed as beginning with Bengt
Holmstrom’s Ph.D. thesis [13, 14]; this work articulates the basic tension that we see in these
models, between allowing an agent to optimize in a large space and restricting the agent’s freedom
of action to prevent them from pursuing their own objectives too aggressively. Holmstrom’s model
considered delegating an optimization problem over an interval, and a sequence of subsequent
papers analyzed the case in which the agent optimizes over a continuum [3, 19]. Armstrong and
Vickers [6] propose a model that is very close to what we consider here, where the optimization
takes place over a discrete set that the agent samples from an underlying distribution. By way of
comparison between our work and that of Armstrong and Vickers [6], we noted the key contrast
earlier in this section: their paper is largely devoted to identifying cases of the delegated search
problem for which the structure of the optimal mechanism can be identified, whereas we focus
on bounding the inefficiency of delegated search relative to a benchmark in which the principal
performs the task themself. It is through our emphasis on these types of bounds that we develop
the connection to the analysis of prophet inequalities.

A distinct line of work in delegation relaxes the constraint that the principal may only allow or
forbid each proposed solution, and instead allows the principal to add arbitrary amounts of cost
to certain subsets of proposed solutions [4, 5, 8]. One of the key motivations for such a condition
is to model the strategic role of bureaucracy within an organization: if management wants to
dissuade units within the organization from proposing certain types of solutions, they can use
bureaucratic measures (requiring more extensive justifications and processes) that make these
solutions selectively more costly without explicitly forbidding them, and without engaging in
explicit monetary transfers. Ambrus and Egorov [5] propose a model in which such selective cost
increases are in fact part of the optimal delegation scheme.

2 MODEL AND PRELIMINARIES

We begin by making the precise the way in which the principal and the agent interact, resulting
in the principal’s selection of (at most) one element from a set Q of potential solutions. There are
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functions x : Q@ - Rand y : Q@ — R such that if w € Q is selected, then the principal’s utility is
x(w) and the agent’s utility is y(w). To formalize the possibility that the principal selects no solution
(i-e., perpetuating the status quo) we identify this possiblity with a special “null outcome”, denoted

1, and we extend the utility functions from Q to Q, 2qu {1} by setting x(L) = y(L) = 0.

The set Q is a probability space, with probability measure p, and the agent has the power to
draw independent samples from Q according to p. The principal, on the other hand, can neither
draw samples from Q nor directly observe the outcome of the agent’s sampling; she must rely on
her interaction with the agent to arrive at a selected element of Q.°

Before formalizing our model of interaction, it is useful to first note some of the ways in which
our basic model can be generalized or specialized.

e We will initially consider the case of a single probability measure y on Q, but it is also useful
to consider cases in which there are multiple probability measures g, gz, . . ., ftm on Q, and
the agent has the power to draw independent samples from any of these distributions.

o We will generally assume there is a sampling budget of n on the number of samples that
the agent can draw. In some of our models, we will also introduce a sampling cost ¢ > 0 for
each draw by the agent — or in the case of multiple probability measures, a cost ¢; > 0 for
sampling from p;.

e We consider both the full-information case — in which the principal knows both the functions
x:Q —> Randy: Q — R, and hence can evaluate the utility of a solution » to both herself
and to the agent — and the limited-information case, in which the principal only knows her
own utility function x.

e The functions x : Q —» Randy : Q@ — R define random variables on Q, and we consider both
the case in which they can be arbitrary non-negative functions, and the case of independent
utilities, when they are independent random variables.

In a later section, we will specialize the formalism to the binary model discussed in Section 1, in
which each distribution y; is supported on a two-element set {wp;, w1;} such that (x(wo;), y(wo;)) =
(0, 0). In this case we will let (x;,y;) denote the pair (x(w;;), y(w1;)). The binary model captures a
setting in which the feasibility of the i solution is unknown until the agent investigates it, but the
value of the solution to both parties (if feasible) is known a priori.

2.1 A General Definition of Mechanisms for the Principal and Agent

Let us now formalize how the principal and the agent interact, resulting in the principal’s selection
of a solution. Thus far, our discussion in Section 1 has focused on interactions of a very structured
form: the agent draws a set of samples from Q; the agent selects one of these samples to present to
the principal; and the principal accepts or rejects it. But it would be useful to be able to consider
more general formulations for their allowed interactions, within which the transmission of a single
proposal from the agent to the principal is a particular special case.

To do this, we begin by defining a mechanism as follows. A mechanism M = (%, g) defines a
set of signals, %, that the agent may send, and an allocation function g : ¥ — Q, that specifies
which solution the principal will choose given the agent’s signal. In such a mechanism, a strategy
for the agent is specified by a mapping ¢ : Q* — 3, where Q* denotes the set of finite sequences

over Q, such that o(wy, . .., w,) represents the signal the agent sends if he sampled n solutions and
observed the sequence wy, .. ., ®p.
Suppose the agent observes sequence wy, ..., w, and sends signal o, resulting in outcome

@ = ¢g(o). In this case, the principal’s and agent’s utilities are x(w) and y(w), respectively, if

3Throughout this paper we use feminine pronouns for the principal and masculine pronouns for the agents.
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0 € {wi,..., 0y} U{L}. Otherwise the principal’s utility is 0 and the agent’s is —1. In other words,
we assume that if the mechanism results in the principal selecting a solution that was never sampled
by the agent, that solution cannot be adopted. Instead the status quo is preserved and the agent
suffers a penalty. This assumption is consistent with our assumption that the principal lacks the
power to directly search for solutions herself; she can only adopt solutions that the agent has
discovered.

In models with costly sampling, the specification of an agent’s strategy must also include a
sequential policy 7 for deciding which sample (if any) to observe next, given the set of samples
already observed. The principal’s and agent’s utilities are both diminished by the sum of costs c;
for the samples i that the agent observed when running policy 7. (We deduct this sum from the
principal’s utility because we think of the cost incurred by the agent in searching for a solution as
a kind of “waste” that the principal views as detracting from the overall utility.)

Under our definition of mechanisms, the sequence of solutions sampled by the agent leads to
a signal (via the agent’s strategy o), and this signal leads to a solution in Q. (via the principal’s
allocation function g). Composing these two functions, we get a mapping from the agent’s sampled
solutions to a single solution:

Definition 2.1 (interim allocation function). If M is a mechanism and o is an agent’s strategy,
the interim allocation function of the pair (M, o) is the mapping far» : Q* — Q. obtained by
composing the strategy o with the allocation function g. In other words, far s (w1, ..., wy,) is the
outcome resulting from mechanism M, when the agent draws sample sequence (wy, .. ., ®,) and
plays according to o.

2.2 Single Proposal Mechanisms

We now show that there is a sense in which it is without loss of generality to focus on interactions
in which the agent proposes a single solution from among the ones they sampled, and the principal
either accepts or rejects it. To do this, we define a simple type of mechanism called a single proposal
mechanism, and we show in Lemma 1 below that any other mechanism can be simulated by a single
proposal mechanism.

Definition 1. A single-proposal mechanism with eligible set R C Q is a mechanism in which the
agent proposes one outcome, and the mechanism accepts this proposal if and only if it belongs to
R. More formally, M = (2, g) is a single-proposal mechanism with eligible set Rif ¥ = Q, and g
restricts to the identity function on R and the constant function v — L on Q; \ R.

LEmMMA 1. If M is any mechanism and o is any strategy constituting a best response to M, then there
exists a single proposal mechanism M’ and a best response o’ to M’, such that the interim allocation
functions fyr o and far, o+ are identical.

ProorF. Let R be the range of the interim allocation function fas s, i.e. the set of all possible
outcomes of M, other than L, when the agent acts according to . Define M’ to be the single-
proposal mechanism with eligible set R. Let ¢’ be the strategy in which the agent observes his
tuple of samples, @ = (w1, ..., wn), and chooses strategy o’ (w) = g(o(w)). By construction the
interim allocation functions far,» and fyr , are identical. To prove that ¢’ is a best response to M’,
consider any @ € Q" and any v # ¢’(w). Let yo = y(g9'(¢’(w))) denote the agent’s utility when
playing according to ¢’; note that yy > 0. We wish to show that the agent cannot benefit by playing
v instead, i.e.

y(g'(v) < vo. (1)
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If v ¢ R then ¢g’(v) = L which implies (1) since yo > 0. If v € R then v = ¢g(&) for some ¢ € X.

Now (1) follows because strategy o is a best response for mechanism M, and y(g’(v)) denotes the
agent’s utility when playing strategy ¢ in M whereas y, denotes his utility when playing c. O

3 ANALYZING DELEGATED SEARCH VIA PROPHET INEQUALITIES

In this section we develop a formal link between delegated search mechanisms and prophet
inequalities. It turns out that the relevant prophet inequalities involve random variables arriving at
discrete points in continuous time, rather than the usual assumption that they arrive at time points
1,2,...,n. Accordingly, we will begin by explaining the formal model of continuous-time prophet
inequalities in Section 3.1 below. Then in Section 3.2 we explain the reduction from delegated
search (in the distributional model) to continuous-time prophet inequalities.

3.1 Continuous-time prophet inequalities

In this section we will be concerned with problems which involve designing a selection rule to
choose (at most) one element from a random finite set of pairs (x;,¢;) € Ry X [0, 1], with the goal
of maximizing the expected x-coordinate of the chosen element. The t-coordinate is thought of as
a time coordinate, and we will generally (but not exclusively) be concerned with selection rules
that make their choice without looking into the future, as is ordinarily the case in the analysis of
prophet inequalities.

Definition 2 (selection rules). A selection rule is a function p from finite subsets of R, X [0, 1] to
the set (R; % [0,1]) U {1}, with the property that p(S) € SU {1} for every S.

A stopping rule is a selection rule that chooses element (x, t) from set S without looking at
the set of elements whose time coordinate is greater than ¢. Formally, p is a stopping rule if
it satisfies the following property: for any (x,t) € Ry X [0,1] and any two sets S, S’ such that
SN Ry x[0,t]) =S N (R4 x[0,t]), we have

p(S) = (x,1) & p(S’) = (x,1).

An oblivious stopping rule with eligible set Q C R, x [0, 1] is a stopping rule po such that for
every S, po(S) is an earliest element of SNQ (i.e., an element of that set with minimum ¢ coordinate)
or po(S) = Lif SN Q is empty.

A threshold stopping rule with threshold 6 is an oblivious stopping rule whose eligible set is of
the form (6, 00) X [0, 1] or [0, o0) X [0, 1].

Definition 3 (CTSPs and prophet inequalities). A continuous-time selection problem (CTSP) is an
ordered pair (2, R) where ¥ is a set of probability distributions over finite subsets of R, X [0, 1],
and Z is a set of selection rules.

A CTSP (2, R) satisfies a prophet inequality with factor « if it is the case that for every D € &
there exists some p € Z such that

Es-p[Xp(s)] 2 a - Es-p[X(s)]-

Here the random variable X ,(s) is defined by specifying that if p(S) = (x, t) then X,(5) = x, and if
p(S) = L then X, (5) = 0. The random variable X, s) is defined to be max{x|(x,) € S}.

We now present the prophet inequalities we will use in this work. To state them, we define the
following families of stopping rules and distributions on subsets of R, x [0, 1].

® Zobliv is the family of oblivious stopping rules.
® Zihresh 1s the family of threshold stopping rules.
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® Dind is the family of random sets whose elements are obtained by sampling independently
from n joint distributions. In other words, a distribution D € %4 is specified by giving a
positive number n, a tuple of joint distributions Dy, ..., D, on R X [0, 1], and defining D to
be the distribution on n-element sets obtained by drawing one sample independently from
each of Dy,...,D,.

® Ziid.n is the family of random sets whose n elements are i.i.d. samples from an atomless
distribution with x and ¢ independent, i.e. a distribution on R, X [0, 1] which is a product of
atomless distributions.

® D4 is the union of P4, over alln > 1.

Our first prophet inequality is Samuel-Cahn’s famous prophet inequality for threshold stopping
rules [21].
THEOREM 1. (Samuel-Cahn [21]) There is a prophet inequality with factor % for (Dinds Prihresh)-

The second is an improved prophet inequality for threshold stopping rules when samples are
drawn i.i.d. from atomless product distributions; it can be derived as a corollary of either [10,
Theorem 19] or [9, Corollary 2.2].

THEOREM 2. (Correa et al. [9], Ehsani et al. [10]) There is a prophet inequality with factor 1 — %for
(@iid, t%thresh)-

Our third prophet inequality again pertains to the case when samples are drawn i.i.d. from
atomless product distributions, but it allows for oblivious stopping rules rather than threshold
stopping rules. The discrete-time counterpart to this prophet inequality can be found in [9, 12, 15].

-1
THEOREM 3. Let @ = 0.745... be the solution to Jz)l (y —ylny+1- é) dy = 1. There is a

n

prophet inequality with factor a — O (IOg ") Sfor (Diian» Zobiiv)-

Since the distincton between discrete time and continuous time is immaterial from the standpoint
of analyzing threshold stopping rules, the first two of these theorems are equivalent to the existing
results for discrete-time prophet inequalities that we have cited before the theorem statements.
On the other hand, because oblivious stopping rules are less powerful than general stopping rules,
the third theorem is not an immediate consequence of the corresponding discrete-time prophet
inequality.

To complete this section, we will describe the stopping rules which achieve the bounds stated in
the three prophet inequalities above.

When the points {(x;, t;)}] | are independent but not necessarily identically distributed, choose
threshold 6, /, to be the median of the distribution of max{x;}. In other words, 0;/; is defined such
that the events max{xy, ..., x,} > 61/2 and max{xy,...,x,} < 01,2 both have probability at most %
Consider the threshold stopping rule that selects the first pair (x;, ¢;) with x; > 6y, and consider
the one whose selection criterion is x; > 6;,2. The proof of Theorem 1 shows that at least one of
these two stopping rules fulfills a prophet inequality with factor 1/2.

When the points {(x;,#;)}[; are i.i.d. and the distributions of x; and ¢; are atomless and inde-
pendent, with cumulative distribution functions F and G, respectively, choose threshold 6;_;/,
such that Pr(max({xy,...,x,} > 01-17¢) =1 — % The proof of Theorem 2 shows that the threshold
stopping rule that selects the first pair (x;, t;) such that x; > 6;_;, fulfills a prophet inequality
with factor 1 - % Now let 3, be the solution to

n
(1+z+ ppe”)Hdz =1,
0

296



Session 5b: Prophet Inequalities ACM EC’18, June 18-22, 2018, Ithaca, NY, USA.

and let z,,(s) be the solution of the differential equation

dz
— =1+4+z+ fpe*
ds

with initial condition z(0) = 0. The oblivious stopping rule that accepts the first (x;, ¢;) such that
1-F(x;) < z(G(t;))/n

logn
P

fulfills a prophet inequality with factor a —

3.2 Reducing delegated search to prophet inequalities

Although delegated search problems and prophet inequalities appear unrelated at first glance, the
tight technical connection between them is explained by an observation which is extremely natural
in hindsight. Consider a change of variables that maps the agent’s utility y to a point ¢(y) € [0, 1],
where the function t is monotonically decreasing. In a single proposal mechanism with eligible set
R, the agent submits the eligible proposal (x, y) with the highest y value. Similarly, an oblivious
stopping rule with eligible set Q selects the earliest eligible point (x, t). Since the change of variables
t(y) is monotonically decreasing, the two selection criteria are equivalent! Thus, designing single
proposal mechanisms that yield high utility for the principal is equivalent to designing oblivious
stopping rules that yield a high expected value.

In more detail, let ¢ be any continuous, monotonically decreasing bijection from [0, o) to
(0, 1], for example t(y) = e Y. Under the mapping H : Q — (R; x [0,1]) defined by H(w) =
(x(w), t(y(w))), any distribution on sets of solutions {w, . . . , @, } induces a distribution D on sets of
pairs {(x1, t1), . . ., (xn, t,)}. In particular, our distributional model in which the agent draws n i.i.d.
samples from Q is mapped, under this correspondence, to a member of the family of distributions
-@iid,n-

There is also a reverse correspondence from oblivious stopping rules to single proposal mech-
anisms and their interim allocation functions. The oblivious stopping rule pg with eligible set
Q corresponds to the single proposal mechanism with eligible set H™!(Q). More precisely, if
R = HY(Q) and o is a best response to the single proposal mechanism M with eligible set R, then
for any sequence of samples w = (w1, . . ., w,), we have

po(H(w)) = H(fum,o(@)).
In other words, suppose we run the mechanism M; the agent draws a sequence of samples; and we
let the agent choose the best one (for the agent) that belongs to R. This procedure is equivalent to
running the oblivious stopping rule po on the sequence obtained by transforming all of the agents’
samples to points (x;,t;) = (x;, t(y;)), and selecting the earliest such point (ordered by #;) that
belongs to Q. Under this correspondence, threshold stopping rules correspond to single proposal
mechanisms in which a solution is deemed eligible if the principal’s utility exceeds a specified
threshold. Note that this subset of single proposal mechanisms can be implemented even when the
agent’s utility is unobservable.
Combining these observations with Theorems 1 to 3, we obtain the following theorem.

THEOREM 4. In the distributional model, suppose the agent draws n i.i.d. samples, and let x* denote
the utility the principal would attain if she could directly choose her favorite among these n samples.
(1) There is always a set X of the form (0, c0) or [0, c0) such that a single proposal mechanism with
eligible set {w | x(w) € X} ensures that the principal’s expected utility is at least %E[x*]
(2) If the principal and agent have independent utilities, each drawn from an atomless distribution,
then a single proposal mechanism that accepts any proposal satisfying x(w) > 0, for a suitable
choice of 0, ensures that the principal’s expected utility is at least (1 - %) E[x.].
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(3) If the principal and agent have independent utilities, each drawn from an atomless distribution,
and the principal can observe the agent’s utility, then a single proposal mechanism that accepts
any proposal satisfying x(w) > 6(y(w)), for a suitable choice of the function 0(-), ensures that
the principal’s expected utility is at least (0{ -0 (lo%)) E[x.], where a is the constant defined
in Theorem 3.

It is possible to show that the bounds in all three parts of the theorem are tight with respect to
the assumptions made in their respective statements.

4 BINARY OUTCOMES

Recall the binary model from Section 1: The potential solutions come from a large discrete set
Q = {w;,wy,...,0n} and the agent’s role is to explore which of these options are feasible to
implement. If w; is feasible, it yields utility x; for the principal and y; for the agent — where the
pair (x;,y;) is commonly known to both parties — and if w; is infeasible it yields zero utility for
both parties. To explore the feasibility of solution w; the agent must incur a cost of ¢; > 0, and the
probability of success is p; > 0, independently of the success of other solutions. These quantities
¢i, p; are again commonly known to both parties. We will assume that ¢; < p;y; for each solution
y;, since otherwise it is against the agent’s self-interest to explore w;, even if it were assured that
the solution would be adopted if feasible.

4.1 Optimal search policies: Weitzman’s box problem

If the principal were conducting the search by herself (without delegation to an agent), this model
would correspond to a special case of the box problem introduced by Weitzman [22]. The optimal
search policy is simple but surprisingly subtle: it assigns to each option a priority z; satisfying
E[(x; — z;)*] = ¢; — which in our case entails setting z; = x; — ¢;/p; — and then explores options
in decreasing order of priority, selecting the first feasible one in this ordering or stopping when all
remaining unexplored options have z; < 0.

Now suppose that the principal instead delegates the search to an agent who bears the cost of
exploration, by running a single-proposal mechanism with eligible set R. Then the agent faces a
different instance of the box problem, in which the set of options is limited to R, and the costs and
success probabilities of the options is the same as before, but the value of option i (if feasible) is y;
rather than x;. This means the agent prioritizes boxes in decreasing order of w; = y; — ¢;/p; rather
than z; = x; — ¢;/p;, and recommends the first box in this ordering that is discovered to be feasible.

To summarize, the delegated search problem in the binary model is analogous to Weitzman’s
box problem, but with the important distinction that the searcher (the principal) is not allowed to
choose the order in which to open the boxes. Instead the problem specifies an exogenous ordering
of the boxes — corresponding to the agent’s ranking of options by decreasing w; — and the searcher
is only free to decide which boxes in this sequence should be opened and which ones should be
skipped, corresponding to the principal’s problem of choosing the set R. Since this problem may be
of independent interest, we devote Theorem 5 below to presenting a solution that always achieves
at least half of the expected value of running the optimal search procedure that is allowed to
inspect the boxes in any order it desires. Interestingly, the analysis is based on prophet inequalities,
specifically Theorem 1 and its proof. It implies there is an approximately optimal mechanism with
the following structure. For any half-infinite interval X of the form X = (6, o) or X = [0, 0), let
R(X) = {w; | z; € X} and define M(X) to be the single-proposal mechanism in which a proposal
w; is eligible if it is feasible and belongs to R(X).
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4.2 The Box Problem with an Exogenous Ordering

In this section we recapitulate some background material about Weitzman’s 1979 box problem.
In this problem’ there are m boxes, each containing an independent random prize. The prize in
box i is denoted v;, and the cost of opening the box is ¢;. A searcher may open any number of
boxes sequentially, or may cease the search at any time and claim a prize from at most one of the
open boxes. The problem is to design an optimal sequential search policy. Weitzman proves that
if each box is assigned a priority z; defined by the equation E[(v; — z;)*] = ¢;, then the optimal
sequential search policy opens boxes in decreasing order of priority, stopping at the first time when
the highest prize inside an open box exceeds the highest priority of a closed box, or at the first time
when the priority of every remaining closed box is negative, whichever comes sooner.

Kleinberg et al. [16] provided a proof of optimality of Weitzman'’s procedure in which the priority
z; is interpreted as the “strike price” of a real option with fair value ¢;. An important quantity in
their analysis is the “covered call value”, which is simply the random variable k; = min{v;, z;}. We
restate the following lemma® from their work.

LeEmMA 2. (Kleinberg et al. [16]) For any sequential search procedure and any box i, let A;, B; be
the indicator random variables of the event that the procedure selects box i and the event that it opens
box i, respectively. The inequality

E[A;v; — Bic;] < E[Aik;] ()

is satisfied by every search procedure, and equality holds if and only if the search procedure is non-
exposed, meaning that A; = B; at every sample point where v; > z;.

CoRrOLLARY 1. For any sequential search procedure, the expected net value of running the procedure
(i.e., the value of the selected box minus the combined cost of opening boxes) is bounded above by the
expectation of the maximum covered call value, i.e.

m m m
i=1 i=1 i=1

The corollary is immediate, by summing inequality (2) over boxesi =1,...,m.

Now consider the box problem with an exogenous ordering of boxes, where the searcher is
limited to considering the boxes one by one in the specified order, and once she decides to leave
a box closed or to leave the prize within unclaimed, she cannot later return to the box and open
it or claim its prize. We define a type of policy that we call a x-thresholding policy; the reason
for the name will become apparent in the subsequent Lemma 3, which shows that these policies
correspond to a threshold rule applied to the sequence of covered call values ;.

E <E (3)

Definition 4. A k-thresholding policy for the box problem with exogenous ordering is a policy
that operates as follows. There is a half-infinite interval X = (6, o) or X = [0, c0) called the target
interval. The policy declines to open any box i with z; ¢ X. Otherwise, if z; € X, the policy opens
the box and claims the prize inside if and only if v; € X.

LEMMA 3. Every k-thresholding policy is non-exposed. The expected net value of running a k-
thresholding policy with target interval X is exactly the same as the expected value selected by the
threshold stopping rule that observes the random sequence k1, Kz, . . . , Kn and selects the first element
of this sequence that belongs to X.

4The following description constitutes a special case of Weitzman’s problem. The general case incorporates geometric time
discounting and time delays.
SLemma 1 of the full version of their paper, http://dx.doi.org/10.2139/ssrn.2753858.
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Proor. The policy is non-exposed because z; ¢ X implies A; = B; = 0, while z; € X and v; > z;
imply A; = B; = 1. Hence the left and right sides of (2) are equal for every box, and the net value
of running the policy is E [Z:’il Aixi] , i.e. the expected covered call value of the box the policy
selects. By design, the policy perfectly simulates the threshold stopping rule that chooses the first
element of the sequence ki, . . ., k, that belongs to X; this is because it selects the first box such
that z; and v; both belong to X, which is also the first box such that x; belongs to X. m]

THEOREM 5. For every instance of the box problem with exogenous ordering, there is a k-thresholding
policy whose expected net value is at least half that of Weitzman’s optimal search procedure (which
endogenously selects the ordering of the boxes).

Proor. Lemma 3 reduces the analysis of k-thresholding policies to a question about prophet
inequalities. In particular, the expected net value of running a k-thresholding policy is equal to
the expected covered call value of the random element selected from the sequence i, ..., k, by
a particular threshold stopping rule. Since Samuel-Cahn’s 1984 prophet inequality (Theorem 1
above) implies that threshold stopping rules can always attain at least half the expectation of the
maximum random variable in the sequence, it follows that there is a x-thresholding policy whose
expected net value is at least half the expectation of the maximum covered call value. Corollary 1
ensures that the latter is an upper bound on the expected net value of Weitzman’s optimal search
procedure. O

4.3 An approximately optimal mechanism

Recall that for a half-infinite interval X = (6, 00) or X = [0, o), the mechanism M(X) is defined to
be the single proposal mechanism whose eligible set consists of solutions w; that are feasible and
satisfy z; € X.

THEOREM 6. There exists a choice of X such that the expected net value of mechanism M(X) —
i.e., the principal’s value for adopting the agent’s proposal, if adopted, minus combined cost of all
the alternatives explored — is at least half of the expected net value the principal could achieve by
performing the optimal search herself (without delegation).

Proor. Convert the delegated search problem into a box problem with exogenous order, where
the order is defined by sorting the solutions wy, . .., @, in non-increasing order of the agent’s
priority value w; = y; — ¢;/p;, and the value v; inside box i is defined to be x; if w; turns out to be
feasible, 0 otherwise.

According to Theorem 5 there exists a choice of X such that the k-thresholding policy with target
set X attains at least half the expected net value of the optimal search procedure. This thresholding
policy goes through boxes in the given order, i.e. descending w;, and opens only those with z; € X,
selecting the first one such that v; € X. Note that among the boxes which the policy opens, the first
one with v; € X is also the first one corresponding to a feasible w;. This is because an infeasible w;
has v; = 0 hence v; ¢ X, whereas a feasible w; has v; = x; > z;, hence v; € X.

Recall from Section 4.1 that the agent’s best response to mechanism M(X) is to go through the
elements of R(X) in decreasing order of w;, stopping and proposing the first one that is discovered
to be feasible. This is exactly the behavior of the k-thresholding policy with target set X, as derived
in the preceding paragraph. Hence the mechanism M(X) coupled with the agent’s best response
behavior emulates the x-thresholding policy which attains at least half the expected net value of
the optimal search procedure. O
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4.4 Limiting the number of samples

In some cases the number of distinct potential solutions, m, may be prohibitively large, and the
agent may only have the power to explore the feasibility of a limited number of them, n < m. In
this case, if the principal were to conduct the search autonomously without delegation — subject
to the same costs ¢; and the same upper bound, n, on the total number of solutions that can be
tested for feasibility — it may require a very complex procedure. Nevertheless, we will provide in
this section a simple delegated search mechanism such that it is easy for the agent to compute
a search procedure that is a best response to the mechanism, and the outcome of running the
mechanism with this best response attains at least 1 (1 - %) ~ 0.316 of the net expected value of
the (potentially complex) optimal procedure.

The key observation is the following lemma, which provides a useful upper bound on the value
of running the optimal search procedure.

LEMMA 4. In the box problem with m > n boxes, if the searcher is limited to open at most n boxes
before claiming a prize, then the expected net value of any search procedure is bounded above by
E[max;es k;] where S is the random set of boxes that the procedure opens.

ProoF. Sum up the inequality (2) over all boxes and note that A; = 0 for i ¢ S, to derive

m m
E ZAil)i - ZBI'C,' <E ZAiKi
i=1 i=1 =
The lemma follows by noting that ;5 A;jk; < max;es k; because Y ;e A; < 1. ]

LEMMA 5. There exists a (non-random) set T of cardinality n, such that E[max;er ;] > (1 —
%)E[maxies ki], where S is the random set of solutions explored by the optimal search procedure
subject to a contraint of exploring at most n solutions.

Proor. The problem of adaptively exploring a random set S of at most n solutions to maximize
E[max;es k;] is a special case of the stochastic monotone submodular function maximization
problem studied by Asadpour and Nazerzadeh [7], in which the role of the monotone submodular
function f : R} — R, is played by the function f(4,,...,4,) = max{A;}, and role of the matroid
constraint is played by the cardinality constraint that at most n elements may be probed. Theorem
1 of [7], which asserts that the adaptivity gap of stochastic monotone submodular maximization is
-5, specializes in the present case to the assertion stated in the lemma. O

THEOREM 7. Consider delegated search in the binary model with a constraint that no more than
n solutions can be examined for feasibility. There exists a mechanism that attains at least % <1 - %)
fraction of the expected net value of the optimal search procedure subject to the same limitation of
examining at most n solutions.

Proor. According to Lemmas 4 and 5, there is an n-element set T C Q such that the optimal
search procedure that is limited to explore only solutions in T is able to attain at least 1 — %
fraction of the expected net value of the optimal search procedure that is limited to examine at
most n solutions but can (adaptively) choose any n elements of Q during its search. When the set
of solutions is restricted to T, the constraint that at most n solutions can be examined becomes
irrelevant since T only has n elements. Thus, Theorem 6 guarantees the existence of a delegated
search mechanism that is at least half as good as the optimal search procedure limited to T, and is
consequently at least % (1 - %) times as good as the optimal search procedure limited to examine
at most n solutions. Moreover, by applying the algorithm in Asadpour and Nazerzadeh [7] used to
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prove Lemma 5, we can implement this policy in polynomial time with a loss of a further additive ¢
in the approximation ratio, thus obtaining a bound of § (1 -2- 5) efficiently. O
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