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There are many settings in which a principal performs a task by delegating it to an agent, who searches

over possible solutions and proposes one to the principal. This describes many aspects of the workflow

within organizations, as well as many of the activities undertaken by regulatory bodies, who often obtain

relevant information from the parties being regulated through a process of delegation. A fundamental tension

underlying delegation is the fact that the agent’s interests will typically differ – potentially significantly

– from the interests of the principal, and as a result the agent may propose solutions based on their own

incentives that are inefficient for the principal. A basic problem, therefore, is to design mechanisms by which

the principal can constrain the set of proposals they are willing to accept from the agent, to ensure a certain

level of quality for the principal from the proposed solution.

In this work, we investigate how much the principal loses – quantitatively, in terms of the objective they

are trying to optimize – when they delegate to an agent. We develop a methodology for bounding this loss of

efficiency, and show that in a very general model of delegation, there is a family of mechanisms achieving a

universal bound on the ratio between the quality of the solution obtained through delegation and the quality

the principal could obtain in an idealized benchmark where they searched for a solution themself. Moreover,

it is possible to achieve such bounds through mechanisms with a natural threshold structure, which are thus

structurally simpler than the optimal mechanisms typically considered in the literature on delegation. At

the heart of our framework is an unexpected connection between delegation and the analysis of prophet
inequalities, which we leverage to provide bounds on the behavior of our delegation mechanisms.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms; • Applied computing
→ Economics;

Additional Key Words and Phrases: Delegated search, prophet inequalities.

1 INTRODUCTION
There are many settings in which a decision-maker is faced with a difficult problem that they cannot

solve on their own, and so they instead approach it in two steps: they first delegate the search for

possible solutions to an agent who is able to invest more time in the process, and then they evaluate

the solution(s) that the agent proposes. One concrete example arises in organizations or firms,

where the management may delegate the search for solutions to a division that reports to them,

ultimately making a decision on the solution that is proposed by the division [2, 6, 18]. A second

example arises in regulation, where a governmental agency needs to decide whether there is a way

to structure a proposed corporate merger in a way that is compatible with regulatory guidelines;

the companies seeking to merge study possible ways of structuring the merger, propose one or

more to the regulator, and seek the regulator’s approval. In this way, the search over structures for

the merger has implicitly been delegated from the regulator to the companies, with the regulator
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retaining decision-making control over the the proposed solution [11, 20]. A similar scenario could

be described for regulation in other settings, where a company may be searching over possible

solutions that comply with environmental law, employment law, or other guidelines.

The interesting tension in all these situations is that the decision-maker who delegates the

task (henceforth referred to as the “principal”) has a particular objective function that they are

seeking to optimize; but the agent who actually performs the task might have interests that are not

directly aligned with the principal’s. For example, in the regulatory context, the regulator (acting

as principal) may reasonably suspect that a merger proposed by a set of companies (acting as

the agent) will be structured in a way that strongly benefits the companies, even if other feasible

structures would have been better for the market or for society as a whole. Similarly, a group within

an organization tasked with solving a problem may well preferentially search for a solution that

benefits them in particular. Given this natural set of incentives, how should the principal structure

the delegation to the agent so as to ensure that the solution the agent proposes performs well under

the principal’s own objective function?

A rich literature has developed in economics around the formalization and analysis of delegation,

focusing on this tension between the conflicting objectives of the principal and the agent; see

Holmstrom [13, 14] for influential early research, and [3–6] for recent work. A dominant theme

in this line of work is that the principal does not offer monetary compensation to the agent as a

way of favoring certain proposed solutions over others (though see Krishna and Morgan [17]); this

is consistent with the motivating applications, in which for example regulators in many contexts

can accept or reject proposals from companies, but cannot selectively offer varying amounts of

compensation to these companies based on the content of the proposal. This lack of monetary

transfers between the parties imparts a fundamental structure to the problem, in which the principal

can simply define a mechanism implicitly specifying the subset of all “eligible” proposals that they

are willing to accept, and the agent is then incentivized to search for solutions that are good for

them but that also lie in this eligible set. A long line of work has gone into determining the structure

of eligible sets that produce optimal mechanisms for the principal, yielding constructions that are

often quite intricate [3, 6, 19].

The Present Work. Given how broadly delegation is used across a range of contexts, it is inter-

esting to consider how precarious a process it is — the principal is ceding control of their search

problem to an agent whose interests might be completely misaligned with their own, and the only

leverage the principal has is to accept or reject the solution that is eventually proposed. How much

does the principal give up — quantitatively, measured in terms of the objective they are trying to

optimize — when they delegate to an agent? Is there some robust, intrinsic reason why things don’t

turn out as badly as we might fear? And how do the answers to these questions depend on what

the principal is actually able to observe about the agent’s solution — including how much effort the

agent put into finding the solution, and how good it is not just for the principal but also for the

agent?

In their most natural formulation, these are inherently comparative questions, since they seek to

relate the solution quality obtained through delegation to the solution quality in an alternate, ideal

setting where delegation was not necessary. As such, they address an issue fundamentally distinct

from the primary focus of the existing literature on delegation, which as noted above has centered

on characterizing mechanisms that produce optimal delegation for the principal, without this type

of comparative evaluation.

There is a natural benchmark to use for our comparison: we could measure the quality of the

outcome under delegation versus the quality of the solution that the principal could obtain were

they to perform the search task themself, investing the same level of effort in the search that the
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agent does. Now, there are many settings where it may be too costly or otherwise infeasible for the

principal to actually conduct this search, but this benchmark nonetheless provides a conceptual

reference point to make clear how much payoff to the principal is lost through delegation. In this

sense, it plays the role of an optimal point of comparison, much like the role of the intractable

optimum in an approximation algorithm or the societal optimum in a price-of-anarchy analysis.

In this paper we develop a methodology to bound the performance of delegated search, relative

to the benchmark in which the principal searches for a solution on their own. Our methodology

builds on a set of links that we identify between bounds on delegated search and the analysis of

some fundamental models of decision-making under uncertainty — in particular, a surprisingly

strong connection between delegated search and bounds on prophet inequalities. The connections
between these formalisms turn out be quite natural and useful, but to our knowledge they have not

been previously identified in either of the literatures on delegated search or on prophet inequalities.

This connection not only provides bounds on the quality of delegated solutions relative to an ideal

benchmark; it also shows that strong bounds can be obtained using eligible sets that are structurally

very simple — in a number of cases defined simply by a carefully chosen threshold rule — and

hence in contrast with the complex constructions associated with optimal mechanisms.

Overview of Models
A Distributional Model. We begin by describing the models in which we perform our analysis.

Our main model, which is essentially the one considered in Armstrong and Vickers [6], has the

principal and the agent agree that the agent will consider n candidate solutions and propose one

to the principal; n thus represents the level of effort that the agent commits to the problem. The

principal will only see the solution that is proposed, not the other n−1 that the agent also considers.
What does it means for the agent to consider a candidate solution? We assume that the solutions

belong to an abstract space Ω with a probability measure on it, and the agent’s search for a solution

consists of performing n independent and identically distributed draws from Ω, resulting in a set of

candidate solutions ω1,ω2, . . . ,ωn ∈ Ω.
1
Each solution ωi drawn by the agent has a quality for the

principal, denoted x (ωi ), and a possibly different quality for the agent, denoted y (ωi ). The agent
selects one of its candidate solutions, say ωi , to present to the principal. (Below, we will discuss

the contrast between the model in which the principal is able to determine both x (ωi ) and y (ωi ) —
the value to both the agent and themself — for the proposed solution, and the model in which the

principal is only able to determine x (ωi ).)
Now, if the principal imposed no constraint on the agent’s behavior, then the agent would

simply choose the solution ωi that maximizes y (ωi ), and the principal would receive whatever

corresponding x (ωi ) value resulted from this choice. To improve on this, the principal could specify

at the outset that they will only acceptω values that satisfy some predicate on x (ωi ) and (in the case

that they can determine it) y (ωi ); we will refer to the set of all ω satisfying the principal’s predicate

as the eligible set of solutions. It is thus in the agent’s interest to propose a solution belonging to

the eligible set; we ask whether one can design eligible sets that provide provable bounds on the

expected quality of the solution to the principal, relative to the scenario in which the principal

simply were to draw n times from Ω and select the sampled solution ω with maximum x (ω).

A Binary Model. In our first, distributional model, the agent draws a set of candidate solutions

ω1, . . . ,ωn that the principal cannot observe, and then must choose one to present to the principal.

This models a setting in which the agent explores a design space and cannot fully anticipate which

1
Later we will also consider the case in which different draws by the agent can come from different probability measures

on Ω; for example, this can model the case in which the agent is a group of n employees in an organization, and the i th

solution is drawn by the i th agent, who may have a different distribution over solutions from the j th agent.
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ωi it will encounter until it begins this exploration. But we can also imagine settings where the

principal and agent both know that the set of potential options comes from a large discrete set

ω1,ω2, . . . ,ωm , and the only question is which of these options is actually feasible to implement.

For example, there may bem standard ways of structuring a merger in a given industry, and the

only question is which are possible for the companies in question.

We model this version with publicly known binary options as follows. There is a set of options

ω1,ω2, . . . ,ωm , and for each i , there is a known probability pi > 0 such that option ωi is feasible
with probability pi , and infeasible otherwise. If option ωi turns out to be feasible, then it produces a

known payoff of x (ωi ) for the principal and a known payoff y (ωi ) for the agent; if it turns out to
be infeasible, then it produces a payoff of 0 for both. The only way to evaluate the feasibility of

option ωi is to pay a cost of ci to investigate it.

The principal delegates to the agent the task of proposing a feasible option, which the principal

can either accept or reject. The principal will not be able to see which options the agent decides

to pay to evaluate as part of this task, but again the principal can specify a predicate defining the

eligible subset of ωi that they will accept. Subject to this constraint, the agent then must decide how

to evaluate options in a way that maximizes its own benefit y (ωi ) from the option ωi it proposes,

minus the evaluation cost. Here too we evaluate the principal’s payoff relative to the scenario in

which they performed the evaluation of options themself. We also consider an extension of this

model in which there is a budget of n < m on the number of options that the agent can evaluate —

a constraint analogous to the bound on the number of samples the agent can evaluate in our first

distributional model.

Overview of Results
We begin by showing that for an arbitrary instance of the distributional model, there is a mechanism

the principal can specify to the agent so that the principal’s expected payoff from delegation is

within a factor of 2 of the expected payoff they’d receive were they able to search for the solution by

themself. (If the principal were to search by themself, they would examine n candidate solutions and

choose the one that was best for them.) This mechanism only requires knowledge of the principal’s

x (ωi ) values, not the agent’s y (ωi ) values, and it has a very simple structure: depending on the

distribution of values, it can be written as a threshold rule with either a weak threshold, in which

the principal only accepts proposals ω for which x (ω) ≥ θ for some θ , or a strict threshold, in
which the principal only accepts proposals ω for which x (ω) > θ for some θ . In the case when

x (ω) and y (ω) are distributed independently with no point masses, the factor of 2 in this bound

can be improved to e/(e − 1).
There are several things worth remarking on about this result. First, the fact that arbitrary

instances of the problem have mechanisms providing provable guarantees of this form suggests

a qualitative argument for the robustness of delegation: no matter how misaligned the agent’s

interests are, the principal can ensure an absolute bound on how much is lost in the quality of the

solution. Second, the mechanism that achieves this bound is very simple and detail-free, consisting

of just a (weak or strict) threshold on the quality of the solution for the principal. And third, the

mechanism requires knowledge of n (the number of samples drawn by the agents) but not the

values y (ω). In this sense, it suggests that it is more important for the principal to know how much

effort the agent has spent on the search (via n) than to know how good the proposed solution is for

the agent (via y (ω)).

A connection to prophet inequalities. These results on threshold mechanisms and their guar-

antees follow from a general result at the heart of our analysis — a close connection between

bounds for delegated search and prophet inequalities. Prophet inequalities are guarantees for the
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following type of decision under uncertainty: we see a sequence of values s1, s2, . . . , sn in order,

with si drawn from a distribution Si , and when we see the value si we must irrevocably decide

whether to stop and accept si , or continue (in the hope of finding a better value in the future).

Research on prophet inequalities has established the non-trivial fact that it is possible to design

rules whose expected payoff comes within a constant fraction of the maximum achievable by a

decision-maker who could see all the realized values s1, s2, . . . , sn in advance.

Prophet inequalities tend to be established by designing carefully constructed threshold rules,
in which the decision-maker accepts si if and only if si (weakly or strictly) exceeds a specified

threshold θi that can depend on the position i . The key component of our analysis is to establish

a close, though subtle, technical connection between delegated search and prophet inequalities:

roughly speaking, the sequence of values x (ω1),x (ω2), . . . ,x (ωn ) sampled by the agent from the set

of possible solutions Ω plays the role of the process generating s1, s2, . . . , sn ; and the principal and

the agent jointly — through the principal’s specification of the threshold and the agent’s incentive

to obey it — play the role of the decision-maker who uses a threshold rule for deciding when to

stop. Again, the notion of “stopping” here is a bit oblique, since the principal never sees the full

sequence x (ω1),x (ω2), . . . ,x (ωn ) that the agent generates; this is the sense in which the stopping

rule is jointly constructed by the behavior of the principal and the agent together.

Stronger bounds for independent values. Using this connection to threshold rules for prophet

inequalities, we can design a much more powerful policy for the principal in the case when the

values of x (ω) and y (ω) on a draw ω from Ω are distributed independently, and when the principal

can see both x (ωi ) and y (ωi ) (rather than only x (ωi )) in the solution ωi proposed by the agent.

To do this, we begin with a stopping rule from the prophet inequality literature achieving an

expected payoff that is at least 0.745 times the optimum when the distributions of the si values
are independent and identically distributed [1, 9, 12, 15]. This stopping rule uses a sequence of

thresholds θi that decrease with i , making the decision-maker naturally more prone to stop and

accept a value as the end of the sequence nears — effectively following the idea that one should

only accept a value early if it’s very good.

In the context of delegated search when the principal can observe both x (ωi ) and y (ωi ) for a
proposed solution ωi , a related concept is useful for designing mechanisms: the principal should

only accept a solution ωi with y (ωi ) very large if x (ωi ) is very large as well. The analogy between

requiring strong incentive to accept a value with large y (ωi ) in delegated search and requiring

strong incentive to accept a value early in the sequence in the prophet inequality context can be

made precise, and it reveals that the y (ωi ) values (over the set of candidate solutions considered
by the agent) can be used as a kind of “continuous time” parameter for deriving a threshold: if

we think of the candidate solution ωi as arriving at continuous time y (ωi ), then we can derive a

threshold function θ (·) in which the principal only accepts ωi if x (ωi ) (weakly or strictly) exceeds

θ (y (ωi )).
2
In this sense, the principal and agent again jointly construct the stopping rule, with

the agent’s payoff providing a type of synthetic temporal ordering that is useful in formulating a

threshold policy.

Bounds for the binary model. We also use the connection to prophet inequalities to derive

bounds for the binary model, where the agent pays to evaluate the feasibility of pairs from a known

list of options ω1,ω2, . . . ,ωm . Here too the principal can designate a predefined eligible set of

proposals so that the mechanism that accepts any eligible proposed ωi yields an expected payoff

that is within a factor of two of the benchmark in which the principal performs the search on their

2
We observe that this continuous time defined by the y (ωi ) runs “in reverse,” in the sense that large values of y (ωi ), like
small values of time, place stricter demands on the x (ωi ) values that can be accepted.
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own. However, the eligibility criterion in this case is subtler: it depends not only on the principal’s

assessment of the proposal’s quality, x (ωi ), but also on the cost ci and the a priori probability of

feasibility, pi .
To establish this bound, we draw on both prophet inequality bounds and on work of Kleinberg et

al for the box problem [16, 22]; by considering an ordering of the options by the notion of reservation
price (or, equivalently, strike price) defined in those works, we can establish a provable guarantee

that correctly handles not only the payoff arising from the x (ωi ) and y (ωi ) values but also the cost

incurred by the agent in evaluating the feasibility of options.

Finally, we derive similar bounds in the more general case where the agent also has a budget of

n < m on the number of options they can evaluate. The approach using reservation prices does not

directly extend to this case, but we show that by combining the approach of Kleinberg et al. [16]

with bounds for stochastic optimization due to Asadpour and Nazerzadeh [7], we can obtain more

general bounds for a budgeted variant of the box problem that contains the case we need for our

delegated search guarantee.

We note that it would be a natural open question to consider a variant of the problem combining

characteristics of the two main versions we consider here: as in the distributional model, the agent

performs independent draws from a space Ω; but as in the binary model, the agent does not have a

fixed bound n on the number of allowed draws, instead incurring a cost to perform each draw that

must be traded off against the eventual payoff from the sample selected.

Further Discussion of Related Work on Delegation
The theory of delegation in the economics literature is often viewed as beginning with Bengt

Holmstrom’s Ph.D. thesis [13, 14]; this work articulates the basic tension that we see in these

models, between allowing an agent to optimize in a large space and restricting the agent’s freedom

of action to prevent them from pursuing their own objectives too aggressively. Holmstrom’s model

considered delegating an optimization problem over an interval, and a sequence of subsequent

papers analyzed the case in which the agent optimizes over a continuum [3, 19]. Armstrong and

Vickers [6] propose a model that is very close to what we consider here, where the optimization

takes place over a discrete set that the agent samples from an underlying distribution. By way of

comparison between our work and that of Armstrong and Vickers [6], we noted the key contrast

earlier in this section: their paper is largely devoted to identifying cases of the delegated search

problem for which the structure of the optimal mechanism can be identified, whereas we focus

on bounding the inefficiency of delegated search relative to a benchmark in which the principal

performs the task themself. It is through our emphasis on these types of bounds that we develop

the connection to the analysis of prophet inequalities.

A distinct line of work in delegation relaxes the constraint that the principal may only allow or

forbid each proposed solution, and instead allows the principal to add arbitrary amounts of cost

to certain subsets of proposed solutions [4, 5, 8]. One of the key motivations for such a condition

is to model the strategic role of bureaucracy within an organization: if management wants to

dissuade units within the organization from proposing certain types of solutions, they can use

bureaucratic measures (requiring more extensive justifications and processes) that make these

solutions selectively more costly without explicitly forbidding them, and without engaging in

explicit monetary transfers. Ambrus and Egorov [5] propose a model in which such selective cost

increases are in fact part of the optimal delegation scheme.

2 MODEL AND PRELIMINARIES
We begin by making the precise the way in which the principal and the agent interact, resulting

in the principal’s selection of (at most) one element from a set Ω of potential solutions. There are
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functions x : Ω → R and y : Ω → R such that if ω ∈ Ω is selected, then the principal’s utility is

x (ω) and the agent’s utility isy (ω). To formalize the possibility that the principal selects no solution

(i.e., perpetuating the status quo) we identify this possiblity with a special “null outcome”, denoted

⊥, and we extend the utility functions from Ω to Ω+
∆
= Ω ∪ {⊥} by setting x (⊥) = y (⊥) = 0.

The set Ω is a probability space, with probability measure µ, and the agent has the power to

draw independent samples from Ω according to µ. The principal, on the other hand, can neither

draw samples from Ω nor directly observe the outcome of the agent’s sampling; she must rely on

her interaction with the agent to arrive at a selected element of Ω.3

Before formalizing our model of interaction, it is useful to first note some of the ways in which

our basic model can be generalized or specialized.

• We will initially consider the case of a single probability measure µ on Ω, but it is also useful

to consider cases in which there are multiple probability measures µ1, µ2, . . . , µm on Ω, and
the agent has the power to draw independent samples from any of these distributions.

• We will generally assume there is a sampling budget of n on the number of samples that

the agent can draw. In some of our models, we will also introduce a sampling cost c ≥ 0 for

each draw by the agent — or in the case of multiple probability measures, a cost ci ≥ 0 for

sampling from µi .
• We consider both the full-information case — in which the principal knows both the functions

x : Ω → R and y : Ω → R, and hence can evaluate the utility of a solution ω to both herself

and to the agent — and the limited-information case, in which the principal only knows her

own utility function x .
• The functions x : Ω → R and y : Ω → R define random variables on Ω, and we consider both
the case in which they can be arbitrary non-negative functions, and the case of independent
utilities, when they are independent random variables.

In a later section, we will specialize the formalism to the binary model discussed in Section 1, in

which each distribution µi is supported on a two-element set {ω0i ,ω1i } such that (x (ω0i ),y (ω0i )) =
(0, 0). In this case we will let (xi ,yi ) denote the pair (x (ω1i ),y (ω1i )). The binary model captures a

setting in which the feasibility of the ith solution is unknown until the agent investigates it, but the

value of the solution to both parties (if feasible) is known a priori.

2.1 A General Definition of Mechanisms for the Principal and Agent
Let us now formalize how the principal and the agent interact, resulting in the principal’s selection

of a solution. Thus far, our discussion in Section 1 has focused on interactions of a very structured

form: the agent draws a set of samples from Ω; the agent selects one of these samples to present to

the principal; and the principal accepts or rejects it. But it would be useful to be able to consider

more general formulations for their allowed interactions, within which the transmission of a single

proposal from the agent to the principal is a particular special case.

To do this, we begin by defining a mechanism as follows. A mechanism M = (Σ,д) defines a
set of signals, Σ, that the agent may send, and an allocation function д : Σ → Ω+ that specifies
which solution the principal will choose given the agent’s signal. In such a mechanism, a strategy
for the agent is specified by a mapping σ : Ω∗ → Σ, where Ω∗ denotes the set of finite sequences
over Ω, such that σ (ω1, . . . ,ωn ) represents the signal the agent sends if he sampled n solutions and

observed the sequence ω1, . . . ,ωn .

Suppose the agent observes sequence ω1, . . . ,ωn and sends signal σ , resulting in outcome

ω = д(σ ). In this case, the principal’s and agent’s utilities are x (ω) and y (ω), respectively, if

3
Throughout this paper we use feminine pronouns for the principal and masculine pronouns for the agents.
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ω ∈ {ω1, . . . ,ωn } ∪ {⊥}. Otherwise the principal’s utility is 0 and the agent’s is −1. In other words,

we assume that if the mechanism results in the principal selecting a solution that was never sampled

by the agent, that solution cannot be adopted. Instead the status quo is preserved and the agent

suffers a penalty. This assumption is consistent with our assumption that the principal lacks the

power to directly search for solutions herself; she can only adopt solutions that the agent has

discovered.

In models with costly sampling, the specification of an agent’s strategy must also include a

sequential policy π for deciding which sample (if any) to observe next, given the set of samples

already observed. The principal’s and agent’s utilities are both diminished by the sum of costs ci
for the samples i that the agent observed when running policy π . (We deduct this sum from the

principal’s utility because we think of the cost incurred by the agent in searching for a solution as

a kind of “waste” that the principal views as detracting from the overall utility.)

Under our definition of mechanisms, the sequence of solutions sampled by the agent leads to

a signal (via the agent’s strategy σ ), and this signal leads to a solution in Ω+ (via the principal’s
allocation function д). Composing these two functions, we get a mapping from the agent’s sampled

solutions to a single solution:

Definition 2.1 (interim allocation function). If M is a mechanism and σ is an agent’s strategy,

the interim allocation function of the pair (M,σ ) is the mapping fM,σ : Ω∗ → Ω+ obtained by

composing the strategy σ with the allocation function д. In other words, fM,σ (ω1, . . . ,ωn ) is the
outcome resulting from mechanismM , when the agent draws sample sequence (ω1, . . . ,ωn ) and
plays according to σ .

2.2 Single Proposal Mechanisms
We now show that there is a sense in which it is without loss of generality to focus on interactions

in which the agent proposes a single solution from among the ones they sampled, and the principal

either accepts or rejects it. To do this, we define a simple type of mechanism called a single proposal
mechanism, and we show in Lemma 1 below that any other mechanism can be simulated by a single

proposal mechanism.

Definition 1. A single-proposal mechanism with eligible set R ⊆ Ω is a mechanism in which the

agent proposes one outcome, and the mechanism accepts this proposal if and only if it belongs to

R. More formally, M = (Σ,д) is a single-proposal mechanism with eligible set R if Σ = Ω+ and д
restricts to the identity function on R and the constant function ω 7→ ⊥ on Ω+ \ R.

Lemma 1. IfM is any mechanism and σ is any strategy constituting a best response toM , then there
exists a single proposal mechanismM ′ and a best response σ ′ toM ′, such that the interim allocation
functions fM,σ and fM ′,σ ′ are identical.

Proof. Let R be the range of the interim allocation function fM,σ , i.e. the set of all possible

outcomes of M , other than ⊥, when the agent acts according to σ . Define M ′ to be the single-

proposal mechanism with eligible set R. Let σ ′ be the strategy in which the agent observes his

tuple of samples, ω = (ω1, . . . ,ωn ), and chooses strategy σ ′(ω) = д(σ (ω)). By construction the

interim allocation functions fM,σ and fM ′,σ ′ are identical. To prove that σ ′ is a best response toM ′,
consider any ω ∈ Ωn

and any ν , σ ′(ω). Let y0 = y (д′(σ ′(ω))) denote the agent’s utility when

playing according to σ ′; note that y0 ≥ 0. We wish to show that the agent cannot benefit by playing

ν instead, i.e.

y (д′(ν )) ≤ y0. (1)
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If ν < R then д′(ν ) = ⊥ which implies (1) since y0 ≥ 0. If ν ∈ R then ν = д(σ̃ ) for some σ̃ ∈ Σ.
Now (1) follows because strategy σ is a best response for mechanismM , and y (д′(ν )) denotes the
agent’s utility when playing strategy σ̃ inM whereas y0 denotes his utility when playing σ . □

3 ANALYZING DELEGATED SEARCH VIA PROPHET INEQUALITIES
In this section we develop a formal link between delegated search mechanisms and prophet

inequalities. It turns out that the relevant prophet inequalities involve random variables arriving at

discrete points in continuous time, rather than the usual assumption that they arrive at time points

1, 2, . . . ,n. Accordingly, we will begin by explaining the formal model of continuous-time prophet

inequalities in Section 3.1 below. Then in Section 3.2 we explain the reduction from delegated

search (in the distributional model) to continuous-time prophet inequalities.

3.1 Continuous-time prophet inequalities
In this section we will be concerned with problems which involve designing a selection rule to

choose (at most) one element from a random finite set of pairs (xi , ti ) ∈ R+ × [0, 1], with the goal

of maximizing the expected x-coordinate of the chosen element. The t-coordinate is thought of as
a time coordinate, and we will generally (but not exclusively) be concerned with selection rules

that make their choice without looking into the future, as is ordinarily the case in the analysis of

prophet inequalities.

Definition 2 (selection rules). A selection rule is a function ρ from finite subsets of R+ × [0, 1] to
the set (R+ × [0, 1]) ∪ {⊥}, with the property that ρ (S ) ∈ S ∪ {⊥} for every S .
A stopping rule is a selection rule that chooses element (x , t ) from set S without looking at

the set of elements whose time coordinate is greater than t . Formally, ρ is a stopping rule if

it satisfies the following property: for any (x , t ) ∈ R+ × [0, 1] and any two sets S, S ′ such that

S ∩ (R+ × [0, t]) = S ′ ∩ (R+ × [0, t]), we have

ρ (S ) = (x , t ) ⇐⇒ ρ (S ′) = (x , t ).

An oblivious stopping rule with eligible set Q ⊆ R+ × [0, 1] is a stopping rule ρQ such that for

every S , ρQ (S ) is an earliest element of S∩Q (i.e., an element of that set with minimum t coordinate)
or ρQ (S ) = ⊥ if S ∩Q is empty.

A threshold stopping rule with threshold θ is an oblivious stopping rule whose eligible set is of

the form (θ ,∞) × [0, 1] or [θ ,∞) × [0, 1].

Definition 3 (CTSPs and prophet inequalities). A continuous-time selection problem (CTSP) is an

ordered pair (D ,R) where D is a set of probability distributions over finite subsets of R+ × [0, 1],
and R is a set of selection rules.

A CTSP (D ,R) satisfies a prophet inequality with factor α if it is the case that for every D ∈ D
there exists some ρ ∈ R such that

ES∼D[Xρ (S )] ≥ α · ES∼D[X∗(S )].

Here the random variable Xρ (S ) is defined by specifying that if ρ (S ) = (x , t ) then Xρ (S ) = x , and if

ρ (S ) = ⊥ then Xρ (S ) = 0. The random variable X∗(S ) is defined to be max{x |(x , t ) ∈ S }.

We now present the prophet inequalities we will use in this work. To state them, we define the

following families of stopping rules and distributions on subsets of R+ × [0, 1].

• Robliv is the family of oblivious stopping rules.

• Rthresh is the family of threshold stopping rules.
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• Dind is the family of random sets whose elements are obtained by sampling independently

from n joint distributions. In other words, a distribution D ∈ Dind is specified by giving a

positive number n, a tuple of joint distributions D1, . . . ,Dn on R+ × [0, 1], and defining D to

be the distribution on n-element sets obtained by drawing one sample independently from

each of D1, . . . ,Dn .

• Diid,n is the family of random sets whose n elements are i.i.d. samples from an atomless

distribution with x and t independent, i.e. a distribution on R+ × [0, 1] which is a product of

atomless distributions.

• Diid is the union of Diid,n over all n ≥ 1.

Our first prophet inequality is Samuel-Cahn’s famous prophet inequality for threshold stopping

rules [21].

Theorem 1. (Samuel-Cahn [21]) There is a prophet inequality with factor 1

2
for (Dind, Rthresh).

The second is an improved prophet inequality for threshold stopping rules when samples are

drawn i.i.d. from atomless product distributions; it can be derived as a corollary of either [10,

Theorem 19] or [9, Corollary 2.2].

Theorem 2. (Correa et al. [9], Ehsani et al. [10]) There is a prophet inequality with factor 1 − 1

e for
(Diid, Rthresh).

Our third prophet inequality again pertains to the case when samples are drawn i.i.d. from

atomless product distributions, but it allows for oblivious stopping rules rather than threshold

stopping rules. The discrete-time counterpart to this prophet inequality can be found in [9, 12, 15].

Theorem 3. Let α = 0.745 . . . be the solution to
∫

1

0

(
y − y lny + 1 − 1

α

)−1
dy = 1. There is a

prophet inequality with factor α −O
(
logn
n

)
for (Diid,n , Robliv).

Since the distincton between discrete time and continuous time is immaterial from the standpoint

of analyzing threshold stopping rules, the first two of these theorems are equivalent to the existing

results for discrete-time prophet inequalities that we have cited before the theorem statements.

On the other hand, because oblivious stopping rules are less powerful than general stopping rules,

the third theorem is not an immediate consequence of the corresponding discrete-time prophet

inequality.

To complete this section, we will describe the stopping rules which achieve the bounds stated in

the three prophet inequalities above.

When the points {(xi , ti )}
n
i=1 are independent but not necessarily identically distributed, choose

threshold θ1/2 to be the median of the distribution of max{xi }. In other words, θ1/2 is defined such

that the eventsmax{x1, . . . ,xn } > θ1/2 andmax{x1, . . . ,xn } < θ1/2 both have probability at most
1

2
.

Consider the threshold stopping rule that selects the first pair (xi , ti ) with xi > θ1/2, and consider

the one whose selection criterion is xi ≥ θ1/2. The proof of Theorem 1 shows that at least one of

these two stopping rules fulfills a prophet inequality with factor 1/2.

When the points {(xi , ti )}
n
i=1 are i.i.d. and the distributions of xi and ti are atomless and inde-

pendent, with cumulative distribution functions F and G, respectively, choose threshold θ1−1/e
such that Pr(max{x1, . . . ,xn } > θ1−1/e ) = 1 − 1

e . The proof of Theorem 2 shows that the threshold

stopping rule that selects the first pair (xi , ti ) such that xi > θ1−1/e fulfills a prophet inequality
with factor 1 − 1

e . Now let βn be the solution to∫ n

0

(1 + z + βne
z )−1 dz = 1,
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and let zn (s ) be the solution of the differential equation

dz

ds
= 1 + z + βne

z

with initial condition z (0) = 0. The oblivious stopping rule that accepts the first (xi , ti ) such that

1 − F (xi ) < z (G (ti ))/n

fulfills a prophet inequality with factor α −
logn
n .

3.2 Reducing delegated search to prophet inequalities
Although delegated search problems and prophet inequalities appear unrelated at first glance, the

tight technical connection between them is explained by an observation which is extremely natural

in hindsight. Consider a change of variables that maps the agent’s utility y to a point t (y) ∈ [0, 1],
where the function t is monotonically decreasing. In a single proposal mechanism with eligible set

R, the agent submits the eligible proposal (x ,y) with the highest y value. Similarly, an oblivious

stopping rule with eligible setQ selects the earliest eligible point (x , t ). Since the change of variables
t (y) is monotonically decreasing, the two selection criteria are equivalent! Thus, designing single

proposal mechanisms that yield high utility for the principal is equivalent to designing oblivious

stopping rules that yield a high expected value.

In more detail, let t be any continuous, monotonically decreasing bijection from [0,∞) to
(0, 1], for example t (y) = e−y . Under the mapping H : Ω → (R+ × [0, 1]) defined by H (ω) =
(x (ω), t (y (ω))), any distribution on sets of solutions {ω1, . . . ,ωn } induces a distributionD on sets of

pairs {(x1, t1), . . . , (xn , tn )}. In particular, our distributional model in which the agent draws n i.i.d.

samples from Ω is mapped, under this correspondence, to a member of the family of distributions

Diid,n .

There is also a reverse correspondence from oblivious stopping rules to single proposal mech-

anisms and their interim allocation functions. The oblivious stopping rule ρQ with eligible set

Q corresponds to the single proposal mechanism with eligible set H−1 (Q ). More precisely, if

R = H−1 (Q ) and σ is a best response to the single proposal mechanismM with eligible set R, then
for any sequence of samplesω = (ω1, . . . ,ωn ), we have

ρQ (H (ω)) = H ( fM,σ (ω)).

In other words, suppose we run the mechanismM ; the agent draws a sequence of samples; and we

let the agent choose the best one (for the agent) that belongs to R. This procedure is equivalent to
running the oblivious stopping rule ρQ on the sequence obtained by transforming all of the agents’

samples to points (xi , ti ) = (xi , t (yi )), and selecting the earliest such point (ordered by ti ) that
belongs to Q . Under this correspondence, threshold stopping rules correspond to single proposal

mechanisms in which a solution is deemed eligible if the principal’s utility exceeds a specified

threshold. Note that this subset of single proposal mechanisms can be implemented even when the

agent’s utility is unobservable.

Combining these observations with Theorems 1 to 3, we obtain the following theorem.

Theorem 4. In the distributional model, suppose the agent draws n i.i.d. samples, and let x∗ denote
the utility the principal would attain if she could directly choose her favorite among these n samples.
(1) There is always a set X of the form (θ ,∞) or [θ ,∞) such that a single proposal mechanism with

eligible set {ω | x (ω) ∈ X } ensures that the principal’s expected utility is at least 1

2
E[x∗].

(2) If the principal and agent have independent utilities, each drawn from an atomless distribution,
then a single proposal mechanism that accepts any proposal satisfying x (ω) > θ , for a suitable
choice of θ , ensures that the principal’s expected utility is at least

(
1 − 1

e

)
E[x∗].
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(3) If the principal and agent have independent utilities, each drawn from an atomless distribution,
and the principal can observe the agent’s utility, then a single proposal mechanism that accepts
any proposal satisfying x (ω) > θ (y (ω)), for a suitable choice of the function θ (·), ensures that
the principal’s expected utility is at least

(
α −O

(
logn
n

))
E[x∗], where α is the constant defined

in Theorem 3.

It is possible to show that the bounds in all three parts of the theorem are tight with respect to

the assumptions made in their respective statements.

4 BINARY OUTCOMES
Recall the binary model from Section 1: The potential solutions come from a large discrete set

Ω = {ω1,ω2, . . . ,ωm } and the agent’s role is to explore which of these options are feasible to

implement. If ωi is feasible, it yields utility xi for the principal and yi for the agent — where the

pair (xi ,yi ) is commonly known to both parties — and if ωi is infeasible it yields zero utility for

both parties. To explore the feasibility of solution ωi the agent must incur a cost of ci ≥ 0, and the

probability of success is pi > 0, independently of the success of other solutions. These quantities

ci ,pi are again commonly known to both parties. We will assume that ci ≤ piyi for each solution

yi , since otherwise it is against the agent’s self-interest to explore ωi , even if it were assured that

the solution would be adopted if feasible.

4.1 Optimal search policies: Weitzman’s box problem
If the principal were conducting the search by herself (without delegation to an agent), this model

would correspond to a special case of the box problem introduced by Weitzman [22]. The optimal

search policy is simple but surprisingly subtle: it assigns to each option a priority zi satisfying
E[(xi − zi )

+
] = ci — which in our case entails setting zi = xi − ci/pi — and then explores options

in decreasing order of priority, selecting the first feasible one in this ordering or stopping when all

remaining unexplored options have zi < 0.

Now suppose that the principal instead delegates the search to an agent who bears the cost of

exploration, by running a single-proposal mechanism with eligible set R. Then the agent faces a

different instance of the box problem, in which the set of options is limited to R, and the costs and

success probabilities of the options is the same as before, but the value of option i (if feasible) is yi
rather than xi . This means the agent prioritizes boxes in decreasing order ofwi = yi − ci/pi rather
than zi = xi − ci/pi , and recommends the first box in this ordering that is discovered to be feasible.

To summarize, the delegated search problem in the binary model is analogous to Weitzman’s

box problem, but with the important distinction that the searcher (the principal) is not allowed to

choose the order in which to open the boxes. Instead the problem specifies an exogenous ordering

of the boxes — corresponding to the agent’s ranking of options by decreasingwi — and the searcher

is only free to decide which boxes in this sequence should be opened and which ones should be

skipped, corresponding to the principal’s problem of choosing the set R. Since this problem may be

of independent interest, we devote Theorem 5 below to presenting a solution that always achieves

at least half of the expected value of running the optimal search procedure that is allowed to

inspect the boxes in any order it desires. Interestingly, the analysis is based on prophet inequalities,

specifically Theorem 1 and its proof. It implies there is an approximately optimal mechanism with

the following structure. For any half-infinite interval X of the form X = (θ ,∞) or X = [θ ,∞), let
R (X ) = {ωi | zi ∈ X } and defineM (X ) to be the single-proposal mechanism in which a proposal

ωi is eligible if it is feasible and belongs to R (X ).
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4.2 The Box Problem with an Exogenous Ordering
In this section we recapitulate some background material about Weitzman’s 1979 box problem.

In this problem
4
there arem boxes, each containing an independent random prize. The prize in

box i is denoted vi , and the cost of opening the box is ci . A searcher may open any number of

boxes sequentially, or may cease the search at any time and claim a prize from at most one of the

open boxes. The problem is to design an optimal sequential search policy. Weitzman proves that

if each box is assigned a priority zi defined by the equation E[(vi − zi )
+
] = ci , then the optimal

sequential search policy opens boxes in decreasing order of priority, stopping at the first time when

the highest prize inside an open box exceeds the highest priority of a closed box, or at the first time

when the priority of every remaining closed box is negative, whichever comes sooner.

Kleinberg et al. [16] provided a proof of optimality of Weitzman’s procedure in which the priority

zi is interpreted as the “strike price” of a real option with fair value ci . An important quantity in

their analysis is the “covered call value”, which is simply the random variable κi = min{vi , zi }. We

restate the following lemma
5
from their work.

Lemma 2. (Kleinberg et al. [16]) For any sequential search procedure and any box i , let Ai ,Bi be
the indicator random variables of the event that the procedure selects box i and the event that it opens
box i , respectively. The inequality

E[Aivi − Bici ] ≤ E[Aiκi ] (2)

is satisfied by every search procedure, and equality holds if and only if the search procedure is non-
exposed, meaning that Ai = Bi at every sample point where vi > zi .

Corollary 1. For any sequential search procedure, the expected net value of running the procedure
(i.e., the value of the selected box minus the combined cost of opening boxes) is bounded above by the
expectation of the maximum covered call value, i.e.

E


m∑
i=1

Aivi −
m∑
i=1

Bici


≤ E



m∑
i=1

Aiκi


. (3)

The corollary is immediate, by summing inequality (2) over boxes i = 1, . . . ,m.

Now consider the box problem with an exogenous ordering of boxes, where the searcher is

limited to considering the boxes one by one in the specified order, and once she decides to leave

a box closed or to leave the prize within unclaimed, she cannot later return to the box and open

it or claim its prize. We define a type of policy that we call a κ-thresholding policy; the reason
for the name will become apparent in the subsequent Lemma 3, which shows that these policies

correspond to a threshold rule applied to the sequence of covered call values κi .

Definition 4. A κ-thresholding policy for the box problem with exogenous ordering is a policy

that operates as follows. There is a half-infinite interval X = (θ ,∞) or X = [θ ,∞) called the target
interval. The policy declines to open any box i with zi < X . Otherwise, if zi ∈ X , the policy opens

the box and claims the prize inside if and only if vi ∈ X .

Lemma 3. Every κ-thresholding policy is non-exposed. The expected net value of running a κ-
thresholding policy with target interval X is exactly the same as the expected value selected by the
threshold stopping rule that observes the random sequence κ1,κ2, . . . ,κn and selects the first element
of this sequence that belongs to X .
4
The following description constitutes a special case of Weitzman’s problem. The general case incorporates geometric time

discounting and time delays.

5
Lemma 1 of the full version of their paper, http://dx.doi.org/10.2139/ssrn.2753858.
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Proof. The policy is non-exposed because zi < X implies Ai = Bi = 0, while zi ∈ X and vi > zi
imply Ai = Bi = 1. Hence the left and right sides of (2) are equal for every box, and the net value

of running the policy is E
[∑m

i=1Aiκi
]
, i.e. the expected covered call value of the box the policy

selects. By design, the policy perfectly simulates the threshold stopping rule that chooses the first

element of the sequence κ1, . . . ,κn that belongs to X ; this is because it selects the first box such
that zi and vi both belong to X , which is also the first box such that κi belongs to X . □

Theorem 5. For every instance of the box problem with exogenous ordering, there is aκ-thresholding
policy whose expected net value is at least half that of Weitzman’s optimal search procedure (which
endogenously selects the ordering of the boxes).

Proof. Lemma 3 reduces the analysis of κ-thresholding policies to a question about prophet

inequalities. In particular, the expected net value of running a κ-thresholding policy is equal to

the expected covered call value of the random element selected from the sequence κ1, . . . ,κn by

a particular threshold stopping rule. Since Samuel-Cahn’s 1984 prophet inequality (Theorem 1

above) implies that threshold stopping rules can always attain at least half the expectation of the

maximum random variable in the sequence, it follows that there is a κ-thresholding policy whose

expected net value is at least half the expectation of the maximum covered call value. Corollary 1

ensures that the latter is an upper bound on the expected net value of Weitzman’s optimal search

procedure. □

4.3 An approximately optimal mechanism
Recall that for a half-infinite interval X = (θ ,∞) or X = [θ ,∞), the mechanismM (X ) is defined to

be the single proposal mechanism whose eligible set consists of solutions ωi that are feasible and

satisfy zi ∈ X .

Theorem 6. There exists a choice of X such that the expected net value of mechanism M (X ) —
i.e., the principal’s value for adopting the agent’s proposal, if adopted, minus combined cost of all
the alternatives explored — is at least half of the expected net value the principal could achieve by
performing the optimal search herself (without delegation).

Proof. Convert the delegated search problem into a box problem with exogenous order, where

the order is defined by sorting the solutions ω1, . . . ,ωm in non-increasing order of the agent’s

priority valuewi = yi − ci/pi , and the value vi inside box i is defined to be xi if ωi turns out to be

feasible, 0 otherwise.

According to Theorem 5 there exists a choice ofX such that the κ-thresholding policy with target

set X attains at least half the expected net value of the optimal search procedure. This thresholding

policy goes through boxes in the given order, i.e. descendingwi , and opens only those with zi ∈ X ,

selecting the first one such that vi ∈ X . Note that among the boxes which the policy opens, the first

one with vi ∈ X is also the first one corresponding to a feasible ωi . This is because an infeasible ωi
has vi = 0 hence vi < X , whereas a feasible ωi has vi = xi ≥ zi , hence vi ∈ X .

Recall from Section 4.1 that the agent’s best response to mechanismM (X ) is to go through the

elements of R (X ) in decreasing order ofwi , stopping and proposing the first one that is discovered

to be feasible. This is exactly the behavior of the κ-thresholding policy with target set X , as derived

in the preceding paragraph. Hence the mechanismM (X ) coupled with the agent’s best response

behavior emulates the κ-thresholding policy which attains at least half the expected net value of

the optimal search procedure. □
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4.4 Limiting the number of samples
In some cases the number of distinct potential solutions,m, may be prohibitively large, and the

agent may only have the power to explore the feasibility of a limited number of them, n < m. In

this case, if the principal were to conduct the search autonomously without delegation — subject

to the same costs ci and the same upper bound, n, on the total number of solutions that can be

tested for feasibility — it may require a very complex procedure. Nevertheless, we will provide in

this section a simple delegated search mechanism such that it is easy for the agent to compute

a search procedure that is a best response to the mechanism, and the outcome of running the

mechanism with this best response attains at least
1

2

(
1 − 1

e

)
≈ 0.316 of the net expected value of

the (potentially complex) optimal procedure.

The key observation is the following lemma, which provides a useful upper bound on the value

of running the optimal search procedure.

Lemma 4. In the box problem withm > n boxes, if the searcher is limited to open at most n boxes
before claiming a prize, then the expected net value of any search procedure is bounded above by
E[maxi ∈S κi ] where S is the random set of boxes that the procedure opens.

Proof. Sum up the inequality (2) over all boxes and note that Ai = 0 for i < S , to derive

E


m∑
i=1

Aivi −
m∑
i=1

Bici


≤ E



∑
i ∈S

Aiκi


.

The lemma follows by noting that

∑
i ∈S Aiκi ≤ maxi ∈S κi because

∑
i ∈S Ai ≤ 1. □

Lemma 5. There exists a (non-random) set T of cardinality n, such that E[maxi ∈T κi ] ≥ (1 −
1

e )E[maxi ∈S κi ], where S is the random set of solutions explored by the optimal search procedure
subject to a contraint of exploring at most n solutions.

Proof. The problem of adaptively exploring a random set S of at most n solutions to maximize

E[maxi ∈S κi ] is a special case of the stochastic monotone submodular function maximization

problem studied by Asadpour and Nazerzadeh [7], in which the role of the monotone submodular

function f : Rn+ → R+ is played by the function f (λ1, . . . , λn ) = max{λi }, and role of the matroid

constraint is played by the cardinality constraint that at most n elements may be probed. Theorem

1 of [7], which asserts that the adaptivity gap of stochastic monotone submodular maximization is

e
e−1 , specializes in the present case to the assertion stated in the lemma. □

Theorem 7. Consider delegated search in the binary model with a constraint that no more than
n solutions can be examined for feasibility. There exists a mechanism that attains at least 1

2

(
1 − 1

e

)
fraction of the expected net value of the optimal search procedure subject to the same limitation of
examining at most n solutions.

Proof. According to Lemmas 4 and 5, there is an n-element set T ⊆ Ω such that the optimal

search procedure that is limited to explore only solutions in T is able to attain at least 1 − 1

e
fraction of the expected net value of the optimal search procedure that is limited to examine at

most n solutions but can (adaptively) choose any n elements of Ω during its search. When the set

of solutions is restricted to T , the constraint that at most n solutions can be examined becomes

irrelevant since T only has n elements. Thus, Theorem 6 guarantees the existence of a delegated

search mechanism that is at least half as good as the optimal search procedure limited to T , and is

consequently at least
1

2

(
1 − 1

e

)
times as good as the optimal search procedure limited to examine

at most n solutions. Moreover, by applying the algorithm in Asadpour and Nazerzadeh [7] used to
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prove Lemma 5, we can implement this policy in polynomial time with a loss of a further additive ε

in the approximation ratio, thus obtaining a bound of
1

2

(
1 − 1

e − ε
)
efficiently. □
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