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Abstract

We generalize Cohen, Goémez-Rodriguez,
and Satta’s (2011) parser to a family of
non-projective transition-based dependency
parsers allowing polynomial-time exact infer-
ence. This includes novel parsers with better
coverage than Cohen et al. (2011), and even a
variant that reduces time complexity to O(n®),
improving on prior bounds. We hope that this
piece of theoretical work inspires design of
novel transition systems with better coverage
and better run-time guarantees.

1 Introduction

Non-projective dependency trees are those con-
taining crossing edges. They account for 12.59%
of all training sentences in the annotated Uni-
versal Dependencies (UD) 2.1 data (Nivre et al.,
2017), and more than 20% in each of 10 languages
among the 54 in UD 2.1 with training treebanks.
But modeling non-projectivity is computationally
costly (McDonald and Satta, 2007).

Some transition-based dependency parsers have
deduction systems that use dynamic programming
to enable exact inference in polynomial time and
space (Huang and Sagae, 2010; Kuhlmann et al.,
2011). For non-projective parsing, though, the
only tabularization of a transition-based parser is,
to our knowledge, that of Cohen et al. (2011).
They define a deduction system for (an isomor-
phic variant of) Attardi’s (2006) transition sys-
tem, which covers a subset of non-projective trees.
The exact inference algorithm runs in O(n”) time,
where n denotes sentence length.

In this paper, we show how Cohen et al.’s (2011)
system can be modified to generate a new fam-
ily of deduction systems with corresponding tran-
sition systems. In particular, we present three
novel variants of the degree-2 Attardi parser, sum-
marized in Fig. 1 (our technique can also be ap-
plied to generalized Attardi (2006) systems; see
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§3.2). The first two bring non-projective cover-
age for UD 2.1 to as high as 95.99% by adding
extra transitions, and yet retain the same time
complexity. The third reduces time complex-
ity for exact inference to O(n%) and space com-
plexity from O(n?) to O(n*), while still improv-
ing empirical coverage from 87.24% to 93.16%.!
Code and full statistics for all treebanks can
be found at https://github.com/tzshi/
nonproj-dp-variants—-naacl2018.

These theoretical improvements are a step to-
wards making recent state-of-the-art results in
transition-based parsing with exact inference (Shi
et al., 2017) extensible to practical non-projective
parsing, by exemplifying the design of transi-
tion systems with better coverage on highly non-
projective datasets and, for one variant, bringing
the runtime complexity one level closer to feasi-
bility.

2 Transition-based Parsing

We first introduce necessary definitions and nota-
tion.

2.1 A General Class of Transition Systems

A transition system 1is given by a 4-tuple
(C,T,c*, C;), where C is a set of configurations,
T is a set of transition functions between config-
urations, ¢’ is an initialization function mapping
an input sentence to an initial configuration, and
C; < C defines a set of terminal configurations.

"Faster exact inference algorithms have been defined for
some sets of mildly non-projective trees (e.g. Pitler et al.
(2013); see Gomez-Rodriguez (2016) for more), but lack an
underlying transition system. Having one has the practical
advantage of allowing generative models, as in Cohen et al.
(2011), and transition-based scoring functions, which have
yielded good projective-parsing results (Shi et al., 2017); plus
the theoretical advantage of providing a single framework
supporting greedy, beam-search, and exact inference.
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Figure 1: Attardi’s (2006) transition system of degree 2 and our variants. Solid arrows denote the inven-
tory of reduce transitions; each arrow points from the head to the modifier of the edge created by that
transition. The degree of a transition is the distance between the head and modifier. Green highlights
the single degree-3 transition. Thick arrows and gray dotted arrows represent additional and deleted
transitions with respect to the original Attardi (2006) system. Coverage refers to the percentage of non-
projective sentences (a total of 76,084 extracted from 604,273 training sentences in UD 2.1) that the

systems are able to handle.

We employ a tripartite representation for con-
figurations: (o, 3, A), where the three elements
are as follows. o and 3 are disjoint lists called
the stack and buffer, respectively. Each depen-
dency arc (h,m) in the resolved arcs set A has
head h and modifier m. For a length-n input
sentence w, the initial configuration is ¢*(w) =
({1, 10,1, ...,n], &) where the 0 in the initial buffer
denotes a special node representing the root of the
parse tree. All terminal configurations have an
empty buffer and a stack containing only 0.

Indexing from 0, we write s; and b; to denote
item ¢ on the stack (starting from the right) and
item j on the buffer (from the left), respectively.
We use vertical bars to separate different parts of
the buffer or stack. For example, when concerned
with the top three stack items and the first item on
the buffer, we may write o|s2|s1|sg and bg|.

2.2 Attardi’s (2006) System

We now introduce the widely-used Attardi (2006)
system, which includes transitions that create arcs
between non-consecutive subtrees, thus allowing it
to produce some non-projective trees. To simplify
exposition, here we present Cohen et al.’s (2011)
isomorphic version.

The set of transitions consists of a shift transi-
tion (sh) and four reduce transitions (re). A shift
moves the first buffer item onto the stack:
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sh[(a, b0|5, A)] = (O”bo, 6,A)

A reduce transition rey, ,,, creates a dependency
arc between h (head) and m (modifier) and re-
duces m. For example,

reso.s1[(als1]s0, 8, A)] = (a]s0, B, A v {(s0,51)}) -

Row 1 of Fig. 1 depicts the four Attardi reduces.

The distance between h and m in a rey, ,, tran-
sition is called its degree. A system limited to
degree-1 transitions can only parse projective sen-
tences. As shown in Fig. 1, Attardi’s (2006)
system has two degree-2 transitions (reg, s, and
res,.s,) that allow it to cover 87.24% of the non-
projective trees in UD 2.1. More generally, an At-
tardi system of degree D adds rey, s, and re,,, s,
to the system of degree D — 1.

3 Improving Coverage

A key observation is that a degree-D Attardi sys-
tem does not contain all possible transitions of
degree within D). Since prior empirical work
has ascertained that transition systems using more
transitions with degree greater than 1 can han-
dle more non-projective treebank trees (Attardi,
2006; Gomez-Rodriguez, 2016), we hypothesize
that adding some of these “missing” reduce transi-
tions into the system’s inventory should increase
coverage. The challenge is to simultaneously



maintain run-time guarantees, as there exists a
known trade-off between coverage and complex-
ity (Gomez-Rodriguez, 2016). We want to use
Cohen et al.’s (2011)’s exact-inference algorithm
for Attardi-based degree-D non-projective depen-
dency parsing systems, which was previously ana-
lyzed as having O(n?*P*+1) time complexity.> Our
contribution is systems that improve the degree-2
Attardi (2006) system’s non-projective coverage,
and yet (i) one has degree 3 but still the same
O(n") runtime as Cohen et al. (2011), rather than
O(n>3*YY; and (ii) another has degree 2 but bet-
ter runtime than Cohen et al.’s (2011) system.
Here, we first sketch the existing exact inference
algorithm, and then present our variants.

3.1 Cohen et al.’s (2011) Exact Inference

The main idea of the algorithm is to group tran-
sition sequences into equivalence classes and con-
struct longer sequences from shorter ones. For-
mally, for m > 1, Cohen et al. (2011) define
a length-m computation as a sequence of m ap-

. . ... . . t1
plications of transitions to configurations: cg —

ISREE Im, Cm» Where t; € T and t;(c;—1) ¢
for ¢ € 1..m. As depicted in Fig. 2, a length-
m I-computation [hy,1, he, hs, j] is any length-m
computation where (1) ¢y (olh1,i]8,A) and
¢m = (o|ha|hs, |5, A") for some o, 8, B/, A,
and A’; and (2) for all k € 1..m, ¢ s stack has o
as base and length at least |o| 4+ 2. Only condition
(1) is relevant to this paper:* it states that the net
effect of an I-computation is to replace the right-
most item Ay on the stack with items ho and hs,
while advancing the buffer-start from i to j.

The dynamic programming algorithm is speci-
fied as a deduction system, where each transition
corresponds to a deduction rule. The shift rule is:

. [h17i7h27h37j]
“[h3, 4, s, G, 5+ 1]

Each reduce rule combines two I-computations
into a larger I-computation, e.g. (see Fig. 3):

[hi,4, ho, h3, k] [h3,k, ha, hs, j]
[hluiv h27 h57j]

2While O(n") or O(n'?) is not practical, the result is
still impressive, since the search space is exponential. Cohen
et al. (2011) were inspired by Huang and Sagae’s (2010) and
Kuhlmann et al.’s (2011) dynamic-programming approach
for projective systems.

3See Cohen et al. (2011) for full description.

“Condition (2) is used for proving completeness of the de-
duction system (Cohen et al., 2011).

r€so,s1 -

i
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Figure 2: From Cohen et al. (2011, Fig. 2):

schematic of I-computation [hy, i, ha, hs, j].
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Figure 3: Illustration of deduction rule res s, .

with the side condition that h4 modifies hs.> Other
reduce transitions have similar deduction rules,
with the same two premises, but a different con-
clusion depending on the reduced stack item. As
an illustration:

[h1,4, ho, h3, k] [hs, k, ha, hs, j]
[h1>i7h2)h4)j] '

M€s5,50 +

The goal of deduction is to produce the I-
computation [e, 0, €, 0, €], using the shift and re-
duce deduction rules starting from the axiom
[€,0,€,0, 1], corresponding to the first and manda-
tory shift transition moving the root node from
buffer to stack. e stands for an empty stack or
buffer. As analyzed by Cohen et al. (2011), di-
rect tabularization for this deduction system takes
O(n®) space and O(n®) time. With adaptation
of the “hook trick” described in Eisner and Satta
(1999), we can reduce the running time to O(n”).

3.2 Our New Variants

In this section, we modify Cohen et al.’s (2011) set
of reduce deduction rules to improve coverage or
5This side condition can be interpreted as a grammar rule

(for a recognizer) or as an edge to be scored and added to the
parse tree (for a parser).



time complexity. Since each such deduction rule
corresponds to a reduce transition, each revision to
the deduction system yields a variant of Attardi’s
(2006) parser. In other words, generalization of
the deduction system gives rise to a family of non-
projective transition-based dependency parsers.

We first explain why there are exactly nine
reduce transitions R = {reg, s, r€s; 505 M€s0,50>
F€ss,50 M€s1,505 M€s52,515 [€ho.s0+ [€ho.s15 [€by,so 1  that
can be used in Cohen et al.’s (2011) exact infer-
ence algorithm, without allowing a reduction with
head b; for i > 1.5 (Note that Cohen et al.’s
(2011) reduce rules are precisely the first four el-
ements of R.) From Fig. 3 we infer that the con-
catenation of I-computations [hy, i, ha, hs, k| and
[hs, k, ha, hs, j] yields a configuration of the form
(o|ha|hy|hs, 7|5, A). For the application of a re-
duce rule to yield a valid I-computation, by condi-
tion (1) of the I-computation definition, first, the
head and modifier must be selected from the “ex-
posed” elements hs, hy, hs, and j, corresponding
to s2, S1, Sg, by, respectively; and second, the mod-
ifier can only come from the stack. R is precisely
the set of rules satisfying these criteria. Further,
every reduce transition from R is compatible with
Eisner and Satta’s (1999) “hook trick”. This gives
us the satisfactory result that the O(n”) running
time upper bound still holds for transitions in R,
even though one of them has degree 3.

Next, we consider three notable variants within
the family of ‘R-based non-projective transition-
based dependency parsers. They are given in
Fig. 1, along with their time complexities and em-
pirical coverage statistics. The latter is computed
using static oracles (Cohen et al., 2012) on the
UD 2.1 dataset (Nivre et al., 2017).” We report
the global coverage over the 76,084 non-projective
sentences from all the training treebanks.

One might assume that adding more degree-
1 transitions wouldn’t improve coverage of trees
with non-crossing edges. On the other hand,
since their addition doesn’t affect the asymptotic
run-time, we define ALLDEG1 to include all
five degree-1 transitions from R into the Attardi
(2006) system. Surprisingly, using ALLDEG1 im-
proves non-projective coverage from 87.24% to
93.32%.

Furthermore, recall that we argued above that,

%Such reductions might prove interesting in the future.

"We also compare results from symbolic execution of the
dynamic programming algorithms on short sentences as a
double check.
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by construction, using any of the transitions in
R still preserves the original O(n”) run-time up-
per bound for Cohen et al.’s (2011) exact infer-
ence algorithm. We therefore define ALL to in-
clude all 9 reduce transitions in R; it runs in time
O(n") despite the fact that rep, s, € R has de-
gree 3, a significant improvement over the best
previously-known bound for degree-3 systems of
O(n'?). Moreover, as shown in Fig. 1, this variant
improves non-projective coverage to 95.54%.

Now, if our goal is to reduce run-time, we can
start with an Attardi (2006) system of degree 1 in-
stead of 2, which, as previously mentioned, can
only handle projective sentences, but which has
runtime O(n®D*1) = O(n*). Reasoning about
the analog of R with respect to Kuhlmann et al.’s
(2011) exact inference algorithm — the projective
predecessor of Cohen et al. (2011) — brings us
to the degree-2 set of reduce rules {rey, s, , res; .,
rep, s, ;- This system, however, can only handle
leftward non-projective arcs.

Instead, we return to ALL, but discard transi-
tions reducing s, thus deriving ALLsgs1, which
still produces both left and right non-projective
arcs, but has a run-time lower than O(n'),
which we show as follows. Since s2 cannot
be reduced, when concatenating [hy, 1, ho, hs, k|
and [hs, k, ha, hs, j], the larger I-computation
we deduce will be either [hq,i,hs,hy,j] or
[h1,1, ha, hs, j], so that the first three indices of
the conclusion item remain the same as those of
the first premise. In addition, the only remaining
deduction rule, a shift, produces deduction items
of the form [hy, j, h1,j,j + 1]. Hence, all deriv-
able items will be of the form [hq,i, hy, hs, ],
with only four unique indices, instead of five.
It follows that the exact inference algorithm for
this variant runs in O(n%) time, improving from
O(n"). The tabularization takes O(n?) space, a
reduction from the original O(n®) as well. In
terms of empirical coverage, this new system can
handle 93.16% of the non-projective sentences in
UD 2.1, more than Attardi’s (2006) system, but
fewer than our other two variants.

Generally, for a degree-D Attardi (2006)-based
system, one may apply our first two variants to im-
prove its non-projective coverage while maintain-
ing the previously-analyzed O(n3P*!) time com-
plexity, or the third variant to reduce its time com-

plexity down to O(n3P), and space complexity
from O(n?P*1) to O(n?P).



4 Conclusion

We have introduced a family of variants of Co-
hen et al.’s (2011) Attardi-based transition sys-
tem and its associated dynamic programming al-
gorithm. Among these, we have highlighted novel
algorithms that (1) increase non-projective cov-
erage without affecting computational complexity
for exact inference, and (2) improve the time and
space complexity for exact inference, even while
providing better coverage than the original parser.
Specifically, our ALLsgs; runs in O(n®) time and
O(n*) space (improving from O(n") and O(n?),
respectively) while providing coverage of 93.16%
of the non-projective sentences in UD 2.1.

Exact inference for transition-based parsers has
recently achieved state-of-the-art results in projec-
tive parsing (Shi et al., 2017). The complexity im-
provements achieved in this paper are a step to-
wards making their exact-inference, projective ap-
proach extensible to practical, wide-coverage non-
projective parsing.
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