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A Lagrangian formulation for the dynamics of unsteady point vortices is introduced and implemented. 
The proposed Lagrangian is related to previously constructed Lagrangian of point vortices via a gauge-
symmetry in the case of vortices of constant strengths; i.e., they yield the exact same dynamics. However, 
a different dynamics is obtained in the case of unsteady point vortices. The resulting Euler–Lagrange 
equation derived from the principle of least action exactly matches the Brown–Michael evolution 
equation for unsteady point vortices, which was derived from a completely different point of view; based 
on conservation of linear momentum. The proposed Lagrangian allows for applying Galerkin techniques 
to the weak formulation of the vortex dynamics. The resulting dynamic model of time-varying vortices 
is applied to the problem of an impulsively started flat plate as well as an accelerating and pitching 
flat plate. In each case, the resulting lift coefficient using the dynamics of the proposed Lagrangian is 
compared to that using previously constructed Lagrangian, other models in literature, and experimental 
data.

© 2018 Elsevier Masson SAS. All rights reserved.
1. Introduction

Reduced-order modeling of unsteady aerodynamics has been a 
topic of research interest since the early formulations of Prandtl 
[1] and Birnbaum [2]. These formulations were followed by the 
seminal works of Wagner [3] and Theodorsen [4]; the later efforts 
of Leishman [5,6] and Peters [7,8]; and in more recent papers by 
Ansari et al. [9,10], Taha et al. [11] and Yan et al. [12] among oth-
ers. Because of its ability to account for deforming wakes associ-
ated with relatively large amplitude maneuvers, flexible wings, and 
arbitrary time-varying wing motions, development of the vortex 
lattice method (UVLM) [13–19] represents a hallmark in the his-
tory of unsteady aerodynamic modeling. In DVMs [20–22], a point 
vortex is released at each time step to satisfy the Kutta condition 
at the sharp edge it sheds from. Moreover, all of the shed vortices 
move with constant strengths that have been dictated at the shed-
ding time by the Kutta condition. As such, Helmholtz conserva-
tion laws [23] dictate that the dynamics of these constant-strength 
point vortices will force them to convect with the fluid’s local 
velocity, i.e. the Kirchhoff velocity, see Saffmann [24], pp. 10. Al-
though DVMs were used to develop efficient numerical algorithms 
to solve for aerodynamic quantities associated with unsteady ma-
neuvers, they require shedding point vortices at each time step, 
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which increases the number of degrees of freedom considerably 
as the simulation time increases [25,26]. As a remedy, it has been 
suggested to replace the continuous shedding of constant-strength 
point vortices [27] with discontinuous/intermittent shedding of 
varying-strength point vortices, i.e. the strength of the most re-
cent shed point vortex is adjusted each time step to satisfy the 
Kutta condition, instead of shedding a new vortex to achieve the 
same objective. Shedding is deactivated until the strength of the 
unsteady point vortex reaches an extremum [28]. At that instant, 
a new point vortex is shed from the same edge and the previous 
vortex is convected downstream with the Kirchhoff velocity while 
keeping its strength constant.

Variational principles have been shown to be useful physical-
based approaches for deriving governing equations of both solids 
and fluids [29,30]. These equations are obtained by setting the first 
variation of the action, which is the time integral of a candidate 
Lagrangian function, to zero. Clebsh [29] and Hargreaves [31] de-
rived the equations of motion for an inviscid, incompressible flow 
by defining the Lagrangian to be the integral of the fluid pres-
sure. Later, Bateman [32] extended the principle to the case of 
compressible irrotational flow. Luke [33] showed that using vari-
ational principles, one is able to provide the boundary conditions 
by perturbing the limits of integration (Leibniz integral rule). Re-
garding the vortex motion, Bateman [32], followed by Serrin [34], 
showed that the equations of motion of vortex lines could be ob-
tained from a variational approach with the ability to regularize 
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Nomenclature

α flat plate angle of attack
c flat plate chord
Fx, F y flat plate forces in x and y directions respectively
�k kth vortex strength
wk regularized fluid velocity of kth vortex
W , W̃ Kirchhoff–Routh functions in flat plate and circle plane 

respectively
zc flat plate centroid position in Z plane

zk kth vortex position in Z plane (x + iy)
ζk kth vortex position in ζ plane (ξ + iη)
ζ

(I)
k Image position of kth vortex in ζ plane (ξ + iη)

| | Absolute value of complex number, |z| = √
x2 + y2

(̇ ) derivative w.r.t. time
( )∗ conjugate
( )′ derivative w.r.t. ζ , d

dζ
the infinite velocity at the vortex center (Sec. 4 in Ref. [32]). These 
variational principles were also used to derive governing equations 
for the cases of fluid motion with distributed vorticity [35] or point 
vortices [36] with no boundaries, and for the case of a fluid-body 
interaction [37] that considered constant strength vortices only. 
Advances made in studying the Hamiltonian dynamics of point 
vortices [38,36,39] point to the potential of developing a varia-
tional principle governing the dynamics of unsteady point vortices 
interacting with a circular cylinder or a body conformal to it (e.g., 
airfoil), which is the objective of this work. Such a formulation 
will allow satisfaction of conservation laws via adding constraints 
to the variational problem. In addition, it will enable compact and 
efficient coupling with other variational principles governing rigid 
body and structural dynamics for coupled unsteady flight dynam-
ics analysis and/or aeroelastic analysis. To date, there have been no 
developments for variational principles governing the dynamics of 
unsteady point vortices interacting with solid bodies enclosed by a 
non-zero total circulation.

The dynamics of constant-strength, point vortices in an invis-
cid fluid, which is governed by the Biot–Savart law, was derived 
by Chapman [38] from an action whose Lagrangian is the sum-
mation of two functions. The first function is a bilinear function 
in the vortex spatial coordinates and its velocity, and the sec-
ond one is the Routh stream function. Recently, Shashikanth et al. 
[39] proved that the equations of motion for a cylinder moving in 
the presence of constant-strength vortices of zero sum (i.e., zero 
total circulation), known as Foppl problem [40,41], have a Hamil-
tonian structure. Dritschel and Boatto [42] showed similar results 
for three dimensional differentiable surfaces conformal to a sphere.

In the present work, we present a new Lagrangian function 
for the dynamics of point vortices that is more general than 
Chapman’s [38]. We examined the relation between the proposed 
Lagrangian and Chapman’s Lagrangian for the cases of constant 
strength and time-varying point vortices. Interestingly, the pro-
posed Lagrangian dynamics of unsteady point vortices recovers 
the momentum based Brown–Michael model [43]. We applied the 
Galerkin technique to the resulting weak formulation of the time-
varying vortices for the problem of an impulsively started flat plate 
as well as an accelerating and pitching flat plate, with comparison 
to experimental data in the literature [44,45]. To the best of our 
knowledge, this is the first variational principle to govern the dy-
namics of unsteady point vortices.

2. Lagrangian dynamics of point vortices

2.1. General formulation

Considering the flow around a sharp-edged body (in the 
z-plane) and mapping it to the flow over a cylinder (in the 
ζ -plane) with an interrelating conformal mapping z = z(ζ ), as 
shown in Fig. 1, the regularized local fluid velocity (Kirchhoff ve-
locity) of the shed kth vortex is given by [46–48]
Fig. 1. Conformal mapping between a sharp-edged body and a circular cylinder.

dzk

dt
= wk(zk)

= 1

[z′(ζk)]∗ lim
ζ−→ζk

[
∂ F

∂ζ
− �k

2π i

1

ζ − ζk
− �k

4π i

z′′(ζ )

z′(ζ )

]∗ (1)

where F is the complex potential, �k is the strength of the kth vor-
tex, and the asterisk refers to a complex conjugate. The last term 
on the right hand side, which involves the second derivative of the 
transformation, was first derived by Routh then by Lin [46] and 
later by Clements [47].

Lin [49] showed the existence of a Kirchhoff–Routh function W
(Ref. [50] sec. 13.48) that relates the velocity components of the 
kth vortex to the derivatives of W , in a Hamiltonian form such 
that the velocity components of the vortex in z plane are

�kuk = ∂W

∂ yk

�k vk = −∂W

∂xk

(2)

The Kirchhoff–Routh function W̃ in the circle plane is related to 
the stream function ψ0 by [46,50,51]

W̃ (ξk, ηk) = �kψo(ξk, ηk)

+
∑

k,l,k �=l

�k�l

4π

[
ln |ζk − ζl| − ln |ζk − ζ I

l |
]

+
∑

k

�2
k

4π
ln|ζk − ζ

(I)
k |

(3)

where ψo is the stream function of the body motion (i.e., F =
F0 + ∑n

k=1 �k and F0 = φ0 + iψ0). Then the relation between the 
Kirchhoff–Routh function W in the flat plate plane and that in cir-
cle plane W̃ is given as [46]:

W = W̃ +
∑ �2

k

4π
ln| dz

dζ
| (4)
k
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It is noteworthy that, as shown by Lin [49], the term ρW is a mea-
sure of the kinetic energy, where ρ is the density of the fluid. As 
such, the equations of motion can be determined from an energy 
minimization process. More details about the Hamiltonian struc-
ture of the motion of point vortices are provided by Aref [52].

2.2. Proposed Lagrangian of point vortices

We postulate a new Lagrangian function for the motion of point 
vortices in an infinite fluid in the z-plane in the most basic form 
as

L(zk, z∗
k , żk, ż∗

k ) = 1

i

n∑
k=1

�kz∗
k żk + W (5)

where the first term is the bilinear function in variables zk and żk , 
and the second term is the Routh stream function

W = − 1

2π

∑
k,l,k �=l

�k�l ln(zk − zl)(zk − zl)
∗ (6)

It has to be pointed out that the variable zk and its conjugate 
z∗

k are treated as an independent variables. The bilinear nature of 
the first term ensures that the resulting equations of motion will 
involve only time derivatives of the first order. The same concept 
was introduced by Chapman whose Lagrangian is written as

L′(zk, z∗
k , żk, ż∗

k ) = 1

2i

n∑
k=1

�k(z∗
k żk − zk ż∗

k )

− 1

2π

∑
k,l,k �=l

�k�l ln(zk − zl)(zk − zl)
∗

= I0 + W

(7)

where I0 is one of the constants of motion associated with the 
motion of vortices of constant strengths in an infinite fluid. This 
Lagragian was then used in different contexts [53,54].

It is interesting to note that the proposed Lagrangian L and 
Chapman’s Lagrangian L′ are related via a gauge symmetry for the 
case of constant-strength vortices. That is, we have

L′ = L − 1

2i

d

dt

n∑
k=1

�k (8)

where �k = �k z∗
k zk is the angular momentum of the kth vortex 

about the origin. Note that the gauge symmetry between any two 
Lagrangian functions such as L and L′ implies that they add up to 
a total time derivative of some function, i.e., we have

L′ = L + d

dt
[F (q, t)] (9)

where q are the generalized coordinates. As such, it is said that L
and L′ are related by a gauge symmetry or a gauge transformation 
and that both are gauge invariant [55,56].

On the other hand, using Eq. (8), one may explain Chapman’s 
Lagrangian L′ as a constrained version of our proposed Lagrangian 
L to satisfy the constraint that the total angular momentum of the 
vortices about origin is conserved; i.e., d

dt

∑n
k=1 �k = 0.

2.3. Dynamics of a constant strength point vortices

To obtain the equations of motion for the case of vortices of 
constant strength, we define the action to be the integral of the 
Lagrangian
S =
t2∫

t1

L(zk, z∗
k , żk, ż∗

k )dt (10)

Applying the principle of least action, i.e., setting the first variation 
of the action integral S to zero, the corresponding Euler–Lagrange 
equations are written as

d

dt

(
∂L

∂ żk

)
− ∂L

∂zk
= 0 (11)

which yields the Biot–Savart law [57,50,19] that governs the mo-
tion of point vortices and is given by

ż∗
k = 1

2π i

∑
k,l,k �=l

� j

zk − zl
(12)

It should be noted that the same result can be obtained using 
Chapman’s Lagrangian L′ [38].

2.4. Dynamics of unsteady point vortices interacting with a conformal 
body

For a single point vortex of constant strength �, the Lagrangian 
proposed in Eq. (5) is written as

L(z, z∗, ż, ż∗) = 1

i
�z∗ ż + W (z, z∗) (13)

where W (z, z∗) is the Kirchhoff–Routh function, which is a mea-
sure of the instantaneous energy in the flow [49] while accounting 
for the presence of the body. Allowing for a time-varying vor-
tex strength (i.e. � = �(t)), a term that depends on the time 
rate of change of circulation (i.e. �̇)) is added to ensure that the 
derivatives resulting from the bilinear function are coordinate-
independent [38,53,54]. As such, the Lagrangian is written as

L(z, z∗, ż, ż∗) = 1

i

(
�z∗ ż + �̇z∗

0z
) + W (z, z∗) (14)

where z0 is the coordinate of an arbitrary point on the body.
Now the Lagrangian of n point vortices of time-varying strengths 

is written as

L(zk, z∗
k , żk, żk

∗) = 1

i

n∑
k=1

(
�kz∗

k żk + �̇z∗
0kzk

) + W (zk, z∗
k ) (15)

where z0k is the coordinate of a reference point on the body, which 
is usually the coordinate of the edge from which the vortex is shed 
[43,58,59,48].

Applying Euler–Lagrange equations (11) associated with mini-
mizing the action integral based on this transformed Lagrangian 
(15), we obtain the dynamics of an unsteady point vortex as

żk + �̇k

�k
(zk − z0k) = (

i

�k

∂W

∂zk
)∗ (16)

which reduces to the Biot–Savart law given by Eq. (12) if �̇ is set 
to zero.

The right hand side of Eq. (16) can be represented in terms of 
the regularized local fluid velocity (Kirchoff velocity) w∗(zk), ob-
tained from Eq. (1) as shown by [50], which is expressed as

(
i

�k

∂W

∂zk
)∗ = w∗(zk) (17)

Combining Eq. (16) and Eq. (17), we write

żk + �̇k
(zk − z0k) = w∗(zk) (18)
�k
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, 
which is exactly the same equation obtained by Brown and 
Michael [43] from a completely different approach that was based 
on a linear momentum argument.

It is interesting to note that while both the proposed La-
grangian L and Chapman’s L′ [38] yield the exact same dynamics, 
i.e. the Biot–Savart law for constant-strength vortices, they yield 
different dynamics for unsteady point vortices. Adding the same 
term introduced in Eq. (15) to Chapman’s Lagrangian L′ to obtain 
a coordinate-independent expression for the vortex absolute veloc-
ity,

L′(zk, z∗, żk, ż∗
k )

= 1

2i

n∑
k=1

(
�k(z∗

k żk − zk ż∗
k ) + �̇z∗

0kzk
) + W (zk, z∗

k )
(19)

minimizing the action integral based on this transformed La-
grangian (19), the resulting equation of motion is

żk + �̇k

2�k
(zk − z0k) = w∗(zk) (20)

which differs from that of Brown–Michael by the factor of one half 
that multiplies the �̇-term.

Next, we apply the variational principle approach as defined 
above and evaluate the performance of both postulated and Chap-
man’s [38] Lagrangians in predicting flow quantities. Particularly, 
we compare time histories of the circulation and lift coefficient to 
those obtained using the impulse matching model by Wang and 
Eldredge [48] and Wagner’s function [3].

3. Numerical results

The equations of motion, and the forces acting on an impul-
sively started flat plat are derived in Appendix A. Three types of 
airfoil motion are considered in this section: (i) an impulsively 
started motion in which the airfoil is suddenly accelerated to ve-
locity U∞ , (ii) a finite acceleration from rest to reach U∞ after 
some non-zero but finite time, and (iii) and the vortex generated 
by a pitching plate. The weak for of Eq. (16) is written as

δS = 0 (21)

The weak form is then integrated using one of the Galerkin tech-
niques defined in Ref. [60]. The weak-formulation-based finite ele-
ment solution can not be applied to Eq. (16) of Brown and Michael 
because it is in a strong form, and reducing it to a weak form is 
not direct. The enabling of this capability is one of the main con-
tributions of this effort.

3.1. Impulsively started flat plate

First, similar to the classical unsteady thin airfoil theory (e.g., 
Wagner [3], Theodorsen [4], and Von Karman and Sears [61]), we 
assume that the starting vortex moves along the x-axis and the 
local fluid velocity is U∞ (i.e., w(zv) = U∞). As such, the evolution 
equation (A.5) in the z planes is written as

ẋv + �̇v

β�v
(xv − xv0) = U∞ (22)

where β is a factor that results from the Lagrangian used in deriv-
ing the equation of motion. β = 1 for the proposed Lagrangian and 
β = 2 for Chapman’s Lagrangian.

The evolution equation of the impulse matching model [59,48]
can also be simplified to
ẋv + �̇v

�v

(x2
v − x2

v0)

xv
= U∞ (23)

Fig. 2 shows the time variations of the normalized vortex strength �

the lift coefficient CL , and the time-variation of the normalized 
vortex location x for the case of α = 5◦ . Plots from simulations 
based on (i) the proposed Lagrangian dynamics (β = 1 Brown–
Michael), (ii) Chapman’s Lagrangian (β = 2), (iii) the impulse 
matching model of Wang and Eldredge [48], and (iv) Wagner’s [3]
step response function are presented for the sake of comparison. 
The plots show that all models agree qualitatively with Wagner’s 
exact potential flow solution. Note that in the three models, the 
infinite sheet of wake vorticity is approximated by a single vortex. 
As expected, the correction to the Kirchhoff velocity (taken as U∞
here) in the case of β = 2 is half of that in the case of β = 1 yields 
slightly higher (spurious) lift.

Next, we consider increasing the angle of attack to α = 10◦ to 
relax the flat wake assumption. Thus allowing the vortex to move 
in the plane, i.e. with two degrees of freedom. Fig. 3 shows the 
resulting time variations of the normalized circulation �, lift co-
efficient CL , vortex position along the x-axis, and the slope of the 
vortex trajectory θ as a function of x. The singular value of the 
lift at t = 0, which corresponds to the added mass effect, is re-
moved to highlight the difference between results from different 
models. Again, the results based on L′ (β = 2) predict a larger 
vortex strength (airfoil circulation) and a slightly higher lift, than 
those predicted by the two other models. Fig. 3d shows that the 
slope of the starting vortex asymptotically approaches a line par-
allel to the incident free stream (i.e. θ ≈ α = 10◦). As shown, the 
proposed Lagrangian (Brown–Michael model) yield lift and circu-
lation values that do no match Wagner’s function. In addition, the 
impulse matching results in a slower downstream convection. Con-
sequently the development of circulation takes place at a slower 
rate with an overall effect of reduced lift coefficient that matches 
Wagner’s function. We note, however, that the Wagner’s response 
should not be considered as a reference for comparison in this case 
because of the flat-wake and shedding by U∞ assumptions that 
may not be appropriate for the relatively large angle of attack. This 
can be seen from the high-fidelity results in Fig. 3b as the lift starts 
to disagree with Wagner’s function after non-dimensional time of 
U∞t/c > 1.2. The high-fidelity results was produced in Ref. [48]
using the viscous vortex particle method developed by Eldredge 
[62].

3.2. Flat plate accelerating from rest

Next, we consider the lift on a flat plate that accelerates from 
rest. To validate our results, we consider the velocity profile of 
Beckwith and Babinsky [44] that is shown in Fig. 4. In that ex-
periment, the airfoil is accelerated to the velocity U∞ = 0.48 m/s 
over a distance of 0.6 chords.

The velocity profile of the accelerated flat plate, shown in 
Fig. 4a, is obtained from the data of Beckwith and Babinsky [44]
via the following optimization problem

min
Pm

N∑
i=1

(
Xi −

m∑
0

(Pmtm)

)
(24)

subject to the end constraints

Ẋ P (0) = 0, Ẋ P (t f ) = U∞, and Ẍ P (t f ) = 0 (25)

where X P = ∑m
0 Pmtm represents the polynomial fit to the given 

data, N is the number of sample points (X ′
i s) taken from Fig. 4b in 

Ref. [44] by Beckwith and Babinsky, and m is the degree of the fit-
ting polynomial. We used the fmincon Matlab function for solving 
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Fig. 2. Time variations of (a) the normalized circulation, (b) lift coefficient and (c) normalized position of the starting vortex for α = 5◦ and the vortex is assumed to move 
only in the x direction. The time is normalized using the airfoil speed U∞ and chord c. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)
the constrained optimization problem defined above. The resulting 
equation for the commanded and the measured positions respec-
tively are

XC (t) = −8.7540t4 + 5.3376t3 − 0.0265t2 + 0.004

XM(t) = −8.3073t4 + 5.0119t3 + 0.0233t2 − 0.0002t + 0.004

(26)

Because few number of “measured data“ points were available 
for fitting, we present results for both maneuvers; commanded and 
measured. In addition, we use the extended lifting line theory [63]
to account for three-dimensional effects on the lift which implies 
a correction factor of 0.618 based on aspect ratio A R = 4.

Fig. 5 shows time variations of the normalized circulation and 
lift coefficient for a flat plate accelerating from rest using both 
commanded and measured fits of the velocity profile. The plots 
show agreement among all representations except that the pre-
dicted circulation and lift based on Chapman’s Lagrangian [38] is 
slightly higher and show faster convergence to the steady state 
value. The lift coefficient shows that the proposed Lagrangian 
(Brown–Michael equation) yields values that are closer to the ex-
perimental data of Beckwith and Babinsky [44] than both Chap-
man’s Lagrangian (β = 2) and the impulse matching model of 
Wang and Eldredge [48], particularly in capturing the transient 
peak. The large overshoot in the lift coefficient for β = 2 indicates 
that the exclusion of the symmetry term (angular momentum con-
straint) is necessary to satisfy the linear momentum around the 
vortex and the branch cut in an integral sense. In other words, the 
evolution equation based on the Lagrangian L′ violates the conser-
vation of linear momentum around the vortex and the shedding 
edge. Hence, the proposed Lagrangian L is a more general (uncon-
strained) Lagrangian of point vortices. It governs the dynamics of 
both vortices of constant and time-varying strengths.

3.3. Pitching flat plate

In Fig. 6, the lift coefficient versus angle of attack is shown 
for an airfoil pitching at a reduced frequency k = 0.2 (k =
α̇maxc/(2U∞)), and compared to the experiment carried out by 
Granlund et al. [45] at Reynolds number Re = 20,000. We followed 
the pitching kinematics defined by Eldredge in Ref. [64] as

α(t) = αmax
G(t)

(27)

max(G(t))
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Fig. 3. Time variations of (a) the normalized circulation, (b) lift coefficient, (c) normalized position of the starting vortex, and the slope of the vortex trajectory for α = 10◦
and the vortex is allowed to move freely in the plane of the airfoil. The time is normalized using the airfoil speed U∞ and chord c.

Fig. 4. Kinematics for the accelerated flat plate.
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Fig. 5. Time variations of the normalized circulation and lift coefficient for α = 5◦ for the accelerated flat plate.
where G(t) is defined as

G(t) = ln
(cosh(aU∞(t − t1)/c) cosh(aU∞(t − t3)/c)

cosh(aU∞(t − t2/c) cosh(aU∞(t − t4)/c)

)
(28)

In this case, two vortices are shed from the leading and trailing 
edges. The same trend as in the case of the starting vortex is noted. 
Moreover, the difference is maximum when the angle of attack 
reaches 45◦ and approaches zero when the angle of attack reaches 
90◦ . We also noted that while both proposed and Chapman’s La-
grangian yielded similar dynamics for the case of the starting vor-
tex, they yielded different dynamics for the case of pitching flat 
plate. Although the proposed Lagrangian (Brown–Michael) yielded 
a better agreement with the experimental results than Chapman’s 
Lagrangian, the Impulse matching results have a better agreement 
with the experimental unlike the accelerating flat plate problem.

It should be pointed out that the present work is not favoring 
Brown–Michael model over Eldredge’s impulse matching model or 
vice versa. The main outcome of this work is to provide a vari-
ational formulation for the dynamics of unsteady point vortices, 
which interestingly matches the momentum-based formulation of 
Brown and Michael. However, as pointed out by Wang and El-
dredge [48] that either model is not alone sufficient for developing 
reduced-order models of two-dimensional unsteady aerodynamics. 
The Brown–Michael model (equivalently its present variational ver-
sion) or the impulse matching model represents only one part 
Fig. 6. Lift coefficient versus angle of attack for pitching airfoil at reduced frequency 
k = 0.2 and Reynolds number Re = 20,000.

in the whole formulation which also includes a shedding crite-
rion and an auxiliary condition (Kutta-like condition). It should 
be noted that the comparison between the lift histories from the 
Brown–Michael [43] and the impulse matching [48] models may 
not reveal which model capture the true vortex dynamics. Both lift 
time histories shown in Fig. 6 are obtained by applying the Kutta 
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condition which may not be applicable in this high angle of attack 
unsteady flow. To reflect more on the issues discussed in this pa-
per, the authors will cover in their future work other kinematics 
problems such as perching and plunging motions, and will verify 
them against experimental data [45,65,66].

4. Potential and future advancements

The main contribution of this effort is providing a successful 
Lagrangian function that governs the dynamics of unsteady point 
vortices. Having this Lagrangian invokes the development of vari-
ational principles that govern flight dynamics and/or aero-elastic 
systems. There have been several successful variational principles 
governing structure dynamics (e.g., the principle of minimum po-
tential energy). The dynamics of the aeroelastic system is typically 
written as

d

dt

(
Ls

∂q̇s

)
− ∂Ls

∂qs
= Q (29)

where qs are the structural generalized coordinates, Ls is the La-
grangian function of the structural system, and Q represents the 
non-conservative applied loads. In this typical formulation, the 
aerodynamic loads (of unknown nature) are incorporated in the 
right hand side as non-conservative loads; due to the lack of an 
aerodynamic Lagrangian and/or variational principle for unsteady 
fluids even within the framework of potential flow.

Using the proposed Lagrangian L for unsteady aerodynamics, 
we can, for the first time, write a single Lagrangian Ltot governing 
the dynamics of the whole aero-elastic system; providing a single 
variational principle for both the fluid flow and structure, which 
has been the subject of interest for decades [67]. As such, the aero-
dynamic loads will be naturally accounted for in a similar fashion 
to the structural restoring forces in the left hand side of Lagrange’s 
equations

d

dt

(
Ltot

∂q̇

)
− ∂Ltot

∂q
= 0 (30)

where q = [qs qa] and qa represents the generalized coordinates of 
the aerodynamic system (e.g., position and strength of the shed 
vortices). The variational equation (30) will invoke discovery of 
conserved quantities and more compact analysis of aeroelastic sys-
tems.

5. Conclusions

We investigated the potential of implementing variational prin-
ciples to derive governing equations for the interaction of unsteady 
point vortices with a solid boundary. To do so, we postulated a 
new Lagrangian function for the dynamics of point vortices that 
is more general than Chapman’s. We showed that this function 
is related to Chapman’s Lagrangian via a gauge symmetry for the 
case of constant-strength vortices. In other words, both Lagrangian 
functions result in the same governing equation, i.e. the Biot–
Savart law is directly recovered from the Euler–Lagrange equations 
corresponding to minimization of the action integral with these 
two Lagrangians. We also found that, unlike Chapman’s Lagrangian, 
the principle of least action based on the proposed Lagrangian 
results exactly in the Brown–Michael model for the dynamics of 
unsteady point vortices. We implemented the resulting weak for-
mulation of the time-varying vortices to the problem of an impul-
sively started flat as well as an accelerating and pitching flat plate. 
The weak form is then integrated using Galerkin technique for fi-
nite element. For the case of accelerating flat plate, the resulting 
time history of the lift coefficient from the three models (varia-
tional approach based the proposed Lagrangian and Chapmann’s 
and the impulse matching model) is compared against the exper-
imental results of Beckwith and Babinsky. The results showed a 
better agreement for the variation approach using the proposed 
Lagrangian. On the other hand, the results of the impulse match-
ing model for the pitching flat plat agree better with experimental 
results than the those based on Chapmann’s and the proposed La-
grangian (Brown–Michael model).
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Appendix A. Impulsively stared flat plate (the starting vortex 
problem)

We consider a flat plate of semi-chord c/2 mapped from a cir-
cle of radius R , as shown in Fig. 1, according to the conformal 
mapping

zv(ζv) = zc + g(ζv)eiα (A.1)

where the mapping function, g , is defined as

g(ζv) = ζv + R2

ζv
(A.2)

The derivative of z with respect to ζv is

dzv

dζv
= g′(ζv)eiα (A.3)

We also consider the case where the flat plate is moving with a 
constant speed U∞ , inclined to the x-axis by an angle α. A vortex 
of strength �v is shed from the trailing edge as shown in Fig. 1. 
For this flow, the complex potential in the circle plane is written 
as [50,51,58]

F (ζv) = φ(ζv) + iψ(ζv)

= V (ζv − g(ζv)) + R2 V̄

ζv

+ �v

2π i

[
ln(ζv − ζv) − ln(ζv − ζ

(I)
v )

] (A.4)

where φ is the velocity potential, ψ is the stream function, V =
−U∞eiα is the velocity of the flat plate in the plate-fixed frame, 
and ζ I

v = R2/ζ ∗
v denotes the position of the image vortex within 

the circle. The first term inside the brackets (ζv − g(ζv )) ensures 
that the complex potential will contain only ζv with negative 
power (see Sec. 9.63 [50], Sec. 4.71 [57], Sec. 4 [51], Sec. 3.2 [58]).

A.1. Dynamics of the starting vortex

Taking the origin at the mid-chord point and assuming that the 
starting vortex shed from the trailing edge (ẑv0 = −c/2), we write 
the evolution equation of the starting vortex according to the La-
grangian dynamics as

żv + �̇v

β�v
(zv − zv0) = (

i

�

∂W

∂zv
)∗

= (
i

�v

∂W

∂ζv
(

dzv

dζv
)−1

zv
)∗

= w∗(z )

(A.5)
v
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where β is a factor used to differentiate between the equation 
obtained from the proposed Lagrangian L (β = 1) or Chapman’s 
Lagrangian L′ (β = 2). Also, we have

W (zv) = �vψo + �2
v

4π
|ln(ζv − ζ

(I)
v )|+ �2

v

4π
ln| dz

dζ
|zv (A.6)

and

ψ0 = Im

(
V (ζv − g(ζv)) + R2 V ∗

ζv

)
(A.7)

Transforming Eq. (A.5) to the circle plane, the first term in the 
left hand side is written as

żv = U∞ + g′(ζv)eiαζ̇v (A.8)

and the right hand side of Eq. (A.5) is re-written as

w∗(ζv) = eiα

[g′(ζv)]∗
[

V (1 − g′(ζv)) − R2 V̄

ζ 2
v

− �v

2π i

1

ζv − ζ I
v

− �v

4π i

g′′(ζv)

g′(ζv)

]∗

= eiα

[g′(ζv)]∗
[

V − R2 V̄

ζ 2
v

− �v

2π i

1

ζv − ζ I
v

− �v

4π i

g′′(ζv)

g′(ζv)

]∗
− V e−iα

(A.9)

Recalling that V = −U∞eiα , we write

w∗(ζv) = eiα

[g′(ζv)]∗
[

V − R2 V̄

ζ 2
v

− �v

2π i

1

ζv − ζ I
v

− �v

4π i

g′′(ζv)

g′(ζv)

]∗

+ U∞
(A.10)

The evolution equation is then re-written in terms of the circle-
plane variables as

ζ̇v + �̇v

β�v

(g(ζv) − 2R)

g′(ζv)

= 1

g′(ζv)[g′(ζv)]∗
[

V − R2 V̄

ζ 2
v

− �

2π i

1

ζv − ζ I
v

− �v

4π i

g′′(ζv)

g′(ζv)

]∗

(A.11)

A more general form of Eq. (A.11), for β = 1, for a flat plate moving 
and rotating in space can be found in the work of Michelin and 
Smith [58], which will be used, without derivation, for the case of 
pitching flat plate.

A.2. Aerodynamic forces

The force on the flat plate is obtained using the force formula 
derived by Sedov [68], in terms of the complex variable z, as

Fx + i F y = −iρzo
d�v

dt
+ iρ

2

∫
C

[w(z)]2dz + d

dt

⎡
⎣iρ

∫
C

zw(z)dz

⎤
⎦

(A.12)

Using Cauchy’s theorem [69], the integration can be changed from 
an integration over the solid body C to an integration over the 
infinite domain C∞ that excludes the integration over an in-
finitesimally small contour C v around the vortex (see sec. 3.4.1 in 
Ref. [58]) as shown in Fig. A.7. Upon evaluating the integration, the 
force in terms of the complex variable ζ becomes
Fig. A.7. The contour used to evaluate the integral on the solid body. The flat plate 
is exaggerated to show the direction of the contour.

Fx + i F y = iρeiα
[

2iπ R2 Im(V ) + d

dt

(
�v(ζv − R2

ζ̄v
)

)]
(A.13)

The vortex strength is calculated by satisfying the Kutta condi-
tion at each time instant. The Kutta condition is implemented by 
requiring that the tangential velocity at the trailing edge in the cir-
cle plane vanishes; i.e., the terms inside the brackets in Eq. (A.11)
are set to zero at the trailing edge to cancel the singularity due 
to 1 − R2/ζ 2

v0 = 0. This will ensure a finite velocity at the trailing 
edge. As such, we write

V − R2 V̄

ζ 2
0

+ �v

2π i
(

1

ζ0 − ζv
− 1

ζ0 − ζ I
v
) = 0 (A.14)

Equation (A.14) is then re-written as

2i Im(V ) + �v

2π i

(−R2 + (ηv + ξv)2

2(η2
v + (ξv − 2)2)

)
= 0 (A.15)

where ξv and ηv are the real and imaginary parts of ζv .
By simple manipulation, Eq. (A.15) is re-written in a simple 

form as [58,48]

2Im(V ) + �v

2π
Re

(
ζv0 + R

ζv0 − R

)
= 0 (A.16)

For the force calculations using the impulse of the starting vortex, 
the reader is referred to section 3.10 of Ref. [24].
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