
Unsteady Viscous Lift Frequency Response Using The

Triple Deck Theory

Haithem Taha∗ and Amir Rezaei†

University of California, Irvine, CA 92697

Many reports, studies, and evidences invoke an alternative auxiliary condition to the
Kutta condition for the analysis of unsteady flows around wings with sharp edges. Some
of these reports, because of the observed discrepancies at zero lift conditions, suggested
a fundamental revision to the classical theory of unsteady aerodynamics. That is, since
the vorticity generation and lift development are essentially viscous processes, a purely
inviscid theory of unsteady aerodynamics might be fundamentally flawed. In this work,
an unsteady boundary layer approach (triple deck theory) is adopted to develop a viscous
correction to the unsteady lift frequency response; i.e., a Reynolds-number dependent ex-
tension of Theodorsen function. The developed model is weakly nonlinear, but so compact
and efficient that it may be used in flight dynamics, control, and aeroelastic analyses. It
is found that the viscous correction induces a significant phase shift to the circulatory
lift component, particularly at low Reynolds numbers and high-frequencies, that matches
expectations based on previous experimental results. This enhancement in the predicted
phase of the unsteady loads is envisaged to boost the current predictability of aeroelastic
flutter boundaries. High-fidelity computational fluid dynamic simulations are also carried
out to validate the results of the developed theoretical model.

I. Introduction

Most of the last century analytical developments of unsteady aerodynamics of wings in an incompressible
flow were based on Prandtl’s concept (vortices form behind the airfoil whose strength and shape are not
specified apriori1). Moreover, for infinitely thin airfoils, separation or sheets of vorticity are shed from
the sharp edges only and the flow outside of these sheets can be modeled using inviscid assumptions.2

These concepts, in addition to assuming small disturbance to the mean flow (flat wake assumption), form
the heart of the classical theory of unsteady aerodynamics,3–5 and also provide the basis for the recent
developments.6–16 However, this framework using potential flow is not complete and invokes a closure or
auxiliary condition (e.g., the Kutta condition). Applying the Kutta condition at the sharp edges completes
the framework by providing strengths of the newly shed vortices at these sharp edges. Consequently, one
can use conservation of circulation to determine the value of the instantaneous bound circulation over the
airfoil which dictates the generated lift force. Although this framework is indeed for a linearized, infinitely
high Reynolds number flow at small angles of attack, it has been extensively used at low Reynolds numbers
(e.g., biological flyers) relying on the facts that (i) there is no sharp stall (a smooth lift variation over a broad
range of angles of attack17,18), (ii) the shear force contribution to the aerodynamic loads is unexpectedly
minimal, as observed in the experimental study of Dikinson et al.17 and the computational results of Wang19

and Ramamurti and Sandberg.20 Moreover, it has been believed for decades that, by allowing for sheets of
vorticity bound the airfoil and in its wake, the classical thin airfoil theory does not completely ignore viscous
effects; that is, the boundary layer over the airfoil and the viscous shear layer in the wake are represented
by the infinitely thin bound and wake sheets of vorticity, respectively (see a detailed discussion by Sears21).
However, the application of the Kutta condition to unsteady flows has been controversial (see Crighton22

and the references therein).
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The need for an auxiliary condition alternative to Kutta’s goes as early as the work of Howarth23 with a
research flurry on the applicability of Kutta condition to unsteady flows in the 1970’s and 1980’s.22,24–27 This
research was mainly motivated by the failure to capture an accurate flutter boundary.28–30 Since structural
dynamics could be captured with a good accuracy (e.g., exact beam theory), it has been deemed that the
flaw stems from the classical unsteady aerodynamic theory, particularly the Kutta condition, as suggested
by Chu31 and Shen and Crimi32 among others. Moreover, since these deviations occurred even at zero angle
of attack (or lift),33,34 it was inferred that there is a fundamental issue with such a theory that is not merely
a higher-order nonlinear effect.31 Therefore, there was almost a consensus that the Kutta condition has to
be relaxed particularly at large frequencies, large angles of attack and/or low Reynolds numbers.26,35,36 In
fact, Orszag and Crow37 regarded the full-Kutta-condition solution as “indefensible”.

Interestingly, this dissatisfaction of the Kutta condition and the need for its relaxation is recently reju-
venated with the increased interests in the low Reynolds number, high frequency bio-inspired flight. Ansari
et al.9,38 asked for a modified version of the Kutta condition, particularly during rapid pitching near stroke
reversals, to avoid creating artificially strong vortices; the envision was the pitch maneuver is so acute that
the fluid may actually flow around the edge not along it. More recently, Pitt Ford and Babinsky39 experi-
mentally studied the leading edge vortex (LEV) dynamics over an impulsively started flat plate. They also
developed a potential flow model that consists of a bound circulation, free LEVs and free trailing edge vor-
tices. They determined the positions and strengths of the vortices by applying the γ2-method40 to their PIV
measurements. Based on these values, they determined the value of the bound circulation that minimizes
the deviation between the potential flow field and PIV measurements. Interestingly, during early stages, the
optimum bound circulation was found to be the Kelvin’s value (that satisfies Kelvin’s law of conservation of
circulation), which is considerably different from the Kutta’s value (that satisfies the Kutta condition at the
trailing edge). However, during later stages, the Kutta’s value is closer to the optimum bound circulation
than Kelvin’s. In a similar setting, Hemati et al.41 improved their previous varying-strength discrete vortex
model12 by relaxing the Kutta condition via applying optimal control theory to determine the strengths
of the newly shed vortices that minimize the discrepancy between the potential-flow predicted forces and
measurements; which was also found to be considerably different from Kutta’s values.

Since the vorticity generation and lift development are essentially viscous processes, a purely inviscid
theory of unsteady aerodynamics might be fundamentally flawed. In this effort, we revisit the unsteady
boundary layer triple deck theory developed by Brown and Daniels42 and Brown and Cheng43 to develop a
viscous extension (Reynold’s number dependent) of Theodorsen’s lift frequency response. We extend their
effort (on a flat plate pitching around its mid-chord point) to the more general case of an arbitrarily-deforming
thin airfoil (or time-varying camber), while correcting for a couple of their minor mistakes. Moreover, we
perform a computational simulation using ANSYS Fluent for a harmonically pitching airfoil (NACA 0012)
to assess the vaidity of the obtained results from the unsteady triple deck theory.

II. Triple Deck Theory

A. Steady Triple Deck

The triple deck theory has been originally devised to model local interactions near the trailing edge of an
airfoil in steady flow due to the transition from a Blasius boundary layer, whose thickness is of order Re−1/2,
to a Goldstein near-wake, whose thickness is scaled as Re−1/2x1/3 where x is the distance downstream of
the edge.22 The triple deck structure has been proposed as a transition region between the two layers, which
takes place over a short length of order Re−3/8 (similar to Lighthill’s supersonic shock-wave-boundary-layer
interaction44), as shown in Fig. 1. Physically, upstream of the trailing edge, the flow decelerates inside a
Blasius boundary layer due to its concomitant adverse pressure gradient (i.e., displacement thickness and
pressure increase towards the edge). However, downstream of the edge, the wall is removed, hence, the fluid
accelerates leading to a decrease in pressure. As such, a favorable pressure gradient develops in the transition
region near the edge (i.e., in the triple deck). In other words, the triple deck structure represents a solution
to the discontinuity of the viscous boundary condition at the edge;42 from a zero tangential velocity on the
airfoil to a zero pressure discontinuity on the wake center line.

Aerodynamicists modeled this transition through three decks (triple deck theory): (i) the upper deck
which constitutes of an irrotational flow outside of the main boundary layer, (ii) the main deck which
constitutes the main boundary layer (Blasius), and (iii) the lower deck, which is a sub-layer inside the main
boundary layer, as shown in Fig. 1. As Crighton described in his seminal review article,22 shortening of the
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Figure 1: Triple deck structure and various flow regimes. Adapted from Messiter.45

x-scale makes the main deck (Re−1/2) become inviscid, though rotational, and the viscous boundary layer
equations apply only in the lower deck of thickness Re−5/8. Also, Crighton noted that, unlike the thicker
upstream boundary layer, the pressure inside the lower deck is unknown, but coupled with the irrotational
pressure distribution in the upper deck. Note that the changes in the pressure and flow direction in the upper
deck (potential flow) is determined by the thin airfoil theory, which are functions of x only. These changes
are transmitted to the lower deck through the main deck (via Prandtl’s boundary layer assumption ∂p

∂y = 0).
Therefore, the Prandtl boundary layer equations are applied in the lower deck, driven by the pressure of the
upper deck. That is, instead of having an inhomogeneous boundary layer equations driven by an external
pressure, the lower deck boundary layer equations are homogeneous, but coupled with x-perturbations in
the upper deck. The triple deck theory results in the the following correction of the Blasius skin friction
drag coefficient

CD '
1.328√
Re

+
2.66

Re7/8

which is in an astonishingly good agreement with both Navier-Stokes simulations and experiments down to
Re = 10 and even lower.

Stewartson46 and Messiter45 were the first to develop the triple deck theory for a flat plate in a steady
flow at zero angle of attack. Brown and Stewartson47 extended such a work for a non-zero angle of attack
in the order of Re−1/16. This is the range of interest because (i) if α is much lower, then the flow can
be considered as a perturbation to the case of α = 0 and (ii) if it is much higher, then the flow would
separate well before the trailing edge. Over this range, the resulting adverse pressure gradient is of the same
order as the favorable pressure gradient in the triple deck, leading to separation in the immediate vicinity
of the trailing edge, which is called Trailing Edge stall. Brown and Stewartson47 formulated such a problem
and showed that the flow enters the triple deck on both sides separately and the flow in the lower deck is
governed by partial differential equations that are solved numerically for each value of αe = Re1/16λ−9/8α,
where λ = 0.332 is the Blasius skin-friction coefficient. Jobe and Burggraf48 and Veldmann and Van de
Vooren49 solved the αe = 0 case, while Chow and Melnik50 solved the case 0 < αe < 0.45 and concluded
that the flow will separate from the suction side of the airfoil from the trailing edge at αe = 0.47 (trailing
edge stall angle). We remark that this αe value for trailing edge stall corresponds to quite a small value for
the actual angle of attack; α = 3.1◦ − 4.2◦ for Re = 104 − 106.

B. High-Frequency Unsteady Triple Deck

While the steady triple deck theory has been well exposed to engineers and fluid dynamicists (being taught
at regular graduate courses in fluid mechanics), its unsteady extension does not enjoy the same fame. Brown
and Daniels42 were the first to extend the steady triple deck theory to the case of a high-frequency, small-
amplitude oscillatory pitching flat plate. Unlike the steady case, there is a Stokes layer near the wall that
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is of order
√
ν/ω where the viscous term is balanced by the time-derivative term in the equations. Brown

and Daniels assumed that the Stokes layer and the lower deck have the same thickness, which results in
kc = O(Re1/4) = 1

ε2 , where they used kc = 2k as a non-dimensional frequency; the reduced frequency based
on the chord length. They argued that this range is the right range of interest because (i) if kc is much
smaller, then the flow can be considered as a perturbation to the steady case with a non-zero α (i.e., to the
work of Brown and Stewartson47) and (ii) if it is much larger, then the flow variations may be too rapid
to preserve the triple deck structure. In fact, this results in k values that are too large for engineering
applications; k ' 5 − 15 for Re = 104 − 106. Then, the matching between the adverse pressure gradient
due to oscillation and the triple deck favorable pressure gradient results in a pitching amplitude O(Re−9/16),
which is also ridiculously small for engineering applications; ' 0.02◦ − 0.32◦ for Re = 104 − 106. Indeed,
their work is for very high-frequency, very small-amplitude oscillations.

Brown and Daniels42 determined a Reynolds-number-dependence for the arbitrary constant in the outer
flow, which dictates the circulation around the aerofoil. Its limit as Re → ∞ is determined by the Kutta
condition (zero loading) at the trailing edge. However, the matching between the triple deck and the outer
flow provides a correction for this Kutta’s circulation, which is O(Re−3/8). In their formulation, Brown and
Daniels42 setup the triple deck structure near the trailing edge and a perturbed Blasius boundary layer with
an inner Stokes layer upstream of the trailing edge, as shown in Fig. 2. However, unlike the steady case, the
solution of the perturbed Blasius boundary layer could not be matched with the main deck of the triple deck
structure. Therefore, Brown and Daniels introduced a transition region, whose length is O(Re−1/4), between
the perturbed Blasius boundary layer and the triple deck; called the fore deck. It has similar structure to
that upstream of the triple deck; outer potential flow, main boundary layer, and an inner Stokes layer, as
shown in Fig. 2. Also, it is noteworthy to remark that the velocity profile of the perturbed Blasius boundary
layer does not have to satisfy the no-slip boundary condition because such a condition is left to the inner
Stokes layer.

Figure 2: High frequency triple deck (adopted from the work of Brown and Daniels 2). I: potential flow, II: modified Blasius and inner
Stokes layer, III: the fore deck, IV: the triple deck, and V: modified Goldstein wake.

It is interesting to remark that, up to first-order, the time-derivative term does not appear in the main
deck equations, but still shows up in the lower deck ones. Brown and Daniels42 could not solve the partial
differential equations governing the flow in the lower deck, but managed to determine the following linearized
solution for a flat plate pitching around its mid-chord point (α(t) = Aα cosωt) a

CL(t) = −3

2
πAαk sinωt︸ ︷︷ ︸

Potential Flow

+
1

2
πAα

k3/2

√
λRe1/4

cos(ωt− π/4)︸ ︷︷ ︸
Viscous Correction

(1)

aNote that the first term in Eq. (1) representing potential-flow solution is considered in the limit to high-frequencies (i.e.,
The Theodorsen function C(k)→ 1

2
and the α-terms are neglected with respect to the α̇-terms).
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That is, the viscous correction reaches up to 10% for k = 1 and Re = 1, 000. Also, it lags behind the inviscid
leading term by π/4 phase.

III. Proposed Model: Low-to-Moderate-Frequency Unsteady Triple Deck

In this subsection, we extend the work of Brown and Cheng43 to an arbitrarily deforming thin airfoil and
correct for few minor mistakes in their derivation, however, we mainly follow their perturbation analysis.
More importantly, we use the obtained results, within a describing function formulation51 assuming weakly-
nonlinear dynamics, to provide a viscous extension of the classical Theodorsen’s lift frequency response. Fol-
lowing Brown and Cheng,43 we concern our efforts with oscillation frequencies in the range 0 < kc << Re1/4,
which is quite relevant to engineering applications. Luckily, over this range of relatively-small frequencies,
not only the main deck equations are void of the time-derivative term, up to first-order, but also the lower
deck ones; that is, the lower deck equations are quite similar to those of the steady case at a non-zero α
(studied by Brown and Stewartson47) with a proper definition for the equivalent steady angle of attack.
However, we emphasize that this approach is not a quasi-steady solution; although the time-derivative does
not show up in the lower deck equations, the correspondence with the steady equations implies an equivalent
angle of attack that is dependent on the oscillation frequency, as will be shown below. Therefore, the lower
deck system is dynamical (i.e., posses a non-trivial frequency response). In fact, even with no time-derivative
term in the lower deck equations, it is not obvious how the steady results of Brown and Stewartson47 can
be readily applied because the upstream flow is unsteady with Stokes layers in both the perturbed Blasius
layer and the fore deck; as there seems to be a mismatch between the fore deck unsteady flow and the triple
deck “quasi-steady” flow. However, following Brown and Cheng,43 this issue is circumvented by inserting a
second fore deck between the first fore deck and the triple deck, as shown in Fig. 3. As such, the numerical
results of Chow and Melnik50 to the steady problem of Brown and Stewartson47 could be readily used with
an equivalent steady angle of attack. Since the equivalent steady angle of attack αe is proportional to Aαk

2,
and the steady triple deck formulation of Brown and Stewartson47 is valid for α = O(Re−1/16), our unsteady
formulation (similar to Brown and Cheng’s43) is valid for Aαk

2 = O(Re−1/16), which is quite relevant to
engineering applications (e.g., Re ' 10, 000, k ' 0.5, and Aα ' 16◦).

Figure 3: Low frequency triple deck. I: potential flow, II: modified Blasius and inner Stokes layer, III: the first fore deck, IV: the second
fore deck, V: the triple deck, and VI: modified Goldstein wake.

A. Approach

Consider an arbitrarily deforming thin airfoil (i.e., of time-varying camber) in the presence of a uniform
stream U , as shown in Fig. 4. In classical thin airfoil theory,52–54 it is typical to assume the following
series solution for the pressure distribution over the upper surface, which automatically satisfies the Kutta
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condition (zero loading at the trailing edge)

P (θ, t) = ρ

[
1

2
a0(t) tan

θ

2
+
∞∑
n=1

an(t) sinnθ

]
(2)

where ρ is the fluid density, θ is related to x via x = b cos θ, b is the semi-chord length, and a0 represents

Figure 4: Flexible thin airfoil

the leading-edge singularity. The pressure on the lower side is given by the negative of Eq. (2). Moreover,
if the plate’s normal velocity vp is written as

vp(θ, t) =
1

2
b0(t) +

∞∑
n=1

bn(t) cosnθ

then, the no-penetration boundary condition will provide a means to determine all the coefficients an’s
(except a0) in terms of the plate motion kinematics (bn’s) as shown by Robinson and Laurmann,54 pp. 491

an(t) =
b

2n
ḃn−1(t) + Ubn(t)− b

2n
ḃn+1(t), ∀ n ≥ 1 (3)

The determination of a0 is more involved in the sense that it requires solving an integral equation, which
cannot be solved for arbitrarily time-varying wing motion. It has been solved for some common inputs; e.g.,
step change in the angle of attack resulting in the Wagner’s response,3 simple harmonic motion resulting
in Theodorsen’s frequency response,4 and sharp-edged gust.55 Since the focus of this work is to provide a
viscous extension to Theodorsen’s frequency response, consider the simple harmonic motion

vp(θ, t) = Vp(θ)e
iωt; Vp(θ) =

1

2
B0 +

∞∑
n=1

Bn cosnθ

where the spatially-varying amplitude Vp(θ) may be complex and ω is the oscillation frequency. Then, a0 is
written as,54 pp. 496 a

a0(t) = U(B0 +B1)C(k)eiωt − Ub1(t) (4)

where C(k) is the Theodorsen’s frequency response function, which depends on the reduced frequency k = ωb
U .

Finally, the potential-flow lift force and pitching moment (positive pitching up) at the mid-chord point are
written as

LP = −πρb(a0 + a1) and M0P
=
π

2
ρb2(a2 − a0) (5)

aNote that the presentation of Robinson and Laurmann is adapted to a more common and modern notation.
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Having introduced above the potential-flow setup of the problem, let us induce a trailing-edge singularity
term in the pressure distribution shown in Eq. (2) as

P (θ, t) = ρ

[
1

2
a0(t) tan

θ

2
+
∞∑
n=1

an(t) sinnθ +
1

2
Bv(t) cot

θ

2

]
(6)

It should be emphasized that the no-penetration boundary condition, alone, cannot determine Bv and an
auxiliary condition is invoked to determine its value within the framework of potential flow. In particular,
the Kutta condition dictates that Bv = 0 resulting in the potential-flow solution introduced above. In this
effort, similar to the work of Brown and Cheng,43 we will use the unsteady triple deck theory, exploiting the
vanishing of the time-derivative term from the boundary layer equations, to determine Bv in terms of k and
Re. Then, the viscous correction (contribution of Bv) to lift and pitching moment will be written as

L = −πρb(a0 + a1 +Bv) and M0 =
π

2
ρb2(a2 − a0 +Bv) (7)

Approaching the trailing edge (θ → 0 or x̂ = x
b → 1), the inviscid pressure (with the Bv term) is written

as

P (x̂→ 1; t) = ρ

(1

2
a0(t) + 2

∞∑
n=1

nan(t)

)√
1− x̂

2
+
Bv(t)/2√

1−x̂
2

 (8)

which reduces to that in Brown and Stewartson47 as k → 0 and to that in Brown and Daniels42 as k →∞,
with an = 0 for all n > 2 for their case of a pitching flat plate. Similar to both efforts, scaling is devised
such that the inviscid pressure near the trailing edge, given in Eq. (8), is of the same order as that of the
triple deck; i.e., O(ε2) when 1 − x̂ = O(ε3). Assuming ε = Re−1/8 << 1, this scaling argument implies
(0.5Aα)k2

c = O(
√
ε) = O(Re−1/16). Brown and Daniels42 chose kc = O(ε−2) = O(Re1/4) so that the

thickness of the Stokes layer δStokes = O(
√
ν/ω) = O(k

−1/2
c ε4) is of the same order as that of the inner deck

O(ε5). In contrast, Brown and Cheng43 chose kc < O(ε−2) so that the Stokes layer is thicker than the inner
deck (O(ε5)), but thinner than the main deck (O(ε4)).

Recall the steady pressure distribution near the trailing edge, given in (2.2) of Brown and Stewartson,47

and re-write it in the terminology of this paper, we have

Ps(x̂→ 1) = ρU2αs

−√1− x̂
2

+
Bs/2

b
√

1−x̂
2

 sgn(y) (9)

where αs and Bs are the equivalent steady angle of attack and Bv. The unsteady inviscid pressure given in
Eq. (8) has the same form as the steady one given in Eq. (9) with

αs(t) ≡
1

U2

∣∣∣∣∣12a0(t) + 2

∞∑
n=1

nan(t)

∣∣∣∣∣ and Bv(t) ≡ −

(
1

2
a0(t) + 2

∞∑
n=1

nan(t)

)
Bs(t)

b
(10)

This comparison along with the fact that the time-derivative term does not enter the triple deck equations
points to the possibility of directly using the steady solution by Chow and Melnik50 of the inner deck
equations for the unsteady case with the equivalence shown above; valid in the range 0 < kc < O(Re1/4).
In the above equivalence, if the term 1

2a0(t) + 2
∑∞
n=1 nan(t) is negative, then the top of the oscillating thin

airfoil will correspond to the top of the steady plate and if is positive, then the top of the oscillating thin
airfoil should correspond to the bottom of the steady plate. In either case, αs would be positive. In fact,
this correspondence has lead to the following interesting behavior. While there is always a significant lift
decrease at the trailing edge stall angle in the steady case, there can be either increase or decrease in the
unsteady lift when αs reaches the trailing edge stall value, as shown by Brown and Cheng.43

Note that the numerical solution by Chow and Melnik50 provides Be as a nonlinear function of αe, which
is represented here in Fig. 5, where

αe = αsε
−1/2λ−9/8 and Bs = 2bε3λ−5/4Be(αe) (11)

In other words, they provide Bs = Bs(αs). Thus, the instantaneous values of an(t), determined from the
airfoil kinematics via the no-penetration boundary condition given in Eq. (3,4), will define the equivalent
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steady angle of attack αs according to (10), which will lead to Bs(αs(t)) via the results of Chow and Melnik.50

Finally, Bv will be determined from Bs and the an’s according to (10), which represents the viscous correction
to the Kutta condition and consequently to the lift and moment. It should be noted that this procedure
admits arbitrary time variation of the airfoil camber (not necessarily harmonic); only a0 should be modified
accordingly instead of using (4). Nevertheless, because there might not be exact closed-form expressions for
a0(t) due to other kinematics (e.g., step input), we recommend using (4) to construct a viscous frequency
response (describing function51), assuming weakly nonlinear response, and then using the Fourier transform
to obtain the viscous lift force and pitching moment due to an arbitrarily time-varying camber, as shown by
Garrick56 and Bisplinghoff et al.,53 pp. 282-283.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

e

0.5

0.6

0.7

0.8

0.9

1

1.1
B e

Numerical Solution of the Steady Lower Deck by Chow & Melnik 1967

Figure 5: Numerical solution of the steady lower deck equations for 0 < αe < 0.45, adapted from Chow and Melnik.50

B. Viscous Frequency Response (Describing Function)

The above approach can be used to construct a viscous extension of Theodorsen’s function at a given
Reynolds number. For practical use, we opt to show such an extension for a pitching plunging flat plate. In
this case, the normal velocity of the plate (assuming small disturbances ḣ and α) is written as

vp(x, t) = ḣ(t)− α̇(t)(x− ab)− Uα, −b ≤ x ≤ b (12)

where h is the plunging displacement (positive upward) and α is the pitching angle (angle of attack, positive
clockwise), and ab represents the chordwise distance from the mid point to the hinge point, as shown in Fig.
4. This type of kinematics results in

b0(t) = 2
[
ḣ(t) + abα̇(t)− Uα

]
= 2v1/2(t), b1(t) = −bα̇(t) and bn = 0 ∀n > 1

where v1/2 is the normal velocity of the mid-chord point. As such, for the harmonic motion

h(t) = Hbeiωt and α(t) = Aαe
iωt (13)

Eqs. (3,4) result in the following coefficients

a0(t) = U
[
2V3/4C(k)eiωt + bα̇(t)

]
, a1(t) = bv̇1/2 − bUα̇(t), and a2(t) = −b

2α̈(t)

4
(14)

where v3/4(t) = V3/4e
iωt is the normal velocity at the three-quarter-chord point. In the common classification

proposed by Theodorsen,4 the coefficient a0 represents the circulatory contribution while the other two
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coefficients a1, a2 represent the non-circulatory contribution. The lift coefficient is then written as

CL(t) = − π

U2
[a0(t) + a1(t) +Bv(t)] = −π

bv̇1/2(t)

U2︸ ︷︷ ︸
Non−circulatory

+ 2πα3/4(t)C(k)︸ ︷︷ ︸
Circulatory︸ ︷︷ ︸

Potential Flow Solution

− πB̂v(t)︸ ︷︷ ︸
Viscous Correction

(15)

where B̂v = Bv

U2 , α3/4 is the local angle of attack at the three-quarter-chord point, as recommended by
Pistolesi theorem,52 pp. 80, and the multiplication α3/4(t)C(k) is interpreted after writing α3/4(t) = α3/4e

iωt,
where α3/4 may be complex number, as

α3/4(t)C(k) = <
(
α3/4C(k)eiωt

)
where <(.) denotes the real part of its complex argument.

Recall that if u(t) = Aeiωt is the input to a linear dynamical system whose frequency response is G(iω),
then the output is simply written as y(t) = A|G(jω)|eiωt+∠G(jω).57 The describing function technique repre-
sents an extension to the frequency response concept for weakly nonlinear systems.51 In this technique, only
the response at the fundamental frequency is considered and the higher harmonics are neglected. As such, the
response of a weakly nonlinear system to the input u(t) = Aeiωt is approximated as y(t) = Y (A,ω)eiωt+φ(A,ω).
That is, unlike linear systems, the magnitude and phase of the transfer function depend on the input ampli-
tude. Using such a technique we provide below a viscous extension to Theodorsen’s frequency response; i.e.,
the frequency response between the quasi-steady lift (input) and the viscous circulatory lift (output). Figure
6 shows a block diagram for the dynamics of the unsteady viscous circulatory lift. Indeed, the system is
weakly nonlinear; only one nonlinear element whose contribution is minimal with respect to the main linear
contribution.

Let k and Re be given. Then, the quasi-steady lift coefficient (input to our sought flow dynamical system)
is written as

CLQS
(t) = 2πα3/4(t)

Also, the coefficients a0, a1, and a2 are given from Eq. (14). Thus, αs can be obtained accordingly from
Eq. (10). Care should be taken when applying Eq. (10). It should be applied instantaneously; at each time
instant, the right hand side containing the a’s coefficients is complex. The instantaneous αs(t) should be
given by

αs(t) =
1

U2

∣∣∣∣< [1

2
a0(t) + 2a1(t) + 4a2(t)

]∣∣∣∣
As such, the equivalent angle of attack αe(t) for the numerical solution of Chow and Melnik50 is obtained
from Eq. (11) with ε = Re−1/8. Note that if αe(t) exceeds 0.47, then the simulation should be terminated
because such a value implies trailing edge stall beyond which the current analysis is not valid. Using, Fig.
5, one can obtain Be(t), which in turn is substituted in Eq. (10) to determine the viscous correction Bv(t).
Finally, the unsteady viscous circulatory lift coefficient is determined from Eq. (15) by excluding the first
term, i.e.,

CLC
(t) = <

[
2πα3/4(t)C(k)− πB̂v(t)

]
(16)

and a spectral analysis (e.g., FFT) is applied to CLC
(t) to extract its relative amplitude and phase shift with

respect to CLQS
(t).

Following the above procedure, we construct frequency responses of the unsteady, viscous, circulatory lift
coefficient CLC

at different Reynolds numbers, which are shown in Fig. 7 in comparison to Theodorsen’s.
Intuitively, as Re increases, the viscous response approaches the inviscid Theodorsen’s response and vice
versa. In particular, viscosity leads to a significantly more phase lag, which is an important characteristic
to capture; note that the flutter instability, similar to any typical limit cycle oscillation, is mainly dictated
by when energy is added/subtracted during the cycle. That is, the phase difference between the applied
loads (aerodynamic loads) and the system motion (e.g., angle of attack) plays a crucial role in dictating
the stability boundary. We recall the experimental results of Bass et al.27 who conducted a water tunnel
experiment for a NACA 16-012 undergoing pitching oscillations around its quarter-chord point in the range of
0.5 < k < 10 and Re = 6, 500− 26, 500. They compared their force measurements to Theodorsen’s potential
flow frequency response. They found bad agreement in the range 0.5 < k < 2 where the most pronounced
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Figure 6: A block diagram showing the different components constituting the dynamics of the viscous circulatory lift.
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Figure 7: Comparison between the frequency responses of the unsteady, viscous, circulatory lift coefficient CLC
at different Reynolds

numbers and that of the potential-flow circulatory lift coefficient (i.e., Theodorsen’s).
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boundary layer activity is observed and the flow near trailing edge being separated and alternating around
the trailing edge. They concluded that adding a phase lag of −30◦ to the Theodorsen’s C(k) will make it
match the experimental results over this range, which supports the results shown in Fig. 7. Based on this
discussion, we suggest using the obtained viscous frequency responses in place of Theodorsen’s for a more
accurate, yet efficient, estimate of the flutter boundary.

IV. Computational Simulation

A. Numerical Method

In order to study the effect of viscosity on the transfer function, the 2D incompressible URANS equations
have been numerically solved using finite volume based software package ANSYS FLUENT. To this end, the
well-known turbulence model, KWSST was used. This model showed promising results in solving external
flows at high Reynolds number, particularly in airplane aerodynamic applications. The detailed formulation
of this model can be found in the efforts of its developers.58,59 As the Reynolds number is high and the
amplitude of the deflection is small in this investigation and no severe pressure gradient and separation is
expected, KWSST would be quite suitable.

In relation to the numerical setup, the pressure velocity coupling is dealt with by the SIMPLE algorithm,
and since the flow is incompressible, the pressure-based solver is utilized. The properties of the flow at
inlet was used to calculate the dimensionless quantities. All the spatial discretization are second order
upwind. Implicit second order discretization is chosen for transient terms. The convergence criterion for all
the variables are set to be 10−6 at each time step. To select an appropriate value for the time step, three
numerical simulations are performed. In each case, the time step is set to be 500/period, 250/period and
150/period respectively. It is found that 250 sample per each cycle is sufficient to obtain well-converged
results. In each simulation, the number of cycles are chosen to be sufficient for a periodic lift pattern to
establish.

B. Computational Domain

The O-Type farfield located 25c away from the solid body has been implemented for grid generation around
the standard NACA 0012 airfoil with sharp trailing edge. In return of closing the blunt trailing edge of the
original NACA 0012, the thickness of the airfoil altered to 11.9%.

To construct the dynamic mesh due to the airfoil motion, the computational domain is divided into three
rings as shown in Fig. 8. The inner ring (red), which encloses the airfoil, has the radius of 6c. In this region
hybrid mesh is used such that a boundary layer structure dense mesh near the airfoil guarantees y+ < 1, in
conjunction with the unstructured tri mesh attached to it to fill this region. The distance of the first layer of
the mesh was set to be 10−5c with 1.1 growth factor, and the total of 300 mesh points were used on each side
of the airfoil. A size function has been used to ensure that the unstructured mesh in the inner ring is dense
enough to capture the shed vortices if needed. Both the structure boundary layer grids and unstructured
grids close to the trailing edge and leading edge are shown in Fig. 9. The whole inner ring including the
airfoil undergo the pitching movement analogous to a rigid body inside its outer domain. No dynamic mesh
is allowed in this region to ensure that the grids near the airfoil maintain their fine configuration and quality
as they were before the movement.

On the other side, the outer ring located at 25c away from the airfoil is stationary as if no movement
is happening inside the domain. These fixed meshes in the vicinity of the farfield edges certify that the
boundary conditions in the farfiled are imposed correctly in the solution procedure. The intermediate ring
plays the main role for the dynamic mesh approach. The inner radius of this ring is 6c and the outer radius
is 18c; thus it occupies a large region inside the main domain. Both remeshing and deforming techniques
are utilized to damp the deformations in the region caused by the movement of the inner ring and absence
of movement in the outer ring. A User Defined Function is attached to the solver to impose the arbitrary
movement to the airfoil (pitching) and prevent high skewness in the dynamic mesh Zone. The advantage of
this method may not be sensible when deflections are small, yet it demonstrates its ability in damping the
mesh movements when the amplitude of deflection is significant. The large size of the intermediate region
gives enough room to it for handling the deflections. It has to be pointed out that the position of each ring
has been chosen based on numerous simulations were done. The total number of grids is roughly 2 × 105.
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Figure 8: O-Type mesh around the airfoil

Mesh independence study has been done by running another case in which the grids were twice denser and
no alternation in the results has been observed. Thus, the aforementioned mesh configuration was utilized
in the simulations.

C. Boundary Conditions

Since the flow was assumed to be incompressible, the boundary conditions at farfield were velocity inlet
and pressure outlet corresponding to left semi-circle and right semi-circle respectively. The chord length of
the airfoil was 18cm and the magnitude of the velocity at the inlet boundary was 50m/s and 25m/s for
two different Reynolds number. In order to set the Reynolds number to 100, 000 and 1, 000, 000, the fluid
properties were manipulated. The turbulent intensity of the flow was 0.1% and the guage pressure at outlet
boundary condition set to zero. No slip boundary condition is used for airfoil prescribed to a harmonic
sinusoidal motion

α = Aα sinωt , α̇ = Aαω cosωt

with a pitching amplitude of 3 degrees to ensure that the airfoil is in pre-stall regime.
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X

(a) LE
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(b) TE
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(c) LE Hybrid mesh

X

(d) TE Hybrid mesh

Figure 9: Mesh topology near the leading edge and trailing edge of the airfoil

D. Method of Finding the Transfer Function

In this study, the transfer function was assessed based on the Theodorsen approach as it was reflected in
the potential flow solution part of the Eq. 15. Consider the coordinate system in Fig. 10 which the α is in
+x direction, α̇ is in +y direction, and α̈ is in −x direction. By decomposing all the terms in each lift
coefficient, and adding or subtracting them as vectors, the gain and the phase of the transfer function is
obtained. Note that for both the input (α) and the output (CLtot), phase and amplitude is needed which
are calculated by taking Fast Fourier Transform of the α− time and CLtot

− time data from the simulation
results. It is evident that for attaining better accuracy in the results of Fourier transform, both tiny time
step and sufficient number of cycles are essential.

E. Results

Figure 11 shows the results from our computational setup presented above for the frequency response between
the quasi-steady lift coefficient as an input and the unsteady circulatory lift as an output, at two different
Reynolds numbers. The figure also shows Theodorsen’s for comparison. The obtained trends corroborate
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Figure 10: The coordinate system that describes the method of finding the phase and amplitude of the transfer function.

the theoretical findings discussed above. That is, at lower Reynolds numbers and higher frequencies, there
is a significant deviation from Theodorsen’s phase prediction. The computational results exaggerate these
deviations even more. These deviations may significantly affects the prediction of an instability boundary.
Therefore, it may be the reason behind our retarding capability in predicting flutter.
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Figure 11: Computational results of the frequency responses of the unsteady, viscous, circulatory lift coefficient CLC
at different

Reynolds numbers.

V. Conclusion

In this paper, we developed a theoretical unsteady viscous aerodynamic model for an oscillating thin
airfoil with arbitrary time-varying camber. The model is based on the unsteady triple deck theory; a
boundary layer theory that accounts for the transition at the trailing edge from a Blasius boundary layer
to Goldstein wake layer. As such, it accounts for more details near the trailing edge region such as trailing
edge stall. Using the developed model, we provided a viscous correction to Theodorsen’s potential-flow
frequency response function. It is shown that viscosity leads to a significant phase lag at high frequencies
and low Reynolds numbers. This phase lag, which is not predicted by Theodorsen’s potential-flow model, is
expected to affect an instability boundary, hence, it may explain the current weak predictability of flutter
boundaries. Computational fluid dynamic simulations solving the incompressible Navier-Stokes equations
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are performed using ANSYS FLuent. The computational results corroborate our theoretical predictions. In
fact, the computational phase lag is even more exaggerated.
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9Ansari, S. A., Żbikowski, R., and Knowles, K., “Non-linear unsteady aerodynamic model for insect-like flapping wings

in the hover. Part 1: methodology and analysis,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, Vol. 220, No. 2, 2006, pp. 61–83.

10Michelin, S. and Smith, S. G. L., “An unsteady point vortex method for coupled fluid–solid problems,” Theoretical and
Computational Fluid Dynamics, Vol. 23, No. 2, 2009, pp. 127–153.

11Tchieu, A. A. and Leonard, A., “A discrete-vortex model for the arbitrary motion of a thin airfoil with fluidic control,”
Journal of Fluids and Structures, Vol. 27, No. 5, 2011, pp. 680–693.

12Wang, C. and Eldredge, J. D., “Low-order phenomenological modeling of leading-edge vortex formation,” Theoretical
and Computational Fluid Dynamics, Vol. 27, No. 5, 2013, pp. 577–598.

13Ramesh, K., Gopalarathnam, A., Edwards, J. R., Ol, M. V., and Granlund, K., “An unsteady airfoil theory applied
to pitching motions validated against experiment and computation.” Theoretical and Computational Fluid Dynamics, 2013,
pp. 1–22.

14Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M. V., and Edwards, J. R., “Discrete-vortex method with novel
shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding,” Journal of Fluid Mechanics,
Vol. 751, 2014, pp. 500–538.

15Yan, Z., Taha, H. E., and Hajj, M. R., “Geometrically-Exact Unsteady Model for Airfoils Undergoing Large Amplitude
Maneuvers,” Aerospace Science and Technology, Vol. 39, 2014, pp. 293–306.

16Li, J. and Wu, Z.-N., “Unsteady lift for the Wagner problem in the presence of additional leading/trailing edge vortices,”
Journal of Fluid Mechanics, Vol. 769, 2015, pp. 182–217.

17Dickinson, M. H., Lehmann, F.-O., and Sane, S. P., “Wing rotation and the aerodynamic basis of insect flight.” Science,
Vol. 284, No. 5422, 1999, pp. 1954–1960.

18Wang, Z. J., Birch, J. M., and Dickinson, M. H., “Unsteady forces in hovering flight: computation vs experiments,”
Journal of Experimental Biology, Vol. 207, 2004, pp. 449–460.

19Wang, Z., “Vortex shedding and frequency selection in flapping flight,” Journal of Fluid Mechanics, Vol. 410, 2000,
pp. 323–341.

20Ramamurti, R. and Sandberg, W., “A three-dimensional computational study of the aerodynamic mechanisms of insect
flight,” Journal of Experimental Biology, Vol. 205, No. 10, 2002, pp. 15071518.

21Sears, W. R., “Unsteady motion of airfoils with boundary-layer separation,” AIAA journal , Vol. 14, No. 2, 1976, pp. 216–
220.

22Crighton, D. G., “The Kutta condition in unsteady flow,” Annual Review of Fluid Mechanics, Vol. 17, No. 1, 1985,
pp. 411–445.

23Howarth, L., “The theoretical determination of the lift coefficient for a thin elliptic cylinder,” Proceedings of the Royal
Society of London. Series A, Mathematical and Physical Sciences, Vol. 149, No. 868, 1935, pp. 558–586.

24Basu, B. C. and Hancock, G. J., “The unsteady motion of a two-dimensional aerofoil in incompressible inviscid flow,”
Journal of Fluid Mechanics, Vol. 87, No. 01, 1978, pp. 159–178.

25Daniels, P. G., “On the unsteady Kutta condition,” The Quarterly Journal of Mechanics and Applied Mathematics,
Vol. 31, No. 1, 1978, pp. 49–75.

26Satyanarayana, B. and Davis, S., “Experimental studies of unsteady trailing-edge conditions,” AIAA Journal , Vol. 16,
No. 2, 1978, pp. 125–129.

15 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

C
 IR

V
IN

E 
on

 F
eb

ru
ar

y 
6,

 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

18
-0

03
8 



27Bass, R. L., Johnson, J. E., and Unruh, J. F., “Correlation of lift and boundary-layer activity on an oscillating lifting
surface,” AIAA Journal , Vol. 20, No. 8, 1982, pp. 1051–1056.

28Rott, N. and George, M. B. T., An Approach to the Flutter Problem in Real Fluids, Inst. of Aeronautical Sciences, 1955.
29Abramson, H. N. and Chu, H.-H., A discussion of the flutter of submerged hydrofoils, Southwest Research Institute,

1958.
30Henry, C. J., Hydrofoil Flutter Phenomenon and Airfoil Flutter Theory, Davidson Laboratory, 1961.
31Chu, W.-H., “An aerodynamic analysis for flutter in Oseen-type viscous flow,” Journal of the Aerospace Sciences, 1962.
32Shen, S. F. and Crimi, P., “The theory for an oscillating thin airfoil as derived from the Oseen equations,” Journal of

Fluid Mechanics, Vol. 23, No. 03, 1965, pp. 585–609.
33Woolston, D. S. and Castile, G. E., “Some effects of variations in several parameters including fluid density on tbe flutter

speed of light uniform cantilever wings,” 1951.
34Chu, W.-H. and Abramson, H. N., “An Alternative Formulation of the Problem of Flutter in Real Fluids,” Journal of

the Aerospace Sciences, 1959.
35Abramson, H. N., Chu, W.-H., and Irick, J. T., “Hydroelasticity with special reference to hydrofoil craft.” Tech. rep.,

DTIC Document, 1967.
36Savage, S. B., Newman, B. G., and Wong, D. T.-M., “The role of vortices and unsteady effects during the hovering flight

of dragonflies,” The Journal of Experimental Biology, Vol. 83, No. 1, 1979, pp. 59–77.
37Orszag, S. A. and Crow, S. C., “Instability of a Vortex Sheet Leaving a Semi-Infinite Plate,” Studies in Applied Mathe-

matics, Vol. 49, No. 2, 1970, pp. 167–181.
38Ansari, S. A., Zbikowski, R., and Knowles, K., “Non-linear Unsteady Aerodynamic Model for Insect-Like Flapping Wings

in the Hover. Part2: Implementation and Validation,” J. of Aerospace Engineering, Vol. 220, 2006, pp. 169–186.
39Pitt Ford, C. W. and Babinsky, H., “Lift and the leading-edge vortex,” Journal of Fluid Mechanics, Vol. 720, 2013,

pp. 280–313.
40Graftieaux, L., Michard, M., and Grosjean, N., “Combining PIV, POD and vortex identification algorithms for the study

of unsteady turbulent swirling flows,” Measurement Science and Technology, Vol. 12, No. 9, 2001, pp. 1422.
41Hemati, M. S., Eldredge, J. D., and Speyer, J. L., “Improving vortex models via optimal control theory,” Journal of

Fluids and Structures, Vol. 49, 2014, pp. 91–111.
42Brown, S. N. and Daniels, P. G., “On the viscous flow about the trailing edge of a rapidly oscillating plate,” Journal of

Fluid Mechanics, Vol. 67, No. 04, 1975, pp. 743–761.
43Brown, S. N. and Cheng, H. K., “Correlated unsteady and steady laminar trailing-edge flows,” Journal of Fluid Mechan-

ics, Vol. 108, 1981, pp. 171–183.
44Lighthill, M. J., “On boundary layers and upstream influence. II. Supersonic flows without separation,” Proceedings of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 217, The Royal Society, 1953, pp.
478–507.

45Messiter, A. F., “Boundary-layer flow near the trailing edge of a flat plate,” SIAM Journal on Applied Mathematics,
Vol. 18, No. 1, 1970, pp. 241–257.

46Stewartson, K., “On the flow near the trailing edge of a flat plate,” Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, Vol. 306, The Royal Society, 1968, pp. 275–290.

47Brown, S. N. and Stewartson, K., “Trailing-edge stall,” Journal of Fluid Mechanics, Vol. 42, No. 03, 1970, pp. 561–584.
48Jobe, C. E. and Burggraf, O. R., “The numerical solution of the asymptotic equations of trailing edge flow,” Proceedings

of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 340, The Royal Society, 1974, pp.
91–111.

49Veldmann, A. E. P. and Van de Vooren, A. I., “Drag of a finite plate,” Proceedings of the Fourth International Conference
on Numerical Methods in Fluid Dynamics, Springer, 1975, pp. 423–430.

50Chow, R. and Melnik, R. E., “Numerical solutions of the triple-deck equations for laminar trailing-edge stall,” Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28–July 2, 1976 Twente University,
Enschede, Springer, 1976, pp. 135–144.

51Krylov, N. M. and Bogoliubov, N. N., Introduction to Non-Linear Mechanics.(AM-11), Vol. 11, Princeton University
Press, 1943.

52Schlichting, H. and Truckenbrodt, E., Aerodynamics of the Airplane, McGraw-Hill, 1979.
53Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelasticity, Dover Publications, New York, 1996.
54Robinson, A. and Laurmann, J. A., Wing theory, Cambridge University Press, 1956.
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