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On the stability threshold for the 3D
Couette flow in Sobolev regularity

By JacoB BEDROSSIAN, PIERRE GERMAIN, and NADER MASMOUDI

Abstract

We study Sobolev regularity disturbances to the periodic, plane Couette
flow in the 3D incompressible Navier-Stokes equations at high Reynolds
number Re. Our goal is to estimate how the stability threshold scales in
Re: the largest the initial perturbation can be while still resulting in a
solution that does not transition away from Couette flow. In this work we
=3/2 for any o > 9/2
and some § = (o) > 0 depending only on o is global in time, remains
within O(Re™'/?) of the Couette flow in L? for all time, and converges to

prove that initial data that satisfies ||uin|me < 0Re

the class of “2.5-dimensional” streamwise-independent solutions referred to
as streaks for times ¢ > Re'/®. Numerical experiments performed by Reddy
et. al. with “rough” initial data estimated a threshold of ~ Re731/20, which

shows very close agreement with our estimate.
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1. Introduction

1.1. Presentation of the problem. We consider the 3-dimensional Navier-
Stokes equation with inverse Reynolds number v = Re™! > 0

0w —vAv +v-Vv=—-Vp,
V-v=0

set on T x R x T; in other words, v(t,z,y,2) € R and p(t,z,y,2) € R are
functions of (t,z,y,z) € Ry x T x R x T. (The torus T is the periodized
interval [0,1].) The simplest nontrivial stationary solution is the Couette flow
(y,0,0). Despite the apparent simplicity, understanding the stability of this
flow at high Reynolds number (v — 0) is of enduring interest as a canonical,
but subtle, problem in hydrodynamic stability and has been studied regularly
throughout the history of fluid mechanics (along with several variants); see,
e.g., [Kel87], [Rom73], [OK80], [TA92], [TTRD93], [RSBHI8]|, [Cha02], [LK02]
for a small representative subset or the texts [DR81], [SHO1], [Yagl2] and the
references therein.

Denoting u for the perturbation of the Couette flow (that is, we set v =
(y,0,0)! 4+ u), then it satisfies
(1.1)

2 . .
O — VAU + yO,u + (ug ) — VA 120,u% = —u - Vu + VA_I(ﬁiuJ(‘)jul),

V-u=0,
u(t = 0) = uin.

In this work, we want to answer the following question in the inviscid limit
v— 0

Given o, what is the smallest v > 0 such that if the initial perturbation
is such that ||uin||ge = € < V7, then u remains close to the Couette
flow (in a suitable sense) and converges back to the Couette flow as
t — oco?

Hence, the goal is not just to prove that the 3D Couette flow is nonlinearly
stable in a suitable sense (this is straightforward for (1.1)) but to estimate the
stability threshold — the size of the largest ball around zero in H? such that
all solutions remain close to Couette. It is also of interest to determine the
dynamics of solutions near the threshold [SHO1].

1.2. Background and previous work. Understanding the stability and in-
stability of laminar shear flows at high Reynolds number has been a classical
question in applied fluid mechanics since the early experiments of Reynolds
[Rey83]; see, e.g., the texts [DR81], [SHO1], [Yagl2]. In 3D hydrodynamics,
one of the most ubiquitous phenomena is that of subcritical transition: when
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a laminar flow becomes unstable and transitions to turbulence in experiments
or computer simulations at sufficiently high Reynolds number despite perhaps
being spectrally stable. In fact, the flows in question can be nonlinearly asymp-
totically stable at all Reynolds numbers, despite being unstable for all practical
purposes [Rom73]; see also [KLH94|, [LK02]. It was suggested by Lord Kelvin
[Kel87] that indeed the flow may be stable, but the stability threshold is de-
creasing as v — 0, resulting in transition at a finite Reynolds number in any
real system. Hence, the goal is, given a norm ||-|| y, to determine a v = v(X)
such that

luimlx Sv? = stability,
|luin|l x > 7 == possible instability.

Of course we do not know a priori that the stability threshold is a power
law. In the applied literature, v is often referred to as the transition threshold.
The ~ is expected to depend nontrivially on the norm X (as observed in, for
example, the numerical experiments of [RSBH98]).

Many works in applied mathematics and physics have been devoted to
estimating v; see, e.g., [BGM15a], [SHO1]|, [Yagl2] and the references therein.
The linearized problem is nonnormal and permits several kinds of transient
growth mechanisms:

(A) a transient un-mixing effect known as the Orr mechanism, noticed by Orr
in 1907 in the context of 2D Couette flow [Orr07];

(B) the 3D lift-up effect, which rearranges mean streamwise momentum to
deform the shear flow away from Couette, noticed first by Ellingsen and
Palm [EP75] (see also [Lan80]);

(C) the transient growth of higher derivatives due to mixing; and

(D) a transient vorticity stretching.

Trefethen et. al. [TTRD93] considered the implications that nonnormal effects
could have in the weakly nonlinear regime, in particular, forwarding the idea
that the nonlinearity could repeatedly re-excite the transient growth, produc-
ing a “nonlinear bootstrap” scenario. The authors of [TTRD93] conjecture
that v > 1 for (1.1); a number of works have taken these, and related, ideas
further to make conjectures generally giving 1 < v < 7/4; see, e.g., [GG94],
[BDT95], [Wal95], [BT97], [LHR94], [Cha02]. Unfortunately, many of these
authors do not carefully consider how the regularity of the initial data may
affect the answer, despite the fact that the strength of the transient growth
mechanisms is deeply tied to the regularity since the Couette flow can move
information from small scales to large scales. (See Section 1.4 or [BM13],
[BGM1b5al; in fact, the sensitivity was noted by Reynolds [Rey83].) However,
a few take the regularity into account, in particular, Reddy et. al. [RSBH98],
where numerical experiments estimated v ~ 5/4 for smooth initial data and
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v =~ 31/20 for “noisy” data. More recent numerical experiments have since
suggested v ~ 1 for smooth data [DBL10].

In this paper we consider Sobolev regularity data and prove that if the
initial perturbation satisfies ||ui|| ;7o < 0032 for o > 9/2 and § depending only
on o, then the solution stays within O(v'/2) of the Couette flow, is attracted
back to the class of z-independent solutions (referred to here as streaks) for t >
v~ /3 and finally converges back to equilibrium as ¢ — oo. Note that this result
is very closely matched by the numerical estimate v ~ 31/20 of [RSBH9S]; see
Remark 1.2 below for more discussions on regularity and the over-estimations
in numerical experiments. The main result is stated in Theorem 1.1 below, the
main bootstrap argument is set up in Section 2, and the requisite estimates
constitute the remainder of the paper.

The main stabilizing effect is the mizing-enhanced dissipation wherein the
mixing due to the Couette flow results in anomalously fast dissipation time-
scales (first derived by Lord Kelvin [Kel87]); see Section 1.4 for more discussion
or previous works such as [RY83], [DN94], [LBO01], [BL94], [BBGO01], [BW13],
[CKRZ08], [BMV16], [BCZ15]. ([DN94] are the first to the authors’ knowledge
to observe that this is important for understanding (1.1).) Inwviscid damping,
first derived by Orr [Orr07] in 2D and later noticed to be a hydrodynamic
analogue of Landau damping (see, e.g., [BS03], [Ryu99], [MV11]), also plays a
role in suppressing certain nonlinear effects.

Nonlinear stability of the Couette flow in Sobolev topology has been
considered previously in the case of the bounded, infinite channel, that is,
y € [-1,1] and = € R (which can of course lead to further complications,
due to the presence of boundary layers), first by Romanov [Rom?73], with later
improvements by [KLH94] and [LKO02]. This last paper seems to give the
best mathematically rigorous result to date for this geometry, namely v < 4.
In [BGM15a], [BGM15b], we study the stability threshold in Gevrey-a for

€ (1,2) for (1.1). (Gevrey class was first introduced in [Gev18].) Roughly
speaking, in [BGM15a] we prove that v = 1 in these topologies (consistent with
the numerical results of [DBL10]) and in [BGM15b] we study the dynamics of
solutions that are as large as v2/379. Note that the numerical over-estimation
of [RSBH98|, 5/4 vs. 1, is more pronounced in Gevrey than in Sobolev; see
Remark 1.2.

All previous work in fluid mechanics and kinetic theory that depend on
mixing as the stabilizing mechanism in models with strong nonlinear reso-
nances are in infinite regularity. (Indeed, the resonances in (1.1) are far more
problematic than those in 2D Navier-Stokes/Euler [BM13] or Vlasov-Poisson
[MV11].) In this work we are looking for the boundary (in terms of 7) be-
tween when finite regularity results are possible and when infinite regularity
seems to be required; see Section 1.6 for a more indepth discussion of the
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relationship between this work and previous related infinite regularity results
in [MV11], [BMM16], [BM13], [BMV16], [Youl6], [BGM15a], [BGM15b]. We
remark that there exists some finite regularity results in certain kinetic the-
ory models [FR16], [FG16], [Diel6], however, this is possible only because the
nonlinearities being studied satisfy stringent nonresonance conditions.

1.3. Streak solutions. The first basic property to notice about (1.1) is that
it admits a wide class of so-called “2.5-dimensional” solutions, which are often
referred to as streaks, due to the streak-like appearance of the relatively fast
fluid in experiments and computations [TTRD93], [SHO1], [TE05], [BDDM9S].
We will see that all solutions below the threshold converge to these streak so-
lutions for ¢ > v~1/3, and hence these solutions describe the fully 3D nonlinear
dynamics for long times.

PROPOSITION 1.1 (Streak solutions). Let v € [0, 00), um € H*/*t be diver-
gence-free and independent of x, that is, uin(z,y,2) = uin(y, z), and denote
by u(t) the corresponding unique strong solution to (1.1) with initial data uiy.
Then u(t) is global in time, and for all T > 0, u(t) € L>®((0,T); H/?>*(R?)).
Moreover, the pair (u?(t),u3(t)) solves the 2D Nawier-Stokes/ Euler equations
in (y,z) e Rx T:

(1.2a) o’ + (u?,u?) - Vu' = —9p + vAU, i€{2,3},
(1.2b) dyu® + 0.u® =0,

and u' solves the (linear) forced advection-diffusion equation
(1.3) o + (u?,u?) - Vul = —u? + vAul.

1.4. Linear effects. Four linear effects will play a key role in the analysis
to come: lift up, inviscid damping, enhanced dissipation, and vortex stretching.
We present quickly the linearized problem and how these four effects arise.

1.4.1. The linearized problem. The linearized problem reads
2
Oru = vu+ydpu+ (1 ) — VATI20,u% = 0,
u(t =0) = ujp.

Switch to the independent variables (7, y, z) = (x—ty, y, z) by setting u(t, z, y, 2)
= u(t, z,y, z); it solves

2

ot — VAN + ﬂg ) —~ VA 20:w2 =0,
u(t = 0) = Uiy,

(1.4)

where VL = (aff, ay — t@g, 6Z) and AL = VL . VL.
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1.4.2. Lift up. Consider first the projection onto zero frequencies in &
(equivalently z) of the above equation. (For a function f(¢,x,y, z), we denote
foly,z) = [ f(x,y, z) dx.) Note that @y = ug, and hence it reads

u2
{5tuo — vAuyg Q - 00) )
0
Uo(t = 0) = (uin)o.
The solution of this linear problem is given by

e’ [(ul,)o — t(ud)o]
= thA(uizn)O
u )o

in

el/tA(

The linear growth predicted by this formula for times ¢t < % is known as the
lift up effect, and was first noticed by Ellingsen and Palm [EP75] (see also
[Lan80]). This nonnormal transient growth turns out to be a primary source
of instability in (1.1) for small data; note also that this effect is not present in
2D due to the vanishing of uZ by incompressibility in that case. For smooth
data of size £, we can expect at best the bounds,

2
e
EIRRRTN )

1.4.3. Inviscid damping. Turning now to nonzero frequencies in Z, de-
noted for a function f(z,y,z) by fr = f — fo, observe that the linearized
problem satisfied by 63& =A Lﬂi reads

7 —vALT =0,
qQ(t = 0) = a?n

For smooth data of size e, this gives a global bound on ¢ of order . This

unknown was first introduced by Kelvin [Kel87] and is often used when study-

ing the stability of parallel shear flows; see, e.g., [Cha02], [SHO1]. The velocity
field can be recovered by the formula 713& = Azlqi, or, in Fourier (denoting k,

(1.5)

7, | for the dual variables of z, y, z respectively)

— 1 —

1. ul = 7.
(16) Y Py AP P

2
Due to the bound k2+(n—1kt)2+12 < <<Il7t>>2, this leads to a decay estimate of the
type

(1) Ay .

This decay mechanism is known as inviscid damping; indeed, notice that the
decay rate is independent of v and is true also for the linearized 3D Euler equa-
tions. For the nonlinear problem, we will mostly depend on LZH? estimates,
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in which case we can expect estimates such as
—2
(1.8) [t p2ms S €

(e standing for the size of the data). The regularity loss in (1.7) is required to
control the transient growth in (1.6) for nk > 0; modes that are tilted against
the shear and are subsequently unmixed to large scales before being mixed to
small scales. This nonnormal effect was pointed out by Orr [Orr07] in 2D,
however, it will remain important in 3D. Orr referred to the time ¢ = n/k as
the critical time, a terminology we also use below.

1.4.4. Enhanced dissipation. In order to understand enhanced dissipation
better, consider the model scalar problem, such as that solved by g> above in

(15)’

w;,g(t = 0) = (’win)#.
Taking the Fourier transform, the problem can be recast as
Az — v(k® + (n — kt)? + 1)wz = 0,
W (t = 0) = (win) 2.

{&tw# —vApwy =0,

t —
Thus wx(t, k,n,1) = e o (k2+(”_kT)2+l2)dT(win)¢. Due to the inequality

t
/ (B2 + (n — k7)? + 2)dr > 85,
0

for the linear problem we get the decay

we| g S ce™ "

This decay is much faster than the standard viscous dissipation; indeed, the
characteristic time scale for dissipation in nonzero-in-z modes is order ~ v =1/3
instead of v~!. We refer to this phenomenon as enhanced dissipation; as
mentioned above, it has been studied in several contexts previously; see, e.g.,
[RY83], [DN94], [LB01], [CKRZ08], [BW13], [BMV16], [BCZ15]. In this work,

we will use L? time-integrated estimates of the type
€ €
lwellzems S 16 and  [[twel/p2gs < 7

1.4.5. Vorticity stretching and kinetic energy cascade. The control of g2
provides the rapid decay of @? via inviscid damping, which can then be inte-
grated to understand the evolution of @' and @? in (1.4). In particular, we see
that for times 1 < t < v=1/3, a;f are essentially time-independent, and hence
over these times u;’?’ are being mixed like a passive scalar by the Couette flow.

Hence, over these time scales we see a forward cascade of kinetic energy. (This
persists on the nonlinear level as well [BGM15al.) Due to the negative order of
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the Biot-Savart law, it is easy to see that a forward cascade of kinetic energy
is only possible if there is an accompanying vorticity stretching; this can also
be confirmed by studying (1.4) in vorticity form.

Finally, we summarize the linear behavior here.

ProprosITION 1.2 (Linearized Navier-Stokes). Let win be a divergence-
free, smooth vector field. The solution to the linearized Navier-Stokes u(t)
with initial data wiy, satisfies the following for some ¢ € (0,1/3):

(192 a2, S 02 Ju] ...
(1.9b) | @)]|,,. S e lluinl rosr

and the formulas

(1.10a) ug(t, y, z) = s Ul o — tufyo)
(1.10b) ug(t,y, 2) = e"Sug, o,

(1.10¢) ug(t,y, 2) = e %ud, .

1.5. Statement of results. We now state our main results.

THEOREM 1.1. For all o > 9/2, there exists § = 0(o) such that if v €
(0,1) and wiy is divergence-free with

(1.11) e = ||uinlze < 6%/,

then the resulting strong solution to (1.1) is global in time and there exists a
function ¥(t,y, z) satisfying

52

1 o + VIVl 2o S oL

such that, denoting by U’ i € {1,2,3} the velocity field u' in the new coordi-
nates

Ul(t7 xr — ty - tlﬁ(t,y’ Z)7y + ¢(t7y7 2)7 Z) = ui(twraya Z)a

the solution u(t) to (1.1) with initial data uiy, is global in time and satisfies the
following estimates:

(1.12a) uéHLOOH + \FHV%’ L2H® S E

(1.12b) |66°| e o + V7| V87| 2y S &

(1.12¢) U?%”Loojarfff2 + HvLUinHU%" + HtUi‘ L2Ho—4 Se
(1.12d) UL, o oa + VUL s S

(1.12¢) U2||, o poe + VY| U2]| 2y S &




3D COUETTE FLOW IN SOBOLEV REGULARITY 549

Remark 1.1. The latter terms in (1.12d) and (1.12e) emphasize the effect
of enhanced dissipation, discussed above in Section 1.4. In particular, the
scaling of the L2H°~* norm of tU;; is far better at small v than what would
be true of the heat equation. The second two estimates in (1.12c) emphasize
the effect of inviscid damping: notice indeed that the decay does not depend
on v.

Remark 1.2. How optimal are the assumptions of the theorem?

e As mentioned previously, numerics in [RSBH98] estimated a threshold for
“noisy data” at e ~ *1/29; Theorem 1.1 shows that the stability threshold
is slightly better. In light of the numerical evidence, it is reasonable to
conjecture that Theorem 1.1 is sharp in terms of v over some range of
Sobolev spaces.

e By parabolic smoothing, it should be possible to slightly weaken (1.11) to
something like uin = ug +ur with ||ug|| o2+ + Cri=s gl e < 00372 for
a universal C at least over some range of o € (5/2,9/2). This is a local-
in-time effect that is totally independent of Theorem 1.1 (though it may be
a nontrivial refinement of the local theory for (1.1)). This is qualitatively
consistent with the numerical over-estimation observed in [RSBH98] and
others: numerical algorithms will inevitably introduce noise at the smallest
scales of the simulation and hence possibly over-estimate ~y; indeed, more
recent computations carried out in [DBL10] are closer to the v ~ 1 in the
case of smooth data. This also suggests that the Sobolev regularity ~ is
more robust to low-regularity noise than the infinite regularity v (which
requires exponentially small noise [BGM15a]), which is consistent with the
mentioned numerical observations.

1.6. Brief discussion of the results and new ideas. Our work shows that
it may now be feasible to build a mathematical theory of subcritical instabili-
ties in fluid mechanics and possibly also in related fields, such as magneto-
hydrodynamics. This seems especially possible in finite regularity, as the
methods here are significantly more tractable than those in infinite regular-
ity [BGM15a], [BGM15b]. Indeed, in the proof of Theorem 1.1, we need to use
methods that differ significantly from those used in the infinite regularity works
[MV11], [BMM16], [BM13], [BMV16], [Youl6], [BGM15a], [ BGM15b]. In all of
these previous works, the infinite regularity class is used to absorb the potential
frequency cascade due to weakly nonlinear effects in a process related to clas-
sical Cauchy-Kovalevskaya-type arguments in, e.g., [Nir72], [Nis77], [FT89],
[LO9T7] (see Section 2.3 for more precise discussions) or, in the case of [MV11],
via a Nash-Moser-type iteration. Here this is clearly not an option, and hence
we need to rule out any such cascade with the least possible amount of dis-
sipation; something that will require a different kind of understanding of the
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weakly nonlinear effects in the pressure and a more precise understanding of
the interplay between the enhanced dissipation and vortex stretching. The
starting point for this is the linear analysis of Section 1.4, and based on this,
Fourier multipliers that precisely encode the interplay between the dissipation
and possible growth are designed. These multipliers are then used to make
energy estimates that lose the minimal amount of information from the linear
terms; see Section 2.3 for specifics and context with existing ideas in, e.g.,
[FT89], [Ali01], [BM13] and others. (In particular, we need multipliers that
more precisely capture the effect of dissipation than in [BGM15a], [BGM15b].)

Once we have understood and quantified the linear terms, one needs to
understand how this linear behavior interacts with the nonlinearity. For this,
of critical importance in the proof is the precise structure of the nonlinearity,
which contains a number of null structures. Similar to null forms for quasilin-
ear wave equations, introduced in [Kla82], the null structures encountered in
the present paper cancel possible interactions between large modes or deriva-
tives of the solution. The simplest is that the nonlinearity in (1.1) does not
allow uj to directly interact with itself in a nonlinear way (this is essentially
how Proposition 1.1 works); however a similar structure also limits the way
u; and u} interact. Another slightly more subtle structure is that, since the
nonlinearity is comprised of forms of the type u’/0;u’, the large growth of y
derivatives is crucially counter-balanced by the inviscid damping of «? in non-
linear terms. Indeed, this is why quantifying the inviscid damping of u? is
important for the proof to work. Similarly, the u'd, and w30, structure pairs
less problematic derivatives with the more problematic u'3. Since the inviscid
damping is important, a key physical mechanism to understand is how the
streak and the kinetic energy cascade interact nonlinearly in the y derivative
of the pressure, that is, the nonlinear term: —0d, -1 8Zu68$u:;). Controlling
this term is one of the main challenges, which is done in Section 3.1.2, and in
it, all of the linear effects outlined in Section 1.4 are playing a role (which is
why it is very important that these are treated precisely). See Section 2 below
for more details on the proof and techniques.

2. Preliminaries and outline of the proof
2.1. Notation.

2.1.1. Miscellaneous. Given two quantities A and B, we denote A < B
if there exists a constant C' such that A < CB. This constant might depend
on o, but not on 4, v, Cy or C; (the two latter quantities remain to be defined),
provided that § is chosen sufficiently small. That is, implicit constants such as,
e.g., Cyd are omitted for simplicity. We similarly denote A < B if A < §yB for
a small constant dg € (0, 1) to emphasize the small size of the implicit constant.
Finally, we write (x) = v/1 + 22.
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2.1.2. Fourier Analysis. The Fourier transform of a function f(X,Y,Z2),

o~

denoted f(k,n,¢) or Ff, is such that

FEY.Z) =3 [ S e D) ay,
kN

ERZ

~

f(k;"r/?f) :/ / f(X, Y, Z)e—iQTr(kX+nY+£Z) dX dY dZ.
XeT JYeR JZeT

The Fourier multiplier with symbol m(k,n, ¢) is such that
m(D)f = F'm(k,n,0)Ff.
The projections on the zero frequency in X of a function f(X,Y, Z) are denoted
by
Rof =fo= [ F(X.Y,2)ax,
while
Pif=fr=f—-PRf.

2.1.3. Functional spaces. The Sobolev space HY is given by the norm

£z~ = KDY £l 2

Recall that, for s > 3, H*® is an algebra: || fgllms < || f|l a2l m=-

We will sometimes use the notation H** for H¥*, where x can be taken
arbitrarily small, with (implicit) constants depending on .

For a function of space and time f = f(t,x), and times a < b, the Banach
space LP(a,b; HY) is given by the norm

1 e a,bsm 5y = Il poga,p) -

For simplicity of notation, we usually simply write || f||;,y~ since the time-
interval of integration in this work will be the same basically everywhere.

2.1.4. Littlewood-Paley decomposition and paraproduct. Start with 6 a
smooth, nonnegative function supported in the annulus B(0,5)\ B(0, 1) of R3,
and such that E;r:_oo 0 2%) =1 for £ # 0, and define the Fourier multipliers

D D
j=—o0

These Fourier multipliers enable us to split the product into two pieces such

that each corresponds to the interaction of high frequencies of one function

with low frequencies of the other:

f9 = faigro + frogmi,
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fHigro =Y _ PjfP<;g, frogmi =Y _ P<j_1fPjg.
J J

(The lack of symmetry in this formula is irrelevant.) We record the estimate

(2.1) | frrigrollas S I fllmsllglme  for s >0, 0 > 2.

We further note that if g depends only on two variables, say y and z, then we
have

(2.2) [frigrollns S I fllmsllgllze fors>0,0>1.

2.2. Re-formulation of the equations. First, we reformulate the equations
to make them more amenable to long-time, nonlinear analysis.

2.2.1. Change of dependent wvariables. In order to understand the lin-
earized equation in Section 1.4, it is important to use the unknown ¢? = Au?.
In linear or formal weakly nonlinear analyses (see, e.g., [Cha02, SHO1] and
the references therein) it is natural to couple ¢? with the vertical component
of the vorticity, however, we will also need to change independent variables
to adapt to the mixing caused by uj, which makes this approach very prob-
lematic. Therefore, it is more convenient to work with the set of unknowns
q" = Au’ (as observed in [BGM15a]). These unknowns satisfy the system
(2.3)
oq* + yOrqt — vAGH + 20,yut + ¢ — 20,,u°

= —u-Vg' — ¢ojut — 20,0 0;ut + 0, (0! Oju’)
XG* + y0:¢* — VAP = —u-Vg? — ¢ Oju? — 20, 0;;u* + 9y (Oiu? Ojut)
oG + y0:q® — VAG + 20,yud — 20,,u>

= —Uu- Vq3 — qﬂﬁju?’ — 28iu18iju3 + 0, (&-ujajui) ,
Q(t = 0) = (in-

2.2.2. Change of independent variables. The x-component of the streak,
u, is expected to be as large as O(ev~!) (again from Section 1.4), which is far
too large to be balanced directly by the dissipation. (It is not hard to check
this would require ¢ < v2.) Hence, we remove the fast mixing action due to the
streak itself, an approach also used in [BGM15a] for the same reason. There is
essentially no choice in the change of coordinates we can employ — it is dictated

uniquely by the desired properties and the structure of the equation. Although
the coordinate transform is described in detail in [BGM15a], because it is still
a central tool for our analysis here, we will describe briefly the motivation for
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its design. Define the coordinate transform with the ansatz as in [BGM15a],

(24&) X = ﬂs—ty—td)(t,y,z),
(2.4b) Y =y+y(ty,2),
(2.4c) Z =z

We denote

@Z}y(taY, Z) = aydj(tayv Z), Q;Z)Z(ta }/’ Z) = 8Z¢(t7y7 Z)'

To distinguish between old and new coordinates, we capitalize u’ and ¢*, while
1) itself becomes C':

Ui(t,X, Y, Z) = ui(t,:n,y,z), Qi(t,X,Y,Z) = qi(t,m,y,z),
C(t7 Y7 Z) = w(t7 y7 2)7

where we are using the shorthand X = X(¢t,z,y,2), Y = Y (t,z,y,2), and
Z = Z(t,x,y, z). Notice that 1y, 1., and C are related as follows:

I C = :
(2.5a) Yy = T_0vC 3}/0%(5}/0)]7
9,00 > :

In the new coordinates, differential operators are modified as follows: denoting
f(tw%'?ya Z) = F(t,X, Y, Z),

Oz f Ox F
Vf(t, z,Y, = ayf = (1 + T/Jy)(aY - taX)F
azf (8Z + ¢z(5y - taX))F
3
= OLF | =V,F(t,X,Y,Z).
o, F

It will be useful to isolate the “linear part” of V; (that is, the contribution
associated with the linearized problem), which we denote V:

Ox Ox
V) = Oy — t0x = ok
0z 0z
Using the notation
(2.6) Ap =V -V =0%+(0%)*+03

(2.6b) G = (L+1hy)* + 02 — 1,
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the Laplacian transforms as
Af=AF= (@0 + @4) + (0)°) F
= ALF + GOLy F + 20,05 F + ACOLF.

One of the motivations for the ansatz (2.4) is so that the symbol of Ay,
o(A¢)(t,y,k,n) (as a pseudo-differential operator) fails to be elliptic precisely
when 1 = kt — the same as Ar. (By convention, n is the wave number asso-
ciated with Y and k is the wave number associated with X.) This property
makes it possible to effectively approximate A, ! with Azl, provided that 1 re-
mains sufficiently small. (Lemmas of this type are outlined in Appendix A.2.)
We will also need the modified Laplacian

(2.7) AF = AF — A\COEF = ApF + GOy F 4 24,05 4 F.

Next, we describe how to choose 1 effectively. Suppose that f satisfies the
passive scalar equation:

O f +yof+u-Vf=vAf.
Then from the above considerations, we have
(2.8
ut — (1 + Oyp)u? — tdpud — Oy (L) + vtAdp

O K + (1 + Oyh)u? + O.9hu? + dph — vAY Vxy,zF = vAF.
3
u

The primary contribution from the background streak in the velocity field is
given by the u} — tu? in the first component, so it is natural to choose the
contributions involving 1 to balance this by making the definition

(2.9a) %(w) Fup - V(1) = ub — tul + vtAY,
(2.9b) lim t4(t) = 0.

In fact, making a slightly different choice, e.g., by attempting to drop the
higher order ug - V(t1)) term in (2.9a), does not seem to work, in the sense
that ¢ remains too large to get reasonable estimates over long times. Hence,
(2.9a) appears to be the only feasible choice, given the ansatz (2.4). The mild
coordinate singularity at ¢ = 0 will be irrelevant, as this coordinate transform
will only be applied for ¢ > 1.

Let us now apply the choices (2.4) and (2.9a) to (2.3). Define g and Uy
(which will be the X-independent part of the velocity in the new coordinates)
by

1
g= E(UO1 - C)> = g
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Computing from (2.9a), (2.3), and (1.1) gives the following system (we refer
to [BGM1ba] for more details):
(2.10)
QF — vAQ' + Q? + 204 U — 20x x U2

=—Up VQ' —Us V,Q' — QIOLU — 201U 0L,U" + dx (DU LU,
Q7 — vAQ?

=—Up VQ*— Uy, ViQ? — QI0LU? — 201U70,U? + 04 (8L U 9LUY),
Q3 — vAQP + 20 U — 20 ,U?

= Uy VQ® — Uz V,Q* — QIOLU? — 201U 01,U + 9% (0LU7 04U,

coupled with the equations that must be solved to find the coordinate system
itself:

2.1) {3t0+ﬁo-VC’:g—U§+uZtC,

Org + ﬁo -Vg = —%g — %(U;,g . VtU;é)O + Vztg.

Although most work is done directly on the system (2.10), (2.11), for certain
steps it will be useful to use the momentum form of the equations
(2.12)
_U?
QU—vAU+TVUAU, VU= 0 |+V, A7 205UV, AT (BIU700T7).
0

2.2.3. Shorthand. It will be quite convenient to use shorthand for the
various terms appearing in the above equations and to be able to distinguish
whether interacting modes have zero or nonzero X frequency. Let us start
with linear terms, appearing in the equations for Q¥, k =1, 3:

LU = Q? (lift up term),
LS = 204 U* (linear stretching term),
LP = —20%,U? (linear pressure term).

Next, consider the nonlinear terms in (2.10). In the following, 4,j run in
{1,2,3}, while £; and €2 may be 0 or #):

Toe, = Uy - VQ];”1 (transport term),
Tte, =Us - Vthl (transport term),
NLS1(j,e1,e2) = gl(% Uak2 (nonlinear stretching term),
NLS2(i, j,e1,e2) = 28nglaijEkQ (nonlinear stretching term),
NLP(i, j,e1,e2) = 8,2(8§U;185Ug2) (nonlinear pressure term).
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We will often abuse notation and, for instance, denote indifferently NLS1 for
this term and its contribution to an energy estimate. The origin of these terms
is more or less clear except perhaps the “stretching” terminology, which is due
to the similarity these terms have with the vortex stretching term in the 3D
Navier-Stokes equations in vorticity form.

2.3. The Fourier multipliers. At this point, our work here will depart from
the infinite regularity case [BGM15a].

The multiplier m: stretching versus dissipation. Our focus here is the
following linear equation:

Of +20%y AT f —vALF =0,

which occurs as some of the main linear terms governing Q! and Q3 in (2.10).
This equation can be seen as a competition between the linear stretching term
28)L(YA21 f and the dissipation term vAp f. Taking the Fourier transform, it
becomes

k(n — kt)

R e o v

2ﬂ+u k% + (n — kt)? +€2)f—0

If & # 0, the factor 2% is positive for £ < 7, in which case it amounts
to damping on f and it is negative for ¢ > i, in which case it corresponds
to an amplification of f. As for the factor v (k% + (n — kt)? + £2), this gives
enhanced dissipation for k # 0. We start with the following inequality, which
compares the sizes of these two factors: uniformly in (k,n,¥), if k # 0, then
|k(n — kt)]

2 L2 2
(v k24— k1) +£)>>]_€2 R

if |t — %| > 3,

k(n—kt t
Indeed, u(k24|r(7(;n—kt)%l+e2)2 < l/(l-‘yl-lt ’2','2)2, and it is easy to check that

V(1+1‘2)2 <1

for |z| > v=1/3.

To summarize, stretching overcomes dissipation if 0 < ¢ — ] < v1/3. To
deal with this range of ¢, we introduce the multiplier m. Define m(t, k,n, ) by
m(t =0,k,n,¢) =1 and the following ordinary differential equation:

i {o if ¢ ¢ [%, %+ 10000~ 1/3],

) ift e [f, 1+ 100007 1/3].

This multiplier is such that if f solves the above equation and 0 < t — % <
1000v~1/3, then mf solves

o(mf) —vAp(mf) =0,

and this equation is perfectly well behaved! That is, the growth that f under-
goes is balanced by the decay of the multiplier m; this is especially useful since
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the growth is highly anisotropic in frequency. Conveniently, it turns out that
m is given by a closed formula:

(1) if k=0: m(t,0,n,¢) = 1;

(2) if k #0, } < —10000"13: m(t, k,n,0) = 1;

(3) if k # 0, —10000~/3 < 1 < 0:

o m(t,k,n,0) = % if 0 <t < 741000013,

2,2, g2 . B
o m(t, k,n,l) = k2+(1lgogk7/j1£/3)2+£2 if £ > + 10000~ /%;
(@) if k#£0, 7 > 0:
o m(t k,n, ) =1ift <,

o m(t, k. 0) = g e 1 F <t <+ 1000015,
2 2 . —
o m(t, k,n,0) = k2+(100,(€)kj/_£1/3)2+€2 if £ > + 10000~ /%.

Notice, in particular, that
(2.13) V23 <m(t,k,n, 0) < 1.

Further, we point out the following key inequality, which shows that the growth
is exactly balanced by Ap:

272
(2.14) mt ko) 2 —— 0
k2 + 12 + |n — kt|

Additional multipliers bounded from below by a positive constant. We will
use several additional multipliers, which unlike m, are bounded above and
below uniformly in v and frequency. Multipliers M? and M! are used to
balance the growth due to the linear pressure terms as well as some of the
leading order nonlinear terms. The multiplier M? plays an especially crucial
role by compensating for the transient slow-down of the enhanced dissipation
near the critical times, and hence this multiplier will be ultimately how we

quantify accelerated dissipation without regularity loss — of crucial importance
to our methods and not possible with the techniques employed in the infinite
regularity works [BMV16], [BGM15a].

Define M*, i = 0,1,2 as follows: M'(t =0,k,n,¢) =1 and

o if k=0, Mi(t,k,n,¢) =1 for all t;

. MO _k2 .
o if k#0, ¥ = preErpom
: M1 —2(k¢ .
o if k£0, 4 = Rt
. 72 1/3
o ifk#£0, M= VP
7& I M2 [V1/3|t_%|]1+m+17

where £ € (0,1/2) is a small, fixed constant. It is easy to check that these
multipliers satisfy

0<ec< M{(tkmnl <1
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for a universal constant c¢. Define then
M = MM M2

To see the usefulness of M, consider the Weighted energy estimate

V- Q;é

In order to bound the latter term, we may ﬁrstly use some of the negative term

S e, =- + (MU, MO,Q) pr~

coming from M, and secondly, if we can control the term by something like
1 . 2
(MQ*, Mo,Q%) v < = H\/—MMQ;

2 HN
where & is uniformly bounded in L, then both V|V MQ3| 25~ and
V—MM Qi are bounded! The usefulness of this estimate is empha-

L2HN

sized by the following very important lemma (the proof of which is immediate

e+ se

from the definition of M?), which shows how to deduce L? in time enhanced
dissipation without losing any regularity.

LEMMA 2.1. For k # 0, there holds
1< v YO\ —M2M2 (K, 0, 1) + M3 |k, — ki, 1] .

As a corollary, the followmg holds for any f and o > O:
15l ome 5K [V=rain P ).

Note that Lemma 2.1 also holds with M? replaced by the full M, as will
be used frequently below.

The use of norms with time-decaying norms is quite classical when working
in infinite regularity; see, e.g., the Cauchy-Kowalevskaya theorems of [Nir72],
[Nis77]. The use of dissipation-like terms that appear in L2-based infinite reg-
ularity estimates goes back to [FT89]; see also related ideas in, e.g., [LO97],
[KV09], [CGP11], [MV11] and the references therein. The ghost energy of
Alinhac [Ali01] for quasilinear wave equations uses O(1) time-dependent
weights in the norms, and the O(1) multiplier M is a Fourier-side analogue;
this general idea has been used several times [Zil14], [BGM15a], [BGM15b].
Combining ideas like the ghost energy with the Cauchy-Kowalevskaya-type
ideas are multipliers such as m(t, V), which are not O(1) (m~! is bounded
only by O(r~2/3)); this is significantly more complicated, as will be clear from
the proof. In the context of nonlinear mixing, this general idea was introduced
for infinite regularity in [BM13] and extended further in [BMV16], [BGM15a],
[BGM15b]. However, m is very different from ideas appearing in these infinite
regularity works, as we must use very differently the interplay between the
dissipation and destabilizing effects.
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2.4. Bootstrap. In the following, it will be convenient (for bookkeeping
purposes) to introduce
5
N=oc-2> 5
First, we have the following standard lemma. One can, for example, apply the
energy methods in [MB02] and [LO97] (for the analyticity). We omit the proof
for brevity.

LEMMA 2.2 (Local existence, continuation, and propagation of analytic-
ity). Let uy, be divergence-free and satisfy (1.11). Then there exists a T* > 0
independent of v such that there is a unique strong solution to (1.1) u(t) €
C ([0, T*); HN*2) that satisfies the initial data and is real analytic for t €
(0, T*]. Moreover, there exists a mazimal time of existence Ty with T* <Tp < oo
such that the solution u(t) remains unique and real analytic on (0,Ty) and, if
for some 7 < Ty we have limsup, . [[u(t)| g~ < 0o, then T < Tp.

By similar considerations (see Section 2.7), for ¢ sufficiently small, there
are no issues getting estimates on ¢*, u?, and 1 until ¢ = 2.

LEMMA 2.3. Forev—3/2 sufficiently small and constants Cy, C sufficiently
large (chosen below), the following estimates hold for t € [0, 2]:

(2.15a) |a' @), +||e* @], < 2C0e,
(2.15b) |2®)] .\ <22,
(2.15¢) [ O, vie + [#2®)] s < 2C02,
(2.15d) [ O, vea < 25,
(2.15¢e) It ()|l gy~ < 2Cqe.

Lemma 2.3 shows that we only need to worry about times ¢ > 1, for which
we now move to the coordinate system defined in Section 2.2.2; for details on
converting the estimates to and from these coordinates, see Section 2.7 below.
From now on, all time norms are taken over the interval [1, 7] unless otherwise
stated; that is, all norms are defined via

1o s = MO gzs | Lo gy -

Fix Cy, C1, and Cy large constants determined by the proof below, and let T
be the largest time 7' > 1 such that the following estimates hold on [1, 7] (see
Lemma 2.7 below for a proof that 7' > 2): the bounds on @,

(2.16a) [~ Qb
(2.16b) || + 012 v Q|

Lo N < 80067

< 80061/_1,

LooHN L2HN
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1 1/2 1
(2.16¢) |mMQL, _+ v mavi@l
+ H\/ —MMmQ;é < 8006V_1/3,
L2HN
1/2 2 1/21,,,1/2 2
(216d)  |m'2MQ?| 4+ mt v
+ ”\/—MMml/ZQ2 < 8e,
L2HN
3 1/2 3
(2.16¢) HmMQ HLOOHN +v HmMVLQ LogN
+ ’\/ —MMmQ? < 8Cye,
L2HN
2 1/2 2
(2.16f) HMQ#HLOOHN* Tt HMVLQ7£‘ L2HN-1
—l—' —MMQ; < &e,
[2HN-1
the bounds on U,
(2.17a) )13, . s < 8C0e,
1 1/2 1 -1
(2.17b) 1T6 |, pyvs + 772 |[VUB| 2y < 8Cosv ™,
(217C) ”U(?HLOOHN71 + V1/2||UgHL2HN71 + Vl/QHVUgHLZHNfl < 8E7
(217d) HU(?HLOOHN*1 + V1/2HVU(£)))HL2HN*1 S 80()6,
(2.17e)
1 1/2 1 Y 1
HMU7£HL°°HN*1 + v HVLMUA Legn-1 ” —MMUy L2HN-1 < 8Che,
(2.17f) |03, . < 8Coev Y,
and the bounds on the coordinate system
(2.18a) 1]l oo grasz + Y2 Vgl 2 gavre < 8Coe,
2 1/2 ||,2
(2.18) 120] o s + 22|29 o < 8C0E,
(2.180) 1€ e prssz + V2 [VC| e gvee < 8Chev,

Note that Lemma 2.3 implies T" > 2; see Section 2.7 and the continuity of the
constant in Lemma 2.5. The goal is then to prove that T' = +o00, which follows
immediately from the following (and that all of these norms are continuous in
time).

PROPOSITION 2.1. Assume that ||| grv+2 < e < 6032, v € (0,1), and
that, for some T' > 1, the estimates (2.17), (2.16), (2.18) hold on [1,T]. Then
for 0 sufficiently small depending only on o,Cy, C1, and Co (in particular,
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independent of T'), these same estimates hold with all the occurrences of 8 on
the right-hand side replaced by 4.

That Proposition 2.1 implies Theorem 1.1 is proved in Lemma 2.8 below.
The proof of Proposition 2.1 comprises the remainder of the paper.

Before going any further, let us comment on the choice of the a priori
estimates (2.16), (2.17), and (2.18).

e Most of these estimates are the natural ones for the linearized problems,
given the multipliers chosen above: consider, for instance, (2.16e), which is
typical. It comprises a global bound in HY weighted by m, |mMQ?|| gy~
(natural due to the linear stretching, as discussed in Section 2.3), a bound
accounting for the viscous dissipation, v%/2||mMV Q3| e y~, and finally
a bound corresponding to the dissipation-like structure arising from the

multipliers as explained in Section 2.3, ||\/ =M MmQ?|| ;2.

e For the modes that grow linearly in the absence of viscosity, we add esti-
mates incorporating a weight (t)~!: this gives (2.16a) and (2.17a).

e The estimate (2.16¢) loses v~ /3 on the right-hand side compared to the
linearized estimate. (This loss occurs when estimating the lift up term in
Section 5.1.1.) It might not be optimal, but it is sufficient to close the
bootstrap when coupled with (2.17e).

e Finally, one of the main subtleties are the two estimates on Q2 in (2.16d)
and (2.16f). The nonlinear effect of high frequencies can be quite dramatic
near the critical times, and the leading order nonlinear term in the Q? equa-
tion, which turns out is NLP(1,3,0,+#) (see the treatment in Section 3.1.2
below), cannot be bounded in H” uniformly in ¢ and v if we only assume
e < v3/2. This term is a very 3D nonlinear interaction involving the Orr

mechanism, the stretching of @3, and the lift-up effect of U} all at once. By

allowing Q2 to grow near the critical time until the dissipation can balance
the growth, quantified by the inclusion of the decaying m!/2 in the norm,
one can complete an estimate — hence (2.16d). However, any growth of Q2
in turn limits the inviscid damping of U2, and the decay provided by the
inviscid damping provides a kind of null structure that diminishes the ef-
fect of certain nonlinear terms that would otherwise be uncontrollable. The
solution to this issue is to pay regularity and get a better uniform estimate
at lower frequencies, as expressed in (2.16f) — the gap of one derivative is
roughly analogous to the fact that paying one derivative will give one power
of t7! decay in an estimate such as (1.7).

2.5. Choice of constants. Four constants have not been specified yet: & >
ev=3/2 which appears in the statement of Theorem 1.1, and Cy, C7, and Co,
which appear in the above bootstrap estimates. In the course of the proof, we
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choose them small such that
1 Co

1
— 4+ —=+C10+Chd < —
CO+Cl+1+0<A

for a universal constant A = A(c) that depends only on o. The constant C
is a fixed, universal constant. Specifically, this means that one first fixes Cp,
then C} dependent on Cj, and then finally § small relative to both.

2.6. Estimates following immediately from the bootstrap hypotheses. This
section outlines some of the consequences of the bootstrap hypotheses.

The first lemma is a simple result of the Sobolev product law, the geo-
metric series representation (2.5), and the bootstrap hypotheses. (Also recall
the shorthand (2.6b).)

LEMMA 2.4. Under the bootstrap hypotheses, for ev™! sufficiently small
and 1 < s < N + 2,

[0yl s + 10zl s + Gl s S TVClgs -
As a consequence, there holds for all i,j € {X,Y,Z},

(2.19a) 01|, < |ov] .. s<N+1,
(2.19b)

1021, SN0z Sl + 27" |01, SIVLS e s<SN+1,
(219¢) (Al + 00000 S IALEL s<N,

(2.19d) 18 follze + 0805 fo| . S U Sollygs + e 4 [V follgs 5 < N,

Similarly, by using also Lemma A.1, we have for all «€[0,1] and 3/2<s<N,
(2.20) |medtfe] . S A+ IVC osaa) IV m* fll e

Remark 2.1. Note that for s +2a < N + 1, the leading factor in (2.20)
can be ignored by the L= H™N*2 control on C for v sufficiently small depending
on (1.

Remark 2.2. Lemma 2.4, particularly (2.19), is used so frequently through-
out the proof that, for the sake of brevity, we do not always make explicit
mention of it.

An important consequence of (2.19) is that in many places, the difference
between 0¢ and 9F is irrelevant, however, the difference cannot be neglected
everywhere. For example, for s > 3/2, there holds (note that 1), is independent
of X),

(2.21) (.0 ) s SNVLLlgs lglas + |[V2C|| L 1 A L gl
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indeed this is proved by integrating by parts and Cauchy-Schwarz. If s < N
and the frequency of f is nonzero, then the second term in (2.21) is controlled
by the first:

(2.22) (f,05 9 ms SUVLL2gs 19l g -

Note that for v sufficiently small, the implicit constant does not depend on C}.
However, at the zero frequency, we need both terms in (2.21). Similar inequal-
ities hold also for 8%. One also has the following variant for « € [0, 1], which
is useful in many places: for 3/2 < s < N,

mm a,1/2)

(2.23) (m flm® 8t g)yme < IVEm® il |m

.-

As above, for v sufficiently small, the implicit constant does not depend on C}.

The next proposition consists of those estimates that follow directly from
the estimates on Q' and the elliptic lemmas detailed in Section A.2. These
elliptic lemmas provide the technical tools for understanding A, ! important
for recovering U* from Q° = AU".

PROPOSITION 2.2 (Basic a priori estimates on the velocity in HY). Under
the bootstrap hypotheses, for ev=3/% sufficiently small, the following additional
estimates hold:

(2 24&) H<t>_1U& (t)HLooHN+2 < Cos,
(2.24D) HU&HLOOHN“ + /2 HVU&’ [y < Coev L
(2 24c) “Ug"LWHN+2 +I/1/2 HVUg’L2HN+2 g&
o210 98]+ [0 e 5
(2.24e) U;é Leogn T /2 VLU;& Loy T \/WU; - < Coer™1/3,
oar) ||uz|, v |V, V-NMU? o S5
(2249) 03] _ , +"2||VeUd| , | V-NMUd L S G0,
(2.24h) HmALU;HLOOHN 412 HvaALUA Nl
+ ||V =N MmUY < Coe,
L2HN
o4i)  [miPagu2| o2 mivan?|
o N
L2HN
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(2.24j) HmALUiH 1+ pl/2 HmVLALUi‘ [2HN

+ H V=NMmALUS

Proof. The estimates on the zero frequencies follow from Lemma A.3 and

Lo HN

g C()E.
L2HN

the bootstrap hypotheses.

By (2.14), the estimates (2.24h), (2.24i), and (2.24j) imply (2.24e), (2.24f),
and (2.24g). The estimates (2.24h), (2.24i), and (2.24j) follow from applying
Lemmas A.4, A.6, and A.7 and using the bootstrap hypotheses on Q and C. [

The next proposition details the inviscid damping of U? and the enhanced
dissipation.

ProrosITION 2.3. Under the bootstrap hypotheses, the following addi-
tional estimates hold:

e the enhanced dissipation of Q'

(2.25a) |mQY| ., S Cosv 12,
(2.25b) Hml/zQi‘ L2HN T HQi‘ L2HN-1 S 5’/_1/67
(2.25¢) Hin‘ . < CQﬁV_l/G;

e the enhanced dissipation and inviscid damping of U*:

(2.262) VU2, Sev 5
(2.26b) (2721 I——
(2.26¢) |Aax UL, S Cosv /0
(2.26d) |Ax UL, S Cosv'2
(2.26¢) L] 2 s S Cosv /0

e the enhanced dissipation of tU":

(2.27a) |tOXUL| 4 yn S Cosv™™/0
(2.27b) |tOxUL| 2w S Cosv ™2,
(2.27c) |toxU2 ., vy S Cosv™2,
(2.27d) |tOxUZ L, ns S

(2.27e) |tOxUZ ey S v 0
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Proof. The enhanced dissipation estimates on @Q° follow from Lemma 2.1
and the bootstrap estimates on ). Turning to (2.26a), by (2.14) and Lemma 2.1,

[V202] o = 22007

S y<1/6 Hml/Z\/ ~MMALU?

from which the estimate follows from Proposition 2.2. For (2.26b), first note
that by the definition of M, for k # 0 there holds

s, ).

H

I >
k,m—kt, ¢] < k,n—kt ¢

<AV =MOMO|k,n — kt, 0> </ —MM |k,n— kt, (.

It hence follows that

[Viv3,,. . S| V-raia,e

)

HN-1

from which the estimate follows from Lemma A.7 and the a priori estimate
(2.16f).
To deduce (2.26¢), we use (2.14) followed by Lemma 2.1 to derive

2202 o % st

< V<1/6 Hm\/ —MMALUSE

after which the estimates follow from Proposition 2.2. The estimates on U! in
(2.26d) and (2.26e) follow similarly.

Turn next to the enhanced dissipation estimates involving powers of ¢ in
(2.27). For example, we have by (2.14), |kt| < (n — kt)(n), and Proposition 2.2,

R A )

HtaXU;éHHN—l = HvLmALU;éHHN7

and similarly for tdxU3. For toxU?, we again use |kt| < (n — kt)(n):

s3]0 57502

which is then controlled by (2.26b), and similarly for the analogous inequality
in HV-L. O

In what follows we will use the shorthand

(2.28a) A=m'PM(D)N,
(2.28b) B =mM(D)".
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2.7. Equivalence of coordinate systems. Coordinate systems of the gen-
eral type (2.4) have been used in [BM13], [BMV16], [BGM15a], [BGM15b],
and here we may follow a similar scheme for how to transfer information from
one coordinate system to the other; we will give a sketch for completeness.
In Sobolev regularity the technical details are significantly simpler as com-
positions behave well in finite regularity classes. In particular, we have the
following composition lemma; if s’ € N, this is immediate from the Fad di
Bruno formula and Sobolev embedding; for fractional s, see, e.g., [IKT13] for
a proof.

LEMMA 2.5 (Sobolev composition). Let s > 5/2, s > s’ >0, g € H® be
such that ||Vg||, < 1. Then, there exists a constant

CS - 05(873/7 Hg”Hs ’ HVQHLOO) >1
such that for all f € H® | there holds

Ifod+g)llgs < Csllfllgs -
Moreover, if || g|| s \( 0, then Cs \, 1.

We also need a Sobolev inverse function theorem, which follows by straight-
forward arguments using Lemma 2.5.

LEMMA 2.6 (Sobolev inverse function theorem). Let s > 5/2. Then, there
exists an eg = o(s) such that if ||a|| s < €0, then there exists a unique solution

B to B
By) = aly + B(y)),

which satisfies ||B|| s S el s

The next step is to prove Lemma 2.3 and also deduce that we may take
T > 1, the T such that the bootstrap hypotheses (2.16), (2.17), and (2.18)
hold. Hence, we do not need to worry about the coordinate singularity at
t=0.

LEMMA 2.7. Forev=3/2 sufficiently small, Lemma 2.3 holds, we may take
2 < T (defined in Section 2.4 above), and for t < 2, the inequalities (2.16),
(2.17), and (2.18) all hold with constant 2 instead of 8.
Proof. As in analogous lemmas in [BM13], [BGM15a], the proof is done
by using the linearized coordinate transform. Indeed, define

(2.29a) T=ux—ty,
(2.29b) Wit T,y,2) = ¢'(t, T+ ty,y, 2)
(2.29¢) vi(t, Ty, 2) = u'(t, T + ty, y, 2);
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note that v’ = A7'h’. These satisfy natural analogues of (2.10) and (2.12).
Using standard (inviscid) energy methods, it is easy to propagate H” regular-
ity on these unknowns to ¢t = 2 (or any other fixed, finite time) by choosing ¢
sufficiently small. Next, we need to solve for (Z,y, z) in terms of (X,Y, Z) and
then apply Lemma 2.5. From (2.9a) it is straightforward via classical energy
methods to derive ||ty ynvi2 S e fort € [0,2]. For t € [1/2,2], this yields good
estimates on ¥(t,y,z) =Y (t,y,2) —y and X (¢, x,y, 2) = Z(t,z,y) — t(t, y, 2).
We then write

T, XY, Z) =X +t(t,y(t,Y, Z),2(t,Y, Z)),
y(t,Y,Z) =Y +(t,y(t,Y, Z2), 2(t,Y, Z)),
At,Y,Z) = 7.
To solve for y(t,Y, Z), we rewrite this equation as
y(t, Y, Z) =Y =9, Y — (y(t,Y,Z)-Y),Z)

and apply Lemma 2.6 by choosing ¢ sufficiently small. Using y and z we also
derive T in terms of X, Y, Z. Hence, Lemma 2.5 and (2.29) complete the proof
of the lemma for ev~! sufficiently small. (In particular, one can ensure that
the constant lost due to changing coordinate systems is arbitrarily close to 1
due to the continuity of C's in Lemma 2.5.) g

In order to move information back to the original variables, as in [BM13],
[BMV16], [BGM15a], we first move to the coordinate system (X,y, z). Hence,
write

ql(t7 X’ y? Z) = Ql(t7 X7 Y(t7 y? Z)7 Z)
and

a'(t, X,y,2) = U'(t, X, Y (t,y,2), Z).
(Recall that Z = z.) This lemma also proves that Proposition 2.1 implies
Theorem 1.1.

LEMMA 2.8. For ¢ < 0v32 with & sufficiently small, the bootstrap hy-
potheses imply that all the estimates in Propositions 2.2 and 2.3 hold also for
¢ and u' (with different implicit constants).

q
—3/2

In particular, for ev sufficiently small, Proposition 2.1 implies Theo-

rem 1.1.

Proof. Notice that Z(y,z) = z and Y (y,2) —y = 9(y, z), and hence we
need estimates on ¢, however, from (2.18), we only have estimates on C, 1, and
¥, in (Y, Z) coordinates. Hence, we need to solve for y = y(t,Y, z). To this end,
write Y —y=C(t,Y,Z) =C(t,y+ (Y — y), Z) and then apply Lemma 2.6 to
solve for Y — y(t,Y,z) = B(t,Y, z). Lemma 2.6 moreover provides the uniform
estimate ||y(t,Y, z) — Y| gn+2 < ev™ L. With the bootstrap hypotheses, (2.4),

and Lemma 2.5, this completes the lemma. Indeed, by the definition of X
n (2.4), Theorem 1.1 follows immediately. U
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3. Energy estimates on Q>

In this section, we prove that, under the assumptions of Proposition 2.1
(in particular, the bootstrap assumptions (2.17), (2.16), and (2.18)), the in-
equalities (2.16d) and (2.16f) hold, with 8 replaced by 4 on the right-hand
side.

3.1. HV estimate on Q. An energy estimate gives (recall the shorthand
(2.28))

1HMml/Zcf(:mH%,N + |V Mm QP e + |V =M Mm' Q|72 yn
||Mm1/2Q2 1)[2,n +/ /AQ2 (T V + Uy - V)Q? — QUi
— 8704 U? + 0% QLU 0LU") + v(Ay — AL)Q?] dV dt
- %||Mm1/2Q2(1)H§IN 4+ 7 + NLS1 + NLS2 + NLP + DE.

3.1.1. Transport nonlinearity. Decompose the transport nonlinearity by
frequency:

T - ~
T = / /Aé)QA Uo - VQi + Up - VQ%) dVdt
1
+ /AéfA Uz ViQi+ Uy - V,Q2) dVdt
= Too + Tox + Tro + T
Further decompose 7o into
T
To= [ [0 i) ava
+ / <D>NQ3<£>>N U30zQ3) dV dt = Tgh + Toh.

To bound 7'20, split g into low and high frequencies:

Too —/ / NQ2 W ng@ng) dV dt

‘*’/1 /<D>NQ3< W Po1gdy@F) dV dt

SNQ oo g 9l 2222 IV QG| 2y + 1QG Lo v 1V gl 2w [V QG| 12 5w
< edy /22 8y

where the last line followed from the bootstrap hypotheses. (Note that (2.18b)
is used to deduce ||g||;2;2 < e.) To bound T, observe that either the first QF

~

factor, or the U3 factor, must have nonzero Z frequency — or the contribution
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is zero. Therefore (using also Proposition 2.2),

Too S Q8] oo v VUG 213 IV Q| 2 v

U oo v [V Q3|32 pn S P07 212 = g3p71,

For the 7p+ term, we apply the paraproduct decomposition defined above in
Section 2.1.4:

Toz = /IT/AC%AA UOXH{ in)Lo) dVdt

+/1T/AC’§§£A 0of,, VQ3),,)dvi

= Toxar + To£LH-
Consider the LH term first, which we write out as follows:
T 2 2 3 2
TozLH 2/1 /AéQ A gro(0y —t0x)(Q%) i + (U3) 1o(02Q%) ri) dV dt
T
+ / / AQPA gr,t0x (Q2)mi) dV.

1

By (2.1), (2.13), and the bootstrap hypotheses,

Toz:LH

Sv3 A0 <t

L2z =~

e (1Ol + O8] ) V2407

where note that we applied (2.25). Similarly, for the HL term we have by
(2.13) and (2.25b) from Proposition 2.3 (using N > 5/2),

Torn, S | AQY|

5o

poa (ol sems + U] ) [ V5
2 3
1212 (”g”L""HN + HUOHLOOHN>

LQ}{S/%L

< e3y=2/3,

Consider next 7q. By the product rule, the bootstrap hypotheses, and Propo-
sition 2.3 (specifically (2.26a) and (2.26¢)), we have

Too S [AQH| e o U2 o s 998 o S %7
Consider finally 7., by (2.13),
Tup S0P HAQQHLoom 1A 2 HVLAQ2’ 1212 ST,
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3.1.2. Nonlinear pressure terms. Recall the shorthands defined in Sec-
tion 2.2.3. Consider first the NLP(0,0) terms, which are straightforward. We
first apply (2.21), which results in an error term when the derivative lands on
the coefficients, and then we apply Lemma 2.4:

.o 2,3 2,3
NLP(i, 4,0,0) < HVQ(Q)‘ [2HN VU, | Loo a2+
2,3 2,3
+1AC 2y | Q3| o o IVUE 2 2w VUG o 2
<t

Next turn to the NLP(0, #,14,7) terms, which include one of the leading
order nonlinear terms, NLP(1,3,0,%#). Consider this problematic term first,
and expand with a paraproduct as described in Section 2.1.4,

NLP(1,3,0, %) = / /Qufﬁ@/ ouul) . oxUl), Yavar
3//A¢Q; ouul), oxud), Yave
1 (0]
= Pur, + Piu.

For the LH term we have, using (2.23), Lemma A.1, and the inequality |m'/2d|

<my/—MM(—Ap) that follows from (2.14),
Pou S IVLAQ?| 122 105U || oo grssas Im* 2Ox UL || 2 gy

m\ —MMALUZ

S IVLAQ?|| 1212 107U || o /2

L2HN

< 3y 1/2-1 — (3,732

which suffices for ev™3/2 < 1; hence this term uses sharply the smallness
requirement. For the HL term we can apply (2.22) and deduce using (2.27),

-1_.3

PHL S HVLmlﬂMQQ‘ g,

O] (HoxUZ|

H H S
L2HN Lo HN L2H3/2+ ~

This completes NLP(1, 3,0, #) term; NLP(1,2,0,#) is similar.
Consider next NLP(i,7,0,7#) with 4,7 # 1. For these terms we do not
need a sophisticated argument; using (2.22) and Proposition 2.2 there holds,

NLP(4, 7,0, #)1; 541

S ||ve4Q?| -,

T[22

Lijz S v

L2L2 LoHN ‘ L2HN

Turn next to NLP(4,7,#,#). We expand with a paraproduct and by
symmetry, we only have to consider the case when i is in “high frequency.” By
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(2.21) (note that the leading factor could have zero X frequency),
NLP(i, j, #, #) = / / 4oy, orvdy o) Yavar

< (|miacr

x ‘ LoHN
(s

|
At this point, we distinguish two cases: i = 1 and i # 1. First, notice that by

the divergence-free condition, N > 3/2, ¢ < /2, (2.14), Proposition 2.3, and
the bootstrap hypotheses, there follows

o2 T ”AQ2HLO<>L2 |VCHL2HN“)

J
U

L2H3/2+

+ HAQ2

IVCl| 21 )

L3212 ‘L‘X’L2

P2

LooHN L2HN-1

3.1 |oxU

+||o5 U2

t 2
L2HN-1 < HaYU# L2HN-1

S A+ VOl goo gra-1)

[2HN-1

VLUZ

[2HN-1

+ || VU2

+ ||VC”L0<>HN—1

L2HN [2HN-1

( < 1+€V_1)HVLU§5

L2HN-1

+ ||z VimALU3

+€l/71‘

L2HN
6 4 e

[2HN-1
Se+ev”

Hence, if ¢ = 1, we have the following by applying by Proposition 2.3 (and
(3.1) in the case j = 1):

NLP(Lj.#.#) v (| v24Q7

* HAQQHLOOL2 HVC||L2HN+1)

L2L2
X HALmU;é”LOOHN HaXUjHHHNf1

< 23,-1/3-1/2-1/3-1/6 _ 3 ,—4/3

On the other hand, if ¢ # 1, by Proposition 2.2, (2.16d), and (in the case j = 1)
(2.17e), the following holds:

NLP(i, j, #,#) S v~/ (|2 AQ?

t HAQ2HL00L2 |VCHL2HN+1)

L2L2
X N ALmUL oo v |V LUL 2 v

§€3V71/371/271/2 £3,-4/3.

This completes the nonlinear pressure terms.
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3.1.3. Nonlinear stretching terms. Starting with NLS1(0,0, ) (note that
j # 1) and using (2.19),
NLS1(0, 0, 5) HQOH AU

~ HQO”LOOHN ‘

< vl

fvus

LooHN H L2HN L2HN

VU3 VU2

L2HN+1 L2HN

By Propositions 2.2 and 2.3 (note that j = 1 is permitted),
o

and, using (2.13) and Proposition 2.3 (note that here j # 1),

< g3,74/3

NLS1(0, #,j) S [[AQ% Lopn S

V.0

L2[2 LeHN

NLS1(#,0,5) 5 HAQi L1212 L2HN H HLOOHN Setv
Similarly (note that j = 1 is permitted),
NS AR |04 [958,y 555

Recall the second stretching term, NLS2, is written ﬁfoaij 2. The
contributions from the NLS2(0,0) terms are treated in the same manner as
NLS1(0,0) above and are hence omitted for brevity. Turning to the nonzero
frequencies, we have by Lemma 2.4, (2.14), (2.13), Proposition 2.3, and Propo-

sition 2.2,
NLS2(0, #,5) S || AQZ o [9U8 v 19502 v it
+ A0 o 0106 v 050102 o
7 AGE [ 908 [28102 o
+ A oy (V0| o [ 22002

< 3, 1/3-1/6-1/6 4 3,,-1/6-1-1/6 < _3,,~4/3
Similarly, we have (note that in this case j # 1)

NLS2(#,0, ) 5 [ 4Q%

oz 102 g [V 5]

~1/6-1/2 _ 3,,-2/3

Lo HN+1
3
Sev

and, using Lemma 2.4, (2.13), Lemma 2.1, and Propositions 2.2 and 2.3, we
have

NLSF. £.3) % Ay [0 212
< g3y~ 1/2-1/3-1/3-1/6 _ _3,,—4/3

L2HN
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3.1.4. Dissipation error terms. These terms are given by (recall the short-
hand (2.6b))

DE = v / Aé)zA GOy Q* + 20,08 ,Q%) dV = &1 + &,.

Both & and &; are treated similarly, hence only consider £. Arguing as in
(2.21) and (2.13) (recall G is independent of X'), by Lemma 2.4, we have

& S VPGl e |V2AQ%]

L2L2
+ 23|V G| o ygn HAQQHLW VLAQ2] L
< 3,2/3-1-1/2-1/2 _ 3,,-4/3

which suffices.

3.2. HN=! estimate on Q2. Recall that a crucial strategy of the current
approach is to confirm that the extra m!/2 on Q? can be removed in HV -1,
As in Section 3.1, an energy estimate gives

1 N
iHMQz(T)H%N—l + VL MQ* |2 v + [V = MMQ?|[ 2 s

1 T
< SIMQAM s + [ [N MQHD) M
X [=(Uy -V + Uy - V)Q* — QUOIU* — 0[U7 0, U*
+O} (OIUI05U) + v(Ay — AL)Q?] dV dt
1
= 5| MQ*()|fx—s + T + NLS1 + NLS2 + NLP + DE.

Nearly every step in this estimate is similar to those done in Section 3.1,
indeed, the presence of m!/2 in Section 3.1 is used only to control the NLP(1, 3,
0,#) term in Section 3.1.2. The T is bounded as in Section 3.1.1 and is hence
omitted. (However, notice that this requires the H N estimate (2.16d) here;
this detail is due to our only assuming N — 1 > 3/2, where normally H 5/2+ g
natural for closing energy estimates on a system such as (2.10).) Similarly, the
dissipation error terms DE are controlled as in Section 3.1.4.

The NLP(0, 0) terms are treated as in Section 3.1.2 Now let us see how the

1/2

reduction of one derivative allows to eliminate the use of m*/# in the treatment

of NLP(1,3,0,#). By (2.22), (2.27), and N — 1 > 3/2,

NLP(1,3,0,#) < [ViMQ?|

VU |

(HOxUZ|

[2HN-1 Lo HN~-1 [2HN-1

—1/2-1/2 1

3 _ .3 -
Se'v =ev .

This suffices for the NLP(1,3,0,#) term; the NLP(1,2,0,#) is similar. The
other NLP terms can be treated as in Section 3.1.2, and the NLS1 and NLS2
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terms can be treated as in Section 3.1.3 above, and hence these contributions
are also omitted. This completes the HV~1 estimate (2.16f).
4. Energy estimate on Q°

In this section, we prove that, under the assumptions of Proposition 2.1
(in particular, the bootstrap assumptions (2.17), (2.16), (2.18)), the inequal-
ity (2.16e) holds, with 8 replaced by 4 on the right-hand side.

An energy estimate gives (recall the shorthand (2.28))

(4.1)
1 - -
§IIBQ3(T)II%2 + V|| VLBQ?| T2 lmV —MMQ |72 v + | MV=1mmQ?|| 7w

1 T
— S IBQ* () +/1 [ BQ B [~20ky U + 20 ;U
—(Uo-V + Uy - V)@ — QI4U° — 20lU7 9}, U
Qag QLUIDLUY) + v(Ay — AL)QP] dV dt
1
= §||BQ3(1)||%2 + LS+ LP + 7 + NLS1 + NLS2 + NLP + DE.

4.1. The linear stretching term LS. The linear stretching term can be split
into (recall the shorthands (2.6b) and (2.28))

LS = /1 ' / BQ*B [-20%yAL"
xd[Q® — GOy U — 20.0f ;U — A, COPU?)| dV dt
- / ' / B@?’B by Oy U?) dVdt
= le1+ LSy + LSz + LSy + LSs.

The leading order term, LSy, is absorbed by the left-hand side of (4.1): indeed,
by construction of m in Section 2.3, we have

_ . v
L81 < [|MV=1m@Q*|[ T2y + SV LBQ? |2 2.

We turn next to the error terms. For LSy, we apply Lemma A.1, use that

k| < |k, n — kt, 1]/ —MOMO, and (2.14) together with Lemma 2.1 and Propo-
sition 2.2 to deduce

T
LS, = —2/ /Ba)LWA;&?’B GobyU®) dv dt
1

< IV = MOMOM@Q? - /27 3]

~ ’ me L2HN NG oo gy || LUz L2HN
< o3,-1-1/3-1/6 _ _3,,-3/2

~Y )
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—3/2

which suffices for ev <& 1; notice that this is a sharp use of the small-

ness conditions. The term LS3 can be estimated in the same way as LSs.
The LS4 term is estimated with a slight variation, using 2.14 and |k| <

|k,n — kt, 1| \/—MOMO:
LSy H\/—MOMOmQ;

Turn to LS5. Here we use Lemma A.1, |k| < |k, n — kt, 1| \/—MOM?O, and (2.13)

to deduce
VoATOMOm! 2 AU

LopN < e3y32,

VLU;,?Z‘

I [c{ P

15: < ey

12 IVC v

3,=1/6-1-1/3 _ 3,,-3/2

L2HN
<e

which suffices for ev=3/2 <« 1.

4.2. The linear pressure term LP. The linear pressure term is split into
two contributions:

T T
P — / / BQ*Bo% ,U2dVdt + / / BG*B .0k, U2) vt
1 1
=LP; + LPs.
By definition of M*,

‘\/—MlMlmQ?’ V-MIM'mY2AL U2

which suffices by choosing Cy sufficiently large. For LP;, we have, similar to
LS5 above, by the definition of M and Lemma A.7 along with Lemma A.1,

vV —MMml/QALUi

LP; < < Gyt (Coe)?,

L2HN

L2HN

LPy S ”VC||LOOHN+1 < 831/_7/6,

L2HN

MmQ:;’é‘

L2HN

which is sufficient.

4.3. Transport nonlinearity. The interaction of nonzero frequencies will
require more precision here than in Section 3.1.1. As in Section 3.1.1, we
subdivide based on frequency:

T - ~
Tz—/ /3@33 Uo - VQi + Uo - VQL) dVdt
1

T
- / / BOB U, V,Q}+ Uy ViQL) vt
1
= Too + Tox + Txo + Top-

The Tgo term is treated as in Section 3.1.1 and is hence omitted for brevity.
The 7o, term is treated analogously to the corresponding term in Section 3.1.1
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via a paraproduct decomposition, yielding (applying Propositions 2.2 and 2.3
as above)

Toz S HBQ:; L2L2 (HQHL“HN + HUgHLOOHN> HVQ:;

x  + HBQ;

L2H3/2+

VLMQL

pore (100l + (OB o)

<v P |say,

L2HN

gl peere + [0, o)

L2L2 (

3Gy (0l 58] ) 72502
-4/3

L212

<evt 4y
Consider next 7o, which follows from Proposition 2.3 and the bootstrap hy-
potheses

23,-2/3

Too 5[ B [VQ] 2 =

Finally consider 7. First, divide up based on the presence of U;é:

2,3
U

L2 L2HN

T = /3&233 UL05Q% ) dVdt = Tl + T2 + Ty

The latter two terms can be treated in a straightforward manner using (2.13)

and Propositions 2.2 and 2.3,
2,3 —2/3 3 —4/3
T, Sv HBQ H Lope < e3ym3,

2.3
e

fvuse

Lo L2 L2HN

Next, decompose 7;}75 via a paraproduct
i, = / BO*B (UL)mi(0x Q) 1) Vit
- / B<§33B (U2) 1o(0x Q%) i) dV dt

= Thzn+ Tiim
For the HL term, we have the following by (2.13) and Propositions 2.2 and 2.3
(specifically, (2.25¢) and (2. 26d))

Than % [BQ

g,

HQ¢

L2H5/2+

|Bos

L>L? L2HN
—4/3
Lopo < S8,

Lo L2HN

For the LH term, we use the better estimate on HU;é HHN71 from Proposition 2.3
(and (2.13)):

Thsan SvP [BQ . V2

This completes the transport nonlinearity.

Lopo < S5,

dxBQ?

Lo 2 L2 H3/2+
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4.4. Nonlinear pressure and stretching terms.

4.4.1. The stretching terms. Recall the shorthands defined in Section 2.2.3.
The NLSi(0, 0) terms are treated as in Section 3.1.3 and are hence omitted here

For NLS1, we get from Proposition 2.3 (note j # 1)

NLS1(j, #,0) £ HBQ% L2L2 ;‘ L2HN HVUSHLOOHN
< £3,-1/6-2/3-1/6 _ 3, ~1
Similarly, by Propositions 2.3 and 2.2,
NLS1(j,0,#) < HBQ;‘Z‘ L2L2 Q%HLOOHN HaﬂtUi’ L2HN

3 V71/67171/61j:1_’_V71/671/21j7é1>

4/3

~y
3. —
Se'v
For the interaction of nonzero frequencies, we use the slight variant

NLS1(j, #, #) < HBQ?’HLC,OLQ i&) . HaﬁUi’ L2HN

k8 y2s1/6-1/2y ) +V7171/671/61j:1)

4/3
)

3. —
Se'v

which is sufficient for ev=%/3 < 1.
Turn next to NLS2; first by Proposition 2.3 (since j # 1),

NLS2(i, j, #,0) < || BQY|

VLU

v V98

—2/3
M

L2L2
~1/6-1/2

Lo HN+1
3 _ .3
Sev =&’y

which suffices. Consider next NLS2(0, #, 1), which requires a slightly more pre-
cise treatment. Via a paraproduct decomposition, Lemma 2.4, and Lemma A.1,
there holds

NLS2(;,1,0,#) < | BQY|
e

Using (2.20), (2.14), and t|k| < (n)(n — kt), followed by Proposition 2.2 and
(2.25), we have

VUS|, oo | 2000x U2

L2212 L2HN

m!/2 ()0} 0x UZ|

(6~ olUs |

L2112 oo HN+1 L2H3/2+

NLS2(i, 1,0, #) < HBQ;\

mALUi’

1
UOHLOOHN+2

070 e s

—~1/6—1/2

1212
3

+ HBQ# 1212

~1/6-1-1/6

L2HN
mV L ALUZ|

L2H5/2+

3 3 3 -4/3
Sev + v = Sy4/3,
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which is sufficient. For j # 1 contributions, we have

NLS2(i, j, 0, #) < HBQi' VUZ < 3y23,

L2HN ™

m1/2ALU3§‘

L2212 HL"OHNJrl

Turn finally to the interaction of nonzero frequencies; using (2.14), (2.13), and
Proposition 2.2,

NLS2(i, 5, 4,#) < | BQY| .,
+[ B¢
<v||Be?|

VLUi’g‘

jaur

L2HN
VLU;‘

I2HN
0x VLU

L2HN ‘
mALUi’?"

L2 L2HN

st

Lo L2
o e

L2HN
‘mALUi‘

L2HN
1
LooL2 mALUZ ‘
—4/3
)

L2HN ‘ L2HN

< 3,-1-1/6-1/6 _ 3,
which completes the treatment of the stretching terms.

4.4.2. The pressure term NLP. The treatment of the NLP(i, j,0,0) term
is the same as that in Section 3.1.2 and is hence omitted here. For the lead-
ing order term involving ¢ = 1, we begin by subdividing via a paraproduct
decomposition:

NLP(1, 5,0, #) :/IT/BQ?’katZ (8§U&)H1‘(8XU;)L0> dV dt

T ,
+/ /BQgﬁaatZ (85U01)Lo(8XU7Jé)Hi) av dt
1
= Py, + Pru.
By (2.23) and (2.27), we have, since j # 1,
3 —1gt77l '
P 5 HvLBQ?é’ 1212 {t) 8J’UOHLOOHN H<t>aXU7J£’
By (2.23), Lemma A.1, (2.13), Lemma 2.4, and the inequality 1 < (|k| + |I| +

In — kt|)V —MOMO° we deduce

P < HVLBQ:;‘

< 3,,-1
Lo SEV

3§U3HL00H5/2+ V=MMm"?oxV U,

vV —MMmALUi

L2L?

L2HN
<[vumey

S ESV_3/2,

1
12]2 UO HLooHN+2

L2HN

which completes the NLP(1, j,0,#) terms for ev~3/2 « 1. For the NLP(i # 1,
j,0,%#) terms, a much simpler argument is possible; indeed, by (2.22) and

Proposition 2.3,
NLP( £ 1,04 £ [7.503 <o,

1Tl
aJUO L2HN ™~

v

L2L? LooHN ‘
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Turn next to the NLP(1,j,#,#) terms. By the paraproduct decomposition
we deduce

NLP(L.j.#.#) || V.BQY |oxU

[ P
+ oA

Lo L2 ( L2H3/2+

\aXU;

Lo H3/2+ ‘ L2HN) ’

For j =1, we use (2.14), (3.1), Proposition 2.3, and Lemma 2.2 to deduce,

< g3y

NLP(1,1,#,#) S |ViBQY| S

a0y st

L2 LooHN ‘

For j # 1, we use instead (using (2.14), Lemma 2.1, and Lemma 2.2),

NLP(]-aja #7 #)ljil

< [VeBQY o (V202 e [x

Lo L2 (‘ L'OOHN ‘ L2 3/2+
+||voUy loxU| Lsz) 1,4
<SvB||veBQY| L [macvl| mALUL|

< o3,-1/3-1/2-1/3-1/6 _ 3 ,—4/3

oo [H3/2+

LooHN ‘ L2HN 1j7§1

For the other #,# terms, we use the following via (2.21), (2.14), Lemma 2.1,
and Proposition 2.2:

NLP(i, j, #, #)Lij21 S HVLBQB‘
< ,2/3 HVLBQ?)'

0 BN LY

‘mALU;’

L2L2
mALU;

212 L=HN ‘ gy LAl

< Sy,
This completes all of the nonlinear pressure terms.

4.5. Dissipation error terms. Next turn to the dissipation error terms,
DE = v / / BO’B GOy QP + 20,05 Q%) AVt = & + &.

We will need a slightly more refined treatment here than was used in Sec-
tion 3.1.4. As & is slightly harder, we will just treat this term and omit the
treatment of & for brevity. At the zero X frequency we have, via integration
by parts and the product rule,

51;0 = V//B@%B Ganyg) dVdt

<v e

3 -1
Setv

2

HVGHL?HN HVQ?J’ L2HN

+ V|Gl oo g Hng’

LoHN L2HN
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Turn next to the nonzero frequencies. Via integration by parts, Lemma A.1,
and (2.13),

€1 = v / BALB Goky QL) v

S [VLBQY 1y NGl [ 2V1QL
B 1€ v [ V2@
< &3y,

This completes the treatment of the dissipation error terms.

5. Energy estimates on Q!

The energy estimates on Q! are generally much simpler than estimates
on @ as the bounds (2.16¢), (2.16a), and (2.16b) are so much weaker than
(2.16e). (The lift-up effect growth is generally much larger than what the
nonlinear terms could do in this regime.)

5.1. Energy estimate on Q; in HV. An energy estimate gives (recall the
shorthand (2.28))
1
S I1BQ%(DIIZ + vIIVEBQLI 2
[l = MEMQL 2 gy + 1MV =im QL2
1 T
—51BQLIG + [ [ BQLE[-Q% — 204, UL + 20xxU
—((Uo-V+ Uy - Vi)Q"z — (QUO[U") 2 — 20007 0{0U" )
4(8;( QVINU) + v(Ay — AL)QL] AV dt
1
— iy‘mMQ;(l)H%N +LU+LS+LP
+ 7 + NLS1 + NLS2 + NLP + DE.

Several terms above can be estimated exactly like the corresponding terms
for @3, namely, LS, LP, and DE. Therefore, we omit the estimates of these
terms for brevity and only treat the others.

5.1.1. The lift up term LU. The lift-up effect term is treated via Propo-

sition 2.3, which implies

< 2.,—2/3
r2p2 ~ CQE v 5

AQY|

T
LU= [ [BQLBQLavar < |BAY,,,,

which is consistent with the estimate as stated for Cy chosen sufficiently large.
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5.1.2. The stretching and pressure terms NLS1, NLS2, and NLP. We will
focus on NLS1 and NLS2; the NLP terms can be treated analogously to the
latter.

Consider first the NLS1(0,#,1) terms. Using a paraproduct decomposi-
tion as has been done several times above and applying Lemma A.1, we get

1
1212 QOHLOOH5/2+‘
1 1
+ HBQ7’$‘ 1212 QOH

< v A2 51/_4/3).

NLS1(0,#,1) < | BQL|

om0

L2HN

OxUL|

LeHN H L2H3/2+

For corresponding terms with j # 1, an easier treatment is available:

NLS1(0,#,5 #1) < HBQ;ﬂ Lope Q%HLOOHN HVLU;&’ L2HN

< o—1/3-1/6-1/2-1/3 _ 51/_2/3) y—2/3.2

Similarly (noting that j # 1 by the nonlinear structure),

NLS1(j, #,0) S | BQL|

1/2 7
meQ

< 81/_4/3) €2V_2/3.

Ul
212 L2HN || 70| Lo gN+2 ~

Finally, for the NLS1(7, #,#) terms, we may use another straightforward ar-
gument. By (2.14),

NLS1(j, #, #) < HBQ;\ Lapo Q;HLOOHN ‘ LogN

18U oo [ Q7 v 9202

< sy_4/3) v2/3e2,

i

L2HN

This completes the NLS1 terms.
Turning to NLS2, we have first, since j # 1,
NLS2(i, j #,0) < | BQ |22 | VLU | 2 | VU | poo prvea

( < 51/*4/3) g2y 2/3,

~

Next, we rely on Lemma A.1 and (2.20) (for the j = 1 case), (2.14), and (2.13),

NLS2(i,5,0,#) < | BQYI 1212 VeU| o rvsallm* 20x VLU Ll p2 v 1jma
+ | BQL 1222 IVeUF? || oo i |ALUL 2 v Ljen
S IBQLUIL222(1Ug || oo vz |mALUL | 2 v 1=
+ V72/3||BQ;£HL2L2HUgSHLOOHNH HmALU;éHBHN Lz

( S €V74/3) g2,
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Finally, (2.22), a paraproduct decomposition, (2.14), and Propositions 2.2 and
2.3 imply
NLS2(i, j, #, #) S HBQ;&HQ?LQ IV LU oo praves |ALU L[| 2 v
VLU pon IALUL] g2+ ) Lie
F1BQUMks2 IV LU o oot 10 VLU s
HIVLULN oo i |0xV LU L 2 grase+ )
< 6#1 51/_4/3) e2y=2/3 4 Qizl 51/_1> 521/_2/3,
which suffices for ev=%/3 <« 1.

5.1.3. Transport nonlinearity. These terms can mostly be treated as in
Section 4.3, however, one must check the contributions from Q3. As in Sec-
tion 3.1.1 and Section 4.3, we subdivide based on frequency (note that the
slight difference since we are only focusing on nonzero frequencies here):

T:/IT/B@B U - VQL) dV

T
+/ /Bcﬁ;B Uz - ViQp + Uy - ViQL) dVdt
1
= Tox + To + T2

The terms 7o and 7 can be treated as in Section 4.3 and are hence omitted
for the sake of brevity. Hence, turn to the remaining 7. Here we have (note
the nonlinear structure that eliminates U;é)

T0 5B oy |02 oo [ V28

< v A2 51/_4/3>.

< B3,~1/3-1/6-3/2
L2HN ™~

LWHN‘

5.2. Long-time energy estimate on Qp. In this section we improve the
estimate (2.16b). First, Q} solves the equation

Q4 — AR +QF = ~((To - V + Uz V)QY)y
—(QI0U™")o — 2(0U7 DLOLU ™ 0.
An energy estimate gives

1 1
SRV B + VI VL8 prn = 51(Q (ol

T ~ .
[ NG [-@ - (T ¥+ Us - V)@~ (@B

—2(0{U7 950U )o + v(Ay — AL)QS] dV dt

1
= 5H(Q1(1))0H%N £ LU+ 7 + NLS1 + NLS2 + DE.
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5.2.1. The lift up term LU. Using Lemma 2.4 and Proposition 2.2,
LU= — /1T /<D>NQ})<D>N [AUZ + Goyy U + 200y 7 U
+ACOy US| dVdt
S A+VC oo pgw) [VQ| o [V

Ol 728

L2HN
+IVC L2y

2, ,—2
SC()&“V y

L2HN

which is consistent with the bootstrap argument provided Cj is chosen suffi-
ciently large.

5.2.2. Transport nonlinearity. Similar to Section 5.1.3, we subdivide based
on frequency:

T:/lT/<D)NQ(1)<b>N U - VQp) dVdt

T
+/1 /<D>NQ(1)<£))N Uy - ViQL) dvat
=To+ Tz

The zero frequencies 7y can be treated as in Section 3.1.1 and are hence omit-
ted for brevity. For the nonzero frequencies, first apply the divergence-free
condition:

T
@:/1 /(D)NQ})(DY\(%- U¢Q;)Odth.

Due to the X average, the contribution from U;é is crucially eliminated as well
as the term involving —tdx in 9%. Hence, by (2.21), (2.13) and Propositions 2.2
and 2.3,

T 5 VR pon (027 2o Q3 e v
+ HQ(I)HLOOHN 1C oo prv+2 Uiﬁ L2HN HQ;‘ L2HN
< k22 o2 +<(_{_21/—4/3>7

which suffices.

5.2.3. Nonlinear stretching terms. Consider first NLS1(0,0), which are
treated similar to NLS(0,0) and NLP(0,0) terms above: by Proposition 2.2
(and the fact that j # 1),

é e &2
r2EyN Ny 2 )’

NLS1(0,0) < [ V|

dLUL \

which is sufficient. NLS2(0, 0) is treated similarly and is hence omitted.

Lo HN ’ [2HN+1
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Turn next to NLS1(#, #):

. e g2
NLS1(, £, # 1) S Q8] oy [ Q%] oo 1502 ow S Yo Vz)
NS 1) £ 0], [0 502 € 555 52).

which is sufficient. The NLS2(#, #) term is treated analogously and is hence
omitted for brevity.

5.2.4. The dissipation error terms DE. These are controlled as in Sec-
tion 3.1.4 and are hence omitted for brevity.

5.3. Short-time energy estimate on Qf in HY. Here we deduce (2.16a),
which we refer to as a “short-time” estimate since it provides a superior esti-
mate on ||Q{(t)|| y~ for t < v~! versus the “long-time” estimate ||Q4(2)]| yn <
ev .
For this estimate (and the similar (2.17a)), we use a slightly different
method from that which we have applied for most estimates in the paper.

Consider the differential equality

(5.1)
sa 07200l = g labo . - 072 [0 Qb agav

— ()2 HVQ(%HZN +NL,

where using the shorthand from Section 2.2.3 analogous to that used in Sec-
tion 5.2,

NL =T +NLS1 +NLS2 + DE

denotes the contributions from all of the nonlinear terms. For the lift-up effect
term, by (2.16d),

)7 [0 QD) Qv < (07 QY] | @8], = 0 282QE v,

and hence (5.1) becomes

Ld 2|1 nlI? ) -2 1|2
(5:2) gdt 02 [@80) ) + 072 [V Q1
1
)2
It follows from this differential inequality (and continuity) that if NL <

s TIVQI) %N + F(t), with || f[[;1 < Coe?, then (2.16a) holds for Cy
sufficiently large. Indeed, let ¢ € (a,b) C [1,T], where a < b is such that

3¢~ g 1000 ) b0, -
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$) 7 QE()|| x> 8(1)e for all s € (a,b) and (a) ' ||Q}(a)|zn < 8(1)e.
Then, (5.2) implies

d
g 72 QO] ) + 5o VRO < £(0),

and hence, by integrating from a to t,

il

e < 64(1)25-:2 + Cpe?.

By continuity, for Cj sufficiently large, this implies (£) 1 [|Q{() |z~ < 4Coe.

5.3.1. Transport nonlinearity. As in Section 5.2.2, we divide the transport
nonlinearity into two pieces:

7= [0V QDN To-vdh+ Uz ViQL) ) av =T + T

The first term is treated analogously to the treatment in Section 3.1.1:

(0 (21 N (G et
+ (Igllzz + 199l + [ VO8], ) [ @7 v@a] . @7 Qb
<ef i VaQb|,, e Nl + VUS| + IVl )

the first term is absorbed by the dissipation in (5.2), and the latter term
integrates to O(e3v1).
For 7, we first use the divergence-free condition as in Section 5.2.2:

7= 072 [0 QWD vsQL),av,

which eliminates the contribution from U! and —tdx. By (2.21), (2.13), and
Proposition 2.2, and for any constant K,

Te 5077 HV%HHN [0 [0

H@oHHN (Clir U2’3\1HN |95
5% [V Q o + 500203 0
07 ot 1 Ui’3\|HN 0% -

The first term is absorbed by the dissipation in (5.2) for K sufficiently large;
the remaining terms integrate to e*v=3 and e*v=271/6 using the L> controls
on U, @, and C, which is sufficient. (Note that e*v~3 < £? is borderline as it
requires ev /2 < 1.)
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5.3.2. Nonlinear stretching. Turn first to the interaction of zero frequen-
cies. Consider NLS1 (noting that j # 1):

NLS1(0,0) = (12 [ DVQUDYY ATFOUL) av

<07 98] v 1908 v

Hence, by Proposition 2.2 and Cauchy-Schwarz in time,

VU

HHN'

< 3.,-3/2
L2EN SEV s

VU |

T |
TR e O

which is sufficient for ev=3/2 sufficiently small. The NLS2(0,0) terms can be
treated similarly and are hence omitted for the sake of brevity.

Consider next NLS1(#, #). Using that V; - Q = 0 due to the divergence-
free condition and (2.21), we have for any K,

NLSIA, ) = (07 [(D)YQyb)Y QLatut) av
=2 [y Qinler QLut) av
S O (|VQ8] s + 19 Cven @510 |97 1 [V2] v
S 2072 [9Qf + 50 [ A
+ (O IVCl g | Q5| Q%] oo U] oo

For K large, the first term is absorbed by the dissipation. By the L*° controls
from Proposition 2.2, the second factor integrates to &2 (621/*3) and the third
factor integrates to €2 (e*v~4), both of which are sufficient. The NLS2(#, #)
term is treated similarly and is hence omitted.

5.3.3. Dissipation error estimates. Write
DE = (t)%v / <D>NQ3<b>N GOyyQp + 200y 2Qp) AV = &1 + &,.

We only bound &;; & is bounded in the same manner. Via integration by
parts and the Sobolev product rule,

& 5400 |Gl | VY| + 62 19G |4, [V

oo 98]

2
S ()72 V@Y + e IVC s
The first term is absorbed by the leading order dissipation in (5.2), and the

other term integrates to O(e3v1), which suffices. This completes the short-
time energy estimate on Q.
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6. Energy estimate on U;é

In this section we deduce the control (2.17e). This is relatively easy due
to the lower regularity, however, there are some differences here from previous
arguments due to the fact that we are working in velocity form. The entire
point of this estimate is that by working directly on the velocity, it is easier to
take advantage of the inviscid damping from (2.26b) in the lift-up effect term,
which is the reason for the large growth of Q;&

From the momentum equations, the nonzero frequencies of U solve

QUL — vAUL = ~UZ +20xx A, 'U2
(- U0V + Uz - Vi UY), +0x A7 OUIO5UY) .
An energy estimate gives
1 :
§IIMU§£(T)H§;N-1 + V| MV UL 2 g1 + IV =MMUL|[ 2 v
1
= §HMU§£(1)II?{N—1
T
+/1 /<D>N*1MU;(D>N*1M [~U2 +20% A7 102
~([Uo -V + Uy - Vi UY 2 + (0x AP0V 0LUY) 4 + v(Ay — AL)UL] dV dt
1
= §y|MU;(1)||§{N_1 +LU+LP + 7 +NLP + DE.

6.1. Lift-up effect. Start with the lift-up effect term, which can be bounded
through the inviscid damping estimate we have on Ui in HN=1 in (2.26b). In

particular, since 1 < \/—MOMO|V | (see Section 2.3),
U 1
MMU

which is sufficient for Cy chosen sufficiently big. We remark that the simplicity
and effectiveness of this estimate is the reason we are working with U;.

2
I2HN-1 5 COE ’

VU2

Lug‘

[2HN-1

6.2. Linear pressure. We now turn to the linear pressure term, LP, which

we bound by relying first on the inequality 1 < v/ —MOM 0|VL|, and then on
Lemmas A.6 and Proposition 2.3,

LP < |V MMUL| p2gv—1 [VLALA;T ' UZ || 2 v
SIVMMUL| p2gn-1 [IVLUZN 2pnv—1 + VO poo gyt [[UZ]] g2 v
< Ohe2
~ Logr,

which is sufficient for Cy sufficiently large. Note that the inviscid damping of
U? is also very important here.
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6.3. Transport nonlinearity. Turning to the transport term, we subdivide
analogous to what has been applied in, e.g., Section 3.1.1:

T —~
T:/l /<D>N—1MU;<D>N—1M [Uo - VUL+Uy - VUL +Uy - ViUy] dV dt

= Toz + T2 + Tzo-

The term 7o is treated like the analogous term in Section 3.1.1 and is hence
omitted. The term 7 is treated via the following, using Proposition 2.2 and
(2.27) (also N — 1 > 3/2+):

Ton & [0 02

< 3y U6-1/2 3,23,

v

[2HN-1 LooHgN-1

For T+, we may also apply a straightforward argument:
1,2,3‘

Tar S |MUL| s |0 VLU

< 3y U612 3,203,

[2HN-1 [2HN-1

This completes the transport terms.

6.4. Nonlinear pressure. The nonlinear pressure term can be split into
one piece, for which both velocity fields have nonzero X frequency, and its
complement:

T . . . .
NLP = /1 / (DYN I MUL(DYN -1 MOy Ay (BLULOLUY, + 20LU30LU%) dV
— NLP_. + NLP,.

Treating NLP is straightforward: using the divergence-free condition and
Lemma A.5, we have

T . .
NLP, = /1 / (DYNLMUL(DYN I MA; 05 D (ULOUL) dV

3,-1/6-1/2 2/3

SNUL 2w [l oo s [ Ve U 2w S € =&t

The NLPg terms are bounded similarly, except for the ones involving U& —to
these we now turn. Using the divergence-free condition,

T .
/1 / (DYN=IMUL(DYN = Moy A (20U 0x UL) dV

T .
_ /0 / (DN I MUL(DYN L MA Ox 0! (2UL0x UL) dV

U&HLOOIENfl ”aXUQHHHN*I + HaXUBHBHN*l)

~4/3

S MU o
—1/6—1-1/6

3 _ .3
Se'v =ev

This completes the nonlinear pressure terms.
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6.5. Dissipation error. Finally, the dissipation error is easily dealt with
via the same method we have used several times previously: integrating by
parts in the second equality,

T
DE — v /1 / (DYNIMUL(DYN I M(GOLy + 26,08 ,)UL) dV dt
T
= —1// /<D>N—1M85U;<D>N—1M(Ga¢ + 200.07)UL) dV dt
1

— /1 ! / (DYN=IMUL(DYN = M(Dy GO + 20y, 0,)UL) dV dt
Sv [HCHLOOHNHVLU;H;HNA + ||VC||L2HN||U71éHL°°HN—1 ||VLU71£||L2HN—1]
<yl
This completes the estimate on U;é.
7. Estimates on C and g

7.1. Energy estimate on C. In this section, we prove that, under the as-
sumptions of Proposition 2.1 (in particular, the bootstrap assumptions (2.17),
(2.16), (2.18)), the inequality (2.18c) holds, with 8 replaced by 4 on the right-
hand side. Recall (2.11). An energy estimate gives

1
5IIC(T)II§{N+2 + V| VLO| 2 v
1
= §HC(1)II?{N+2
T - —~
+ / /<D>N+2C<D>N+2 (U0 VC +g— U +v(Ay— AL)C] dV dt
1

1
= §HO(1)H§,N+2 +7 +L1+1L2+DE.
The transport nonlinearity 7 can be treated in the same manner as in the Q}
energy estimates above and are hence omitted for brevity.

7.1.1. The linear term L1. Distinguish first between high and low frequen-

Cles: .
Ll = / /<D>N+2C<D>N+2 [P<1g + Ps1g] dV dt = L1, + Llg.
1

Low frequencies are estimated by taking advantage of the decay of g:

Cie @ 015)2
L1y < ||C| 700 < —(Che) = it
LN|| HL L2||g||L1L2N y ( 05) C, L )

while high frequencies are estimated with the help of the viscous dissipation:

Cie Coe (| Cy C'1€>2
< < Z1° 208 {20 I8
Llg SIVCl 2~ VYl 2ay < SR 6 v )

Both are consistent with the Proposition 2.1 for C > Cj.
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7.1.2. The linear term L2. The approach is analogous to the above term.
Separating first high and low frequencies,

T
L2 = / /<D)N+2C<D>N+2 [P<1U§ + Po1U3| dV dt =12, + L2y,
1

we estimate low frequencies with the help of (2.17f),

GeCe (G Ciey*

121 SIC oo 2 UGl prre S il

and high frequencies using viscous dissipation,

C’sCalC %
2 1 0 0 1
L2y S IVeCllions IVililiony S 5 o S\ o) -

This completes the treatment of the linear terms.

7.1.3. Dissipation error terms. Write
T

DE — v / / (DYNF2C(DYNT2 (Goyy C + 20,0y 7C) dVdt = & + Es.
1

The two error terms are treated exactly the same, so consider only &£;. Using
a paraproduct decomposition,

T
& =v [ [(DN DN (Guidyy Cro+ Grodyy Cus) aVt
1

Sv ||CHL°°HN+2 ||G||L2HN+2 HVC’”L2H5/2+
+v ([IVC p2gn+2 |Gl oo grare+ +ICl oo g2 VG L2 gase+ ) VO p2 prae
< €3V_3,

which is sufficient for erv—! < 1.

7.2. Estimates on g. In this section, we prove that, under the assumptions
of Proposition 2.1 (in particular, the bootstrap assumptions (2.17), (2.16), and
(2.18)), the inequalities (2.18b) and (2.18a) hold, with 8 replaced by 4 on the
right-hand side.

7.2.1. Decay estimate on g in HV~1. In this section we improve (2.18b).
Recall (2.11). Therefore, an energy estimate gives

1
ST gD s + VIV gl L2
1 2 4 4 N—1 N—-1 7 1 1
= 5 l9Wlzv— +/1 /t (D)F (D)™ | =Uo - Vg = 2 (Ux - Viliz)o
(A — Ap)g| AV dt

1
= SlgDIF -1 + T + T + DE:
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notice the cancellation between the derivative of the time weight and the damp-
ing term. The estimates of Ty and DE are obtained similarly to the treatment
in Section 7.1 and are hence omitted for brevity. However, a new element
appears in the estimate of 7. First, notice that

T
T, — 7/ /<D>N—1t2g<D>N—1t[(U;aXU;)O+(U3éa§,U;)o
1 —_——
0
+H(UZOLUL)| dV dt.
Therefore, by (2.27) and Proposition 2.2, it follows that
Tx S HlngHLothVf1 U2 g2 rv—1 + [{OUL] o v ) IV LULN o v
<l
This completes the improvement of the estimate (2.18b).

7.2.2. Energy estimate on g in HN*2. From (2.11), an energy estimate
on g gives

1
SO s + VIV 29l g

1 2 g N+2, yN+2 [ 29
= laWpwss + [ [ (D) 29(D)*2 [T - 79 - =2

1 —~
—E(U;é VeU)o +v(Ay — Ap)g| dV dt

1
= 5lg(Fvs2 + To + L+ Tz + DE.

Observe that L does not need to be estimated, since it has a favorable sign.
All other terms appearing in the right-hand side can be estimated following
the same pattern as in many other instances in this paper (hence these are
omitted for the sake of brevity), except for 7, to which we now turn. Observe
that

1
;(U;é - ViUL)o < Coe

1 1
L1HN+2 g(U# . VtU#)O

T < gl poo g2

igN+2
This last factor can, in turn, be estimated by

1 1
Ht(@é VilUz)o S \t@ - ViUL)o

1 1
112 + HAIS(U3’é ' VtU#)O

L1HN+2 I1HN ’

The first term on the right-hand side is easily estimated (using that N —1 >
3/2 for Sobolev embedding):

< 27172,

1 1
HERLE PR

VLU

1112 S ||U7éHLooHN71
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For the second term, we use that for any function f, Afy = (Arf)o as well as

the identity (U;@XU;&)O = 0 (which was used in Section 7.2.1 above as well),
we obtain

1 . 1

HAt(U¢ - ViU%)o -

LN H t (AL[Ui’g ’ VtU;é])O

L'HN

1
S Ht((ALUff) - ViUL)o

LYHN
1

7 ((VLU;!S) : VLVtU;s)O

1
1 RCARNA AR

d

L1HN L'HN

2,3
SIALUL || oo rn VLU L2

2,3 2,3
+ U2 oo v [VLALUL| 2w + VLU, 2 IALUL poo prv

—1-1/2 2 —3/2
b

2 . _
Sev =&y

where in the last line we used (2.13) and Lemma 2.2. This completes the
improvement of (2.18a) for ev~3/2 < 1. (Note the sharp use of the hypotheses.)

8. Zero frequency velocity estimates

The purpose of these estimates are to deduce low frequency controls on
the velocity. First, observe that by the discussion in Section 2.7, it suffices
to prove these estimates on wuj), rather than Uj. Indeed, due to Lemma 2.5
and the estimate ||C|| o pns2 S vl for ev™! < 1, we may move from one
coordinate system to another, in particular,

(8.1a) UG5 ~ Nl 2+,

(8.1b) |v

Uy

recall the definition of @’ from Section 2.7.

Hsz’ HS;

8.1. Decay of U3. In this section, we improve the estimate (2.17f). First,

due to the divergence-free condition, u2(k = 0,7, = 0) = 0, thus Qu3 = u3,

where @ projects on the Fourier modes for which k or I # 0. Therefore, u3
solves

i — vAud = —Q(u - Vu?)g + QoA (9iu? dju)g
= —Q(uo - V) + Q(0,A" (D yuy))
— Q(u# . Vui)o + QﬁyA_l(&u;@ju;)o
= QTo+ QP + QT% + QP%,
with data (u2 )o. Duhamel’s formulation then reads
t
W= o+ [ INQTs) + QR(s) + QTA) + QPA(s) ds
=I+1I4+ 1141V + V.
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Due to the spectral gap made possible via (), there holds

(82)  [€"2Qf e Se I flle and ([ AVQS 2 S Te_”t!\f\lm,

t
/ "M QF (s) ds
0

so that

t
/ "EIAQF(s) ds
0

L2

Therefore, one obtains immediately

L'L?

1
Mgz S —lluinllr2 < =
v v

Next, by the divergence-free condition on u and Sobolev embedding,

¢
T2 = H/ ey(tfs)AQ[a (ug)? + 0-(uguf)] ds

L2

S - [H(uo) z1ze + ||U0U0HL1L2]

—

e
*HUoHLlL? [HUOHLOOHN 1+ ||Uo||LooHN 1] S ;HU(%HLlLQa

which is sufficient for ev~! < 1 as it can be absorbed into the left-hand side
of the estimate. Similarly, we claim that the same bound holds for III:

9
(LA FRVERS ;”u%HLlLQ-

Indeed, let us look at QP which, since u is divergence-free, can be written
QayijA_l(u%ué). If i or j is equal to 2, then the same proof as for II applies.
If both ¢ and j are equal to 3, use the divergence-free condition on u, namely,
Ozug = —ﬁyu%, to reduce matters to the previous case.

Next turn to estimates IV and V. Due to the zero mode projection and
the divergence-free constraint, first note

(up Vui{o = V. (u;eui))(o = 3y(ﬂiﬂi)§0 + 8,2(1]3&173&))0-

Therefore, by (8.2) we have
L1L2>

Y1 PR L Py

Ve <0 2], + a2

1
Sv

|
<ple?,

~
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where the last line followed from (8.1) and (2.27); note the use of the inviscid
damping on ﬂi We may apply a similar treatment for V; indeed, by the zero
mode projection and the divergence-free constraint,

0, A~ (O, 05ul)o = 9,0~ (6,0, ululy))o
0,610, w2a2) +00,. wal)o.. wal)),.
By (8.2) we have

Ve S vot|aial| ., tialia

,SV_l <~ 4/32

7£‘L2HN izl S

L2HN-1
which is sufficient for ev=4/3 < 1.

Gathering all the above estimates, we obtain that, for a constant K,
&2

v4/3
which, by (8.1), improves (2.17f) for ev=3/2 = § sufficiently small.

HUOIIL1L2<K + K- + K- “llugllzze,

8.2. Uniform bound on U}. As discussed above, it suffices to consider the
velocity in the original coordinates, u, which solves

dpup — vAuy = —ud — (u - Vul).

An energy estimate gives

1
Sl @lv + VI Vug|l T2

fu(monHNl—// DYN b (DYY ! [u — (u- V)] v di

= Sl ol s + LU+ T,

To estimate the lift up term, use that u2 always has a nonzero z frequency by

incompressibility together with the algebra property of HN~! to obtain

Coe € 1 Coe)?
1 2 0 0
LU < [Vudlerant [Vodlemvs S S5 A )

which suffices for Cj sufficiently large. Split the transport term into the con-
tribution of zero and nonzero frequencies (in X):

T
T = / / (DN ug (DN [uddyuf + ui0aup + (ug - Vul)o] dV ds
0
= 76 + 7;5.

To estimate Tp, consider first the term involving (roughly speaking) uéugayu(l);
to bound it, we will again us that the z frequency of u2 cannot be zero. Consider
next the term involving uudd,ud; to bound it, we will use that at least two of
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the factors u, u3, and d,ul must have nonzero z frequency. This leads to the
estimate

To S Hutl)HLOOHN*lHvuguL?HN*lHvu(l)HL?HN*l
+ gl poo grv-1 IV Ul p2 v -1 (| Vgl g2 grv—1
+ IV oo a1 gl 2 grv-1 | Vg p2 v
( 2
< Coe Coe Coe < Coe %) ,

~ oy Jrud2 T o v

which suffices for ev~! sufficiently small.
To estimate 7 we use the projection to zero frequency to note

(ugz - Vuk)o = (02 - (9 — tdyus)uk)o + (@ - ;1 )o
(note that the u'dxu! is eliminated), which implies (using also N — 1 > 3/2)

_2.3 _
Te S ||u(1)HL°°HN—1HU7A ||L2HN—1||vLu;é||L2HN—1

~ov 6\ v
1

which suffices for € sufficiently small. This completes the energy estimate on ug.

2
¢ Coe G e ¢ o Coe)?

8.3. Short time estimate on Uj. We also need to deduce (2.17a). For
this, we combine the techniques of Section 5.3 combined with the methods
applied in Section 8.2. We omit the treatment for brevity as the details follow
analogously. (Note that the main change from Section 8.2 is the way the lift-up
effect is treated.)

8.4. Uniform bound on UZ. In this section we improve the bound (2.17c).
As discussed above, we may perform estimates on u2 rather than UZ. In the
original coordinates, u% solves the equation

8tug - VAU% = *(U ’ VU2)0 + ayA_l(aiujajui)g.
An energy estimate gives
1
S - + IV e
1
= Sl
T o
+ / / (DYNLud (DY [=(u - Vu2)y + 0,A~ (Bl Oyul)o] AV dt
0
1
= 5ll@h)olfw-1 + T + NLP.

The transport term 7 can be treated as for uj in Section 8.2; we omit the
details. Turning to the nonlinear pressure term, it can be written, using that
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u is divergence-free, as

NLP = / / DY (DYN 10, A1 [0,(udyud) + Bi(ud Dyl )o]
—NLPo—FNLP#.

In order to bound NLP, once again we use the remark that, due to the X
average,

(O, Djus)o = 0y (W0 ) Lir 1.
Therefore,
NLP2 'S HU0||L°°HN 1||U ||L2HN 1HVLU¢ lzeanv-1 S b3,
Since 7 and j can only be equal to 2 or 3, NLPy can be estimated by
NLPo < el erfos llgoeions + ol )
IVud|| 21 + ”VUgHHHN*l)

< 3y~

~

This gives the desired bound on [[ug||3 o ;yn—1 + V|V Lug||3 2 pyn—1 for ev™! suf-
ficiently small.

8.5. Uniform bound on U$. As already explained above, we perform esti-
mates on ug, which solves

opud — vAuY = —(u - Vu?)o + 9y A~ (9l 95u")o.
An energy estimate gives
SBT3 + oIV = 5l ol
- / ' / (DYN Mg (DY [ = (- VuP)o + 0.A7H (9l 9ju’ )| AV dt
||( i)ollFx-1 + T + NLP.

The estimate on 7 is similar to that done on u} and hence is omitted for
brevity. The estimate on NLP requires a slight variant of what is done for u3.
First,

T . . . .
NLP = [ [(D)Y (D) 100,87 [(whdu) + (D)o
0
= NLPg + NLP;A.

The treatment of NLP is the same as for u3 and is hence omitted. Turn next
to NLPg. If ¢ = 5 = 3, then at least two of the three factors must have a
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nonzero z frequency, and hence we have

2

<3 3 3 2 3
NLPo 5 HUOHLOOHNA Vug L2HN71+ Yo roopgN—1 || %0|| p2p N1 Uo L2 N—1
3 2 2
+ HUOHLOOHJW1 uo‘ L2HN-1 Vuo‘ L2LN-1
€ 2
<t

~

which suffices for ev~! sufficiently small. Notice that we used Hu%H L2gN-1 S

ev=/2; one way to deduce this is via incompressibility,

[

This completes all of the zero frequency velocity estimates.

2
8Zu0‘

< ‘ .
[2HN-1 — L2HN-1

Appendix A. Commutation and elliptic estimates

A.1. Commutator-like estimates. In this section we outline some techni-
cal pointwise estimates on the Fourier multipliers we are employing; these
essentially become product-rule type estimates in practice.

LEMMA A.1 (Commutator-type estimate on m). For all t,k,1,n,&, there
holds

m(ta k7 m, l) S.z <77 - §7 [ — l/>2m(t7 k7§7 l/)
Proof. Clearly it suffices to show that

m(t k1)

N2 2 \2
it k)~ O

Due to the definition of m, this estimate is proved by distinguishing several
cases, depending on how ¢, i, and - compare. Since all these cases are fairly
similar, we will only consider three of them for brevity:

¢ If7>0,%>0,¢> 74100003 and t > % + 10000~ /3, then
m(t,k,n,l) k2412 k2 + (10000 1/3K)2 + (I')?
m(t, k', U)  k2+ (I)2 k2 + (10000~1/3k)2 4 [2
14+ 12 v=28 4 (L))
S11 (@2 2By L2

where we set L = é and L' = % Since
1+ L2 ,2/3 + (L/)z - U_2/3(L2 _ (L’)Q)
1+ (L/)Q I/_2/3—|-L2 ~ <L/>2(y—2/3+L2)’

we deduce the desired bound.
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o If >0, 750, and ¢ <Fandt>1% + 1000v~Y/3, then

mt ko, l) _ v+ (L)

<1 -2/3 < — )2,
m(t, k7n/,l,) ~ 1 + (L/)2 ~ + v ~ <77 TI)

e If0 < <t<+1000v"1/3 and 0 < " <t<T + 1000v~/3, then

m(t.k,nl)  (L+L%)(1+ (t - H')® + (L)?)

m(t, k0, ') (1+(t—H)?2+L2)(1+(L)?2)’

where we setL—k,L’— L , H =73, and H’:%,. Since

1+ L%+ (t = H)? + (L)%

(1+(t—H)>+ L)1+ (L))

(t—H)*(L*> — (L')*)+ L*(2t — H — H')(H — H")
(1+(t=H)*+ L?)(1+ (L')?)

-1

@y —L2I+ L?|t — H||H — H'|
~o1+ (D)2 (1+(t—H)?+ L)1+ (L)?)
N L2|H—H'|2
1+ (t—H?+ L)1+ (L)?)

_|_
S(L-L)+(H-H'),
the desired bound follows. O

LEMMA A.2 (Commutator-type estimate on \/—MM). For all t,k,1,I',n,
and ', there hold the following estimates:

(Ada)  V=MOMO(t,k,n,0) < (n—n', 1 = U)W =MOMO(t, k., 1),
(Alb) \% _MlMl(ta k?ﬁa l) 5 <77 - 77,7[ - l,>3/2 V _MlMl(t> kanlv l,)a
(Ade)  V-DR2M2(t k1) S (M3 | — Y2V N2 M2 (8 ey 1),

Proof. All of these estimates follow immediately from the definition of A/?
in Section 2.3. U

A.2. Elliptic lemmas. This section concerns estimates on A; ' involving
the Fourier multipliers m, M, and V. All of these estimates are based on
comparing A, Lo Azl. The estimates here differ from the analogous estimates
employed previously in [BM13], [BMV16], [BGM15a], [BGM15b] due to the
much lower regularity and the fact that the coefficients are a little smaller here
(relative to the primary unknowns).

The first estimate concerns inverting A; at zero X frequencies.
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LEMMA A.3 (Zero mode elliptic regularity). Under the bootstrap hypothe-
ses, for ev™t sufficiently small, there hold for any 1 < s < N,

(A.22) |areo] ., S ldolls + A7 0],
(A.2b) VAT 60| v S 1900l e + VAT 0],
(A.20) |aa 60|, S golle +ev | VA o, -
Proof. Consider (A.2a). First,
a7 60] 00 < 285 00 . + |27 00] -

From the definition of A, we have

(A3)  [6n70],, < lollul+ | Govyar'oo)],.

ko wavzaro)|, (+| acovarisn)|, ..

For the first two error terms, we simply have

¢28YZA;1¢O>HHS S IV g HAAt_I%HHS
<evt HAA;lqso

U [ aomvarian)],, b2

HHS’

which is then absorbed on the left-hand side of (A.3) for ev~! < 1. For the
last error term, we use the product rule and a frequency decomposition:

(|| acorarion)|, (< | acoyPaniion)|, (+ | acoyPauaieon)|
S Clgs+ | A7 0 AA; g

2T 1C grs+2

lir

The latter term is again absorbed on the left-hand side of (A.3) for ev~! <« 1
(since s < N), and the former is consistent with the right-hand side of (A.2a).
Estimate (A.2b) follows by similar considerations.

Estimate (A.2c) follows from

|ansto| ., < lIgolly +||Govy AT 00| .
e (v
S Igoll s +evt|AAT g0, + o7 [VAT 0|

S loll s + v 2D g0 + v ”<P<1 VA o)
S lollgs + v [AAT o], + et [VAT g0

+2

HS

L2’

The second term is then absorbed on the left-hand side. O
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LEMMA A.4. Under the bootstrap hypotheses, for ev=*3 sufficiently small,
there holds for any o € [0,1], 3/2 < s < N,

[meaLa s . S limeosly.
Proof. Writing P = A, Lo gives
ALP = ¢ — GOLOLP — 24.0L0,P — A,COLP.
Applying (D)*m® to both sides gives

(A1) e 8LAT 4] . S Il + 3265
j=1

where
&1 = [|mOGOFOLP||\ps, & = M. 0L 07 P sy E3 = M ACOLP| s

By Lemma A.1 we can deduce
&1+ & S IVO|| gssminczan

<y max(0,2a—1)/3 ||VCHH5+min(2a,1) ||maALP”Hs )

~

sl

However, since s < N, by the bootstrap hypotheses,
meax(O,Qafl)/B HVCHHs+min(2a,1) 5 81/74/3 <1,

and this error can be absorbed by the left-hand side of the estimate in (A.4).
For &, we apply (2.14):

& 5 |V2C| . IVLPlg S IVC] e

mmin(l/Q,a)ALPHHS ’
and from here we may proceed as in &1 2 above. O

LEMMA A.5. Under the bootstrap hypotheses, for ev=*3 sufficiently small,
there holds for any 3/2 < s < N,

AT 00k . S llogl e -

Hs ™

Proof. The first observation is that A; ' and 90% commute; indeed one
need only undo the coordinate transform, commute them as Fourier multipliers,
and then redo the coordinate transform. Therefore, the estimate is the same as

|otoin 6| S N6kl e -

Hs ™
By the L¥HN*2 control on C and the projection to nonzero frequencies, we

have
oo ox,. < |Aaraitoq] ..

Hence, the desired result now follows from Lemma A .4. O
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LEMMA A.6. Under the bootstrap hypotheses, for ev=*3 sufficiently small,
there holds for any o € [0,1], 3/2 < s < N,

SIVEm®ox| 4.

+ VOl gesa v O2 DB mG 4| o

(A5) | VimeALA oy

i

Remark A.1. For s < N — 1, the second term in (A.5) can be removed.

Proof. Define P = At_1d>7g. As in the proof of Lemma A.4 above,

(A.6) |VimALA; 6|

3
e SIVEM Gy + D,
Jj=1

where
&1 = |Vim®GOpoyP| s, €2 = ||Vim® 9,050z P| e,
&3 = ||V m*ACOEP|| s
By the product rule and that G does not depend on X,
& 5 |meGofopv.op|  +|mevGobabp| .

Expanding each term with a paraproduct decomposition (see Section 2.1.4)
and Lemma A.1, we have

&1 S G szes [VEm® ALPll s + |Gy sminiaanny [V ™20 A, p|
IV G i mingzeny ‘mmin(l/z’a)ALPHHs
+ [[VG|| rs+mincza,n) ‘mmin(l/Q’a)ALP‘ ey
Using Lemma 2.4, we have
&1 SIVO||gsaas [V Lm ALP 4,
+ IVCl gpetminteann | Vm™ OO ALP|
+ VO] ztmintzanny [ A2OALP||
+ VOl gesrminean [m™2DALP|

By (2.13), (2.14), and N > 2, we have
& < Cllgssa + v PO GO yionn) [T 2m® AL P .
+ - max(0.20-D/3 |G| o (MO ALP e
+ 7 max(02a=D/3 |G| oo MO ALP|| fyagas

< ev VT Lm® ALP| . 4 v ORI GOy [ ALP]
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By ev~*/3 sufficiently small, the first term can be absorbed on the right-hand
side of (A.6), and the second term is consistent with the stated (A.5) by
Lemma A.4. By Lemma 2.4, the treatment of & is exactly the same and is
hence omitted for brevity.

For &3, we apply again Leibniz’s rule and (2.14):

&3 S |AC| grszar M ALP o + [ AC g2+ [VLP s
+ |AC s [ALP gsra+ + [[AC| gosr [V LP| s+
S NCllgnsz MV LALP|| g + [AC] o [m™n/207 L AL P

H3/2+

+ 1AC o

min(1/2,
mmin(l/ a)ALPHH3/2+
< v~ max(020=1/3 0| Lxis MOV LALP

+ [[AC] ot

mmin(l/Q,Q)ALP‘

H3/2+

< e B MOV LALP] e + v OB O] s [m® ALP| a2

As above, for ev~%3 sufficiently small, the first term can be absorbed on the
right-hand side of (A.6), and the second term is consistent with the stated
(A.5) by Lemma A.4. Also note that if s +3 < N + 2, then the latter term
can be absorbed on the right-hand side of (A.6) for ev=%/? < 1, as claimed in
Remark A.1. (|

LEMMA A.7. Suppose i € {0,1,2}. Under the bootstrap hypotheses, for
ev=3/2 sufficiently small, there holds for any o € [0,1], 0 < s < N,

(A7) H\/WW%LA?l‘f’#HHS s H\/WWWHHS

+ (EV73/2)V1/2 HvLmO‘ALAt_l(Z);A‘

Hs '

Proof. Writing P = A; ¢, applying the multiplier v/ —M¢Mi(D)*m® to
both sides of the equation, and taking L? norms gives

3
(A.8) H\/—MiMimaALAt_lqﬁ#H ,<VH\/—MMma¢¢H +3 8,
Hs Hs B
7=1

where

&1 = |V =MMmOGOEOLP| s, & = ||V —MMm®p,0L0,P|| g,
Es = ||V =M Mm*ACOLP|| .
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Similar to the arguments employed in the other elliptic lemmas, via a para-
product decomposition, Lemma A.1, and Lemma A.2, we get

\/—MMmaALPH
Hs

HVCHHermin(l,Qa) ||’rnaAL})||H3/2+ N

E1+ & S v max(0,20—1)/3 ||VCHH5/2+min(1,2a)+

L - max(0.20-1)/3
However, by Lemma 2.1 we have

Im®ALP| e < s HJWWALPHHS 2T meALP . ).
which implies (along with N > max(s,5/2+))

‘\/—MMmO‘ALP‘

For ev—3/2 sufficiently small, the first term is absorbed in the left-hand side of
(A.8) whereas the latter term is consistent with (A.7).
Consider next the error term &3, which by a paraproduct decomposition,

&+ & < (ev™3?) + (v 322 ||V m O ALP| e -

HS

Lemma 2.1, (2.14), and the lower bound on m, is

& S [AC a2+

VBIMVLP| VRO, VPl
\/WmaALPH

+u max(0,2a—1)/3 IVC|| gs+1 ||maALP||3/2+ ’

<y~ max(0,2a—1)/3 ||C”HN+2

HS

from which the result follows in the same way as for & . O
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