

1
2 Relationships between Temperature, pH, and Crusting on Mg/Ca Ratios in Laboratory-Grown
3 *Neogloboquadrina* Foraminifera
4

5 Authors: Catherine V. Davis^{a,b*}, Jennifer S. Fehrenbacher^{a,c}, Tessa M. Hill^{a,b}, Ann D. Russell^a,
6 Howard J. Spero^a
7

8 *Corresponding Author: cvdavis@seoe.sc.edu; School of the Earth, Ocean and Environment,
9 University of South Carolina, Columbia, SC, USA
10

11 ^aDepartment of Earth & Planetary Sciences, University of California, Davis, CA, USA
12

13 ^bBodega Marine Laboratory, University of California at Davis, Bodega Bay, CA, USA
14

15 ^cCollege of Earth, Ocean and Atmosphere, Oregon State University, Corvallis, OR, USA
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47 **Keypoints:**

48 - Crust and ontogenetic calcite in neogloboquadrinid foraminifera have differing
49 Mg/Ca:temperature relationships

50 - Mg/Ca ratios of ontogenetic calcite in *Neogloboquadrina incompta* and
51 *Neogloboquadrina pachyderma* reflect environmental temperature

52 - pH does not influence Mg/Ca ratios of these foraminifera over a range of 7.4 to 8.2

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93 **Abstract**

94 Mg/Ca ratio paleothermometry in foraminifera is an important tool for the reconstruction and
95 interpretation of past environments. However, existing Mg/Ca:temperature relationships for
96 planktic species inhabiting mid- and high- latitude environments are limited by a lack of
97 information about the development and impact of low-Mg/Ca ratio “crusts” and the influence of
98 the carbonate system on Mg/Ca ratios in these groups. To address this, we cultured individual
99 specimens of *Neogloboquadrina incompta* and *Neogloboquadrina pachyderma* in seawater
100 across a range of temperature (6 °- 12 °C) and pH (7.4 - 8.2). We found by laser ablation
101 inductively couple mass spectrometry analyses of shells that culture-grown crust calcite in *N.*
102 *incompta* had a lower Mg/Ca ratio than ontogenetic calcite formed at the same temperature,
103 suggesting that temperature is not responsible for the low Mg/Ca ratio of neogloboquadrinid
104 crusts. The Mg/Ca:temperature relationship for ontogenetic calcite in *N. incompta* was consistent
105 with the previously published culture-based relationship and no significant relationship was
106 found between Mg/Ca ratios and pH in this species. However, the Mg/Ca ratio in laboratory
107 cultured *N. pachyderma* was much higher than that reported in previous core-top and sediment
108 trap samples, due to lack of crust formation in culture. Application of our ontogenetic calcite-
109 specific Mg/Ca:temperature relationships to fossil *N. pachyderma* and *N. incompta* from five
110 intervals in cores from the Santa Barbara Basin and the Bering Sea show that excluding crust
111 calcite in fossil specimens may improve Mg/Ca-based temperature estimates.

112

113 **1. Introduction**

114 Planktic foraminifera preserved in sediments are a rich archive of paleoceanographic information
115 and shell Mg/Ca ratios are an increasingly important component of geochemical

116 paleothermometry [e.g. *Nürnberg et al.*, 1995; *Elderfield and Ganssen*, 2000; *Lea et al.*, 2002;
117 *Tripathi et al.*, 2003; *Schmidt et al.*, 2004; *Barker et al.*, 2005; *Cléroux et al.*, 2008; *Dekens et al.*,
118 2008; *Sadekov et al.*, 2009]. For example, Mg/Ca paleothermometry used in conjunction with
119 $\delta^{18}\text{O}_{\text{calcite}}$ can isolate the contribution of $\delta^{18}\text{O}_{\text{seawater}}$ to infer changes in the hydrological system or
120 ice volume [e.g. *Mashiotta et al.*, 1999; *Lea et al.*, 2002; *Schmidt et al.*, 2004; *Stott et al.*, 2004].
121 However, Mg/Ca:temperature relationships can be specific to morphospecies [*Nürnberg et al.*,
122 1996; *Lea et al.*, 1999; *Mashiotta et al.*, 1999; *von Langen et al.*, 2005] and even genotypes
123 [*Sadekov et al.*, 2016], and may be influenced by intrashell variability in Mg/Ca ratios, such as
124 crusting [*Sadekov et al.*, 2009], as well as the inorganic carbon system [*Lea et al.*, 1999; *Russell
et al.*, 2004], salinity [*Lea et al.*, 1999; *Hönisch et al.*, 2013], and oceanic Mg/Ca [*Evans et al.*,
125 2016].
126

127
128 Understanding the history and dynamics of diverse oceanographic regions, especially high
129 latitudes, is critical for placing future global change in a long-term context. Foraminifers of the
130 genus *neogloboquadrina*, *N. pachyderma* (formerly *N. pachyderma* var. *sinistral* [*Darling et al.*,
131 2006]) and *N. incompta* (formerly *N. pachyderma* var. *dextral* [*Darling et al.*, 2006]), are often
132 well-preserved and the dominant species in low diversity assemblages, making them good
133 candidates for Mg/Ca paleothermometry at high latitudes. *Neogloboquadrina pachyderma* is a
134 morphospecies with a bipolar distribution [*Bé and Tolderlund*, 1971; *Darling and Wade*, 2008],
135 comprising several genotypes [*Darling et al.*, 2004; 2008]. It is often the only abundant species
136 in polar and subpolar faunas [*Bauch et al.*, 2002; *Eynaud et al.*, 2009; *Eynaud*, 2011].
137 *Neogloboquadrina incompta* has a wider temperate to sub-polar distribution [*Darling et al.*,
138 2008], and both *N. pachyderma* and *N. incompta* have been reported in association with some

139 tropical and temperate upwelling regions [Naidu and Malmgren, 1996; Davis *et al.*, 2016].
140 Whereas the *N. pachyderma* Mg/Ca:temperature relationship has never been established in
141 controlled laboratory experiments, relationships based on core tops [Nürnberg, 1995; Mashiotha
142 *et al.*, 1999; Hendry *et al.*, 2009; Kozdon *et al.*, 2009a; Vázquez Riveiros *et al.*, 2016] and
143 sediment traps [Jonkers *et al.*, 2013] have been published. A laboratory-calibrated
144 Mg/Ca:temperature relationship has been developed using combined data from *N. incompta* and
145 *Neogloboquadrina dutertrei* (a subtropical/tropical species) [von Langen *et al.*, 2005], but it is
146 unclear whether this is also applicable to *N. pachyderma*. The temperatures obtained from these
147 relationships are often inconsistent with one another. Possible sources for disagreement between
148 published Mg/Ca:temperature relationships for *N. pachyderma* and *N. incompta* include an
149 unconstrained carbonate ion ($[CO_3^{2-}]$) and/or pH influence and the presence of a thick low-
150 Mg/Ca ratio crust found on the outer portion of neogloboquadrinid shells [Hendry *et al.*, 2009;
151 Jonkers *et al.*, 2011; Jonkers *et al.*, 2016].

152
153 Previous culture experiments have shown that $[CO_3^{2-}]$ can influence Mg/Ca ratios in the spinose
154 planktic foraminifers *Orbulina universa* and *Globigerina bulloides* [Lea *et al.*, 1999; Russell *et*
155 *al.*, 2004]. Varying levels of Mg/Ca ratio sensitivity to the inorganic carbonate system in the
156 form of pH and/or $[CO_3^{2-}]$ have also been established in benthic foraminifera [Rosenthal *et al.*,
157 1997; Elderfield *et al.*, 2006; Rathmann and Kuhnert, 2008; Yu and Elderfield, 2008; Dissard *et*
158 *al.*, 2010; Raitzsch *et al.*, 2010], with Mg/Ca ratios in some species insensitive to pH and/or
159 $[CO_3^{2-}]$ [Rathmann and Kuhnert, 2008; Dissard *et al.*, 2010]. A substantial pH and/or $[CO_3^{2-}]$
160 control on Mg/Ca ratios could introduce error into interpretations of the Mg/Ca:temperature
161 signals in fossil foraminifera, especially for morphospecies such as *N. pachyderma* and *N.*

162 *incompta* which combined have a sub-tropical to polar distribution [Bé and Tolderlund, 1971;
163 *Darling and Wade*, 2008] and can live in waters with highly variable $[\text{CO}_3^{2-}]$ such as upwelling
164 regions or even at the sea ice-water interface [Spindler and Dieckmann, 1986; Dieckmann *et al.*,
165 1991; Hendry *et al.*, 2009]. This potential influence of pH and/or $[\text{CO}_3^{2-}]$ could be a confounding
166 factor in interpreting Mg/Ca ratio, and has been evoked as an explanation for low
167 Mg/Ca:temperature relationship sensitivity [Jonkers *et al.*, 2013], with some authors accounting
168 for $[\text{CO}_3^{2-}]$ in the interpretation their relationships [Hendry *et al.*, 2009].

169

170 Crusting presents a further potential complication in interpretation of neogloboquadrinid
171 Mg/Ca:temperature relationships. In all neogloboquadrinids, ontogenetic calcite is formed first
172 and includes new chamber growth followed by gradually thickening, and formation of Mg/Ca
173 banding in *N. pachyderma* [Jonkers *et al.*, 2016] and *N. dutertrei* [Fehrenbacher *et al.*, 2017]. A
174 crust is added later, if at all, with some shells acquiring a crusted texture several days prior to
175 gametogenesis [von Langen, 2001; Fehrenbacher *et al.*, 2017]. Encrusted fossil foraminifera are
176 characterized by a thicker shell, a distinct euhedral texture, low $\delta^{18}\text{O}$, and a relatively low Mg/Ca
177 ratio [Arikawa, 1983; Sadekov *et al.*, 2005; Kozdon *et al.*, 2009b; Bolton & Marr, 2013].

178 Analyses of core top and down core neogloboquadrids have been unable to resolve whether the
179 low-Mg/Ca ratio of crust calcite is the result of 1) precipitation in deeper, and hence colder, more
180 CO_2 -rich waters than ontogenetic calcite; 2) differing Mg/Ca:temperature sensitivities between
181 the two types of calcite [Hathorne *et al.*, 2003; Bolton and Marr, 2013; De Nooijer *et al.*, 2014;
182 Steinhardt *et al.*, 2015]; 3) diagenesis [Branson *et al.*, 2015]; or 4) a combination of factors.

183 Recent evidence argues against a temperature trigger for the formation of crust calcite [Jonkers
184 *et al.*, 2016], due to the presence of a low-Mg/Ca ratio crust in shells grown in a deep mixed

185 layer of uniform temperature. Understanding the influence of crusting on Mg/Ca
186 paleotemperature reconstructions is essential in species such as *N. pachyderma* in which such
187 crusts make up as much as 80% of total shell mass [Kohfeld *et al.*, 1996].
188

189 We present the results of laboratory culture experiments in the neogloboquadrinid foraminifers
190 *N. incompta* and *N. pachyderma* with the objectives of a) improving Mg/Ca:temperature
191 relationships for neogloboquadrinid foraminifera by generating culture-based, species-specific
192 relationships based on laser ablation inductively coupled plasma mass spectrometry (LA-ICP-
193 MS) analyses, b) examining the influence of crust versus ontogenetic calcite on Mg/Ca
194 paleothermometry of cultured neogloboquadrinids, and c) quantifying the potential influence of
195 covarying parameters pH and/or $[CO_3^{2-}]$ on Mg/Ca ratios in specimens cultured across a range of
196 seawater pH conditions.

197

198 **2. Methods**

199 *2.1 Live-collected specimens and preparation for culture*

200 Culture experiments were conducted at the UC Davis Bodega Marine Laboratory (BML), and
201 followed procedures outlined by von Langen *et al.* [2001; 2005]. *Neogloboquadrina incompta*
202 and *N. pachyderma* were collected between 1 and 35 km off shore of Bodega Head, CA, using
203 vertically-integrated 155 μ m mesh net tows deployed to a maximum depth of 200 m. Most
204 specimens were recovered \sim 35 km offshore ($38^{\circ} 11.6' 0'' N$, $123^{\circ} 23.9' 0'' W$), and tow material was
205 returned within 2-12 hours to BML to be sorted. Samples were allowed to warm to ambient air
206 temperature (10-18 $^{\circ}C$) during transit, because chilling material during the return trip was found
207 to inhibit foraminifera recovery, potentially due to thermal shock.

208

209 *2.2 Culture methods*

210 Individual foraminifera were picked from plankton tows based on suitability for culture, assessed
211 by the presence of colored cytoplasm and absence of crusting. Specimens selected for culture
212 were rinsed once in filtered seawater, transferred via pipette into individual 75 mL polystyrene
213 Falcon© flasks of filtered seawater (0.6 μm), and allowed to recover for \sim 16 hours at treatment
214 temperature. Recovery was indicated by the extension of a rhizopodial network and visible
215 movement or streaming of rhizopods. An aliquot of a concentrated single-spike solution was
216 added by volume to filtered seawater to achieve an isotopic or elemental enrichment to label
217 calcite formed in culture [Table 1]. Individuals that recovered were transferred into filtered
218 seawater containing one of these labels.

219

220 Foraminifera were held at constant temperature (± 0.15 °C) in recirculating baths in individual
221 Falcon© Flasks with nearly consistent salinity (33 ± 0.5 on the psu scale). Illumination was
222 provided on a 12 hour light-dark cycle at 55 ± 15 μmol photons $\text{m}^{-2} \text{s}^{-2}$ by CREE XP-E 72 Watt
223 LED lights (full spectrum). Once in labeled seawater, each specimen was photographed and
224 measured. Each individual was observed daily, and fed a 1 day-old, freeze-killed *Artemia*
225 nauplius every other day until gametogenesis or death. Gametogenesis was defined as the release
226 of gametes, always preceded by pre-gametogenic characteristics including retraction of
227 rhizopodia and loss of cytoplasm color. In contrast, a non-gametogenic death was defined as the
228 cessation of feeding and rhizopodial activity without pre-gametogenic features or the release of
229 gametes. Culture solutions were replenished after feedings with spiked seawater from the same

230 batch. After completion of their life cycle, specimens were rinsed in deionized water and
231 archived for analysis.

232

233 *2.3 Spike and seawater preparation*

234 Foraminifera were kept in filtered seawater obtained from an offshore seawater intake system.
235 Seawater was labeled geochemically with one label, either elemental Sr, ^{43}Ca , or ^{87}Sr , to identify
236 culture-grown calcite using LA-ICP-MS to profile through the shell wall. Stock solutions were
237 made by dissolving powdered materials into ~4% Fisher Optima HCl in Millipore water [Table
238 1]. All labels produced signals identifiable by LA-ICP-MS, however we found isotopic labels to
239 be preferable to elemental Sr, due to high natural Sr variability found in ocean-grown calcite.

240

241 After adding a label, seawater for temperature treatments (6, 9, and 12 °C) was returned to the
242 measured ambient pH of incoming seawater by adding small aliquots of 0.1N NaOH. For pH
243 experiments with *N. incompta*, carried out only at 12 °C, seawater pH was adjusted further to
244 achieve a target pH_T (total scale) between 7.4 and 8.2 by adding 0.1N HCl or 0.1N NaOH to
245 labeled seawater. Due to a paucity of *N. pachyderma* in the net tows, we did not conduct pH
246 experiments on this species and all *N. pachyderma* were held at ambient pH by the above
247 method.

248

249 *2.4 Culture water sampling*

250 Culture water was sampled at the start (from batches of labeled filtered seawater) and end (from
251 several individual flasks) of each experiment, and analyzed for pH_T and total alkalinity. The pH_T
252 was measured spectrophotometrically with *m*-cresol purple dye, using an Ocean Optics Jaz

253 Spectrophotometer EL200 ($SD \pm 0.003$) [Dickson *et al.*, 2007]. Total alkalinity was determined
254 via automated Gran titration on a Metrohm 809 Titrando ($SD \pm 2.809 \mu\text{mol/kg}$) using 0.1N HCl
255 with acid concentrations standardized using Dickson certified reference materials. All carbonate
256 system calculations were performed using CO2Calc [Robbins, 2010] with CO_2 constants K_1 , K_2
257 from Millero [2010].

258

259 *2.5 Fossil specimens*

260 To compare Mg/Ca-temperatures based on our experimental Mg/Ca:temperature relationships
261 for *N. incompta* and *N. pachyderma* with those from other paleothermometers, fossil specimens
262 were selected from two Santa Barbara Basin cores and a Bering Sea core. Specimens of *N.*
263 *incompta* were selected from early Holocene (7.4 ka) and Bølling-Allerød (14.7 ka) intervals
264 from Santa Barbara Basin piston core MV0811-15JC (34.37° N, 120.13° W; 418 m water depth)
265 [Table 2]. An age model (radiocarbon) for these samples was previously published [Moffitt *et al.*,
266 2014]. The $\delta^{18}\text{O}$ of *G. bulloides* [Moffitt *et al.*, 2014] from these down-core sediment intervals
267 provided an independent temperature estimate for comparison with *N. incompta* Mg/Ca-
268 temperatures, and were based on a species-specific culture-derived relationship [Bemis *et al.*,
269 1998] and published $\delta^{18}\text{O}_{\text{seawater}}$ [Bemis *et al.*, 2002]. *Neogloboquadrina incompta* specimens
270 were also picked from a nearby box core (SPR0901-10BC, 34.28° N, 120.04° W; 596 m water
271 depth) to obtain an estimate of modern oceanographic conditions (<< 250 years) [D. Pak,
272 unpublished data]. Since *G. bulloides* specimens were not available from these sediments to
273 provide a modern $\delta^{18}\text{O}$ -based temperature, we compared calculated Mg/Ca-temperatures with
274 modern average instrumental late-summer temperature at 50 m from WOA13 (1955-2013)
275 [Locarnini *et al.*, 2013]. This depth and time period was chosen as being most comparable to

276 paleotemperatures from *G. bulloides*, which is most abundant in the Southern California Bight
277 during July-September, at 40-80 m depth [Kincaid *et al.*, 2000, Field, 2000]. In Bering Sea core
278 U1340 (53.4° N, 179.52°W; 1294 m water depth), fossil *N. pachyderma* were picked from
279 Bølling-Allerød (14.5 ka) and early deglacial (17.8 ka) intervals. The age model for U1340 is
280 based on radiocarbon, and alkenone-derived paleotemperature estimates are available from
281 Schlung *et al.* [2013].

282

283 *2.6 Sample preparation and analysis*

284 *2.6.1. Sample cleaning*

285 Cultured planktic foraminifera were cleaned prior to LA-ICP-MS analysis to remove organics by
286 immersion in a 1:1 mixture of 0.1N NaOH and 30% H₂O₂ at 65 °C for 30 minutes during which
287 they were ultrasonicated for four 10 s periods [Mashioita *et al.*, 1999]. All down-core and
288 sediment surface shells were cleaned by immersion in a 1:300 mixture of 0.1N NaOH and 30%
289 H₂O₂ for 30 minutes while being periodically sonicated as for cultured shells. Fossil shells were,
290 however, subjected to more extensive sonication than cultured shells (sonicated 5-10 times for 10
291 s intervals) to remove any authigenic material not present in cultured specimens.

292

293 *2.6.2. LA-ICP-MS methods*

294 All shells were ablated using a Photon Machines 193 nm ArF laser with an ANU HelEx dual-
295 volume laser ablation cell coupled to an Agilent 7700x quadrupole-ICP-MS, in the Department
296 of Earth and Planetary Sciences, University of California Davis. A 30 µm circular or 44 µm
297 square spot was used to analyze each adult chamber from the outside-in with up to 4 repeat
298 ablations per chamber. Analysis followed the methodology described in Fehrenbacher *et al.*

299 [2015]. Individual chambers were ablated at 5 Hz with a fluence of 0.58 J cm^{-2} , and ablated
300 material was transported in a He-Ar gas mixture. All ratios were standardized to NIST SRM 610,
301 which was analyzed periodically between foraminifera to correct for drift. Al/Ca and Mn/Ca
302 were monitored in fossil foraminifera, and two shells showing low ($< 30 \mu\text{mol/mol}$) but variable
303 Al/Ca profiles were excluded from our results. No specimen had elevated Mn/Ca $> 60 \mu\text{mol/mol}$.

304

305 2.6.3. *Electron microprobe methods*

306 Based on observation and LA-ICP-MS analyses, two *N. incompta* shells determined to have
307 grown both a new chamber and added a crust while in culture at 12°C , were selected for
308 elemental image mapping by electron microprobe. Shells were embedded in epoxy (EpoFix),
309 sectioned to expose a cross-sectional area of the chamber, and carbon coated. Foraminifera were
310 analyzed with a Cameca SX-100 electron microprobe in the Department of Earth and Planetary
311 Sciences, University of California, Davis, for Mg and Ca, using a $0.5 \mu\text{m}$ spot size with a dwell
312 time of 0.5 s, 15 keV voltage and a 15 nA beam current. Ca counts below 3500 cps were filtered
313 to minimize edge effects.

314

315 2.6.4. *Development of Mg/Ca:temperature relationships*

316 Our results include chambers which were entirely grown in culture or that calcified extensively
317 enough in culture that ocean-grown (unlabeled) calcite was too thin to be analytically resolved
318 by laser, and thus made up a negligible proportion of total calcite. A Mann-Whitney test
319 comparing Mg/Ca ratios in chambers grown entirely in culture and those with an analytically
320 negligible ocean-grown portion showed no significant difference in Mg/Ca ratios at 12°C ($p =$
321 0.645) or 9°C ($p = 0.095$). Each point in the resulting Mg/Ca:temperature relationship is

322 composed of the average across all included chambers from a single individual. Error on
323 temperatures is reported based upon the average standard error around mean Mg/Ca at each
324 treatment temperature.

325

326 *2.7 Statistical treatment of data*

327 All data analyses were done using the stats and ‘nlme’ packages in R (<https://R-project.org/>). For
328 statistical tests in which an assumption of normality was required, an angular transformation was
329 applied to Mg/Ca ratio data and a Shapiro-Wilks test was used to confirm normal distribution of
330 data. For the purposes of this analysis, data from this study (single shells) were weighted equally
331 with those from von Langen et al. [2005] (pooled chambers) for *N. incompta*. As a result,
332 Mg/Ca:temperature relationships are weighted towards our data set at temperatures represented
333 in both data sets.

334

335 **3. Results**

336 *3.1. Culture observations*

337 Chamber addition and ontogenetic changes were observed in *N. pachyderma* and *N. incompta*,
338 culminating in gametogenesis. Chambers formed as previously described in these and other non-
339 spinose species [Bé *et al.*, 1979; Spindler *et al.*, 1989; Hemleben *et al.*, 1989; von Langen, 2001],
340 beginning with colored cytoplasm enclosing all or most of the shell and forming the outline of a
341 new chamber. The eventual retreat of cytoplasm into the shell then revealed a translucent new
342 chamber, which filled with red (for most *N. pachyderma*) or red-orange (for most *N. incompta*)
343 cytoplasm and gradually thickened, as indicated by a decrease in translucence over the course of
344 1-3 days. Prior to gametogenesis, the rhizopodial network was “sticky,” allowing foraminifera to

345 adhere to flask walls and to aggregate food particles and available debris or detritus around the
346 shell.

347

348 After calcifying the ultimate (F) chamber, individuals signaled the beginning of gametogenesis
349 by a decrease in “stickiness” and a gradual lightening of cytoplasm color followed by a retraction
350 of the rhizopodial network and a cessation of feeding. By the end of this process, foraminifera
351 were opaque, white, and lacked rhizopodia. This “pre-gametogenic” phase was accompanied in
352 some *N. incompta* individuals, by the addition of a crusted texture. During gametogenesis, the
353 individual expels gametes, leaving behind a nearly empty shell. Some individuals appeared to
354 release small spheres of cytoplasm with independent rhizopodia some days prior to, or without
355 the appearance of, pre-gametogenic characteristics. Similar structures were previously observed,
356 and thought to be potentially indicative of an asexual reproductive phase by von Langen [2001].
357 We were unable to confirm this interpretation, as maturation into proloculi was not observed in
358 association with the release of either cytoplasm spheres or gametes.

359

360 *3.2. Influence of crusting on shell Mg/Ca ratios*

361 The Mg/Ca ratios derived from LA-ICP-MS profiles of labeled, laboratory-grown calcite of *N.*
362 *incompta* were compared across culture-grown (see Section 2.4.6) calcite in the four chambers of
363 the adult whorl. Although *N. incompta* were also cultured at 6 °C, no analytically discernable
364 calcite was added at this treatment. Where multiple ablation profiles through a single chamber
365 were possible, they were averaged to produce a single chamber Mg/Ca ratio. A repeated
366 measures ANOVA was used to identify significant differences across chambers within a single
367 individual. No significant difference was found in Mg/Ca ratios across sequential chambers in

368 the adult whorl (F, F-1, F-2, F-3) within a temperature treatment at either 9 °C ($p = 0.825$) or 12
369 °C ($p = 0.950$) [Fig. 1]. The same was true of *N. pachyderma* at 6 °C ($p = 0.419$), and 12 °C ($p =$
370 0.216). The culture-grown portions from all chambers were therefore combined into a single-
371 shell average Mg/Ca ratio.

372

373 Overall, the incidence of geochemical crusts forming in culture was extremely low, occurring in
374 only 13% of *N. incompta* (n=6), and in no *N. pachyderma* [Table 3]. In the 12 °C treatment, two
375 *N. incompta* added a new chamber followed by a crust. In these chambers, the texturally crusted
376 portion of the shell had substantially lower Mg/Ca ratios (1.7 and 1.0 mmol/mol) than the
377 ontogenetic calcite (3.2 and 2.5 mmol/mol) [Fig. 2]. Whole-shell Mg/Ca ratios, integrating both
378 portions of the shell (2.2 mmol/mol and 1.8 mmol/mol) would thus reflect a mixture of
379 ontogenetic and crust calcite Mg/Ca ratios. A two-end member (binary) mixing model indicates
380 that the Mg/Ca ratio of crusted calcite contributed a 60% and 40% proportion of the whole shell
381 Mg/Ca ratio in these shells. Bands of high and low Mg/Ca ratios were observed in several *N.*
382 *incompta* shells, grown both in the laboratory and in the ocean, but were confined to the inner,
383 ontogenetic layer of the shell. Crust Mg/Ca ratios, in contrast, were relatively homogenous [Fig.
384 3].

385

386 3.3. Mg/Ca temperature relationships in ontogenetic calcite

387 Combining data from *N. incompta* shell Mg/Ca ratios grown at 9 °C and 12 °C [Table 4] with
388 those from von Langen et al. [2005] produces Eq. 1 for *N. incompta* where T is temperature:
389

$$390 \text{Mg/Ca (mmol/mol)} = 0.71(\pm 0.14) * e^{(0.08(\pm 0.01) * T)} \quad [\text{Eq. 1}]$$

391

392 An exponential model is applied, as the Mg/Ca ratio of planktic foraminifera shells has been
393 shown to increase exponentially with temperature [e.g. *Nürnberg*, 1995; *Rosenthal et al.*, 1997;
394 *Mashiotta et al.*, 1999; *Lea et al.*, 1999; *Barker et al.*, 2005; *Jonkers et al.*, 2013; *Vázquez*
395 *Riveiros et al.*, 2016]. LA-ICP-MS analyses of *N. incompta* grown in culture revealed high inter-
396 individual Mg/Ca ratio variability [Fig. 4], which was not accounted for by temperature or pH.
397 This variability cannot be attributed to salinity ($\pm < 1$ psu), nor ontogeny as there were no
398 significant differences between chambers. Although still unexplained, such inter-specimen
399 variability has also been observed in the foraminifers *Orbulina universa* and *Globigerinoides*
400 *sacculifer* grown under constant conditions [*Dueñas-Bohórquez et al.*, 2011; *Spero et al.*, 2015].

401

402 In the Mg/Ca:temperature relationship derived from *N. pachyderma* cultured at 6, 9, and 12 °C,
403 Mg/Ca ratios were higher than those estimated from previously published *N. pachyderma*
404 Mg/Ca:temperature relationships from core tops and sediment traps [*Nürnberg*, 1995; *Hendry et*
405 *al.*, 2009; *Kozdon et al.*, 2009; *Jonkers et al.*, 2013; *Vázquez Riveiros et al.*, 2016], and different
406 from those in *N. incompta* [Fig. S1]. Our results, using individual shell LA-ICP-MS profiles,
407 yield the following relationship [Fig. 4] where T is temperature:

408

409 Mg/Ca (mmol/mol) = 0.71 (± 0.2)*T – 2.49(± 1.5) [Eq. 2]

410

411 The resulting Mg/Ca:temperature relationship cannot be constrained beyond linear, as has been
412 published for other limited temperature ranges studied in *N. pachyderma* [*Hendry et al.*, 2009;
413 *Kozdon et al.*, 2009]. However, an exponential fit, as reported elsewhere [*Nürnberg*, 1995;

414 *Mashiotta et al.*, 1999; *Jonkers et al.*, 2013; *Vázquez Riveiros et al.*, 2016], may be more
415 appropriate over a larger range of temperature.

416

417 *3.4. Impact of crust formation on Mg/Ca ratios in fossil specimens*

418 *Neogloboquadrina incompta* and *N. pachyderma* analyzed from intervals in Santa Barbara Basin
419 cores SPRO901-10BC and MV0811-15JC, and Bering Sea core U1340 contained inner
420 ontogenetic calcite and outer crusts (identified by texture and relatively low Mg/Ca ratios
421 compared to ontogenetic calcite) [Fig. S2; Fig. S3]. These observations are similar to the texture
422 and geochemistry observed in cultured *N. incompta* [Fig. 2; Fig. 3; Fig. S3], and other fossil
423 shells [Hathorne et al., 2003; (*N. incompta* and *N. dutertrei*) Bolton and Marr, 2013; De Nooijer
424 et al., 2014; (*N. dutertrei*) Steinhardt et al., 2015]. *Neogloboquadrina pachyderma* was more
425 heavily crusted than *N. incompta*, with crust contributing between 30 - 90% of total calcite, as
426 determined by the fraction of the total ablation time required to pass through each portion of the
427 shell. This is as compared to 20 - 70% in *N. incompta* fossils. In some areas, the inner chamber
428 calcite had been lost, potentially due to vigorous cleaning or dissolution. The loss of this shell
429 portion is clear by both Scanning Electron Microscopy (SEM) and LA-ICP-MS analyses [Fig.
430 S3].

431

432 *3.5. Applying the Mg/Ca:temperature relationships to fossil specimens*

433 Whole shell Mg/Ca ratios in all adult chambers of *N. incompta* sampled from intervals in Santa
434 Barbara Basin cores SPRO901-10BC and MV0811-15JC (modern, 7.4 ka, and 14.7 ka intervals)
435 were intermediate between the low-Mg/Ca ratio of crust and high-Mg/Ca ratio of ontogenetic
436 calcite for the same specimens [Table 5; Fig. 5]. The temperature calculated from the von

437 Langen et al. [2005] Mg/Ca:temperature relationship for Santa Barbara Basin fossil *N. incompta*
438 from the three time slices differed depending on whether they were based on whole-shell Mg/Ca
439 ratios or only the ontogenetic portions of the shell [Table 5]. When based only on ontogenetic
440 calcite, Mg/Ca-based temperatures from the 7.4, 14.7 ka and modern intervals were 12 °C, 11
441 °C, and 10 °C respectively, as compared to $\delta^{18}\text{O}$ -derived temperatures from *G. bulloides* (12 °C
442 during both down-core intervals) and modern average seasonal temperatures of 11 °C at 60 m
443 water depth [Table 5].

444

445 In Bering Sea core U1340, the Mg/Ca:temperature relationship (Eq. 2) was applied to Mg/Ca
446 ratios in ontogenetic calcite from *N. pachyderma*, to obtain calculated temperatures of 6 °C (at
447 14.5 ka) and 5 °C (at 17.8 ka). These temperatures are consistently lower than U^{37}K temperatures
448 from the samples nearest in age (10 °C at 14.5 ka and 9 °C at 17.8 ka) [Schlung et al., 2013; Fig.
449 6; Table 6]. The von Langen et al. [2005] Mg/Ca:temperature relationship applied to whole shell
450 Mg/Ca ratios from these time intervals yielded temperatures of 2 °C (14.5 ka) and 7 °C (17.8 ka),
451 with other published equations producing a range of results from 0 - 10 °C at 14.5 ka and -7 ° - 4
452 °C at 17.8 ka [Fig. 6; Table 6].

453

454 3.6. pH

455 For *N. incompta* at 12 °C, the treatment at which pH experiments were carried out, there was no
456 significant trend ($p = 0.123$) between Mg/Ca ratios and pH_T ($7.4 < \text{pH}_T < 8.1$; $31.7 \mu\text{mol kg}^{-1}$
457 $< [\text{CO}_3^{2-}] < 172.6 \mu\text{mol kg}^{-1}$) [Fig. 7; Table S1]. Moreover, a general linear mixed effects model,
458 taking into account experimental temperature as well as measured pH within treatments found no
459 significant effect of pH ($p = 0.188$).

460

461 **4. Discussion**

462 *4.1. Inter- and intra-shell Mg/Ca ratio variability in cultured foraminifera*

463 The average Mg/Ca ratios from individual foraminifera in each treatment agree well with results
464 from pooled chambers in previous experiments [von Langen *et al.*, 2005]. However, the range of
465 Mg/Ca ratios documented in individual chambers at a single temperature is greater than in
466 pooled chambers, a result similar to previous findings in *G. sacculifer* [Dueñas-Bohórquez *et al.*,
467 2011]. The observation of this high inter-individual variability in cultured shells demonstrates
468 that whereas either pooled chambers or multiple shell average Mg/Ca ratios may correlate with
469 temperature, other physiologic factors, not directly related to hydrography, exert partial control
470 over individual chamber Mg/Ca ratios. This finding indicates the need for caution in interpreting
471 environmental conditions using single-shell or single-chamber analyses in these two
472 neogloboquadrinid species.

473

474 Observed Mg/Ca ratio banding in *N. incompta* appeared similar to that reported in *N. dutertrei*
475 [Fehrenbacher & Martin, 2010], *N. pachyderma* [Jonkers *et al.*, 2016], and other species of
476 planktic foraminifera [e.g. Eggins *et al.*, 2004; Sadekov *et al.*, 2005; Spero *et al.*, 2015]. As it
477 occurred in culture-grown calcite, banding cannot be the product of migration within the water
478 column with vertical changes in temperature and/or pH [Spero *et al.*, 2015; Jonkers *et al.*, 2016].
479 Nor can banding be attributed to symbiont activity or alteration of the microenvironment, as *N.*
480 *incompta* and *N. pachyderma* lack photosymbionts. In *O. universa* and *N. dutertrei* Mg/Ca ratio
481 banding varies on a diurnal time scale, possibly mediated by mitochondrial processes [Spero *et*
482 *al.*, 2015; Fehrenbacher *et al.*, 2017]. This may also be the case for *N. incompta*.

483

484 4.2 Mg/Ca:temperature relationships in ontogenetic calcite

485 Despite high inter-individual variability in *N. incompta* specimens cultured at a given
486 temperature, the averages of all single-shell Mg/Ca ratios at one temperature from this study are
487 consistent with the temperatures predicted by the von Langen et al. [2005] relationship, obtained
488 using a solution-based methodology. This supports the observation that foraminifera analyzed by
489 LA-ICP-MS can give results comparable to those achieved from solution measurements
490 [Hathorne et al., 2003]. All cultured neogloboquadrinids were primarily composed of
491 ontogenetic calcite, and we suspect from descriptions of ontogeny that the previous culture-based
492 Mg/Ca:temperature relationships for these species may hold the same inherent bias towards
493 ontogenetic calcite [von Langen et al., 2001]. Thus both the Mg/Ca:temperature relationships
494 presented here (based explicitly on ontogenetic calcite) as well as the von Langen et al. [2005]
495 relationship may produce unrealistically cold temperatures when applied to whole shells with
496 crusts. More robust temperature reconstructions utilizing these *N. incompta* Mg/Ca:temperature
497 relationships may be achieved if crust calcite is excluded from analyses. In *N. pachyderma*,
498 cultured between 6 and 12 °C, Mg/Ca is higher and more sensitive to temperature than
499 previously published relationships based on solution analyses of core tops or sediment traps [Fig.
500 4]. We hypothesize that the absence of low-Mg/Ca ratio crusts accounts for the higher Mg/Ca
501 ratios and higher temperature sensitivity in cultured neogloboquadrinids as compared to core-
502 tops and sediment traps. Thus, the Mg/Ca:temperature relationship presented here should be
503 applied only to the ontogenetic portion of the shell, and may only be valid over the range of
504 culture temperatures.

505

506 4.3. Application of Mg/Ca:temperature relationships in ontogenetic calcite to fossil
507 *neogloboquadrinids*
508 Application of Mg/Ca:temperature relationships specific to ontogenetic calcite in fossil *N.*
509 *incompta* from the Santa Barbara Basin resulted in temperatures slightly closer to those from *G.*
510 *bulloides* $\delta^{18}\text{O}$ and modern comparisons, than those from whole shell Mg/Ca ratios utilizing the
511 von Langen et al. [2005] relationship [Table 5]. The degree of crusting in *N. incompta* may be
512 low enough in Santa Barbara Basin that application of Mg/Ca:temperature relationships based on
513 ontogenetic calcite rather than whole shells makes little difference. However, using a
514 Mg/Ca:temperature relationship specific to ontogenetic calcite in *N. incompta* should be
515 considered in environments with extensive or temporally variable encrustation, or for analyses in
516 which the differences between individual foraminifera (potentially with differing degrees of
517 encrustation) could be highly significant.
518
519 Comparison of *N. pachyderma* Mg/Ca temperatures to alkenone temperatures in the Bering Sea
520 requires an adjustment for depth and seasonality. Alkenone temperatures are assumed to reflect
521 annual mean SST based on their calibration to this parameter. However, in the Bering Sea, high
522 amplitude seasonality and a short coccolithophore growing season result in alkenone-derived
523 temperatures that are biased towards summer-fall SST [Caissie et al., 2010; Schlung et al.,
524 2013]. In the North Pacific, *N. pachyderma* records a similar late-summer seasonal signal
525 [Thunell and Honjo, 1987; Jonkers and Kućera, 2015], but calcifies deeper in the water column
526 than alkenone-producing coccolithophores [Bauch et al., 2002]. The difference between the
527 depth habitat of *N. pachyderma* and coccolithophorids is a likely cause of apparent temperature
528 differences in the two records [Nürnberg et al., 2000; Leduc et al., 2010; Laepple and Huybers,
529 2013]. In the Sea of Okhotsk, the maximum abundances of uncrustated *N. pachyderma* are found

530 at 50 m [Bauch *et al.*, 2002], while crusted forms are observed from 50-150 m depth on the
531 Japan Margin [Arikawa *et al.*, 1993]. Thus, we similarly interpret crusting as beginning at around
532 50 m in the Bering Sea, and ontogenetic calcite in *N. pachyderma* as forming at this or slightly
533 shallower depths. August-September average temperatures at the core location in the modern
534 Bering Sea range from 7-9 °C at the surface to 4-5 °C at 50 m, a difference of ~4°C [Locarnini *et*
535 *al.*, 2013]. Under the assumption that the shallow temperature profile of the Bering Sea and the
536 depth at which ontogenetic and crust calcite formed during the deglacial were comparable to
537 those in the modern ocean, then the calcification temperature of *N. pachyderma* ontogenetic
538 calcite would be ~ SST(U^k_{37}) - 4 °C.

539

540 Our ontogenetic calcite-specific Mg/Ca:temperature relationship yields temperatures
541 indistinguishable from those at the presumed calcification depth for both Bering Sea intervals (6
542 °C at 14.5 ka and 5 °C at 17.8 ka). By contrast, while several previously published
543 Mg/Ca:temperature relationships produce temperatures within 2 °C of assumed 50 m
544 temperature at 14.5 ka (6 °C) [von Langen *et al.* 2005, Nürnberg, 1995; Jonkers *et al.*, 2013], all
545 result in lower temperatures at 17.8 ka (5 °C) by 1 - 11 °C [Fig. 6] [von Langen *et al.*, 2005,
546 Nürnberg, 1995; Kozdon *et al.*, 2009; Jonkers *et al.*, 2013; Vázquez Riveiros *et al.*, 2016]. This
547 could be partly the result of a 10% increase in crust calcite in this interval, as described above. It
548 is also important to note that not all Mg/Ca:temperature relationships were developed based on a
549 North Pacific population of *N. pachyderma*, a distinction which may be important given the
550 genetic diversity within *N. pachyderma* [Darling *et al.*, 2008] and the potential for genetic
551 influences on Mg/Ca ratios [Sadekov *et al.*, 2016; Vázquez Riveiros *et al.*, 2016]. Only the
552 Mg/Ca:temperature relationship presented here based on ontogenetic calcite gives temperatures

553 within 1 °C of 50 m calcification temperatures and reproduces the (small) relative temperature
554 difference between time periods [Table 6; Fig. 6]. Thus, for *N. pachyderma*, application of a
555 Mg/Ca:temperature relationship developed specifically for ontogenetic calcite may represent an
556 important tool for some down-core temperature reconstructions.

557

558 Estimating the relative proportion of crust to ontogenetic calcite from Mg/Ca ratios is not
559 possible by whole shell solution analyses, although crusts are detectable using SEM imaging and
560 often light microscopy. Avoiding heavily encrusted neogloboquadrinids when selecting shells for
561 paleothermometry, and then applying a Mg/Ca:temperature relationship based on ontogenetic
562 calcite may offer a partial solution, especially if analyses are confined to final chambers, which
563 are often less encrusted [Steinhardt *et al.*, 2015]. Alternatively, distinguishing between crust and
564 ontogenetic calcite using LA-ICP-MS analyses and a Mg/Ca:temperature relationship specific to
565 calcite type is a potentially effective approach for improving Mg/Ca paleotemperature
566 reconstructions from neogloboquadrinid foraminifera.

567

568 *4.4. Crusting in the laboratory*

569 LA-ICP-MS analyses of *N. incompta* specimens cultured under controlled conditions show that
570 crust calcite has relatively low Mg/Ca ratios compared to ontogenetic calcite at constant
571 conditions [Fig. 2; Fig. 3]. This finding is consistent with recent observations from a sediment
572 trap showing that *N. pachyderma* crust calcite has a low Mg/Ca ratio, absent any environmental
573 changes in the water column in which they grew [Jonkers *et al.*, 2016]. Thus, the low Mg/Ca
574 ratio signature of crust calcite observed in fossil neogloboquadrinids cannot be purely a
575 temperature signal from deep-water calcification. Rather, there must be a difference in

576 Mg/Ca:temperature sensitivity between the two calcite types (assuming that the Mg/Ca ratio in
577 crust calcite is indeed temperature sensitive). This implies that crust thickness and its relative
578 contribution to the whole shell Mg/Ca ratio is an important source of variability in traditional
579 solution Mg/Ca paleothermometry using neogloboquadrinids. We note that crust growth in
580 culture was rare and that culture calibrations tend to be biased towards the youngest chambers,
581 which are both more likely to grow in culture and are found to be less crusted in fossil
582 foraminifera [Jonkers *et al.*, 2012; Steinhardt *et al.*, 2015]. Thus, neogloboquadrinid encrustation
583 is rare or absent for most cultured foraminifera and variable and difficult to constrain by solution
584 analyses in core-tops. This variability in the degree of encrustation present in foraminifera used
585 for calibration will inevitably result in bias towards either warmer or colder computed
586 temperatures when applied to shells with differing degrees of crusting.

587

588 Moreover, the rarity of crust growth in culture suggests a trigger for crusting that is not
589 replicated in our laboratory experiments. Low temperature has been proposed as one possible
590 trigger for some non-spinose tropical species [Hemleben *et al.*, 1985], although argued against
591 for *N. pachyderma* by Jonkers *et al.* [2016]. We used a range of temperatures (6-12 °C),
592 including those typical of the cold extreme at our collection site (6 °C) and observed no
593 temperature dependence in the rare incidences of crust occurrence and therefore exclude
594 temperature as a trigger in these species. Crusting has also been associated with reproduction in
595 neogloboquadrinids [Arikawa, 1983], an association supported by the observation of crust
596 addition shortly prior to gametogenesis in cultured specimens. Although all crusted foraminifera
597 in this study did undergo gametogenesis, not all foraminifera that underwent gametogenesis
598 formed a crust [Table 3], indicating that crusting is not obligatory for reproduction.

600 4.5. *Ontogeny and chamber-to-chamber Mg/Ca variability in neogloboquadrinid foraminifera*601 Previous studies of *G. sacculifer* [Dueñas-Bohórquez *et al.*, 2011] and *N. dutertrei* [Jonkers *et*602 *al.*, 2012] have identified Mg/Ca ratio shifts in successive chambers, with Mg/Ca ratios603 decreasing in *G. sacculifer* and increasing in *N. dutertrei* through the chamber whorl. In the

604 current study, however, no significant Mg/Ca ratio difference was found between successive

605 chambers grown at a single temperature [Fig. 1]. Thus, ontogenetic processes cannot explain the

606 observation in fossil neogloboquadrinids of Mg/Ca ratio trends in successive chambers where

607 reported changes in ocean-grown individual chamber Mg/Ca ratios are not explained by

608 differential crusting and thus differing crust/ontogenetic calcite ratios across chambers.

610 4.6. *Effect of pH or [CO₃²⁻] on Mg/Ca*611 Our results suggest that seawater pH or [CO₃²⁻] have a negligible effect on Mg/Ca ratios of

612 ontogenetic calcite in neogloboquadrinid foraminifers, although we are unable to distinguish

613 between the two parameters, as they covary in our treatments. This contrasts with the response of

614 spinose planktic foraminifers *O. universa* and *G. bulloides* [Lea *et al.*, 1999; Russell *et al.*, 2004].

615 This means that pH is not likely to be the cause of temperature bias associated with high latitudes

616 and upwelling environments. It is possible that physiologic differences in calcification between

617 spinose and non-spinose foraminifera control the presence or magnitude of pH effects on Mg

618 incorporation, a hypothesis bolstered by the range of results for inorganic carbon system

619 dependent Mg/Ca-incorporation reported across benthic foraminifera species [Rosenthal *et al.*,620 1997; Elderfield *et al.*, 2006; Rathmann and Kuhnert, 2008; Yu and Elderfield, 2008; Dissard *et*621 *al.*, 2010; Raitzsch *et al.*, 2010]. It is also possible that a Mg/Ca:pH relationship may exist across

622 all planktic foraminifera, but that this influence is only significant at higher temperatures than
623 those at our collection site (8 -14 °C) and experiments (12 °C) which were markedly lower than
624 for previous experiments with spinose species (22 °C) [Lea *et al.*, 1999; Russell *et al.*, 2004]. In
625 either case, our results indicate that pH and $[CO_3^{2-}]$ are not significant controls over
626 neogloboquadrinid Mg/Ca ratios over our experimental temperature range.

627

628 **5. Conclusions**

629 We determined the relationship between temperature and Mg/Ca ratios in cultured planktic
630 foraminifers *N. pachyderma* and *N. incompta*, and found an influence of temperature in the
631 ontogenetic calcite of both species, but no relationship between Mg/Ca ratios and pH and/or
632 $[CO_3^{2-}]$. Mg/Ca-derived temperatures based on *N. incompta* agree well with the previous culture-
633 based Mg/Ca:temperature relationship [von Langen *et al.*, 2005], which has been used in concert
634 with new results to produce a species-specific relationship for *N. incompta*. The Mg/Ca ratios in
635 ontogenetic calcite of cultured *N. pachyderma* is more sensitive to temperature than implied by
636 published relationships based on sediment traps or core tops, due to the presence of crust calcite.
637 We developed a new approach, applying our culture-based Mg/Ca:temperature relationships
638 (based on ontogenetic calcite only) to the ontogenetic portion of fossil shells, identified and
639 analyzed by LA-ICP-MS. Initial tests of this approach in fossil *N. incompta* are in agreement
640 with $\delta^{18}O$ -temperatures derived from *G. bulloides* and with instrumental temperatures. A marked
641 improvement is made in reconstructions using *N. pachyderma* when crust calcite is excluded and
642 temperature is derived from Mg/Ca ratios in ontogenetic calcite alone, using our culture-based
643 relationships. This approach provides a potentially useful strategy for improved temperature

644 reconstructions, with particular relevance for high-latitude regions where temperature changes
645 reconstructed using *N. pachyderma* have previously appeared muted.

646

647 **Acknowledgements**

648 We would like to thank E. Chu, M. Claret, C. Pope, K. Duarte, D. Dann and M.G. Susner for
649 laboratory and field assistance and D. Pak and S. Myhre for providing fossil samples, as well as
650 three reviewers. This work was supported by NSF OCE #1261519 (AR, JF and TH), NSF OCE #
651 144451 (TH). We thank the Johanna M. Resig Fellowship from the Cushman Foundation for
652 Foraminiferal Research and UC Davis Durrell Fund for supporting research by CVD. All data
653 can be found in the supporting information.

654

655 **References**

656 Barker, S., I. Cacho, H. Benway, and K. Tachikawa (2005), Planktonic foraminiferal Mg/Ca as a
657 proxy for past oceanic temperatures: a methodological overview and data compilation for
658 the Last Glacial Maximum, *Quat. Sci. Rev.*, **24**(7), 821-834.

659 Bauch, D., J. Carstens, and G. Wefer (1997), Oxygen isotope composition of living
660 *Neogloboquadrina pachyderma* (sin.) in the Arctic Ocean, *Earth Planet. Sci. Lett.*,
661 **146**(1), 47-58.

662 Bauch, D., H. Erlenkeuser, G. Winckler, G. Pavlova, and J. Thiede (2002), Carbon isotopes and
663 habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under
664 natural conditions, *Mar. Micropal.*, **45**(2), 83-99.

665 Bé, A. and D. Tolderlund (1971), Distribution and ecology of living planktonic foraminifera in
666 surface waters of the Atlantic and Indian Oceans, The micropaleontology of oceans, 105-
667 149.

668 Bé, A.W.H., C. Hemleben, O.R. Anderson, and M. Spindler (1979), Chamber Formation in
669 Planktonic Foraminifera, *Micropaleontol.*, **25**(3), 294-307.

670 Bemis, B.E., H.J. Spero, J. Bijma, D.W. Lea (1998), Reevaluation of the oxygen isotopic
671 composition of planktonic foraminifera: Experimental results and revised
672 paleotemperature equations, *Paleoceanography*, **13**(2), 150-160.

673 Bemis, B.E., H.J. Spero, and R.C. Thunell (2002), Using species-specific paleotemperature
674 equations with foraminifera: a case study in the Southern California Bight, *Mar.*
675 *Micropaleontol.*, **46**, 405-430.

676 Bolton, A., and J.P. Marr (2013), Trace element variability in crust-bearing and non crust-
677 bearing *N. incompta*, P-D intergrade and *G. inflata* from the Southwest Pacific Ocean:
678 Potential paleoceanographic implications, *Mar Micropaleontol.*, **100**, 21-33.

679 Branson, O., E. Read, S.A.T. Redfern, C. Rau, and H. Elderfield (2015), Revisiting diagenesis on
680 the Ontong Java Plateau: Evidence for authigenic crust precipitation in *Globorotalia*
681 *tumida*, *Paleoceanography*, 2014PA002759.

682 Caissie, B.E., J. Brigham-Grette, K.T. Lawrence, T.D. Herbert, and M.S. Cook (2010), Last
683 Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as
684 inferred from diatom, alkenone, and stable isotope records, *Paleoceanography*, **25**(1),
685 PA1206.

686 Cléroux, C., E. Cortijo, P. Anand, L. Labeyrie, F. Bassinot, N. Caillon, and J.C. Duplessy
687 (2008), Mg/Ca and Sr/Ca ratios in planktonic foraminifera: Proxies for upper water
688 column temperature reconstruction, *Paleoceanography*, **23**(3), PA3214.

689 Darling, K.F., Kucera, M., Pudsey, C.J. and C.M. Wade (2004), Molecular evidence links cryptic
690 diversification in polar planktonic protists to Quaternary climate dynamics, *Proc. Natl.*
691 *Acad. Sci.*, **101**(20), 7657-7662.

692 Darling, K.F., Kucera, M., Kroon, D. and C.M. Wade (2006), A resolution for the coiling
693 direction paradox in *Neogloboquadrina pachyderma*, *Paleoceanography*, **21**(2), PA2011.

694 Darling, K.F. and C.M. Wade (2008), The genetic diversity of planktic foraminifera and the
695 global distribution of ribosomal RNA genotypes, *Mar. Micropaleontol.*, **67**(3), 216-238.

696 Davis, C.V., A.D. Russell, B.P. Gaylord, J. Jahncke, and T.M. Hill (2016), Seasonality in Planktic
697 Foraminifera of the Central California Coastal Upwelling Region, *Biogeosciences*, **13**,
698 5139-5150, doi:10.5194/bg-13-5139-2016.

699 De Nooijer, L., H. Spero, J. Erez, J. Bijma, and G. Reichart (2014), Biomineralization in
700 perforate foraminifera, *Earth Sci. Rev.*, **135**, 48-58.

701 Dekens, P.S., A.C. Ravelo, M.D. McCarthy, and C.A. Edwards (2008), A 5 million year
702 comparison of Mg/Ca and alkenone paleothermometers, *Geochem. Geophys. Geosyst.*
703 **9**(10), Q10001.

704 Dieckmann, G.S., M. Spindler, M.A. Lange, S.F. Ackley, and H. Eicken (1991), Antarctic sea
705 ice; a habitat for the foraminifer *Neogloboquadrina pachyderma*, *J. Foramin. Res.*, **21**(2),
706 182-189.

707 Dissard, D., G. Nehrke, G.J. Reichart, and J. Bijma (2010), Impact of seawater $p\text{CO}_2$ on
708 calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from
709 culturing experiments with *Ammonia tepida*, *Biogeosciences*, **7**(1), 81-93.

710 Dueñas-Bohórquez, A., R.E. da Rocha, A. Kuroyanagi, L.J. de Nooijer, J. Bijma, and G.-J.
711 Reichart (2011), Interindividual variability and ontogenetic effects on Mg and Sr
712 incorporation in the planktonic foraminifer *Globigerinoides sacculifer*, *Geochim.*
713 *Cosmochim. Acta*, **75**(2), 520-532.

714 Eggins, S.M., A. Sadekov, and P. De Deckker (2004), Modulation and daily banding of Mg/Ca
715 in *Orbulina universa* tests by symbiont photosynthesis and respiration: a complication for
716 seawater thermometry?, *Earth Planet. Sci. Lett.*, **225**(3), 411-419.

717 Elderfield, H. and G. Ganssen (2000), Past temperature and $\delta^{18}\text{O}$ of surface ocean waters
718 inferred from foraminiferal Mg/Ca ratios, *Nature*, **405**(6785), 442-445.

719 Elderfield, H., J. Yu, P. Anand, T. Kiefer, and B. Nyland (2006), Calibrations for benthic
720 foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis, *Earth Planet.*
721 *Sci. Lett.*, **250**(3), 633-649.

722 Evans, D., Brierley, C., Raymo, M. E., Erez, J. and W. Müller (2016), Planktic foraminifera shell
723 chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca,
724 temperature and sea level change *Earth Planet. Sci. Lett.*, **438**, 139-148.

725 Eynaud, F. (2011), Planktonic foraminifera in the Arctic: potentials and issues regarding modern
726 and quaternary populations, in Proceedings IOP Conference Series: Earth and
727 Environmental Science, Volume 14, IOP Publishing, 012005.

728 Eynaud, F., T. Cronin, S. Smith, S. Zaragosi, J. Mavel, Y. Mary, V. Mas, and C. Pujol (2009),
729 Morphological variability of the planktonic foraminifer *Neogloboquadrina pachyderma*
730 from ACEX cores: implications for Late Pleistocene circulation in the Arctic Ocean,
731 *Micropaleontol.*, **55**(2), 101-116.

732 Fehrenbacher, J.S., P. Martin, and G. Eshel (2006), Glacial deep water carbonate chemistry
733 inferred from foraminiferal Mg/Ca: A case study from the western tropical Atlantic,
734 *Geochem. Geophys. Geosyst.* **7**, Q09P16.

735 Fehrenbacher, J.S. and P. Martin (2010), Mg/Ca variability of the planktonic foraminifera *G.*
736 *ruber* *s.s.* and *N. dutertrei* from shallow and deep cores determined by electron
737 microprobe image mapping, *Earth Environ. Sci.* **9**, 012018.

738 Fehrenbacher, J.S., Spero, H.J., Russell, A.D., Vetter, L. and S Eggins (2015), Optimizing LA-
739 ICP-MS analytical procedures for elemental depth profiling of foraminifera shells, *Chem.*
740 *Geol.*, **407**, 2-9.

741 Fehrenbacher, J.S., Russell, A.D., Davis, C.V., Gagnon, A.C., Spero, H.J., Cliff, J.B., Zhu, Z.
742 and P. Martin (2017), Link between light-triggered Mg-banding and chamber formation
743 in the planktic foraminifera *Neogloboquadrina dutertrei*, *Nat. Comm.*, **8**, 15441.

744 Field, D.B. (2004), Variability in vertical distributions of planktonic foraminifera in the
745 California Current: Relationships to vertical ocean structure, *Paleoceanography*, **19**(2),
746 PA2014.

747 Hathorne, E.C., O. Alard, R.H. James, and N.W. Rogers (2003), Determination of intratest
748 variability of trace elements in foraminifera by laser ablation inductively coupled plasma-
749 mass spectrometry, *Geochem. Geophys. Geosyst.*, **4**(12), doi:10.1029/2003GC000539.

750 Hendry, K.R., R.E.M. Rickaby, M.P. Meredith and H. Elderfield (2009), Controls on stable
751 isotope and trace metal uptake in *Neogloboquadrina pachyderma* (sinistral) from an
752 Antarctic sea-ice environment, *Earth Planet. Sci. Lett.*, **278**(1), 67-77.

753 Hemleben, C., Spindler, M., and O. Erson (1989), Modern planktonic foraminifera. Springer,
754 Berlin.

755 Hönisch, B., Allen, K.A., Lea, D.W., Spero, H.J., Eggins, S.M., Arbuszewski, J., deMenocal, P.,
756 Rosenthal, Y. and A.D. Russell (2013) The influence of salinity on Mg/Ca ratios of
757 cultured and core-top planktic foraminifers, *Geochim. Cosmochim. Acta*, **121**, 196-
758 213, doi:10.1016/j.gca.2013.07.028.

759 Jonkers, L., P. Jiménez-Amat, P.G. Mortyn, and G.-J. Brummer (2013), Seasonal Mg/Ca
760 variability of *N. pachyderma* (s) and *G. bulloides*: Implications for seawater temperature
761 reconstruction, *Earth Planet. Sci. Lett.*, **376**, 137-144.

762 Jonkers, L., C.E. Reynolds, J. Richey, and I.R. Hall (2014), Lunar periodicity in the
763 shell flux of some planktonic foraminifera in the Gulf of Mexico, *Biogeosciences*, **11**(12),
764 17187-17205.

765 Jonkers, L., B. Buse, G.-J. Brummer, and I.R. Hall (2016), Chamber formation leads to
766 Mg/Ca banding in the planktonic foraminifera *Neogloboquadrina pachyderma*, *Earth*
767 *Planet. Sci. Lett.*, **451**, 177-184.

768 Jonkers, L. and M. Kučera (2015), Global analysis of seasonality in the shell flux of extant
769 planktonic Foraminifera, *Biogeosciences*, **12**(7), p. 2207-2226.

770 Kincaid, E., R.C. Thunell, J. Le, C.B. Lange, A.L. Weinheimer, and F.M. Reid (2000),
 771 Planktonic foraminiferal fluxes in the Santa Barbara Basin: response to seasonal and
 772 interannual hydrographic changes, *Deep Sea Res 2*, **47**(5), 1157-1176.

773 Kohfeld, K.E., R.G. Fairbanks, S.L. Smith, and I.D. Walsh (1996), *Neogloboquadrina*
 774 *pachyderma* (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence
 775 from northeast water polynya plankton tows, sediment traps, and surface sediments,
 776 *Paleoceanography*, **11**(6), 679-699.

777 Kozdon, R., A. Eisenhauer, M. Weinelt, M.Y. Meland, and D. Nürnberg (2009a), Reassessing
 778 Mg/Ca temperature calibrations of *Neogloboquadrina pachyderma* (sinistral) using
 779 paired $\delta^{44/40}\text{Ca}$ and Mg/Ca measurements, *Geochem. Geophys. Geosyst.*, **10**(3), Q03005.

780 Kozdon, R., T. Ushikubo, N. Kita, M. Spicuzza, and J. Valley (2009b), Intratest oxygen isotope
 781 variability in the planktonic foraminifer *N. pachyderma*: Real vs. apparent vital effects by
 782 ion microprobe, *Chem. Geol.*, **258**(3), 327-337.

783 Laepple, T. and P. Huybers (2013), Reconciling discrepancies between U^{37} and Mg/Ca
 784 reconstructions of Holocene marine temperature variability, *Earth Planet. Sci. Lett.*, **375**,
 785 418-429.

786 Lea, D.W., P.A. Martin, D.K. Pak, and H.J. Spero (2002), Reconstructing a 350 ky history of sea
 787 level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core,
 788 *Quat. Sci. Rev.*, **21**(1), 283-293.

789 Lea, D.W., T.A. Mashiotta, and H.J. Spero (1999), Controls on magnesium and strontium uptake
 790 in planktonic foraminifera determined by live culturing, *Geochim. Cosmochim. Acta*,
 791 **63**(16), 2369-2379.

792 Leduc, G., R. Schneider, J.-H. Kim, and G. Lohmann (2010), Holocene and Eemian sea surface
 793 temperature trends as revealed by alkenone and Mg/Ca paleothermometry, *Quat. Sci.*
 794 *Rev.*, **29**(7), 989-1004.

795 Locarnini, R., A. Mishonov, J. Antonov, T. Boyer, H. Garcia, O. Baranova, M. Zweng, C. Paver,
 796 J. Reagan, and D. Johnson (2013), World ocean atlas 2013, volume 1: temperature:
 797 NOAA Atlas NESDIS, **73**, 40.

798 Martinez-Botí, M.A., G. Marino, G.L. Foster, P. Ziveri, M.J. Henehan, J.W.B. Rae, P.G. Mortyn,
 799 and D. Vance (2015), Boron isotope evidence for oceanic carbon dioxide leakage during
 800 the last deglaciation, *Nature*, **518**, 219-222.

801 Mashiotta, T.A., D.W. Lea, and H.J. Spero (1999), Glacial-interglacial changes in Subantarctic
 802 sea surface temperature and $\delta^{18}\text{O}$ -water using foraminiferal Mg, *Earth Planet. Sci. Lett.*,
 803 **170**(4), 417-432.

804 Moffitt, S.E., T.M. Hill, K. Ohkushi, J.P. Kennett, and R.J. Behl (2014), Vertical oxygen
 805 minimum zone oscillations since 20 ka in Santa Barbara Basin: A benthic foraminiferal
 806 community perspective, *Paleoceanography*, **29**(1), 44-57.

807 Millero, F.J. (2010), Carbonate constants for estuarine waters, *Mar. Freshwat. Res.*, **61**, 139-
 808 142.

809 Naidu, P.D. and B.A. Malmgren (1996), Relationship between late Quaternary upwelling history
 810 and coiling properties of *Neogloboquadrina pachyderma* and *Globigerina bulloides* in
 811 the Arabian Sea, *J. Foramin. Res.*, **26**(1), 64-70.

812 Nürnberg, D. (1995), Magnesium in tests of *Neogloboquadrina pachyderma* sinistral from high
 813 northern and southern latitudes, *J. Foramin. Res.*, **25**(4), 350-368.

814 Nürnberg, D., J. Bijma, and C. Hemleben (1996), Assessing the reliability of magnesium in
815 foraminiferal calcite as a proxy for water mass temperatures, *Geochim. Cosmochim. Acta*,
816 **60**(5), 803-814.

817 Nürnberg, D., A. Müller, and R. Schneider (2000), Paleo-sea surface temperature calculations in
818 the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to
819 sea surface temperature estimates from U_{37}^{K} oxygen isotopes, and foraminiferal transfer
820 function, *Paleoceanography*, **15**(1), 124-134.

821 R. Core Team, 2013, A language and environment for statistical computing: Vienna, Austria.

822 Raitzsch, M., A. Dueñas-Bohórquez, G.-J. Reichart, L.J. de Nooijer, and T. Bickert (2010),
823 Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium
824 concentration and associated calcite saturation state, *Biogeosciences*, **7**(3), 869-881.

825 Rathmann, S. and H. Kuhnert (2008), Carbonate ion effect on Mg/Ca, Sr/Ca and stable isotopes
826 on the benthic foraminifera *Oridorsalis umbonatus* off Namibia, *Mar. Micropal.*, **66**(2),
827 120-133.

828 Robbins, L.L., M.E. Hansen, J.A. Kleypas, and S.C. Meylan (2010), CO2calc—A user-friendly
829 seawater carbon calculator for Windows, Max OS X, and iOS (iPhone).

830 Rosenthal, Y., E.A. Boyle, and N. Slowey (1997), Temperature control on the incorporation of
831 magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from
832 Little Bahama Bank: Prospects for thermocline paleoceanography, *Geochim. Cosmochim. Acta*,
833 **61**(17), 3633-3643.

834 Russell, A.D., B. Hönisch, H.J. Spero, and D.W. Lea (2004), Effects of seawater carbonate ion
835 concentration and temperature on shell U, Mg, and Sr in cultured planktonic
836 foraminifera, *Geochim. Cosmochim. Acta*, **68**(21), 4347-4361.

837 Sadekov, A.Y., Darling, K.F., Ishimura, T., Wade, C.M., Kimoto, K., Singh, A.D., Anand, P.,
838 Kroon, D., Jung, S. and Ganeshram, R. (2016), Geochemical imprints of genotypic
839 variants of *Globigerina bulloides* in the Arabian Sea. *Paleoceanography*, **31**(10), 1440-
840 1452.

841 Sadekov, A., S.M. Eggins, P. De Deckker, U. Ninnemann, W. Kuhnt, and F. Bassinot (2009),
842 Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis
843 of planktonic foraminifera *Globigerinoides ruber*, *Globigerinoides sacculifer*, and
844 *Pulleniatina obliquiloculata*, *Paleoceanography*, **24**(3), doi:10.1029/2008PA001664.

845 Sadekov, A.Y., Eggins, S.M., De Deckker, P., 2005, Characterization of Mg/Ca distributions in
846 planktonic foraminifera species by electron microprobe mapping, *Geochemistry,
847 Geophysics, Geosystems*, **6**(12) Q12P06.

848 Schlung, S.A., Christina Ravelo, A., Aiello, I.W., Andreasen, D.H., Cook, M.S., Drake, M.,
849 Dyez, K.A., Guilderson, T.P., LaRiviere, J.P., Stroynowski, Z., 2013, Millennial-scale
850 climate change and intermediate water circulation in the Bering Sea from 90 ka: A high-
851 resolution record from IODP Site U1340, *Paleoceanography*, **28**(1), 54-67.

852 Schmidt, M.W., H.J. Spero and D.W. Lea (2004), Links between salinity variation in the
853 Caribbean and North Atlantic thermohaline circulation, *Nature*, **428**(6979), 160-163.

854 Spero, H.J., S.M. Eggins, A.D. Russell, L. Vetter, M.R. Kilburn, and B. Hönisch (2015), Timing
855 and mechanism for intratest Mg/Ca variability in a living planktic foraminifer, *Earth
856 Planet. Sci. Lett.*, **409**, 32-42.

857 Spindler, M. and G.S. Dieckmann (1986), Distribution and abundance of the planktic foraminifer
858 *Neogloboquadrina pachyderma* in sea ice of the Weddell Sea (Antarctica), *Polar
859 Biology*, **5**(3), 185-191.

860 Steinhardt, J., L.L.J. de Nooijer, G.-J. Brummer, and G.-J. Reichart (2015), Profiling planktonic
861 foraminiferal crust formation, *Geochem., Geophys., Geosyst.*, **16**(7), 2409-2430.

862 Stott, L., K. Cannariato, R.C. Thunell, G.H. Haug, A., Koutavas, and S. Lund (2004), Decline of
863 surface temperature and salinity in the western tropical Pacific Ocean in the Holocene
864 epoch, *Nature*, **431**(7004), 56-59.

865 Thunell, R.C. and S. Honjo (1987), Seasonal and interannual changes in planktonic foraminiferal
866 production in the North Pacific, *Nature*, **328**(6128), 335-337.

867 Tripati, A.K., M.L. Delaney, J.C. Zachos, L.D. Anderson, D.C. Kelly, and H. Elderfield (2003),
868 Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca
869 ratios of planktonic foraminifera, *Paleoceanography*, **18**(4), doi:10.1029/2003PA000937.

870 Vázquez Riveiros, N., A. Govin, C. Waelbroeck, A. Mackensen, E. Michel, S. Moreira, T.
871 Bouinot, N. Caillon, A. Orgun, and M. Brandon (2016), Mg/Ca thermometry in planktic
872 foraminifera: Improving paleotemperature estimations for *G. bulloides* and *N.
873 pachyderma* left, *Geochem., Geophys., Geosyst.*, doi: 10.1002/2015GC006234.

874 Venancio, I.M., D. Franco, A.L. Belem, S. Mulitza, M. Siccha, A.L.S. Albuquerque, M. Schultz,
875 and M. Kucera (2016), Planktonic foraminifera shell fluxes from a weekly resolved
876 sediment trap record in the southwestern Atlantic: Evidence for synchronized
877 reproduction, *Mar. Micropaleontol.*, **125**, 25-35.

878 Von Langen, P.J. (2001), Non-spinose planktonic foraminifera (*Neogloboquadrina
879 pachyderma*) cultured for geochemical and paleoceanographic applications [Ph.D.
880 thesis]: Santa Barbara, University of California at Santa Barbara.

881 Von Langen, P.J., D.K. Pak, H.J. Spero, and D.W. Lea (2005), Effects of temperature on Mg/Ca
882 in neogloboquadrinid shells determined by live culturing, *Geochem. Geophys. Geosyst.*,
883 **6**(10), Q10P03.

884 Yu, J. and H. Elderfield (2008), Mg/Ca in the benthic foraminifera *Cibicidoides wuellerstorfi*
885 and *Cibicidoides mundulus*: Temperature versus carbonate ion saturation, *Earth Planet.
886 Sci. Lett.*, **276**(1), 129-139.

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902 **Figure Captions**903 **Table 1.** Composition and source of isotopic and elemental spikes.904 **Table 2.** Average Mg/Ca ratios of whole shells, crusted calcite and ontogenetic calcite in *N.*
905 *incompta* from Santa Barbara Basin (MV0811-15JC and SPR0901) and *N. pachyderma* from the
906 Bering Sea (U1340), along with the number of individual foraminifera analyzed.
907908 **Table 3.** Seawater parameters and Mg/Ca in cultured foraminifera, including Mg/Ca ratios for
909 each chamber and a chamber average for each individual shell. Blank cells indicate data, which
910 was not collected and has not been included in any analyses. Life history information is also
911 noted including whether crusting or gametogenesis occurred in culture and the longest dimension
912 of the shell as measured at the beginning and end of culture experiments.
913914 **Table 4.** Average and standard deviation of Mg/Ca ratios in *N. incompta* and *N. pachyderma* at
915 each temperature treatment, number of individual foraminifera analysed, and the resulting
916 Mg/Ca:temperature relationships. The relationship for *N. incompta* has been combined with
917 species-specific data from von Langen et al. [2005].
918919 **Table 5.** Comparison between average late-summer temperatures at 50 m, $\delta^{18}\text{O}$ -derived
920 temperatures and Mg/Ca-derived temperatures from *N. incompta* obtained from Santa Barbara
921 Basin cores SPR0901-10BC and MV0811-15JC. Mg/Ca-temperature calibrations use the von
922 Langen et al. [2015] relationship and Eq. 1. Oxygen isotope data are from Moffitt et al. [2014].
923 Error on temperatures calculated using Eq. 1 are ± 0.6 °C, based upon standard error around mean
924 Mg/Ca at each treatment, averaging ± 0.4 Mg/Ca mmol/mol.
925926 **Table 6.** Comparison between U^{37} derived temperatures from the Bering Sea (mean summer
927 SST) [Schlung et al., 2013], U^{37} temperatures adjusted for 50 m depth (4 °C offset; see text)
928 [Locarnini et al., 2013], and Mg/Ca-derived temperatures obtained using the relationship
929 developed in this study for ontogenetic calcite from *N. pachyderma* ontogenetic calcite Eq. 2 and
930 temperatures obtained by applying published core-top relationships to whole shell average
931 Mg/Ca. Ref. 1, Nürnberg et al. [1999]; Ref. 2, Vazquez-Riveiros et al. [2016]. Error on
932 temperatures calculated using Eq. 2 are ± 1.6 °C, based upon standard error around mean Mg/Ca
933 at each treatment, averaging ± 0.2 Mg/Ca mmol/mol.
934935 **Figure 1.** Mg/Ca ratio averages from sequential chambers of *N. incompta* at 12 °C (top) and
936 9 °C (bottom). Boxes encompass the 1st and 3rd quartiles, with horizontal black bars
937 denoting the mean. No significant differences were found between successive chambers
938 at either temperature. All calcite (both crust and ontogenetic) is included, although crusting
939 was found in only 13% of *N. incompta*.
940941 **Figure 2.** Representative LA-ICP-MS profiles through two *N. incompta* specimens a) #278 and
942 b) #198 that grew both a new chamber and a crust in the laboratory, along with SEM images of

943 the external shell. LA-ICP-MS profiles begin with the outer, crusted surface of the shell (0s) and
944 continue through the inner ontogenetic calcite layer. The crust has lower, more homogeneous
945 Mg/Ca ratios than the inner ontogenetic calcite.

946
947 **Figure 3.** Backscatter images and Electron Microprobe maps of cultured *N. incompta* Mg/Ca
948 ratios. Both F chambers were grown entirely in culture at constant temperature (12 ± 0.15 °C).
949 Foram #278 (a) has ontogenetic calcite (O) with a relatively high Mg/Ca ratio and a crust (C)
950 with a homogenous, low Mg/Ca ratio. Some heterogeneity may be present in the ontogenetic
951 calcite, but banding is not resolvable. Foraminifer #298 (b) shows a similar pattern in the culture-
952 grown F chamber, although the Mg/Ca ratio difference between crust and ontogenetic calcite is
953 less than in #176. Both F chamber and F-1 chamber (partially ocean grown) show Mg/Ca ratio
954 banding (B) towards the interior portion of the shell.

955
956 **Figure 4.** Neogloboquadrinid shell Mg/Ca ratios versus seawater temperature from this study,
957 compared to published relationships. Individual specimen Mg/Ca ratios from this study are
958 shown in small closed circles. In (a), Mg/Ca ratios in *N. incompta* (9 and 12 °C) from this study
959 and from von Langen et al. [2005] (small open circles) are compared. In the latter, each point
960 represents an analysis of 10-30 pooled chambers grown in culture. To facilitate comparison, the
961 average (± 1 standard error) of individual specimen Mg/Ca ratios at each temperature from this
962 study are also shown (large closed circles), along with the 95% confidence interval based on the
963 standard error of predicted values of each equation; b) Mg/Ca ratios in *N. pachyderma* at 6, 9,
964 and 12 °C (this study) compared with published relationships for this species and one for *N.*
965 *incompta* and *N. dutertrei* [von Langen, et al., 2005]. Key to references in legend: Ref. 1, von
966 Langen et al. [2005]; Ref. 2, Nürnberg et al. [1999]; Ref. 3, Jonkers et al. [2013]; Ref. 4,
967 Vazquez-Riveiros et al. [2016]; Ref. 5, Kozdon et al. [2009].

968
969 **Figure 5.** Mg/Ca of crusted (black) and ontogenetic (white) calcite, compared with whole shell
970 average Mg/Ca (gray) for a) *N. incompta* from Santa Barbara Basin cores SPRO901-10BC
971 (modern) and MV0811-15JC (7.4 and 14.7 ka) and b) *N. pachyderma* from Bering Sea core
972 U1340 (14.5 and 17.8 ka). Boxes encompass the 1st and 3rd quartiles, and horizontal bars
973 represent average Mg/Ca. N refers to the number of individual foraminifera analyzed.

974
975 **Figure 6.** Temperatures calculated from the Mg/Ca:temperature relationship presented in this
976 study (ontogenetic calcite only) and from previously published relationships (whole shells),
977 applied to *N. pachyderma* from the Bering Sea. The von Langen et al. [2005] relationship is
978 shown applied to both whole shell and ontogenetic calcite. The pink lines designate the alkenone-
979 derived temperatures, and an estimated temperature at 50 m depth.

980
981 **Figure 7.** Mg/Ca ratios (mmol/mol) from individual specimens of *N. incompta* relative to a) pH
982 and b) $[\text{CO}_3^{2-}]$ for laboratory-grown *N. incompta* calcite at 12 °C. No relationship was detected
983 between pH or $[\text{CO}_3^{2-}]$ and Mg/Ca at either temperature treatment ($p = 0.078$ and $p = 0.057$
984 respectively).

985
986