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Abstract

Several 3D imaging methods based on active illumina-
tion, such as silhouette-based 3D reconstruction and struc-
tured light 3D scanning with binary patterns, require light
sources capable of generating shadows with sharp bound-
aries when they are used to illuminate opaque occluders.
Supported by empirical evidence suggesting that a low cost
Uncollimated Laser Diode (ULD) produces shadows with
sharp boundaries not requiring focusing in a wide range
of depths, this paper proposes the use of ULDs as light
sources in the target applications. Since due to astigmatism
the Point Light Source (PLS) is not an accurate mathemati-
cal model of light propagation for the ULD, the Two Lines
Light Source (TLLS) model is introduced to explain the ob-
served behavior of the ULD. This novel geometric model of
light propagation is defined by two 3D line segments, rather
than a single 3D point, and guarantees that for each illu-
minated 3D point there exists a unique ray, which simul-
taneously passes through the point and intersects the two
line segments. Furthermore, the equation of this ray can
be computed in closed form at very low computational cost,
and the TLLS model reduces to the PLS model when the
two line segments intersect. Finally, the paper introduces a
calibration method to estimate the model parameters, and
describes the experiments performed to validate the model.

1. Introduction

An optical comparator is a device that applies the princi-
ples of optics to the inspection of manufactured parts. In an
optical comparator, the magnified silhouette of a part is pro-
jected upon a screen, and the dimensions and geometry of
the part are measured against prescribed limits. The optical
comparator was invented by James Hartness in 1922 [15],
in particular to address the problem of inspecting screw
threads. Optical comparators have been used in machine
shops since then, and have not changed very much in de-
sign over the years. To obtain accurate measurements with
this instrument the object or feature being observed must be

Figure 1. Preliminary experiments show that when an opaque occluder is
illuminated by an uncollimated laser diode, magnified shadows with sharp
edges are produced on a screen placed at a wide range of distances behind
the occluder.

compared to a standard of known size. The first application
of this principle was called a shadowgraph. This instrument
used a lamp to project a two dimensional image of the ob-
ject being observed on a flat surface. The shadow could
then be measured with a known standard, such as a ruler,
to determine its size. This type of comparison allowed an
inspector to determine if a part was in or out of tolerance.
Modern optical comparators comprise imaging sensors so
that the comparisons are made using image processing soft-
ware. Accurate measurements require shadows with sharp
boundaries, as well as mathematical models of light prop-
agation and shadow formation to relate the shadow bound-
aries to the 3D dimensions of the inspected part. Figure 2
shows a typical optical comparator, and a schematic draw-
ing of a modern optical comparator design [13]. The math-
ematical models underlying 3D imaging algorithms based
on active illumination, such as Shape-from-Silhouette (SfS)
3D reconstruction [2, 1, 8, 17, 9], and structured light 3D
scanning based on projecting binary patterns [14], are also
based on the assumption that the light sources are capable



Figure 2. An industrial optical comparator, and a typical design of a mod-
ern optical comparator [13].

of generating shadows with sharp boundaries when they are
used to illuminate opaque occluders.

2. Light Sources

In SfS 3D reconstruction, using a small Extended Light
Source (ELS) such as a high intensity LED results in blurred
shadow boundaries. Figure 3 shows an example where
shadows are produced using both an ULD and an LED to
illuminate the same small object, under similar conditions
(distance from light source to object, and from object to
screen). In structured light 3D scanning, using a lens to fo-
cus a binary pattern on an object is intrinsically flawed due
to depth of field constraints, because out of focus binary
patterns look like shadow with blurred boundaries as well.
Diffraction Optical Elements (DOE) [3], which do not re-
quire focusing with lenses, are used in certain single-shot
3D scanning devices, such as the Microsoft Kinect V1 [12],
but the technology is not appropriate to develop high reso-
lution 3D scanners. In theory, using a Point Light Source
(PLS) without focusing lenses to illuminate the occluders
would solve the problems in the two applications mentioned
above, but unfortunately the PLS is a theoretical concept
which does not exist in the physical world. In most typical
applications, the dimensions of the light emitting surface of
the ELS are not insignificant with respect to the dimensions
of the overall imaging apparatus, and in particular with re-
spect to the dimensions of the object, resulting in shadows
with blurred boundaries. Furthermore, modeling the image
formation process using extended light sources results in
complex equations which are usually impossible to solve in
practice.

3. The Uncollimated Laser Diode

Figure 1 contains results of some preliminary exper-
iments which show that a low cost Uncollimated Laser
Diode (ULD) produces shadows with sharp boundaries
when it is used to illuminate an opaque occluder without
any additional optical components, and the sharp bound-
aries are maintained within a wide range of depths. It is
well known that an ULD is a light source that produces

Figure 3. Silhouette shadows of a small resistor projected on a screen
using an ULD compared with those resulting from using a LED.

divergent rays, but the property illustrated in Figure | has
neither been documented in the optics literature nor in the
computer vision literature. This discovery has led us to
believe that ULDs could be used as light sources in the
target 3D imaging and metrology applications, potentially
resulting in low cost precise industrial inspection, metrol-
ogy, and 3D imaging systems. The main goal of this paper
is to develop the mathematical foundations to enable these
applications. Most light beams generated by semiconduc-
tor lasers are characterized by ellipticity, astigmatism, and
large divergence. These properties are undesirable for light
beam generation and are usually optically corrected. Due to
diffraction, the beam diverges (expands) rapidly after leav-
ing the chip, typically at 30 degrees vertically by 10 degrees
laterally. Also, as a consequence of the rectangular shaped
active layer and the non-uniform gain profile within the ac-
tive layer, laser diode beams are astigmatic. Astigmatism
is a well known and documented property of laser diodes
[16] and even standards exist to measure it [4]. An astig-
matic laser beam does not emerge from a single 3D point,
but appears to be emerging from multiple locations. As a
result of astigmatism the PLS model turns out not to be an
accurate geometric model of light propagation for the ULD.
Since astigmatism can vary from one laser diode to another
even of the same type, calibration procedures are required to
guarantee precise measurements. This paper introduces the
Two Lines Light Source (TLLS) model as a novel geomet-
ric model of light propagation, which accurately describes
the observed behavior of ULDs. We found close similarity
of geometrical representation between crossed-slit camera
and TLLS model[18, 11]. However, we would like to em-
phasize that the reason we introduced the two-line model is
that when utilizing uncollimated laser propagation as a light
source, it is essential to estimate the astigmatism of the laser
for the calibration procedure in 3D application. The TLLS
model has a simple and elegant formulation defined by two
3D line segments, rather than the single 3D point which de-
fines the PLS model, but it reduces to the PLS model when
the two segments intersect. As a result, the TLLS model is
a natural generalization of the PLS model. As in the PLS
model, for each illuminated 3D point there exists a unique
ray emitted by the light source passing through the point,



Figure 4. Experimental setup for preliminary experiments which lead to
the TLLS model.

which can be described in closed form, and can be estimated
in constant time at low computational cost. Finally, the pa-
per introduces a calibration method to estimate the model
parameters, and describes the experiments performed to val-
idate the model. Figure 4 shows the experimental setup and
results of early experiments which lead to the formulation
of the TLLS model. The wires are illuminated by an ULD.
An image is formed on a white screen, where the wires cast
shadows with very sharp boundaries. Using a different ex-
tended light source, such as a high intensity white LED, the
shadows are blurred, and the silhouettes of the wires on the
screen cannot be determined precisely. Figure 5 illustrates
a preliminary attempt at constructing focus free binary pat-
tern projectors, eventually to be used in structured light 3D
scanning applications. A thin metal mask is illuminated by
a low cost uncollimated laser diode, which resulted from re-
moving the collimating lens from a laser beam module such
as those used in laser pointers. An enclosure was 3D printed
to mount the laser diode at a fixed distance from the mask,
and to prevent spurious emission of light, other than through
the mask. The figure shows a rendering of a CAD model of
the prototype device, as well as three images of a clay pot
illuminated by this pattern projector with the distance be-
tween the projector and the object varying in a range larger
than the size of the object. The pattern projector can be
seen at the bottom of two of these images. Because of the
divergent rays, the projected pattern varies in size as a func-
tion of the distance from the projector to the object, what is
most important to observe here is that the projected binary
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Figure 5. A simple 3D printed pattern projector constructed using a ULD
and a metal mask projects focus-free binary images on a 3D scene within
a wide range of depths.

pattern is in focus in all cases. In this paper we are not ex-
ploring any of the applications listed in the introduction, but
we plan to do so in the near future.

4. Modeling Extended Light Sources

To simplify the analysis we will model the light emitting
surface of the laser diode as a small rectangle contained in
the plane z = 0 aligned with the = and y Cartesian axes,
centered at the origin, and with the light emitted only in
the direction of z > 0. A function I(z,y,v) which attains
non-negative values measuring the directional light inten-
sity emitted in the direction of the unit length vector v so
that v, > 0 from the point (x,y) within the light emit-
ter rectangle can be used as a general mathematical model
to describe the rectangle as an extended light source where
each point on the light emitter surface has a different direc-
tional distribution. We have decided not to include phase
information in this model, despite the fact that a laser diode
emits coherent light. Section 12 includes a discussion of
diffraction effects and plans for related future work where
phase information will be incorporated into the model. In
fact this representation corresponds to a file format which
has been standardized [6] to contain the information repre-
sented by the function I(x,y,v), as well as additional in-
formation. The so called Ray Files are predefined ray tables
consisting of xyz starting points and direction vectors, as
well as polarization states, wavelength data, and the initial
flux value or Stokes Vector for each ray. Ray files are typ-



Figure 6. Experimental setup used to sample the rays emitted by an ULD
and to estimate the parameters of the TLLS model, using binary masks of
known dimensions as occluders.

ically created from measured results or theoretical calcula-
tion and are used in illumination design software.

5. Directional Extended Light Sources

The model I(z,y,v) introduced in the previous section
can be regarded as a Light Field [10] with the light travers-
ing the rays in the opposite direction, and it is too gen-
eral to describe the behavior of the ULD. To explain the
sharp shadow boundaries it is necessary that for each point
(z,y) in the light emitting surface the function I(x, y,v) be
close to zero except for a small region concentrated around
a particular unit length direction vector v(x, y) which could
change from point to point. In the limit case the function
I(x,y,v) would be a generalized function

I(x,y,v) :I(.’I?,y)(S(U—U(I',y)) (D

where I(x,y) is a non-negative scalar function, and §(-) is
Dirac’s delta function. That is, the function I(z,y,v) is
zero everywhere, except for v = v(z, y), where it attains the

Figure 7. Visualization of vector light field sampling results correspond-
ing to the experimental setup of figure 6

value v(z, y). Note that the ideal point light source satisfies
this model, where v(x, y) is the vector going from the point
source to the point (x, y,0), normalized to unit length. We
will refer to this model as the Directional Extended Light
Source(DELS) model, and to the vector function v(x, y) as
the Vector Light Field of the model.

6. Sampling The Vector Light Field

The ULD satisfies the properties which define the DELS
model, but the DELS model is still far to general. The next
step is to determine a proper family of vector light fields to
represent ULDs. This family should ideally have a para-
metric form defined by a few parameters. Since no such
model has been disclosed in the literature, we designed an
experimental setup to sample the vector light field, so that
we could visualize the corresponding rays inside the laser
diode. Figure 6 shows the experimental setup. In the bot-
tom photo, a shutter-less camera, shown in the middle, is
used in these experiments to capture images of test grid pat-
tern. The additional shutter-less camera, shown on the right
hand side of the photo, is used to capture the shadow im-
age formed on the screen. The inset photo is just a picture
of the shadow projected on the screen with sharp bound-
aries. First of all, the intrinsic parameters of the camera are
calibrated using standard techniques, and the camera coor-
dinate system is used as the global coordinate system. A
thin chemically etched metal mask comprising an array of
3 x4 square holes is used as the occluder, because of its sim-
ilarity to a checkerboard. The corners of mask are detected
in the image using a modified checkerboard detection algo-
rithm: the boundary edges of the mask squares are detected
and segmented into collinear groups; a straight line is fit to
each group; the pixel locations of the square corners are es-
timated as the intersections of vertical and horizontal lines.
Since the mask dimensions are known, the pose of the mask
in the global coordinate system is determined as a function
of the pixel coordinates of the labeled square corners using
a well know checkerboard pose estimation algorithm. The
screen is fabricated with a few markers which are used to
determine the implicit equation of the plane. With minimal
modifications, the same algorithm used to detect the corners
of the mask is used to detect the corners of the square from
the shadow projected on the screen. The pixel coordinates
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Figure 8. The Two Lines Light Source model is defined by the two lines
L1 and Lo. For each point p in 3D, which does not belong to the two
planes parallel to the two lines containing one of the lines, there exists a
unique line L which contains p and intersects L and Lo.

of each of these corners defines a ray which passes through
the corresponding screen point and the center of projection
of the camera. The intersection if this ray, represented in
parametric form, with the screen plane, represented in im-
plicit form, yields the 3D coordinates of the corresponding
square corner in the screen. For each of the 48 square cor-
ners of the mask we now have its 3D coordinates, as well as
the 3D coordinates of a corresponding screen point. These
two points belong to the same ray emitted by the laser, and
are used to determine the equation of the straight line sup-
porting the ray. We can now visualize these 48 straight lines
and draw some conclusions. Figure 7 shows a visualization
of these lines. It is quite clear that they do not converge on
a single 3D point. As a result, although the ULD emits rays
which diverge and do not seem to intersect within the work-
ing volume, it does not behave like a PLS. However, we
do observe a much more interesting, and quite unexpected,
phenomenon. In fact, we consider this discovery one of the
main contributions of this paper. The 6 rays corresponding
to the square corners which belong to each vertical straight
line of the mask grid seem to intersect on a common point,
and these 8§ common points seem to be collinear. At the
same time, the 8 rays corresponding to the square corners
which belong to each horizontal straight line of the mask
grid seem to intersect on a common point as well, and these
6 common points seem to be collinear as well. The two
straight lines joining the vertical and horizontal common
points are different; in fact they do not seem to intersect,
and they seem to be orthogonal. In particular, each of the
estimated rays intersects the two common lines.

7. The Two Lines Light Source

Based on the results of the experiments described in the
previous section, we propose the Two Lines Light Source
(TLLS) model. The model is defined by two straight lines
L; and Ly which we prefer to describe in parametric form
as Ly = {¢g=q +tiwi}and Ly = {q = q2 + tawa},

t x

Figure 9. The Two Lines Light Source model typical geometric configu-
ration for an ideal ULD, showing the emitter rectangular window, and the
mask used in the sampling experiments.

where ¢; and ¢y are 3D points, w; and ws are two linearly
independent unit length vectors, and ¢; and ¢, are scalar pa-
rameters. Of course, the points ¢; and g2 are not uniquely
determined, since if they are replaced by other points which
belong to the same straight line, the line does not change.
In practice the scalar parameters ¢; and ¢5 are bound above
and below by certain values, but we prefer not to introduce
those parameters at this point. In the case of the ULD, the
light emitting surface can be regarded as a rectangular aper-
ture so that only rays that cross the aperture are light car-
rying. If the axes of the rectangular aperture are parallel
to the vectors w; and wo, then the aperture determine nat-
ural bounds on t; and ts. Let us consider the two parallel
planes spanned by the vectors w; and ws; the first one con-
taining the line L;, and the second one containing the line
Ly. The main property of this model is that for each 3D
point p which does not belong to either one of these two
planes, there exist a unique line L(p) which intersects both
lines. To determine the equation of this line, we observe that
since the point p does not belong to the line L, there exists
a unique plane 7m; which contains the line L; and the point
p; and similarly, since the point p does not belong to the line
Lo, there exists a unique plane o which contains the line
L and the point p. These two planes are different because
the lines L; and Lo are not parallel. The plane 7; can be
described in implicit form as m = {q : n{(¢ — ¢1) = 0},
where ny = w; X (p — ¢1). Similarly the plane 75 can be
described in implicit form as 72 = {q : n5(¢ — ¢2) = 0},
where ny = wa X (p — ¢2). It is not difficult to verify that
for every point p not belonging to the two excluded planes,
the plane 7; and the line Ly intersect in a single point go,
and the plane 72 and the line L; intersect in a single point
q1- For the points p in the excluded planes, one of the two
intersections may not occur because of parallelism. Finally,
since the points p, q1, and g2 simultaneously belong to the



Figure 10. Geometric construction used to define the refinement proce-
dure.

planes 71 and 7o, they are collinear. The straight line L(p)
is the intersection of the planes 7; and 7o, and can be de-
fined in parametric formas L(p) = {¢g=q¢1 + A (g2 — 1)},
where ) is a scalar parameter. Figure 9 show the geomet-
ric configuration which appear to apply to the experimental
setup described above. There is neither guarantee that the
two lines will be perpendicular to each other, nor that they
will be aligned with the Cartesian axes. The next section de-
scribes a calibration procedure to determine the actual pa-
rameters. But if the point p is a point belonging the the
emitting window p = (z,y, 0)*, the vector v(z, y) is the re-
sult of normalizing the vector g2 — ¢; to unit length, and if
necessary invert its orientation so that v, > 0.

8. Calibration

The purpose of the calibration procedure is to estimate
the parameters of the TLLS model introduced in the previ-
ous section, namely the parametric equations of the lines L;
and L, in the camera coordinate system, which is regarded
as the world coordinate system. But before attempting to
do so, the camera intrinsic parameters should be calibrated,
and the pose of of the screen plane with respect to the cam-
era has to be determined. Since our calibration procedure
uses two cameras, both cameras need intrinsic calibration
and the relative position and orientation of the second cam-
era looking at the mask has to be estimated as well. In par-
ticular, after calibrate intrinsic parameters for both camera
focusing at the imaging screen, we compute extrinsic pa-
rameters of the first camera and find the relative position of
the second camera with respect to the first camera. Then re-
calibrate intrinsic parameters of the second camera focusing
at the calibrate pattern on the turn-table. Instead of using a
separate checkerboard placed in different positions and ori-
entations within the field of view of the camera, we use the
metal mask pattern object and its projected images (mini-
mum 3 images with different locations of pattern) detected.
Since the scanning system comprises a rotational turntable,
we use the turntable to move the metal mask within the cam-
era calibration phase, capture images of the metal mask, and
use the detected corners of the squares as inputs to the rou-
tines which estimate the intrinsic parameters.

Then we follow the same procedure described above to

capture images of the metal mask and their shadows on the
screen, and detect the pairs of corresponding corners. In
fact, we can use the same images to calibrate the camera,
and then to perform this step. We detect N = 48 pairs of
corners in each image, which result in 48 measured rays.
Let p}4, ..., p} be the 3D coordinates of the corners de-
tected in the mask, and py,...,p% the 3D coordinates of
the corresponding corners detected on the screen. The next
section describes the procedure that we implemented to ob-
tain initial estimates for the TLLS model parameters. Let’s
assume here that we already have these initial estimates.
Based on these parameters we can determine the equations
of the unique line L(p}?) passing through the point p} pre-
dicted by the model. Let mg denote the screen plane. The in-
tersection of the line L(p}?) and the plane g is a point g,
which is likely to be different from the point pf . We pro-
pose as the calibration procedure the global minimization of
the following bundle adjustment objective function, which
somehow measures the sum of the squares of the divergence
between corresponding measured and predicted rays.

N

BE(Ly, Ly) =Y llai —pill? )
k=1

Since this is a non-linear multimodal objective function,
our approach is to identify an approximate solution by solv-
ing the related optimization problem decribed in Section 9,
for which an analytic solution exists, and then refine the
approximate solution by locally minimizing the non-linar
least squares bundle adjustment objective function using the
Levenberg-Marquardt algorithm as described in Section.10.

9. Initial Estimates using Pliicker Coordinates

A straight line in 3D can be represented by a 2 x 4 matrix
defined by a pair of points which belong to the line

x Py Pz 1 3
{qz qy 9= 1} )

This representation is, of course, not unique. The Pliicker
coordinate of this line can be defined as the 6-dimensional
vector X whose coordinates are

X2 = Pxdy — qzPy
X13 = Peqz — QP>

X14 =Pz — G @
X3 = Dyq: — QD=

Xog =p: — ¢

X34 =qy — py

Given two 2 x 4 matrix representations of the same straight
line, their corresponding Pliicker coordinates are the same
except for a multiplicative constant. That is, the mapping



which computes the Pliicker coordinates produces a point
in P°. Not every point in P is the Pliicker coordinate
of a straight line in 3D though. Actually the image of the
Pliicker map forms a quadric ) in P® defined by the zeros
of the polynomial

F(X) = X12X34 — X13Xoa + X14X03 &)

Given four straight lines in general position in 3D, it is a
clasical result that there exists exactly two other straight
lines that intersect the given four [5]. A simple algorithm
to determine these two lines, along with the mathematical
foundations of the method, are described in detailed for ex-
ample in [7]. It comprises the following steps: 1) construct-
ing a 6 x 4 matrix by concatenating the Pliicker coordinates
vectors of the four given lines as columns; 2) determining
a basis of the two dimensional subspace orthogonal to the
four dimensional subspace spanned by the four vectors of
Pliicker coordinates (numerically, this can be achieved by
computing the singular value decomposition of the 6 x4 ma-
trix, and determining the two singular vectors correspond-
ing to the two zero singular values); 3) this two dimensional
subspace is actually a straight line in P® which intersects
the quadric () in two points; determine the two intersection
points; 4) these two points in P° are guaranteed to be the
Pliicker coordinates of two different straight lines in 3D;
determine those two lines. Given N straight lines, such as
the measured rays used as the calibration data, the previ-
ous SVD-based algorithm can be generalized, replacing the
6 x 4 matrix by the 6 x N matrix resulting from concate-
nating the Pliicker coordinates of the NV straight lines, and
determining the two dimensional subspace spanned by the
two left singular vectors associated with the two smallest
singular values.

10. Fine Search for two lines

In the previous section we introduced a method to deter-
mine initial estimates of the two lines minimizing the objec-
tive function of equation 2. We have determined in practice
that these initial estimates are often not good enough, and a
descent procedure is required to refine these estimates. The
input data to both the initialization procedure and the re-
finement procedure are the points p}/, ..., p} detected on
the mask, and the points p7, . .., p%; detected on the screen,
which define the ray samples obtained from measurements.
To simplify the notation in this section, let’s replace p}!
by pg, and let vy ne the result of normalizing the vector
pM — p? to unit length. Each pair (py, vy,) defines the para-
metric equation of a line supporting a measured ray. Since
the two straight lines L1 and Lo that define the TLLS model
should intersect the N measured lines, our approach here
is to look at the function which measures the sum of the
square distances from an arbitrary line to the N measured

lines, and search the domain of this function with the ex-
pectation that two different local minima could be identi-
fied. Let Ly, = {p = pp + tnvn} be a straight line de-
scribed in parametric form, where pj, is a 3D point, vy, is
a unit length 3D vector, and ¢, is a scalar parameter. Let
L; = {p = p;j + tjv;} be another straight line described
in parametric form. Furthermore, let’s assume that the two
lines are neither parallel nor intersect, which is equivalent
to requiring that the three vectors vy, v;, and p; — py, be
linearly independent. It is well known that the following
equation describes the square of the distance between the
two lines

(v, % v;)t (p —Pj)>2 ©)

dist(ha, 1) = (P
J

It follows that given N lines L1, ..., Ly defined in para-
metric form L, = {p = pir + t; vx}, the following ex-
pression describes the average square distance from an ad-
ditional line L = {p = p + tv} also defined in parametric
form to the NV given lines

N T 2

| v x vy ||

which can also be written as follows

N
1 2
B(L) =5 > (wi( - pr)) ®)
k=1
where wy, = (v X vg)/|| v X v ||. Note that for fixed

values of v,v1,...,vN,p1,...,pN the objective function
E(L) is a quadratic non-negative function of p. This ex-
pression measures the average square distance from the line
parallel to the vector v, which minimizes the average square
distance to the given lines L1, ..., L. By performing this
procedure, after the initial estimation method described in
the previous section, we can refine the estimates of the two
line parameters.

11. Results

The two images on the right hand side of Figure 11 show
the result of the calibration procedure described above in the
form of reprojection error in a 3D view and on the screen.
The two images on the left hand side show similar results
but using a PLS model fitted to the measured rays. We have
a mean error value of approximately 0.1% with TLLS while
PLS gives 0.9%. As we can see in Figure 11(left), the re-
projected grid pattern drawn by blue is not well coincide
with projected pattern image in the screen. We have com-
puted the two line model from multiple positions and ori-
entation of test grid pattern as shown in Figure 12. This
step will verify whether the same two line model can be



Figure 11. Reprojection from PLS model(left) and Reprojection from
TLLS model(right)

LS | Group1l |Group2

Direction  X:-0.057  X:-0.095
vectorl Y: 0451 Y: 0.463
2:-0912 Z:-0.895

Direction  X:-0.797 X:-0.782
vector2 Y. 0510 Y: 0.492
2:-0333 Z:-0.347

Figure 12. A geometric configuration for multiple measurements.

found when the location of the test pattern is changed with
stationary camera and imaging screen. We compared two
groups, each calculated from 10 different locations of the
test pattern. As shown in Figure 12, the direction vectors
for two lines from two groups are similar and the two-line
parameters obtained from multiple images with different lo-
cations of the test patterns give similar reprojection errors of
0.17%. We also conducted experiment with 3 different ori-
entation of the test grid pattern to compare TLLS and PLS
case. As shown in Figure 13, we have better mean error with
TLLS in every case. The discrepancy of error between the
two cases is increasing when angle increases between the
pattern and the center propagation of the laser. These ad-
ditional experiments showed that our assumption of TLLS
is plausible and ULD is non-central light source thus, the
points light source is not a good approximation.

12. Conclusions and Future Work

The main contribution of the paper is the development
and formulation of the TLLS model, based on the unex-

Shadow Projections TLLS PLS
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Figure 13. Comparison of results for different orientation of the test pat-
tern. The captured pattern is drawn in red and the estimation from each
method is drawn in blue. The mean error is normalized by the diagonal
distance of the pattern image in the screen.

Figure 14. Diffraction will have to be considered in future work.

pected properties of the ULD. In future work, we will ex-
plore the application of this technology in 3D shape capture
systems. Figure 14 shows an experiment where an ULD
was used to illuminate a straight edge mask occluder, and
the shadow was produced onto a toy football. The distance
between the occluder and the object is the same in both im-
ages, but the distance between the ULD and the occluder is
larger in the left image compared to the right image. In this
example the left image, where the ULD is far away from
the occluder, shows shadows with sharp boundary, but the
effect of diffraction is evident in the right image, where the
ULD is much closer to the occluder. This experiment shows
that in practice the effect of diffraction can be minimized by
adjusting the distances between ULD, occluder, and object,
and justifies our decision of not incorporating phase infor-
mation in the TLLS model introduced in this paper. How-
ever, an extended TLLS model which incorporates phase
information is needed at least to accurately predict the ef-
fect of diffraction. We plan to develop such extended model
in the near future.
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