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We introduce a new set of problems based on the Chain Editing problem. In our version of 
Chain Editing, we are given a set of participants and a set of tasks that every participant 
attempts. For each participant-task pair, we know whether the participant has succeeded 
at the task or not. We assume that participants vary in their ability to solve tasks, and that 
tasks vary in their difficulty to be solved. In an ideal world, stronger participants should 
succeed at a superset of tasks that weaker participants succeed at. Similarly, easier tasks 
should be completed successfully by a superset of participants who succeed at harder tasks. 
In reality, it can happen that a stronger participant fails at a task that a weaker participant
succeeds at. Our goal is to find a perfect nesting of the participant-task relations by flipping a 
minimum number of participant-task relations, implying such a “nearest perfect ordering” 
to be the one that is closest to the truth of participant strengths and task difficulties. Many 
variants of the problem are known to be NP-hard.
We propose six natural k-near versions of the Chain Editing problem and classify their 
complexity. The input to a k-near Chain Editing problem includes an initial ordering of the 
participants (or tasks) that the final solution is required to be “close” to, by moving each 
participant (or task) at most k positions from the initial ordering. We obtain surprising 
results on the complexity of the six k-near problems: Five of the problems are polynomial-
time solvable using dynamic programming, but one of them is NP-hard.

 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Consider a contest with a set S of participants who are required to complete a set Q of tasks. Every participant either 
succeeds or fails at completing each task. We aim to obtain rankings of the participants’ strengths and the tasks’ difficulties. 
This situation can be modeled by a bipartite graph with participants on one side, tasks on the other side, and edges present 
if a participant succeeded at the task. From the edges of the bipartite graph, we can infer that a participant a2 is stronger 
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Computation [16]. It contains all proofs that were omitted in [16]. Updates will be available on http://arxiv.org /abs /1612 .04794.

* Corresponding authors.
E-mail addresses: yangjiao@andrew.cmu.edu (Y. Jiao), ravi@andrew.cmu.edu (R. Ravi), wolfgang@ccis.neu.edu (W. Gatterbauer).

https://doi.org/10.1016/j.tcs.2018.07.014
0304-3975/ 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.07.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://arxiv.org/abs/1612.04794
mailto:yangjiao@andrew.cmu.edu
mailto:ravi@andrew.cmu.edu
mailto:wolfgang@ccis.neu.edu
https://doi.org/10.1016/j.tcs.2018.07.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2018.07.014&domain=pdf


Y. Jiao et al. / Theoretical Computer Science 789 (2019) 64–76 65

Fig. 1. An “ideal” graph is shown. Participants and tasks may be interpreted as students and questions, or actors and claims. Participant a1 succeeds at b1
to b2; a2 succeeds at b1 to b4; a3 succeeds at b1 to b5. The nesting of neighborhoods here indicate that participant a1 is weaker than a2, who is weaker 
than a3, and task b1 and b2 are easier than b3 and b4, which in turn are easier than b5.

than a1 if the neighborhood of a1 is strictly contained in (or is strictly “nested in”) that of a2. Similarly, we can infer that 
a task is easier than another if its neighborhood strictly contains that of the other. If two participants or tasks have the 
same neighborhood, then they are considered equally strong or equally easy. See Fig. 1 for a visualization of strengths of 
participants and difficulties of tasks. If all neighborhoods are nested, then this nesting immediately implies a ranking of the 
participants and tasks. However, participants and tasks are not perfect in reality, which may result in a bipartite graph with 
“non-nested” neighborhoods. For such more realistic scenarios, we wish to determine a ranking of the participants and the 
tasks that is still “close” to the ideal case. In this paper, we define several variants of this problem that are different in what 
changes can be made (adding, deleting, or adding and deleting edges) and prior knowledge of rankings (exact for one side, 
no prior knowledge, nearby starting values) that together give rise to varying problem complexities.

1.1.1. Relation to truth discovery
A popular application of unbiased rankings is computational “truth discovery.” Truth discovery is the determination of 

trustworthiness of conflicting pieces of information that are observed often from a variety of sources [24] and is motivated 
by the problem of extracting information from networks where the trustworthiness of the actors are uncertain [15]. The 
most basic model of the problem is to consider a bipartite graph where one side is made up of actors, the other side is 
made up of their claims, and edges denote associations between actors and claims. Furthermore, claims and actors are as-
sumed to have “trustworthiness” and “believability” scores, respectively, with known a priori values. According to a number 
of recent surveys [15,24,20], common approaches for truth discovery include iterative procedures, optimization methods, 
and probabilistic graphic models. (1) Iterative methods [9,13,22,27] update trust scores of actors to believability scores of 
claims, and vice versa, until convergence. Various variants of these methods (such as Hubs and Authorities (or Sums) [18], 
TruthFinder [27], AverageLog, Investment, and PooledInvestment [22]) have been extensively studied and proven in prac-
tice [2]. (2) Optimization methods [3,19] aim to find truths that minimize the total distance between the provided claims 
and the output truths for some specified continuous distance function; coordinate descent [5] is often used to obtain the 
solution. (3) Probabilistic graphical models [23] of truth discovery are solved by expectation maximization. Other methods 
for truth discovery include those that leverage trust relationships between the sources [14]. Our study is conceptually clos-
est to optimization approaches (we minimize the number of edge additions or edits), but we suggest a discrete objective for 
minimization, for which we need to develop new algorithms.

1.1.2. Our motivation: massively open online courses
Our interest in the problem arises from trying to model the problem of automatic grading of large number of students 

in the context of MOOCs (massively open online courses). Manual grading of assignments from many students is infeasible. 
In turn, creating many automatically gradable questions (that are also relevant to the topics of a class) is difficult. Our 
idea is to crowd-source the creation of automatically gradable questions (in particular, multiple choice items) to students, 
and have all the students take all questions. In this context, we do not know the difficulty of questions and would like to 
quickly compute a roughly accurate ordering of the difficulty of the crowd-sourced questions from the answers chosen by 
the students. Additionally, we also want to rank the strength of the students based on their performance. In an ideal world, 
stronger participants should succeed at a superset of tasks that weaker participants succeed at, which motivates our nesting 
property. In reality, it can happen that a stronger participant fails at a task that a weaker participant succeeds at. Our goal 
is to find a ranking of students and questions that “explains” our observations as much as possible and is thus a close to 
the ideal case as possible.

1.1.3. Our model
Henceforth, we refer to participants as students and tasks as questions in the rest of the paper. We cast the ranking prob-

lem as a discrete optimization problem of minimizing the number of changes to a given record of the students’ performance 
to obtain nested neighborhoods. This is called the Chain Editing problem. It is often possible that some information regard-
ing the best ranking is already known. For instance, if the observed rankings of students on several previous assignments 
are consistent, then it is likely that the ranking on the next assignment will be similar. We model known information by
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imposing an additional constraint that the changes made to correct the errors to an ideal ranking must result in a ranking 
that is near a given base ranking. By near, we mean that the output position of each student should be within at most k po-
sitions from the position in the base ranking, where k is a parameter. Given a nearby ranking for the students, we consider 
all possible variants arising from how the question ranking is constrained. The question ranking may be constrained in one 
of the following three ways: (i) the exact question ranking is specified (which we term the “constrained” case), (ii) it must 
be near a given question ranking (the “both near” case), or (iii) the question ranking is unconstrained (the “unconstrained” 
case). We provide the formal definitions of these problems next.

1.2. Problem formulations

Here, we define all variants of the ranking problem. The basic variants of Chain Editing are defined first and the k-near 
variants are defined afterward.

1.2.1. Basic variants of Chain Editing
First, we introduce the problem of recognizing an “ideal” input. Assume that we are given a set S of students, and a 

set Q of questions. Every student attempts every question. Edges between S and Q indicate which questions the students 
answered correctly. Denote the resulting bipartite graph by G = (S ∪ Q , E). Let n = |S| + |Q |. For every pair (s, q) ∈ S × Q , 
we are given an edge between s and q if and only if student s answered question q correctly.

For a graph (V , E), denote the neighborhood of a vertex x by N(x) := {y ∈ V : xy ∈ E}. In other words, the neighborhood 
of a question is the set of student who answered the question correctly. Similarly, the neighborhood of a student is the set 
of questions that the student answered correctly.

Definition 1.1 (Strength and difficulty). We say that student s1 is stronger than student s2 if N(s1) ⊃ N(s2), and student s1 is 
equivalent to s2 if N(s1) = N(s2). We say that question q1 is harder than question q2 if N(q1) ⊂ N(q2), and question q1 is 
equivalent to question q2 if N(q1) = N(q2). Given an ordering α on the students and β on the questions, α(s1) > α(s2) shall 
indicate that s1 is stronger than s2; β(q1) > β(q2) shall indicate that q1 is harder (more difficult) than q2; α(s1) = α(s2)
and β(q1) = β(q2) shall indicate that s1 is equivalent to s2 and q1 is equivalent to q2, respectively.

Definition 1.2 (Interval and nesting properties). An ordering of the questions satisfies the interval property if for every student 
s, its neighborhood N(s) consists of a block of consecutive questions (starting with the easiest question) with respect to the 
ordering of the questions. An ordering α of the students satisfies the nesting property if α(s1) ≥ α(s2) ⇒ N(s1) ⊇ N(s2).

Definition 1.3. The objective of the Ideal Mutual Orderings (IMO) problem is to order the students and the questions so that 
they satisfy the interval and nesting properties respectively, or output NO if no such orderings exist.

Observe that IMO can be solved efficiently by comparing containment relation among the neighborhoods of the students 
and ordering the questions and students according to the containment order.

Proposition 1.4. There is a polynomial time algorithm to solve IMO.

Proof. Compare the neighborhood of every pair of students {s1, s2} ⊆ S and check whether N(s1) ⊆ N(s2) or N(s1) ⊇ N(s2). 
If N(s1) ∩ N(s2) is a strict subset of N(s1) and N(s2), then output NO. Now, assuming that every pair {s1, s2} ⊆ S satisfies 
N(s1) ⊆ N(s2) or N(s1) ⊇ N(s2), we know that there is an ordering α : S → [|S|] such that α(s1) ≤ α(s2) ⇒ N(s2) ⊆ N(s2). 
We easily find such an ordering by sorting the students according to their degrees, i.e., from lowest to highest degree, the 
students will receive labels from the smallest to the largest. Denote the resulting ordering by π . Since all neighborhoods are 
subsets or supersets of any other neighborhood and π was sorted by degree, π(s1) ≤ π(s2) ⇒ N(s1) ≤ N(s2). So we have 
satisfied the nesting property.

To satisfy the interval property, we order the questions according to the nesting of the neighborhoods. Recall that we 
have N(π−1(1)) ⊆ · · · ⊆ N(π−1(|S|)). Now, we order the questions so that whenever q1 ∈ N(π−1(i)) and q2 ∈ N(π−1( j))
with i < j, we have q1 labeled smaller q2 according to the ordering. We can do so by labeling the questions in N(π−1(1))
the smallest numbers (the ordering within the set does not matter), then the questions in N(π−1(2)) the next smallest, 
and so on. Call the resulting ordering β . Note that for all s ∈ S , s = π−1(i) for some i. So N(s) = N(π−1(i)) ⊇ N(π−1(1)), 
i.e., s correctly answers the easiest question according to β . Furthermore, N(s) is a block of questions that are consecutive 
according to the ordering β . So the interval property is also satisfied.

To determine the run time, note that we made O (n2) comparisons of neighborhoods. Each set intersection of two neigh-
borhoods took O (n) time assuming that each neighborhood was stored as a sorted list of the questions (sorted by any fixed 
labeling of the questions). Ordering the students by degree took O (n log n) time and ordering the questions took O (n) time. 
So the total run time is O (n2). !

Next, observe that the nesting property on one side is satisfiable if and only if the interval property on the other side is 
satisfiable. Hence, we will require only the nesting property in subsequent variants of the problem.
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Proposition 1.5. A bipartite graph has an ordering of all vertices so that the questions satisfy the interval property if and 
only if it has an ordering with the students satisfying the nesting property.

Proof. First, we prove the forward direction. Assume that G = (S ∪ Q , E) satisfies the interval property with respect to 
the ordering β on Q . By definition of interval property, for every u ∈ S , we have N(u) = {β−1(1), . . . , β−1( j)} for some 
j ∈ [|Q |]. Then for every u1, u2 ∈ S , we have N(u1) ⊆ N(u2) or N(u2) ⊆ N(u1). Let α be an ordering of S by degree of each 
u ∈ S . Then the nesting property holds with respect to α.

Second, we prove the backward direction. Assume that G = (S ∪ Q , E) satisfies the nesting property with respect to α
on S . Then N(α−1(1)) ⊆ · · · ⊆ N(α−1(|S|)). Using the algorithm in the proof of Proposition 1.4 for IMO, we obtain an 
ordering β on Q so that the interval property holds with respect to β . !

Next, we define three variants of IMO, which model the possible ways we would allow changes to the edges in the graph 
in order to achieve the nesting property: allowing edges to be added, or deleted, or both.

Definition 1.6 (Chain Editing (CE)). In the Chain Editing (CE) problem, we are given a bipartite graph representing student-
question relations and asked to find a minimum set of edge edits that admits an ordering of the students satisfying the 
nesting property.

A more restrictive problem than Chain Editing is Chain Addition. Chain Addition is variant of Chain Editing that allows 
only edge additions and no deletions. Chain Addition models situations where students sometimes accidentally give wrong 
answers on questions that they know how to solve but never answer a hard problem correctly by luck, e.g., in numerical 
entry questions.

Definition 1.7 (Chain Addition (CA)). In the Chain Addition (CA) problem, we are given a bipartite graph representing student-
question relations and asked to find a minimum set of edge additions that admits an ordering of the students satisfying the 
nesting property.

On the other hand, weak students may accidentally solve hard questions correctly when the questions are multiple 
choice or true/false. Chain Deletion models such situations.

Definition 1.8 (Chain Deletion (CD)). In the Chain Deletion (CD) problem, we are given a bipartite graph representing student-
question relations and asked to find a minimum set of edge deletions that admits an ordering of the students satisfying the 
nesting property.

Among the three problems, Chain Addition and Chain Deletion are isomorphic, i.e., solving one enables us to solve the 
other. The key property that connects Chain Addition with Chain Deletion is that a graph satisfies the nesting property if 
and only if its complement satisfies the nesting property. To solve Chain Deletion on a graph G , consider the complement G
of G and solve Chain Addition on G . Let F be the set of edges in an optimal solution for Chain Addition on G . By definition 
of complement, F must have been a subset of the edges in G . Since G ∪ F satisfies the nesting property, its complement 
G ∪ F = G \ F must also satisfy the nesting property. So F is an optimal solution for Chain Deletion on G . A symmetric 
argument applies to solve Chain Addition from Chain Deletion. Since the addition and the deletion cases are isomorphic, 
we consider only the addition and the more general edition, which – together with the three constraint variants from 
subsection 1.1.3 – give rise to our 6 problem formulations.

Analogous to needing only to satisfy one of the two properties, it suffices to find an optimal ordering for only one side. 
Once one side is fixed, it is easy to find an optimal ordering of the other side respecting the fixed ordering.

Proposition 1.9. In Chain Editing, if the best ordering (that minimizes the number of edge edits) for either students or 
questions is known, then the edge edits and ordering of the other side can be found in polynomial time.

Proof. Consider the special case that one side of the correct ordering is given to us, say the questions are given in hardest 
to easiest order v1 ≥ · · · ≥ vq . Then we can find the minimum number of errors needed to satisfy the required conditions 
by correcting the edges incident to each student u individually.

We know by the interval property that every student u must correctly answer either a set of consecutive questions 
starting from v1 or no questions at all. For each u ∈ S , and for each v j , simply compute the number of edge edits re-
quired so that the neighborhood of u becomes {v1, . . . , v j}. Select the question vu that minimizes the cost of enforcing 
{v1, . . . , v j} to be the neighborhood of u. Once the edges are corrected, order the students by the containment relation of 
their neighborhoods.

The algorithm correctly calculates the minimum edge edits since the interval property was satisfied at the minimum 
cost possible per student. The algorithm finds the neighborhood of each student by trying at most |Q | < n difficulty thresh-
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olds v j , and the cost of calculation for each threshold takes O (1), by using the value calculated from the previous thresholds 
tried. Summing over the |S| < n students gives a total running time no more than O (n2). !

1.2.2. k-near variants of Chain Editing or Addition
We introduce and study the nearby versions of Chain Editing or Chain Addition. Our problem formulations are inspired 

by Balas and Simonetti’s [4] work on k-near versions of the TSP.

Definition 1.10 (k-near CE or CA). In the k-near problem, we are given an initial ordering α : S → [|S|] and a nonnegative 
integer k. A feasible solution exhibits a set of edge edits (additions) attaining the nesting property so that the associated 
ordering π , induced by the neighborhood nestings, of the students satisfies π(s) ∈ [α(s) − k, α(s) + k].

Next, we define three types of k-near problems. In the subsequent problem formulations, we bring back the interval 
property to our constraints since we consider problems where the question side is not allowed to be arbitrarily ordered.

Definition 1.11 (Unconstrained k-near CE or CA). In Unconstrained k-near Chain Editing (Addition), the student ordering must 
be k-near but the question side may be ordered any way. The objective is to minimize the number of edge edits (additions) 
so that there is a k-near ordering of the students that satisfies the nesting property.

Definition 1.12 (Constrained k-near CE or CA). In Constrained k-near Chain Editing (Addition), the student ordering must be 
k-near while the questions have a fixed initial ordering that must be kept. The objective is to minimize the number of edge 
edits (additions) so that there is k-near ordering of the students that satisfies the nesting property and respects the interval 
property according to the given question ordering.

Definition 1.13 (Both k-near CE or CA). In Both k-near Chain Editing (Addition), both sides must be k-near with respect to two 
given initial orderings on their respective sides. The objective is to minimize the number of edge edits (additions) so that 
there is a k-near ordering of the students that satisfies the nesting property and a k-near ordering of the questions that 
satisfies the interval property.

1.3. Main results

In this paper, we introduce k-near models to the Chain Editing problem and present surprising complexity results. Our 
k-near model captures realistic scenarios of MOOCs, where information from past tests is usually known and can be used 
to arrive at a reliable initial nearby ordering.

We find that five of the k-near Editing and Addition problems have polynomial time algorithms while the Unconstrained 
k-near Editing problem is NP-hard. Additionally, we provide an O (kn) additive approximation algorithm for the NP-hard 
case. Our intuition is that the Constrained k-near and Both k-near problems are considerably restrictive on the ordering of 
the questions, which make it easy to derive the best k-near student ordering. The Unconstrained k-near Addition problem is 
easier than the corresponding Editing problem because the correct neighborhood of the students can be inferred from the 
neighborhoods of all weaker students in the Addition problem, but not for the Editing version.

Aside from restricting the students to be k-near, we may consider all possible combinations of whether the students and 
questions are each k-near, fixed, or unconstrained. The remaining (non-symmetric) combinations not covered by the above 
k-near problems are both fixed, one side fixed and the other side unconstrained, and both unconstrained. The both fixed 
problem is easy as both orderings are given in the input and one only needs to check whether the orderings are consistent 
with the nesting of the neighborhoods. When one side is fixed and the other is unconstrained, we have already shown that 
the ordering of the unconstrained side is easily derivable from the ordering of the fixed side via Proposition 1.9. If both 
sides are unconstrained, this is exactly the Chain Editing (or Addition) problem, which are both known to be NP-hard (see 
below). Fig. 2 summarizes the complexity of each problem, including our results for the k-near variants, which are starred. 
Note that the role of the students and questions are symmetric up to flipping the orderings.

To avoid any potential confusion, we emphasize that our algorithms are not fixed-parameter tractable algorithms, as our 
parameter k is not a property of problem instances, but rather is part of the constraints that are specified for the outputs 
to satisfy.

The remaining sections are organized as follows. Section 2 discusses existing work on variants of Chain Editing that have 
been studied before. Section 3 shows the exact algorithms for five of the k-near problems, and includes the NP-hardness 
proof and an O (kn) additive approximation for the last k-near problem. Section 4 summarizes our main contributions.

2. Related work

The earliest known results on hardness and algorithms tackled Chain Addition. Since many results parameterize in terms 
of the value of an optimal solution to their problem, we use O P T to denote the optimal value, where the problem solved 
depends on the context. Before stating the results, we define a couple of problems closely related to Chain Addition. The 
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Fig. 2. All variants of the decision version of the problems are shown with their respective complexities. The complexity of Unconstrained/Unconstrained 
Addition [26] and Editing [10] were derived before. More detailed results for these cases will be shown in Fig. 3. All other results are given in this paper. 
Most of the problems have the same complexity for both Addition and Editing versions. The only exception is the Unconstrained k-near version where 
Editing is NP-hard while Addition has a polynomial time algorithm.

Minimum Linear Arrangement problem considers as input a graph G = (V , E) and asks for an ordering π : V → [|V |] min-
imizing 

∑
v w∈E |π(v) − π(w)|. The Chordal Completion problem, also known as the Minimum Fill-In problem, considers as 

input a graph G = (V , E) and asks for the minimum size set of edges F to add to G so that (V , E ∪ F ) has no chordless 
cycles. A chordless cycle is a cycle (v1, . . . , vr, v1) such that for every i, j with |i − j| > 1 and {i, j} /= {1, r}, we have vi v j /∈ E . 
Yannakakis [26] proved that Chain Addition is NP-hard by a reduction from Linear Arrangement. He also showed that Chain 
Addition is a special case of Chordal Completion on graphs of the form (G = U ∪ V , E) where U and V are cliques. Recently, 
Chain Editing was shown to be NP-hard by Drange et al. [10].

Another problem called Total Chain Addition is essentially identical to Chain Addition, except that the objective func-
tion counts the number of total edges in the output graph rather than the number of edges added. For Total Chain 
Addition, Feder et al. [11] gave a 2-approximation. The total edge addition version of Chordal Completion has an 
O (

√
$ log4(n))-approximation algorithm [1] where $ is the maximum degree of the input graph. For Chain Addition, Feder 

et al. [11] claimed an 8d +2-approximation, where d is the smallest number such that every vertex-induced subgraph of the 
original graph has some vertex of degree at most d. Natanzon et al. [21] gave an 8O P T -approximation for Chain Addition 
by approximating Chordal Completion. However, no approximation algorithms are known for Chain Editing.

Modification to chordless graphs and to chain graphs have also been studied from a fixed-parameter point of view. 
A fixed-parameter tractable (FPT) algorithm for a problem of input size n and parameter p bounding the value of the optimal 
solution, is an algorithm that outputs an optimal solution in time O ( f (p)nc) for some constant c and some function f
dependent on p. For Chordal Completion, Kaplan et al. [17] gave an FPT in time O (2O (O P T ) + O P T 2nm). Fomin and Vil-
langer [12] showed the first subexponential FPT for Chordal Completion, in time O (2O (

√
O P T log O P T ) + O P T 2nm). Cao and 

Marx [7] studied a generalization of Chordal Completion, where three operations are allowed: vertex deletion, edge addition, 
and edge deletion. There, they gave an FPT in time 2O (O P T log O P T )nO (1) , where O P T is now the minimum total number of 
the three operations needed to obtain a chordless graph. For the special case of Chain Editing, Drange et al. [10] showed an 
FPT in time 2O (

√
O P T log O P T ) + poly(n), where poly(n) represents a polynomial function with respect to n. They also showed 

the same result holds for a related problem called Threshold Editing.
On the other side, Drange et al. [10] showed that Chain Editing and Threshold Editing do not admit 2o(

√
O P T )poly(n)

time algorithms assuming the Exponential Time Hypothesis (ETH). For Chain Completion and Chordal Completion, Bliznets 
et al. [6] excluded the possibility of 2O (

√
n/ log n) and 2O (O P T

1
4 / logc O P T )nO (1) time algorithms assuming ETH, where c is 

a constant. For Chordal Completion, Cao and Sandeep [8] showed that no algorithms in time 2O (
√

O P T −δ)nO (1) exist for 
any positive δ, assuming ETH. They also excluded the possibility of a PTAS for Chordal Completion assuming P /= N P . Wu 
et al. [25] showed that no constant approximation is possible for Chordal Completion assuming the Small Set Expansion 
Conjecture. Fig. 3 summarizes the known results for the aforementioned graph modification problems.

For the k-near problems, we show that the Unconstrained k-near Editing problem is NP-hard by adapting the NP-
hardness proof for Threshold Editing from Drange et al. [9]. The remaining k-near problems have not been studied. An 
abbreviated version of this paper appeared in the proceedings of the 11th International Conference and Workshops on 
Algorithms and Computation [16].
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Chordal Chain

Editing Unknown approximation, 
FPT [9]

Unknown approximation, 
FPT [9]

Addition 8O P T -approx [21], FPT [9] 8O P T -approx [21], 
8d + 2-approx [11], FPT [9]

Total Addition O (
√

$ log4(n))-approx [1], 
FPT [9]

2-approx [11], FPT [9]

Fig. 3. This table shows existing results for the case that both sides are unconstrained, which are all known to be NP-hard from the upper left block of 
Fig. 2.

3. Polynomial time algorithms for k-near orderings

We present our polynomial time algorithm for the Constrained k-near Addition and Editing problems, the Both k-near 
Addition and Editing problems, and the Unconstrained k-near Addition problem. We also show the NP-hardness of the 
Unconstrained k-near Editing problem and provide a O (kn) additive approximation algorithm for it.

We assume correct orderings label the students from weakest (smallest label) to strongest (largest label) and label the 
questions from easiest (smallest label) to hardest (largest label). We associate each student with its initial label given by the 
k-near ordering. For ease of reading, we boldface the definitions essential to the analysis of our algorithm.

3.1. Constrained k-near

We will solve the Constrained k-near Editing and Addition problems in time O (n324kk4k+2) by dynamic programs. First, 
we will solve the Constrained k-near Editing problem. Then we modify the algorithm to solve the Constrained k-near 
Addition problem.

3.1.1. Constrained k-near Editing

Theorem 3.1 (Constrained k-near Editing). Constrained k-near Editing can be solved in time O (n324kk4k+2).

Proof. Assume that the students are given in k-near order 1, . . . , |S| and that the questions are given in exact order 
1 ≤ · · · ≤ |Q |. We construct a dynamic program for Constrained k-near Editing. First, we introduce the subproblems that 
we will consider. Define C(i, ui, U i, v ji ) to be the smallest number of edges incident to the weakest i positions that must 
be edited such that ui is in position i, Ui is the set of students in the weakest i −1 positions, and v ji is the hardest question 
correctly answered by the i weakest students. Before deriving the recurrence, we will define several sets that bound our 
search space within polynomial size of n = |S| + |Q |.
Search space for Ui . Given position i and student ui , define P i,ui to be the set of permutations on the elements in 
[

max{1, i −k}, min{|S|, i +k −1}
]
\{ui}. Let F i,ui :=

{
{π−1(1), . . . , π−1(k)} : π ∈ Pi,ui , π(a) ∈ [a −k, a +k], ∀a ∈

[
max{1, i −k},

min{|S|, i + k − 1}
]
\ {ui}

}
. The set Pi,ui includes all possible permutations of the 2k students centered at position i, and 

the set Fi,ui enforces that no student moves more than k positions from its label. We claim that every element of Fi,ui

is a candidate for Ui \
[
1, max{1, i − k − 1}

]
given that ui is assigned to position i. To understand the search space for Ui

given i and ui , observe that for all i ≥ 2, Ui already must include all of 
[
1, max{1, i − k − 1}

]
since any student initially at 

position ≤ i − k − 1 cannot move beyond position i − 1 in a feasible solution. If i = 1, we have U1 = ∅. From now on, we 
assume i ≥ 2 and treat the base case i = 1 at the end. So the set Ui \

[
1, max{1, i − k − 1}

]
will uniquely determine Ui . We 

know that Ui cannot include any students with initial label [k + i, |S|] since students of labels ≥ k + i must be assigned to 
positions i or later. So the only uncertainty remaining is which elements in 

[
max{1, i − k}, min{|S|, i + k − 1}

]
\ {ui} make 

up the set Ui \
[
1, max{1, i − k − 1}

]
. We may determine all possible candidates for Ui \

[
1, max{1, i − k − 1}

]
by trying all 

permutations of 
[

max{1, i − k}, min{|S|, i + k − 1}
]
\ {ui} that move each student no more than k positions from its input 

label, which is exactly the set Fi,ui .

Feasible and compatible subproblems. Next, we define S i =
{
(ui, Ui, v ji ) : ui ∈

[
max{1, i − k}, min{|S|, i + k}

]
, Ui \

[
1, max{1, i − k − 1}

]
∈ Fi,ui , v ji ∈ Q ∪ {0}

}
. The set Si represents the search space for all possible vectors (ui, Ui, v ji )

given that ui is assigned to position i. Note that ui is required to be within k positions of i by the k-near constraint. So we 
encoded this constraint into Si . To account for the possibility that the i weakest students answer no questions correctly, we 
allow v ji to be in position 0, which we take to mean that Ui ∪ {ui} gave wrong answers to all questions.

Now, we define Ri−1,ui,Ui,v ji
:= {(ui−1, Ui−1, v ji−1 ) ∈ Si−1 : v ji−1 ≤ v ji , Ui = {ui−1} ∪ Ui−1}. The set Ri−1,ui ,Ui ,v ji

rep-
resents the search space for smaller subproblems that are compatible with the subproblem (i, ui , Ui, v ji ). More precisely, 
given that ui is assigned to position i, Ui is the set of students assigned to the weakest i − 1 positions, and v ji is the 
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Fig. 4. Subproblem (i − 1, ui−1, Ui−1, v ji−1 ) is compatible with subproblem (i, ui , Ui , v ji ) if and only if v ji−1 is no harder than v ji and Ui = {ui−1} ∪ Ui−1. 
The cost of (i, ui, Ui , v ji ) is the sum of the minimum cost among feasible compatible subproblems of the form (i − 1, ui−1, Ui−1, v ji−1 ) and the number of 
edits incident to ui to make its neighborhood exactly {1, . . . , v ji }.

hardest question correctly answered by Ui ∪ ui , the set of subproblems of the form (i − 1, ui−1, Ui−1, v ji−1 ) which do not 
contradict the aforementioned assumptions encoded by (i, ui , Ui, v ji ) are exactly those whose (ui−1, Ui−1, v ji−1 ) belongs to 
Ri−1,ui ,Ui ,v ji

. We illustrate compatibility in Fig. 4.

The dynamic program. Finally, we define cui,v ji
to be the number of edge edits incident to ui so that the neighbor-

hood of ui becomes exactly {1, . . . , v ji }, i.e., cui ,v ji
:= |NG(ui)3{1, . . . , v ji }|. We know that cui ,v ji

is part of the cost within 
C(i, ui, Ui, v ji ) since v ji is the hardest question that Ui ∪ {ui} is assumed to answer correctly and ui is a stronger student 
than those in Ui who are in the positions before i. We obtain the following recurrence.

C(i, ui, Ui, v ji ) = min
(ui−1,Ui−1,v ji−1 )∈Ri−1,ui ,Ui ,v ji

{C(i − 1, ui−1, Ui−1, v ji−1)} + cui ,v ji

The base cases are C(1, u1, U1, v j1 ) = |NG(u1)3{1, . . . , v j1 }| if v j1 > 0, and C(1, u1, U1, v j1 ) = |NG(u1)| if v j1 = 0 for all 
u1 ∈ [1, 1 + k], v j1 ∈ Q ∪ {0}.

By definition of our subproblems, the final solution we seek is min(u|S|,U |S|,v j|S| )∈S|S| C(|S|, u|S|, U |S|, v j|S| ).

Running time. Now, we bound the run time of the dynamic program. Note that before running the dynamic program, we 
build the sets Pi,ui , Fi,ui , Si , Ri−1,ui ,Ui ,v ji

to ensure that our solution obeys the k-near constraint and that the smaller 
subproblem per recurrence is compatible with the bigger subproblem it came from. Generating the set Pi,ui takes (2k)! =
O (22kk2k) time per (i, ui). Checking the k-near condition to obtain the set Fi,ui while building Pi,ui takes k2 time per (i, ui). 
So generating Si takes O (k · 22kk2kk2 · |Q |) time per i. Knowing Si−1, generating Ri−1,ui ,Ui ,v ji

takes O (|S|) time. Hence, 
generating all of the sets is dominated by the time to build ∪i≤|S| Si , which is O (|S|k322kk2k|Q |) = O (n222kk2k+3).

After generating the necessary sets, we solve the dynamic program. Each subproblem (i, ui, Ui, v ji ) takes
O (|Ri−1,ui ,Ui ,v ji

)| time. So the total time to solve the dynamic program is O (
∑

i∈S,(ui ,Ui ,v ji )∈Si
|Ri−1,ui ,Ui ,v ji

|) =
O (|S||Si||Si−1|) = O (n(k · 22kk2k · n)2) = O (n324kk4k+2). !

3.1.2. Constrained k-near Addition
We use the same framework as Constrained k-near Editing to solve the Constrained k-near Addition. We change the 

definitions of the subproblem, the relevant sets, and the costs appropriately to adapt to the Addition problem.

Theorem 3.2 (Constrained k-near Addition). Constrained k-near Addition can be solved in time O (n324kk4k+2).

Proof. First, redefine C(i, ui, U i, v ji ) to be the smallest cost of adding edges incident to the weakest i positions so that ui
is in position i, Ui is the set of students in the weakest i − 1 positions, and v ji is the hardest question correctly answered 
by the i weakest students.

The sets P i,ui and F i,ui will stay the same as before. We redefine S i :=
{
(ui, Ui, v ji ) : ui ∈

[
max{1, i −k}, min{|S|, i +k}

]
,

Ui \
[
1, max{1, i −k −1}

]
∈ Fi,ui , v ji ∈ Q ∪{0}, v ji ≥ max NG({ui} ∪ Ui)

}
. Requiring that v ji is at least as hard as NG ({ui} ∪Ui)

ensures that the final solution will satisfy the interval property with respect to the given question order. It was not needed 
in the Editing problem because wherever v ji landed, the edges that reach questions harder than v ji were deleted. The 
definition of Ri−1,ui,Ui,v ji

will stay the same as before, but using the new definition of Si−1 from this section. Finally, the 
cost cui,v ji

will become the number of edge additions incident to ui so that the neighborhood of ui becomes {1, . . . , v ji }, 
i.e., cui ,v ji

:= |{1, . . . , v ji } \ NG(ui)|.
The recurrence relation from Constrained k-near Editing still applies here. However, the base cases become C(1, u1,

U1, v j1 ) = |{1, . . . , v j1 } \ NG(u1)| if v j1 > 0, and C(1, u1, U1, v j1 ) = 0 if v j1 = 0.
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Fig. 5. Subproblem (i − 1, ui−1, Ui−1) is compatible with subproblem (i, ui , Ui) if and only if Ui = {ui−1} ∪ Ui−1. The cost of (i, ui , Ui) is sum of the 
minimum cost among feasible compatible subproblems of the form (i − 1, ui−1, Ui−1) and the number of additions incident to ui to make its neighborhood 
the smallest set of questions containing the existing neighbors of Ui .

The run time is still dominated by the dynamic program since the time to construct Si becomes only |Q | times 
larger (to enforce the additional constraint that v ji is hard enough). Hence the total time to solve this problem remains 
O (n324kk4k+2). !

3.2. Unconstrained k-near

First, we solve the Unconstrained k-near Addition problem in time O (n324kk4k). Second, we show that the Unconstrained 
k-near Editing problem is NP-hard.

Assume that the students are given in k-near order 1, . . . , |S|. The questions are allowed to be ordered arbitrarily in the 
final solution.

3.2.1. Unconstrained k-near Addition

Theorem 3.3 (Unconstrained k-near Addition). Unconstrained k-near Addition can be solved in time O (n324kk4k).

Proof. We introduce subproblems of the form (i, ui, Ui). Define C(i, ui, U i) to be the smallest number of edges incident to 
the weakest i positions that must be added so that ui is in position i and Ui is the set of the i − 1 weakest students.

We use the same P i,ui and F i,ui as defined for Constrained k-near Editing to bound the search space for Ui given that 
ui is in position i. Define S i :=

{
(ui, Ui) : ui ∈

[
max{1, i − k}, min{|S|, i + k}

]
, Ui \ [1, max{1, i − k − 1} ∈ Fi,ui

}
.

Next, define Ri−1,ui,Ui :=
{
(ui−1, Ui−1) ∈ Si−1 : Ui = {ui−1} ∪ Ui−1

}
. The set Ri−1,ui ,Ui ensures that the smaller subprob-

lems have prefixes that are compatible with those assigned in the bigger subproblems they came from. Compatibility is 
illustrated in Fig. 5.

Lastly, define cui,Ui to be the number of edge additions incident to ui so that the neighborhood of ui becomes the 
smallest set of questions containing NG (Ui ∪ {ui}), i.e., cui ,Ui := |NG(Ui ∪ {ui}) \ NG(ui)|.

Using the above definitions, we have the following recurrence:

C(i, ui, Ui) = min
(ui−1,Ui−1)∈Ri−1,ui ,Ui

{C(i − 1, ui−1, Ui−1)} + cui ,Ui

The base cases are C(1, u1, U1) = |NG(U1) \ NG(u1)| for all (u1, U1) ∈ S1, since u1 must add edges to the questions that 
the weaker students correctly answered.

The final solution to Unconstrained k-near Addition is min(u|S|,U |S|)∈S|S| C(|S|, u|S|, U |S|).
To bound the run time, note that generating Si takes O (n · 22kk2kk2) time. The dynamic program will dominate the 

run time again. In the dynamic program, each subproblem (i, ui, Ui) takes O (|Ri−1,ui ,Ui |) time. So the total time is 
O (

∑
i∈S,(ui ,Ui)∈Si

|Ri−1,ui ,Ui |) = O (|S||Si||Si−1|) = O (n(n22kk2k)2) = O (n324kk4k). !

3.2.2. Unconstrained k-near Editing
The Unconstrained k-near Editing problem is NP-hard even for k = 1. We closely follow the proof of Drange et al. [9] for 

the NP-hardness of Threshold Editing to show that Unconstrained k-near Editing is NP-hard. In Drange et al.’s construction, 
they specified a partial order for which the cost of Threshold Editing can only worsen if the output ordering deviates from 
it. We crucially use this property to prove NP-hardness for Unconstrained 1-near Editing.

Theorem 3.4 (Unconstrained k-near Editing). Unconstrained k-near Editing is NP-hard.
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Fig. 6. Each set of six vertices represents the students corresponding to a variable x, y, or z. The bottom vertex represents a question corresponding to the 
clause cl = w ∨ x̄ ∨ y.

Proof. Let G = (S, Q , E) be a bipartite graph with initial student ordering π . Consider the decision problem & of determin-
ing whether there is a 1-near unconstrained editing of at most t edges for the instance (G, π). We reduce from 3-SAT to &. 
Let ' be an instance for 3-SAT with clauses C = {c1, . . . , cm} and variables V = {v1, . . . , vn}. We construct the corresponding 
instance & = (G', π', t') for 1-near unconstrained editing as follows. First we order the variables in an arbitrary order and 
use this order to define π . For each variable vi , create six students si

a, si
b, s

i
f , s

i
t, si

c, si
d . Next, we define a partial ordering P

that the initial order π' shall obey. Define P to be the partial order satisfying si
a > si

b > si
f , s

i
t > si

c > si
d for all i ∈ [n] and 

si
α > s j

β for all i < j, α, β ∈ {a, b, c, d, f , t}. Define π' to be the linear ordering satisfying all relations of P for the variables 
in the initial arbitrary order, and additionally si

f > si
t . We remark that the proof works regardless of whether we set si

f > si
t

or si
f < si

t in π' . We shall impose that optimal solutions satisfy all of the relations of P . To do so, for every s > s′ , we add 
t' + 1 new questions each with edges to s and no edges to s′ , and with edges to all r > s in π' . Then whenever an editing 
solution switches the order of s and s′ , it must edit at least t' + 1 edges. After adding the necessary questions to ensure 
feasible solutions must preserve the partial order P , we create a question qcl for each clause cl . If a variable vi appears 
positively in cl , then add the edge qcl s

i
t . If vi appears negatively in cl , then add the edge qcl s

i
f . If vi does not occur in cl , 

then add the edge qcl s
i
c . For all variables vi and clauses cl , add the edges qcl s

i
b and qcl s

i
d . Finally, define t' = |C |(3|V | − 1). 

Refer to Fig. 6 for an illustration of the construction.
Now, we show that there is a satisfying assignment if and only if there is a 1-near editing of at most t' edges. First, we 

prove the forward direction. Assume there is a satisfying assignment f : V → {T , F }. Let cl be a clause. One of the literals vi
in cl is set to T under the assignment f . If vi occurs positively, then edit the neighborhood of qcl to be all students s such 
that s ≥ si

t according to P and impose si
t > si

f in the solution. If vi occurs negatively in qcl , then edit the neighborhood of qcl

to be all students s such that s ≥ si
f and keep the initial order that si

f > si
t . In both cases, the neighborhood of qcl changed 

by 2 among the six students corresponding the variable vi and changed by 3 for the remaining groups of six students. So 
the number of edge edits incident to each (clause) question is 3|V | − 1. Note that the neighborhoods of the extra questions 
we added to impose P are already nested because each time a new question was added, it received edges to all students 
who are stronger than a particular student according to P . So only the questions that came from clauses potentially need 
to edit their neighborhoods to achieve nesting. Hence, the total number of edge edits is |C |(3|V | − 1) = t' .

Second, we prove the backward direction. Assume there is an unconstrained 1-near editing of |C |(3|V | − 1) edges to 
obtain a chain graph. Let cl be a clause. For any variable v j not occurring in cl , the original edges that qcl has to the six stu-
dents corresponding to v j are to s j

b, s
j
c , s

j
d . If the cut-off point of the edited neighborhood of qcl is among s j

a, s
j
b, s

j
f , s

j
t , s

j
c , s

j
d , 

then the edges incident to qcl must change by at least three among those six, which means that qcl would have at least 
3|V | edges incident to it. If the cut-off point of the edited neighborhood of qcl is among the six students corresponding to 
a variable vi that occurs in cl , then the edges incident to qcl must change by at least two (by switching the order of si

f and 
si

t when needed) among those six students and at least three for the students corresponding to the remaining variables. 
Thus qcl has at least 3|V | − 1 edges edits incident to it for every cl . So the smallest number of edge edits possible is at 
least |C |(3|V | − 1). By the assumption, G' has a feasible editing of at most |C |(3|V | − 1) edges. Then each qcl must have 
exactly 3|V | − 1 edits incident to it. So the cut-off point for the edited neighborhood of each qcl must occur among the six 
students corresponding to a variable vi occurring inside cl . If the occurring variable vi is positive, then the cut-off point 
must have been at si

t and required si
t > si

f since all other cut-offs incur at least three edits. Similarly, if vi is negative, then 
the cut-off point must have been at si

f and required si
f > si

t . All clauses must be consistent in their choice of the ordering 
between si

f and si
t for all i ∈ [n] since the editing solution was feasible. Hence, we obtain a satisfying assignment by setting 

each variable vi true if and only if si
t > si

f . !
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Next, we show a simple O (kn) additive approximation algorithm for Unconstrained k-near Editing.

Theorem 3.5 (Approximation for Unconstrained k-near Editing). Unconstrained k-near Editing has an O (kn) additive approximation 
algorithm.

Proof. Fix the student side to the initial ordering σ : S → [|S|] given for the k-near condition and solve the correspond-
ing Constrained Unconstrained Editing problem exactly. Denote by F the edge edits found from solving the Constrained 
Unconstrained Editing problem. Let σ ∗ be the ordering for S in an optimal solution to the original k-near Uncon-
strained problem. Let H be the minimum size edge edits corresponding to σ ∗ . It suffices to show that for each q ∈ Q , 
|N F (q)| − |NH (q)| ≤ 2k − 2, since this inequality would imply that |F | − |H | ≤ (2k − 2)|Q | ≤ 2kn.

For q ∈ Q , let p(q) be the position of the weakest student who answers q correctly according to the ordering σ ∗ . By the 
k-near condition, any student more than k − 1 positions after p(q) cannot be ordered before p(q) and vice versa. If p(q)
remains the position of the weakest student who correctly answers q according to the ordering σ , then the edge edits 
required would be the same as H , except for possibly those edges from q to students who are within k − 1 positions 
of p(q). For each q, F is determined by choosing the cut-off position for the neighborhood of q that minimizes the number 
of edits needed. Then N F (q) should differ from NH (q) no more than the case where the cut-off point for q stays the same 
position as p(q). So |N F (q)| − |NH (q)| ≤ 2(k − 1). Hence |F | − |H | = O (kn). !

3.3. Both k-near

We will solve the Both k-near Editing and Addition problems in time O (n328kk8k+4). We first show our solution for the 
Editing problem and then adapt it to the Addition problem.

Assume that the students and questions are both given in k-near order with student labels 1, . . . , |S|, and question labels 
1, . . . , |Q |.

3.3.1. Both k-near Editing

Theorem 3.6 (Both k-near Editing). Both k-near Editing can be solved in time O (n328kk8k+4).

Proof. We consider subproblems of the form (i, ui, Ui, ji, v ji , V ji ). Define C(i, ui, U i, ji, v ji , V ji ) to be the smallest num-
ber of edges incident to the weakest i students that must be edited so that student ui is in position i, Ui is the set of the 
i − 1 weakest students, ji is the position of the hardest question correctly answered by Ui ∪ {ui}, v ji is the question in 
position ji , and V ji is the set of the ji − 1 easiest questions.

Feasible and compatible subproblems. Next, we define the search space for (ui, Ui, ji, v ji , V ji ) given that ui is in position i. 
We use the same P i,ui and F i,ui defined in the proof for Constrained k-near Editing. Define S i :=

{
(ui, Ui, ji, v ji , V ji ) :

ui ∈
[

max{1, i − k}, min{|S|, i + k}
]
, Ui \

[
1, max{1, i − k − 1}

]
∈ Fi,ui , v ji ∈

[
max{1, ji − k}, min{|Q |, ji + k}

]
,

V ji \
[
1, max{1, ji − k − 1}

]
∈ F ji ,v ji

}
. Here, we need to constrain both the student side and the question side to make 

sure that all elements are k-near as opposed to only enforcing the k-nearness on the students in Constrained k-near Editing.
To bound the search space for subproblems to be compatible with the bigger subproblems they came from, we de-

fine Ri−1,ui,Ui, ji,v ji ,V ji
:=

{
(ui−1, Ui−1, ji−1, v ji−1 , V ji−1 ) ∈ Si−1 : Ui = Ui−1 ∪ {ui−1}, ji ≥ ji−1, V ji ∪ {v ji } ⊇ V ji−1 ∪ {v ji−1 },

ji > ji−1 ⇒ V ji ⊇ V ji−1 ∪{v ji−1 }
}

. The constraints in the set Ri−1,ui ,Ui , ji ,v ji ,V ji
ensure that the prefixes of position i and posi-

tion ji in the smaller subproblem will be compatible with the bigger subproblem that it came from. Furthermore, ji ≥ ji−1
ensures that stronger students correctly answer all questions that weaker students correctly answered. We demonstrate 
compatibility in Fig. 7.

The dynamic program. Finally, define cui,v ji ,V ji
to be the number of edge edits incident to ui so that the neighborhood of 

ui becomes exactly V ji ∪ {v ji }, i.e., cui ,v ji ,V ji
:= |NG(ui)3V ji ∪ {v ji }|.

Using the above definitions, we obtain the following recurrence.

C(i, ui, Ui, ji, v ji , V ji ) =
min

(ui−1,Ui−1, ji−1,v ji−1 ,V ji−1 )∈Ri−1,ui ,Ui , ji ,v ji
,V ji

{C(i − 1, ui−1, Ui−1, ji−1, v ji−1 , V ji−1)}

+ cui ,v ji ,V ji

The base cases are C(1, u1, U1, j1, v j1 , V j1 ) = |NG(u1)3{v j1 } ∪ V j1 | for all (u1, U1, j1, v j1 , V j1 ) ∈ S1.
The final solution is min(u|S|,U |S|, j|S|,v j|S| ,V j|S| )∈S|S| C(|S|, u|S|, U |S|, j|S|, v j|S| , V j|S| ).
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Fig. 7. Subproblem (i − 1, ui−1, Ui−1, ji−1, v ji−1 , V ji−1 ) is compatible with subproblem (i, ui, Ui , ji , v ji , V ji ) if and only if Ui = {ui} ∪ Ui−1, ji−1 represents 
a position no harder than ji , V ji ∪ {v ji } contains V ji−1 ∪ {v ji−1 }, and ji−1 strictly easier than ji implies that V ji contains V ji−1 ∪ {v ji−1 }. The cost of 
(i, ui, Ui , ji , v ji , V ji ) is the sum of the minimum cost among feasible compatible states of the form (i − 1, ui−1, Ui−1, ji−1, v ji−1 , V ji−1 ) and the number of 
edits incident to ui that makes its neighborhood V ji ∪ {v ji }.

Running time. First, observe that |Si | = O (k224kk4k|Q |), since there are O (k) choices for ui and vi , O (22kk2k) choices for 
Ui and V ji , and |Q | choices for ji . To build Si , we need to build Fi,ui and F ji ,v ji

. In Section 3, we saw that each of the 
Fi,ui takes O (k222kk2k) time to build. Then building the set Si is upper bounded by O (k · 22kk2kk2 · |Q | · k · 22kk2kk2) per i, 
where we are over-counting the time to generate all possible Ui and V ji by the time it takes to build Fi,ui and F ji ,v ji

. 
Building the set Ri−1,ui ,Ui , ji ,v ji ,V ji

while building Si will take O (|S| + |Q |) to check the conditions that restrict Si−1 to 
Ri−1,ui ,Ui , ji ,v ji ,V ji

. Due to the size of Si , the construction of sets will still be dominated by the time to solve the dy-
namic program. Specifically, each subproblem (i, ui, Ui, ji, v ji , V ji ) takes O (|Ri−1,ui ,Ui , ji ,v ji ,V ji

|) time. So the total time is 
O (

∑
i∈S,(ui ,Ui , ji ,v ji ,V ji )∈Si

|Ri−1,ui ,Ui , ji ,v ji ,V ji
|) = O (|S||Si||Si−1|) = O (n(k2 · 24kk4kn)2) = O (n328kk8k+4). !

3.3.2. Both k-near Addition
To solve the Addition version, we apply the method from the solution for Both k-near Editing.

Theorem 3.7 (Both k-near Addition). Both k-near Addition can be solved in time O (n328kk8k+4).

Proof. We redefine C(i, ui, U i, ji, v ji , V ji ) to be the smallest number of edges incident to the weakest i students that 
must be added so that student ui is in position i, Ui is the set of the i − 1 weakest students, ji is the position of the 
hardest question correctly answered by Ui ∪ {ui}, v ji is the question in position ji , and V ji is the set of the ji − 1 easiest 
questions.

We keep P i,ui and F i,ui the same as in the proof for Constrained k-near Editing. Redefine S i :=
{
(ui, Ui, ji, v ji , V ji ) :

ui ∈
[

max{1, i − k}, min{|S|, i + k}
]
, Ui \

[
1, max{1, i − k − 1}

]
∈ Fi,ui , v ji ∈

[
max{1, ji − k}, min{|Q |, ji + k}

]
,

V ji \
[
1, max{1, ji −k − 1}

]
∈ F ji ,v ji

, V ji ∪ {v ji } ⊇ NG({ui} ∪ Ui)
}

. The addition constraint V ji ∪ {v ji } ⊇ NG({ui} ∪ Ui) is added 
here to ensure that the interval property induced by the current student ordering is satisfied every step. It was not needed 
in section 3.3.1 because existing edges to questions outside V ji ∪ {v ji } could be deleted. The definition of Ri−1,ui,Ui, ji,v ji ,V ji
remains the same as section 3.3.1, but using the newly defined Si−1. Lastly, redefine cui,v ji ,V ji

to be the number of edge 
additions incident to ui so that the neighborhood of ui becomes exactly V ji ∪ {v ji }, i.e., cui ,v ji ,V ji

:= |V ji ∪ {v ji } \ NG(ui)|.
The general recurrence relation of Section 3.3.1 stays the same. The base cases change to C(1, u1, U1, j1, v j1 , V j1 ) =

|{v j1 } ∪ V j1 \ NG(u1)|, with the convention that j1 = 0 means V j1 = ∅ and v j1 is omitted from the count |{v j1 } ∪ V j1 |.
Although the time to construct Si is larger by a factor of |Q |, the total run time is dominated by the dynamic program, 

which takes O (n328kk8k+4). !

It is possible that the above running times for the five “easy” problems could improve. Our dynamic programs are 
designed based on the intuitiveness of the states and not necessarily optimized for time complexity.

4. Conclusion

We proposed a new set of problems that arise naturally from ranking participants and tasks in competitive settings and 
classified the complexity of each problem. First, we introduced six k-near variants of the Chain Editing problem, which 
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capture a common scenario of having partial information about the final orderings from past rankings. Second, we provided 
polynomial time algorithms for five of the problems and showed NP-hardness and an O (kn) additive approximation for the 
remaining one.

Some open questions still remain for the NP-hard problems in Fig. 2. For Chain Editing when both sides are uncon-
strained, there are no known approximation algorithms. For the corresponding Chain Addition problem, can a constant 
approximation can be achieved? For the Unconstrained k-near Editing problem, can the O (kn) additive approximation be 
improved?
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