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Abstract

Mitochondrial DNA sequences are frequently transferred into the nuclear genome, giving rise to numts (nuclear
mitochondrial DNA segments). In the absence of whole genomes, avian numts have been suggested to be rare and
relatively short. We examined 64 bird genomes to test hypotheses regarding numt frequency, distribution among
taxa, and likelihood of homoplasy. We discovered 100-fold variation in numt number across species. Two songbirds,
Geospiza fortis (Darwin’s finch) and Zonotrichia albicollis (white-throated sparrow) had the largest number of
numts. Ancestral state reconstruction of 957 numt insertions in these two species and their close relatives indicated
a remarkable acceleration of numt insertion in the ancestor of Geospiza and Zonotrichia followed by slower,
continued accumulation in each lineage. These numts appear to result primarily from de novo insertion with
the duplication of existing numts representing a secondary pathway. Insertion events were essentially homoplasy-

free and numts appear to represent perfect rare genomic changes.
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Nuclear mitochondrial DNA segments (Numts), which result
from insertion of mitochondrial DNA (mtDNA) into the
nuclear genome, have been described in numerous eukar-
yotes (Lopez et al. 1994; Hazkani-Covo et al. 2010). The
genomics era has led to an explosion of information about
the numt repertoire of taxa ranging from fungi and plants to
mammials (Hazkani-Covo et al. 2010). Those studies revealed
substantial heterogeneity in numbers of numts across taxa
(Bensasson et al. 2001; Hazkani-Covo et al. 2010), with some
species (e.g, humans) having relatively large numbers (e.g,
Mourier et al. 2001; Tourmen et al. 2002). The factors that
result in variation in numt numbers among genomes are
unclear, but genome size may be important (Hazkani-Covo
et al. 2010).

Historically, systematists focused on avoiding PCR amplifi-
cation of numts because they can mislead barcoding, phylo-
genetic, and phylogeographic studies (Bensasson et al. 2007;
Bertheau et al. 2011). In the genomic era, however, numts are
of intrinsic evolutionary interest for several reasons
(Bensasson et al. 2001; Tourmen et al. 2002; Leister 2005).
First, the rate of nuclear sequence evolution is lower than
the mitochondrial rate in vertebrates, so numts can provide
information about ancestral mitochondrial sequences (Hu
and Thilly 1994; Zischler et al. 1995; Bensasson et al. 20071;
Tourmen et al. 2002). Second, numts could represent a novel
type of rare genomic changes (RGC) for systematic studies
(Hazkani-Covo 2009). Ideal RGCs are homoplasy-free and can
accurately reconstruct a single bipartition in their associated

gene tree. Therefore, identifying ideal RGCs is valuable for
phylogenomic studies.

Avian numts have been suggested to be uncommon and
relatively short (Pereira and Baker 2004; but see Nacer and do
Amaral 2017 regarding falcons). If genome size correlates with
numt numbers, the low variation in avian genome sizes
(Zhang et al. 2014) suggests limited variation in numt num-
bers among species. However, avian studies have rarely lever-
aged complete genomes. Using 64 complete avian genomes,
we tested the following hypotheses: 1) numts are uncommon
in avian genomes; 2) numbers of numts do not vary substan-
tially among taxa; and 3) numts fit an RGC model and exhibit
little or no homoplasy.

Different Avian Genomes Exhibit
Remarkable Variation in Numt Content

We discovered remarkable variation across species in numt
number, ranging from four to >600 numts (fig. 1A), the high-
est values approaching the upper estimates from the human
genome (Hazkani-Covo et al. 2010). Thus, we can reject our
first two hypotheses (numts are uncommon and numbers of
numts do not vary much among taxa). We examined <1% of
extant bird species (Brown et al. 2017), thus, it is reasonable to
expect broader surveys to reveal additional variation in numt
number. One clade was a clear outlier: the White-throated
sparrow (Zonotrichia albicollis, a New world sparrow) and the
Medium ground finch (Geospiza fortis, a tanager and one of
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Fic. 1. Numt repertoire of avian genomes. (A) Number of numts in each bird genome mapped on the Brown et al. (2017) synthetic tree topology,
with branches shaded to indicate the major clades described in Reddy et al. (2017). The five species examined in more detail are bolded. The number
of numt insertions we identified in falcons is similar to Nacer and do Amaral (2017). (B) Time-calibrated tree for the five focal passerines indicating
the number of numt loci where presence/absence could be scored in all taxa. Character states are shown graphically and the number of numts with
each character state is indicted using italic numbers, either at the internal nodes (for numt insertions found in multiple taxa) or adjacent to the taxon
names (for numts in a single taxon). Numt insertions where the taxonomic distribution could not be unambiguously assigned were omitted from
part B (see supplementary fig. S7, Supplementary Material online). Estimates of numt insertion rates are presented below branches (the elevated
rates in Geospiza, Zonotrichia, and their ancestral lineage are highlighted). “+1” indicates a potentially homoplastic locus.

Darwin’s Galapagos finches). The numts in these taxa are
unlikely to reflect genome assembly errors because the
genomes for both taxa reflect high-coverage sequencing
(>63x) and the assemblies were generated using different
software. Moreover, the Geospiza and Zonotrichia numt
insertions met the stringent criteria described in our sup-
plementary methods, Supplementary Material online.
Finally, these genomes are similar in size to other avian
species (Zhang et al. 2014), indicating the large numbers
of numt insertions in these taxa do not reflect a simple
correlation with genome size.

A Burst of Numt Insertions in Tanagers and
New World Sparrows

We focused additional analyses on a clade of five passerines
that included Geospiza and Zonotrichia (fig. 1A). We identified
957 orthologous loci with numts present in at least one taxon,
and scored the numts as present or absent in all five taxa. An
additional 74 orthologous loci were found in some, but not all
taxa; this could reflect the loss of the orthologous sequence in
some taxa or a failure of some genome assemblies to include
the orthologous region. The insertions in Geospiza or

Zonotrichia totaled over 160 kilobases (kb) and covered the
entire mitochondrial genome (fig. 2). It appears that all
mtDNA regions have a similar propensity to integrate into
the nuclear genome, with specific regions having a modest
overrepresentation at most. Most numt loci included a single
mtDNA sequence, although some numt loci comprised two
or three mtDNA segments (supplementary methods and
tables S1 and S2, Supplementary Material online).

Examination of the 957 loci without missing data revealed
649 numts unique to a single taxon (fig. 1B). Of the shared
insertions, 33 numts appeared to reflect insertions prior to the
divergence of Serinus canaria (canary) from the Geospiza-
Zonotrichia clade; 13 of those numts appear to have been
present in the common ancestor of all five passerines
(fig. 1B). A much larger number of numts were present in
the common ancestor of Geospiza and Zonotrichia; the esti-
mated insertion rate is approximately two orders of magni-
tude greater than the rate outside of these two species
(fig. 1B). The rate for the Geospiza and Zonotrichia terminal
branches was lower, though it still exceeded the ancestral
insertion rate. These results suggest a remarkable pulse of
numt insertions followed by a decrease within the Geospiza-
Zonotrichia clade.
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Fic. 2. Positions in the mitochondrial genome matching numts in
each focal taxon (form top to bottom are: Zonotrichia, Geospiza,
Serinus, Ficedula, and Taeniopygia). Ribosomal RNAs, protein-coding
genes, and the control region are defined on the map, transfer RNA
genes are indicated with lines. Because the mitogenome is circular,
this map begins at the tRNA-Phe, immediately before the 12S ribo-
somal RNA. Numts that span the (arbitrarily chosen) start point of
our map are shown at the end; this necessitated repeating the 125
ribosomal RNA (we indicate this using a dotted line and different
shades below the gene map).

There are three potential models for numt insertions
across our focal taxa: 1) insertions occurred at a constant
rate (continuous); 2) a single rate shift in the common an-
cestor of Geospiza and Zonotrichig; and 3) two rate shifts
occurred (an increase in their common ancestor followed
by a decrease). This third model can be viewed as a punctu-
ated model; such patterns have been documented in both
primates and plants (e.g, Adams et al. 2002; Gunbin et al.
2017). Our insertion rate estimates (fig. 1B) are most consis-
tent with the third model. However, there is evidence of re-
cent insertions in both Geospiza and Zonotrichia. Recent
numt insertions should exhibit a higher degree of identity
to functional mitochondrial sequences and be longer.
The former is due to the accumulation of point mutations
while the latter is that numt length tends to decrease after
insertion (Hazkani-Covo and Martin 2017) because small
deletions outnumber small insertions (Johnson 2004). Some
long (>1,000 bp) numts are present in either Geospiza or
Zonotrichia but the shared insertions are shorter (fig. 3).
The longest numts (>750bp) unique to Geospiza exhibited
a higher degree of identity to the Geospiza mitogenome
(mean >91%) than the longest numts present in three or
more taxa (mean <75%, see supplementary table S2,
Supplementary Material online); the Zonotrichia mitogenome
sequence is unavailable so we only conducted this analysis in
Geospiza. Taken as a whole, these data suggest some recent
numt insertions in Geospiza and Zonotrichia but the rate of
numt accumulation was clearly higher in their common
ancestor.
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The numt presence/absence pattern for our five focal spe-
cies appeared to be essentially homoplasy-free (fig. 1B), sup-
porting our hypothesis that numts fit the RGC model. Indeed,
the apparent absence of homoplasy seems surprising given
extensive discordance among avian gene trees (e.g, Jarvis et al.
2014). Discordance among gene trees can drive the appear-
ance of homoplasy even for characters that are actually
homoplasy-free (supplementary text S1 and figs. S1 and S2,
Supplementary Material online). We did find two numts with
unclear insertion boundaries that appeared homoplastic
(supplementary alignment, Supplementary Material online).
However, even if we include those two loci the consistency
index (Kluge and Farris 1969) was 0.999. Indeed, if we relax the
no homoplasy assumption and estimate ancestral states us-
ing maximum likelihood, numt insertion rate estimates are
essentially unchanged (supplementary fig. S3, Supplementary
Material online).

What Drives Numt Insertions?

The transposition of mtDNA into the nuclear genome has
occurred continuously over time (Mourier et al. 2007;
Hazkani-Covo et al. 2010). Work in yeast suggests numt in-
sertion reflects passive capture of mtDNA into nuclear
double-stranded DNA breaks (DSBs) by the nonhomologous
end joining (NHEJ) repair machinery (Ricchetti et al. 1999);
this is probably the major numt insertion mechanism in many
taxa (Hazkani-Covo and Covo 2008). Numt loci can reflect
independent mtDNA insertions due to DSBs or postinsertion
duplications (Bensasson et al. 2003; Hazkani-Covo et al. 2003).
The de novo insertion hypothesis implies numts would cor-
respond to many different mtDNA segments, as we found
(fig. 2). However, a few mitogenomic regions appeared over-
represented as numts (supplementary fig. S4, Supplementary
Material online). This could indicate a role for postinsertion
duplications or hotspots for transfer. We identified some du-
plicated flanking sequences, as predicted by the postinsertion
duplication model (supplementary fig. S5, Supplementary
Material online), though we cannot rule out a contribution
of hotspots. Regardless, de novo insertion appears to explain
most of the numts in Geospiza and Zonotrichia.

What might have led to the burst of insertions in the
ancestor of Geospiza and Zonotrichia? First, a substantial in-
crease in the rate of DSBs in the ancestor could drive the
observed pattern. The primary endogenous source of DSBs
appears to be the blockage or pausing of replication forks
(Mehta and Haber 2014). The basis of replication fork block-
age is complex, and is likely to be very difficult to reconstruct
for ancestral lineages like the Geospiza-Zonotrichia ancestor.
Second, a mutation that reduced the fidelity of NHE) during
DSB repair could also increase the rate of numt insertion.
Finally, increased leakage of DNA from the mitochondrion
could also drive an increased numt insertion rate. Mutations
that reduce the integrity of the mitochondrion and lead to an
increased insertion of numts in somatic tissue are known
(Srinivasainagendra et al. 2017); assuming this also occurs in
the germline it would lead to an increased numt insertion
rate. We examined the best-characterized gene that affects
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mitochondrial leakage (i.e, orthologs of yeast YMET,
Thorsness and Fox 1993) and were unable to find a clear
pattern to explain our observations (supplementary text S2
and fig. S6, Supplementary Material online). The reduced in-
sertion rate on the terminal branches (fig. 1B) suggests the
process(es) that drove the burst are no longer active, making
it difficult to test these hypotheses. However, these hypoth-
eses could be tested in taxa with an ongoing burst of numt
insertions (we expect such a taxon to have many polymor-
phic numts) since the numbers of DSBs and mitochondrial
integrity could be examined in those taxa.

The Importance of Numts for Understanding
Evolution

One significant result is the observation that numt insertions
are essentially homoplasy free, making them virtually perfect
RGCs. The DSB mechanism is consistent with numt inser-
tions being perfect RGCs because the locations of DSBs
should be random throughout the genome rather than oc-
curring independently at the same site in different taxa. This
is in contrast to better-studied RGCs, like transposable ele-
ment insertions or microinversions, which appear to exhibit
some true homoplasy (Braun et al. 2011; Han et al. 2011).
Perfect RGCs define gene tree bipartitions accurately and so
can provide accurate estimates of the amount of incomplete
lineage sorting deep in the tree (Matzke et al. 2012; Jarvis
et al. 2014; Suh et al. 2015). A large number of true gene tree
partitions would provide a unique source of information
about ancient population processes; numts are most useful
for divergences that occurred during the burst of insertions
and they should outperform other RGCs during a burst. We
have only begun to survey avian genomes so it seems rea-
sonable to expect additional numt insertion bursts. In fact,
the other lineages with moderately large numbers of numts
(fig. 1) could have relatives with a much larger numt

repertoire; sequencing of those related taxa could reveal ad-
ditional bursts of numt insertions.

Methods

We searched 64 avian genomes using related mitogenomes as
BLASTN (Camacho et al. 2009) queries. We then focused on
five passerine species where we conducted BLASTN searches
with the flanks of the 1,031 numts identified in those taxa; the
numt was scored as present (1), absent (0), or unknown (?) for
each of the five species (957 loci had data for all taxa). We
estimated the time tree with 100 intron loci from Jarvis et al.
(2014) using RAXML (Stamatakis 2014) and treePL (Smith and
O’Meara 2012) assuming Corvus and Geospiza diverged
20.526 Ma based on Jarvis et al. (2014). Estimates of numt
insertion rates were obtained by dividing the number of
insertions on each branch by the length of that branch. For
additional details see supplementary methods and fig. S7,
Supplementary Material online.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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