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This work was motivated by a lacking general consensus in the exact form of the

boundary conditions (BCs) required on the solid surfaces for the continuum mod-

eling of RF plasmas. Various kinds of number and energy density BCs on solid

surfaces were surveyed and how they interacted with the electric potential BC to

affect the plasma was examined in two fundamental RF plasma reactor configura-

tions. A second-order local mean energy approximation with equations governing the

electron and ion number densities, and the electron energy density was used to model

the plasmas. Zero densities and various combinations of drift, diffusion and thermal

fluxes were considered to set up BCs. It was shown that the choice of BC can have

a significant impact on the sheath and bulk plasma. The inclusion of the secondary

electron emission from the surface had a negligible effect whereas the thermal and

diffusion fluxes to the surface were found important. A pure drift BC for dielectric

walls failed to produce a sheath.
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I. INTRODUCTION

Radiofrequency (RF) plasmas are encountered in many situations of practical interest

such as manufacturing processes and laboratory experiments. RF plasmas are used for

etching and deposition of thin films on semiconductors, plasma enhanced chemical vapor

deposition (PECVD)1, producing quantum dots2, plasma synthesis3, coating nanoparticles4,

and producing carbon nanotubes5. They are also used in some dusty plasma experiments6

where phenomena such as coulomb crystallization7,8 and dust charging9,10 are examined and

in plasma medicine applications ranging from equipment sterilization11,12 to wound healing13

and possibly cancer treatment14. Modeling through continuum (hydrodynamic) approaches

has been an essential tool in understanding RF plasmas in both basic and applied research

setups15–18.

In the continuum modeling of plasmas, partial differential equations derived from the

first two or three moments of the Boltzmann equation are solved. There are two common

continuum models for RF plasmas. One is based on the local field approximation where a set

of drift-diffusion equations describing the time and space variations of the ion and electron

number densities are solved19,20. The other is based on the local mean energy approximation

where an additional drift-diffusion equation is solved for the electron energy21–23. In both

approaches, a poisson equation is solved for the electric potential.

Although boundary conditions (BC’s) are essential for continuum modeling, what con-

stitutes an adequate BC on the solid surfaces of an RF plasma is not completely described

in the literature. Continuum models for RF plasmas conventionally use the same boundary

conditions as DC plasmas. There has been some detailed studies focused on the BC’s for

direct current glow discharges24,25; however, the competence of these conditions for RF plas-

mas has not been thoroughly investigated. In general, RF plasma continuum models use

the local-mean-energy approximation which requires solving the electron energy equation.

In contrast, DC plasmas often use the local-field-approximation which neglects the electron

energy equation, hence the energy boundary conditions are not included24,25. Moreover, DC

plasma boundary conditions often include the secondary emission of electrons due to ion

impact on the surfaces24,26 whereas RF plasmas often neglect it.

A continuum plasma model requires a set of BC’s for the number and energy densities,

and a BC for the electric potential. For the electric potential, surfaces are often grounded
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or have a known voltage, but could instead be dielectrics27,28 where the surface develops

a non-uniform charge as a result of the current from the plasma. The number and energy

densities are set to zero at the surface in some studies29,30 on the assumption that the charged

particles are absorbed by the surface. In other studies, the flux to the surface is specified

based on the drift toward the boundary28,31 and the thermal motion27,32. Secondary emission

effects at boundaries are often neglected in RF discharges although occasionally they are

included33.

In the works reviewed above, the rationale for selecting the BC kind is rarely provided

and the importance of the choice is not fully discussed or quantified. The current work

examines and compares various boundary conditions for the number and energy densities and

determines their effects in two fundamental RF plasma setups. The differential equations

of the continuum model used here are presented in Sec. II. The details of the boundary

conditions are discussed in Sec. III. The numerical methods used to solve the system of

equations are illustrated in Sec. IV. The results are discussed in Sec. V and conclusions are

made in Sec. VI.

II. GOVERNING EQUATIONS

The second-order ‘local mean energy’ model22 is used for the RF plasmas studied in this

work. In this model, the equations governing the electron number density ne, ion number

density ni, and electron energy density ωe are:

∂ne(i)

∂t
+∇ · Γe(i) = Se(i), (1)

∂ωe

∂t
+∇ · Γω = −eΓe ·E + Sω, (2)

where

Γe(i) = sgn(q)ne(i)µe(i)E −De(i)∇ne(i), (3)

Γω =
5

3
(−ωeµeE −De∇ωe) , (4)

and sgn(q) is 1 for ions and -1 for electrons and electron energy. Here, E is the electric field

calculated by:

E = −∇φ, (5)
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where φ is the electric potential which satisfies Poisson’s equation:

∇
2φ =

e

ε0
(ne − ni) , (6)

where e is the electron charge. In the equations above, µe(i) is the electron (ion) mobility,

De(i) is the electron (ion) diffusion coefficient and E is the electric field. Eqs. (3-4) define the

fluxes of electrons (ions) and energy, respectively. The source term Se(i) in eq. (1) accounts

for the electrons and ions created by ionization. The gas is assumed to be singly ionized,

therefore Si = Se = kinengas where ki is the ionization rate coefficient. The ionization rate

was determined by BOLSIG+34 which solves the electron Boltzmann equation and tabulates

the ionization rate and excitation rates as a function of the mean electron energy. The mean

electron energy ε, the electron temperature Te and ωe are correlated with each other through

ωe = neε =
3

2
kBneTe, (7)

where kB is the Boltzmann constant. In the energy equation (2), the term −eΓe ·E accounts

for the ohmic or joule heating of the electrons in the electric field and the term Sω = SeHi

accounts for the energy loss due to ionization and excitation, where Hi is the ionization

energy.

III. BOUNDARY CONDITIONS

There are three kinds of boundary conditions which are used in plasma modeling: the

variable is specified at the boundary (Dirichlet kind), the normal component of the gradient

of the variable is specified at the boundary (Neumann kind), or the flux, given by eqs. (3-4)

which is a function involving the variable and its gradient, is specified at the boundary (Robin

kind). Extrapolation boundary conditions can also be used, although they are typically used

for outflows not solid surfaces.

A. Electric potential boundary conditions

The boundary condition for Poisson’s equation can be either a Dirichlet kind that speci-

fies the voltage or a Neumann condition that specifies the normal electric field. In this study,

the electric potential boundary conditions that are considered are the specified voltage con-

dition and the specified electric field condition which is used for dielectrics and conductors.
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The distinction between conductors and dielectrics is that the surface charge of a dielectric

varies across the surface while a conductor has the same charge across the entire surface.

Conductors are not considered here as they are rarely encountered in plasma modeling.

1. Specified voltage (Dirichlet)

In the most common configuration for an RF plasma, one electrode has an applied voltage

and the other electrode is grounded. Sometimes the outer wall of the reactor will also be

grounded29. For a grounded surface, the boundary condition is:

φ = 0. (8)

For the powered electrode, the electric potential is given by:

φ = VDC + VRF sin (2πft) , (9)

where VDC is the direct current voltage, VRF is the radiofrequency voltage and f is the RF

frequency. In one-dimensional cases, the direct current voltage will be zero, however, for two

or three-dimensional cases, there can be a difference in the area of the powered electrode

and the total grounded area, which causes a natural DC bias29,35. In the case of a cylindrical

reactor where the outer wall is a dielectric, the DC bias will be zero.

2. Dielectric (Neumann)

Another common BC for the electric potential is a dielectric surface27,28. In this kind,

the electric field (gradient of the potential) is imposed through a equation using the wall

charge. The charge density distribution σ is the time integral of the current to the wall so

for a singly ionized gas, this equation reads:

∂σ

∂t
= e (Γi − Γe) · n, (10)

where n is the unit normal vector directed out of the domain on the boundary surface. The

electric field is correlated with the wall charge through Gauss’ law:

−E · n =
σ

ε0
. (11)
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B. Number and energy density boundary conditions

The BCs for the number and electric energy equations are either a Dirichlet kind where

the number and energy density are specified, or a Robin kind, where the fluxes are specified.

There is no general consensus in the literature on how to specify the fluxes. Secs. III B 2

through III B 5 discusses the flux boundary conditions used in the previous studies.

1. Zero densities (Dirichlet)

The simplest BC assumes that the surface is perfectly absorbing with no reflection29,30,

therefore, the ion and electron number density at the surface are zero, i.e., ni = ne = 0,

and correspondingly, ωe = 0. In a variant form of these BCs, the component of ion density

gradient normal to the wall is set to zero, i.e., ∇ni · n = ne = ωe = 036. If the electric

field is directed out of the domain causing the ions to flow out of the domain, the zero ion

density gradient boundary condition produces the same results as the zero number density

boundary condition. This is the case for the plasmas examined in this study so the zero

gradient condition is not included here.

2. Pure drift (Robin)

In this BC, the flux directed towards the surface is assumed pure drift with no diffusion

and no flux away from the surface28,31. It is necessary to determine whether the flux is

towards the surface, which can be accomplished by defining:

ae(i) =







1 sgn(q)E · n ≥ 0

0 sgn(q)E · n < 0
. (12)

The normal component of the electron (ion) flux at the boundary is:

Γe(i) · n =
[

ae(i) sgn(q)µe(i)E · n
]

ne(i), (13)

where Γe(i) is given in eq. (3). Correspondingly, the normal component of the energy flux is

calculated by:

Γω · n =

[

−ae
5

3
µeE · n

]

ωe. (14)
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3. Thermal flux (Robin)

In this BC27,32, the flux directed towards the surface is a combination of the drift flux to

the surface, as in Section III B 2, and the thermal flux towards the surface. As a result, there

is always flux towards the surface even when the electric field causes the drift to be directed

away from the surface. The thermal flux towards the surface is assumed to be the one-way

flux for a Maxwellian distribution which is equal to 1
4
nvth. For the ions and electrons, the

flux at the boundary is:

Γe(i) · n =

[

ae(i) sgn(q)µe(i)E · n+
1

4
vthe(i)

]

ne(i), (15)

where vthe(i) is the thermal velocity of the electrons (ions) determined by:

vthe(i) =

√

8kB
π

Te(i)

me(i)

. (16)

With respect to the energy BC, there are two approaches, both of which can be formulated

by

Γω · n =

[

−ae
5

3
µeE · n+ βvthe

]

ωe, (17)

where β is a factor depending on the approach. In the first approach, where the thermal

flux is equated to the enthalpy flux23,37,38, β = 5/12 as the enthalpy flux is 5
2
kBTeΓe. In the

second approach, where the thermal flux is equated to the one-way flux of kinetic energy

for a Maxwellian distribution27,39–41, β = 1/3 as the one-way flux of kinetic energy for a

Maxwellian distribution is 2kBTeΓe. The one-way flux of kinetic energy for a Maxwellian

distribution is more consistent with the assumptions made for the electron BC, therefore,

the second approach is chosen here.

4. Thermal and diffusion flux (Robin)

This boundary condition42,43, which is based on a formulation proposed by Hagelaar et

al.24, assumes that in addition to the previously considered drift and thermal fluxes, the

diffusion flux to the wall is significant. The ion BC adds a diffusion term
(

−1
2
Di∇ · n

)

to

Eq. (15) giving:

Γi · n =

[

aiµiE · n+
1

4
vthi

]

ni −
1

2
Di∇ni · n. (18)
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The term involving the gradient can be challenging to implement due to possible numerical

difficulties in evaluating the gradient, so Hagelaar et al.24 proposed an alternative form,

using the definition of the ion flux in Eq. (3). This form for the electron (ion) flux reads:

Γe(i) · n =

[

sgn(q)
(

2ae(i) − 1
)

µe(i)E · n+
1

2
vth

]

ne(i). (19)

Since the plasma model used by Hagelaar et al.24 did not include the electron energy equa-

tion, they did not discuss the BC for the energy equation. Here, the following condition,

which is consistent with Eq. (18), is proposed for the energy flux of the electrons:

Γω · n =

[

−ae
5

3
µeE · n+

1

3
vthe

]

ωe −
5

6
De∇ωe · n. (20)

The last term accounts for the diffusion, the coefficient is Dω/2 which simplifies to 5DE/6

since Dω = 5De/3, the other terms match Eq. (17) for the thermal flux boundary condition.

Another equivalent alternative form without the gradient term is given by:

Γω · n =

[

− (2ae − 1)
5

3
µeE · n+

2

3
vth

]

ωe. (21)

5. Secondary emission (Robin)

This boundary condition includes the effect of the secondary electron emission due to ion

impact (SEE)24. The ion flux at the boundary is identical to Eq. (19). On the other hand,

the net electron density at the boundary is the combination of the SEE electrons, nγ, and

the primary electrons directed from the bulk, nα = ne − nγ. Therefore, the electron flux at

the wall is given by Γe · n = Γγ · n+ Γα · n, where Γγ is the flux of the SEE electrons and

Γα is the net electron flux. The boundary condition for the bulk electron flux is similar to

the boundary condition for the ions:

Γα · n =

[

− (2ae − 1)µeE · n+
1

2
vth

]

nα. (22)

On the other hand, the SEE electrons are assumed to have a beam-like behavior and not

flow back to the wall, thus, the boundary condition for the SEE flux is:

Γγ · n = (1− ae) γΓi · n, (23)

where γ is the SEE coefficient which defines the average number of electrons emitted per

ion impact. Due to the beam-like behavior assumption for the emitted secondary electrons,
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the electrons do not flow back towards the surface and diffusion can be neglected. Therefore

the number density of the SEE electrons can be written as:

nγ = (1− ae)
γΓi · n

µeE · n
. (24)

Combining Eqs (22-24) gives the boundary condition for the total electron flux as:

Γe · n =

[

− (2ae − 1)µeE · n+
1

2
vth

]

ne

−
1

2
vthnγ − 2 (1− ae) γΓi · n.

(25)

The energy density at the boundary consists of the SEE electron energy ωγ and the bulk

energy ωα = ωe − ωγ. The energy flux of the electrons from the bulk is calculated by:

ΓA · n =

[

− (2ae − 1)

(

5

3
µe

)

E · n+
2

3
vth

]

ωα. (26)

Due to the beam-like behavior assumed for the SEE electrons, the energy boundary condition

for the SEE electrons is:

ΓB · n = [(1− ae) γΓi · n] εγ, (27)

where εγ is the mean energy that the SEE electrons are emitted at, which for this study is

2 eV44. The energy density of the SEE electrons is calculated by:

ωγ = (1− ae)
γεγΓi · n

µeE · n
. (28)

Combining Eqs (26-28) gives the boundary condition for the energy flux as:

Γω · n =

[

− (2ae − 1)
5

3
µeE · n+

2

3
vth

]

ωe

−
2

3
vthωγ − 2 (1− ae) εγγΓi · n.

(29)

C. Extrapolation boundary condition for ions

In the boundary conditions given in Sections III B 1-III B 5, the ions and electrons are dealt

with at the boundary, similarly. However, Hammond et al23 suggested that this treatment

may not be appropriate because their analysis showed that ion boundary conditions were not

necessary. Their analysis showed that the electric field was directed out of the plasma which

meant the ions always flowed out of the domain. To set up a boundary condition consistent
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with the suggestion made by Hammond et al, cases were run in the current study with an

extrapolation condition used for the ion number density when the electric field was directed

out of the domain. In the extrapolation boundary condition, the value of the variable at the

boundary is extrapolated from the values at the grid points near the boundary.

IV. NUMERICAL METHOD

A second order discretization scheme was applied on the time derivatives in the plasma

equations:

3nn+1
e − 4nn

e + nn−1
e

2∆t
+∇ ·

(

−µen
n+1
e E

n+1
−De∇nn+1

e

)

= Sn
e , (30)

3nn+1
i − 4nn

i + nn−1
i

2∆t
+∇ ·

(

µin
n+1
i E

n+1
−Di∇nn+1

i

)

= Sn
e , (31)

3ωn+1
e − 4ωn

e + ωn−1
e

2∆t
+∇ ·

5

3

(

−µeω
n+1
e E

n+1
−De∇ωn+1

e

)

= −eΓn+1
e ·E

n+1 + Sn
ω ,

(32)

∇
2φn+1 =

e

ε0

(

nn+1
e − nn+1

i

)

, (33)

where the superscript n indicates the time level and the electric field comes from Eq. (5). The

ionization source is treated as an explicit term. These equations constitute a nonlinear set of

equations at time level n+ 1 for nn+1
e , nn+1

i , ωn+1
e , and φn+1 after the spatial discretization

is carried out. The nonlinearity is due to the nonlinear first terms in the parentheses of

eqs. (30-32) on the left hand sides and the nonlinear first term on the right hand side of

eq. (32). The equations are advanced in time by estimating the electric field at the new

timestep, En+1, then updating nn+1
e , nn+1

i , ωn+1
e and finally the electric field is updated.

Since ne is updated before ωe, the ohmic heating term in Eq. (32) uses the updated value

of ne. The equations are iterated until the system is solved simultaneously.

For the spatial discretization, a finite difference method is applied in an axisymmetric

cylindrical coordinate consistent with the axisymmetric geometry of the plasma reactor

studied in this work. The spatial discretization of the fluxes, the terms in the parentheses

of eqs (30-33), uses the Scharfetter-Gummel scheme45–47. For this scheme, the equation for
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the flux of n in the y-direction is given by:

Γj+1/2 =
D

∆y

[

Pe

1− exp (−Pe)
nj −

(

Pe

1− exp (−Pe)
− Pe

)

nj+1

]

, (34)

where Pe is the Peclet number, defined as:

Pe =
sgn(q)µEy∆y

D
. (35)

In the computations with very small values of Pe, an expanded expression is used for

Pe
1−exp(−Pe)

= 1 + Pe/2 + Pe2/12− Pe4/720 + · · · .

A nonuniform, tan-stretched, grid is used with a higher resolution near the electrodes and

outer wall. The grid is staggered, as shown in Fig. 1, with the primary variables, φ, ne,i, and

ωe, evaluated on the nodes, j, and the electric field E and the fluxes Γe,i,ω evaluated halfway

between the nodes. The boundary passes through the nodes. For the boundary conditions

where the flux to the surface is considered, the flux is specified at the midpoint between the

boundary and the first interior node and the number and energy density at the boundary is

obtained from Eq. (34).

V. RESULTS AND DISCUSSION

A. Validation of plasma model

The plasma model was validated against the results of Becker et al.48, who examined the

differences between PIC/MCC and two continuum model simulations in a one dimensional

reactor setup. The continuum model used here differs from their continuum models in the

assumption of constant transport coefficients and the source of the ionization rate as well as

the modeling of the ion flux. The models were compared at three different gas pressures, 150,

300, and 600 mTorr. Becker et al. specified the amplitude of the electrode current density

as 10 A/m2 which, for the PIC/MCC simulations, corresponded to voltage amplitudes of

90, 70, and 60V for the three pressures, respectively. Their continuum models produced

different voltages as they matched the amplitudes of the current density. Here, we matched

the voltage from their PIC/MCC simulations. Figure 2a shows the ion number density for

a gas pressure of 150 mTorr and Fig. 2b shows the maximum plasma density as a function

of gas pressure. The current model underpredicts the maximum plasma density by 40%

compared to the PIC/MCC code at the lowest pressure but agrees well for the 300 mTorr
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case; the 60% difference for the 600 mTorr case is likely due to matching the voltage rather

than the current. Since specifying the current to the electrodes, rather than the voltage,

adds an additional complication to the boundary condition comparison, this study specifies

the electrode voltage and does not attempt to compare the effect of the boundary conditions

with PIC/MCC simulations.

To examine the impact of the boundary condition on the solution, an argon plasma was

modeled using each of the number and energy density boundary conditions discussed in

Section III B. Two configurations of the plasma reactor were considered: a one-dimensional

setup and an axisymmetric cylindrical one. Both the one-dimensional and cylindrical con-

figurations had the RF voltage applied to the lower electrode while the upper electrode was

grounded. The wall in the cylindrical configuration was dielectric meaning that the DC bias

voltage discussed in Section IIIA is zero. The operating parameters are tabulated in Table

I. The mobility and diffusion coefficients were assumed constant.

Several cases were simulated with different sets of the BCs, as illustrated in Secs. III B 1–III B 5.

For ease of reference, the number and energy boundary conditions are designated as shown

in Table II. All cases were simulated until a quasi-steady state was reached which is defined

as the sate when the change in the RF-period averaged values was negligible. Here, BC4 is

treated as the baseline case to which the other boundary conditions are compared.

B. One-dimensional configuration results

Figure 3 shows the spatial variation of the instantaneous electron number density and

electric field at four times during the RF period for BC4. All other cases exhibit qualitatively

similar trends so the transient results are only shown for the BC4 case. Both electrodes have

large sheaths, the time variation of the electron number density is significant in the region

less than 0.75 cm from the electrode. The electric field is negative at the lower electrode,

varying between -50 and -150 V/cm, and positive at the upper electrode, varying between 50

and 150 V/cm. This behavior indicates that the electric field is directed out of the domain

through the entire RF cycle for both electrodes.

Figure 4 shows the RF-averaged plasma variables for the different BC cases. As seen

in Figs. 4a and 4b, BC2 (the pure drift boundary condition) has a substantially higher

plasma density than the other cases. This is due to the fact that the electric field is always
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pointing out of the domain so the electron boundary condition uses a zero flux condition

which results in a higher electron density at the boundary because the surface does not act

as an electron sink. In a practical situation, flux towards the surface is always expected due

to thermal motion and diffusion. The difference between BC4 and BC5 in Fig. 4 is minor,

even with a SEE coefficient of 0.5, there is only a 6% increase in the maximum electron

number density. All cases produce a bulk mean electron energy of about 5eV. The case with

SEE, BC5, shows a substantial increase in the mean energy in part of the sheath of the

upper (grounded) electrode, and there is a similar but less pronounced effect in the sheath

of the lower (powered) electrode which will be discussed in more detail below.

In Section III C, it was noted that there were potential concerns about the ion boundary

condition due to the electric field causing the ions to flow out of the domain. Fig. 4f shows

that all boundary conditions have the RF-averaged electric field directed out of the domain

and Fig. 3b shows that the electric field is directed out of the domain throughout the

RF period so both electrodes meet the criteria for setting the ion extrapolation boundary

condition. However, when the ion BC was changed to the extrapolation condition, the only

case that experienced an appreciable impact in the bulk was BC5. In BC1–4, this change

in the ion boundary condition only affected the ion number density on the boundary itself,

the interior points were unaffected.

The SEE coefficient γ in BC5 was first set to 0.05, which is a typical value used in DC

glow discharges24, however, the results were negligibly different from the BC4 case, which is

different from BC5 only in neglecting the SEE. Therefore, the SEE coefficient was increased

by a factor of ten to determine an upper bound on the possible impact. Setting γ = 0.5

resulted in a 6% increase in the maximum electron number density in the bulk. The most

significant impact of the inclusion of the SEE was the spike in the mean energy in the sheath,

as seen in Fig. 5, which compares the sheaths of BC4 and BC5. This spike is attributed to

the ion BC, given by Eq. (19), that sets the ion number density at the boundary significantly

lower than that at the nearest interior point. As a result of the increased ion flux to the

surface, the amount of SEE electrons is increased. Since the SEE electrons are emitted at a

lower temperature than the primary electrons near the boundary, the emitted flux has a lower

energy than the bulk flux. Hence, the average electron temperature drops at the boundary,

resulting in a spike in the mean energy when the emitted electrons meet the flow from the

bulk. Using an ion extrapolation BC corrected the ion number density at the boundary
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which corrected the associated spike in the mean energy. The ion extrapolation BC also

reduced the impact of the secondary emission from a 6% increase in the bulk plasma density

to a 0.1% increase. The plasma variable profiles for the BC5 case with ion extrapolation

were not noticeably different from those for the BC4 case.

The maximum bulk plasma density, which is at the middle of the domain, is tabulated for

various BCs in Table III. BC5 is listed for both cases with and without the ion extrapolation

at the boundary. To examine the effect of the BC on the sheath, the electron and ion number

densities were normalized by the maximum plasma density with the results shown in Fig. 6.

BC1 produces the largest sheath as a result of neglecting the flux to the boundary. While

the sheath widths for BC1 and BC4 only vary by 3% but that the difference is 10% in the

bulk plasma density. BC2 produces the smallest sheath width and is the only case where the

electron number density at the boundary is significant, this change in the sheath resulted

in an almost 200% higher bulk density. Neglecting the diffusion flux caused BC3 to have a

smaller sheath than BC4 and a 26% higher bulk density. Including SEE did not suggest a

significant impact on the sheath width or the bulk plasma density.

C. Two-dimensional axisymmetric cylindrical configuration results

A cylindrical plasma reactor was modeled to investigate the influence of the different num-

ber and energy density boundary conditions in an axisymmetric two-dimensional plasma.

The plasma in this configuration is enclosed between two electrodes at the top and bottom

of the domain and a dielectric lateral wall. Two groups of cases were modeled. In the first

group, which was for the investigation of the electrode BC impact, the BC on the dielectric

wall was identical (BC4, see Tab II) among the cases while the number and energy density

BC applied to the electrodes was different (BC1–5, see Tab II). In the second group, which

was for the investigation of the lateral BC impact, the electrode BC was identical (BC4, see

Tab II) among the cases while the number and energy density BC applied to the dielectric

wall was different (BC1–5, see Tab II).
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1. Impact of the electrode boundary condition

Here, the axisymmetric cylindrical plasma reactor was modeled using the different sets

of boundary conditions, shown in Table II, for the electrodes but the dielectric wall was set

to BC4 in all cases. BC5 was examined for cases with and without the ion extrapolation

boundary condition. All the boundary conditions produced qualitatively similar results,

with BC1 producing the lowest plasma density and BC2 producing the highest in the bulk

of plasma. The RF-averaged electron number density contours are shown in Fig. 7 for BC1

and BC2.

To determine whether the ion extrapolation boundary condition can be used it is necessary

to check the electric field along the boundary since ion extrapolation is only valid when the

ions are flowing towards the boundary. An examination of the electric field, shown in Fig. 8

reveals that it is positive on the upper electrode and the wall, and negative on the lower

electrode. However, the electric field magnitude near the corners is low. An examination

of the time variation showed that there are times in the RF cycle where the electric field

in the corners of the domain changes direction. Therefore, the ion extrapolation boundary

condition cannot be applied for every point on the boundaries and it is necessary to check

the local value of the electric field before using ion extrapolation.

The spatial variation of the RF-averaged plasma variable along the axisymmetric line

(r = 0) is plotted in Fig. 9. As seen in Fig. 9a, BC2 has a substantially higher plasma

density than the other cases, which is due to a lower rate of electron loss at the surface in

this case. BC2 also produces a lower electric potential than the other cases, as seen in Fig. 9c.

Secondary electron emission from the electrodes, which is included in BC5, caused an 11%

increase in the plasma density (Fig. 9a) but also caused a spike in the mean energy near the

electrode (Fig. 9b). This spike, as in the 1D configuration, suggests that the calculated ion

flux in this case is not physical. Applying an ion extrapolation BC removed the spike and

also reduced the SEE effect on the plasma density; hence, BC5 with the ion extrapolation

BC was not significantly different from BC4.

The radial variation of the plasma variables at z = 1.25cm is plotted in Fig. 10. Since the

dielectric wall boundary condition was kept constant and did not include secondary emission,

BC5 did not produce a spike in the mean energy near the wall, only near the electrodes.

Since the electrode boundary condition affected the bulk plasma density, it also affected the
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flux to the dielectric wall therefore electric field at the wall was affected by the choice of

electrode boundary condition. The magnitude of the electric field at the wall, Fig. 10d, was

lowest for BC1, which had the lowest plasma density, and highest for BC2, which had the

highest plasma density.

The bulk plasma density calculated at the center of the reactor z = 1.25 cm and r = 0

cm, is given in Table IV for the various cases. At the center, the RF-averaged densities are

maximum, compared to the rest of the domain. It is seen in this table that the zero number

density boundary condition, BC1, reduced the maximum plasma density by 9% compared

to the baseline case, due to the larger sheath that occurs when the flux to the electrodes

is neglected. BC3 had a 20% higher maximum plasma density than BC4 as a result of

neglecting the diffusion flux to the surface. Secondary emission from the electrodes initially

appeared to be important for this configuration as BC5 had an 11% higher maximum plasma

density, but using the extrapolation boundary condition for the ions reduced that to a 0.1%

increase. Therefore, the inclusion of SEE in the electrodes with the ion extrapolation BC

did not have a significant impact the plasma variables.

2. Impact of the dielectric wall boundary condition

Here, BC4 was used for electrodes and different BCs (II) were used for the dielectric wall.

BC5 was examined for cases with and without the ion extrapolation boundary condition.

All cases, except the one that used BC2 on the dielectric wall, produced similar results

with the bulk plasma density varying less then 2% among the cases (Tab. V). As seen in

Fig. 11, BC2, which is the pure drift BC, did not produce a sheath at the wall, although

there is a slight reduction in the density at the wall. The lack of sheath in the case where

BC2 is used for the dielectric wall, is a result of setting the electron flux to zero when the

electric field is either zero or directed out of the domain. When this BC was applied to the

electrodes which have a strong electric field, it caused an increase in the electron number

density in the sheath and a reduction in the sheath width, a weaker field results in an

even smaller sheath. For a dielectric wall, the electric field depends on the number density

through the development of a wall charge and the system of equations at the wall can be

satisfied by having zero electric field, zero electron flux and zero wall flux. Since setting

the electric field and the fluxes to zero is equivalent to a symmetry BC, there is no sheath
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along the majority of the wall. The interaction between the electrodes and the wall near

the corners of the domain causes the radial electric field in the corners of the domain to be

non-zero which prevents a pure one-dimensional plasma.

The plasma variables are plotted against r at z = 1.25 cm in Fig. 12. The lack of a sheath

on the dielectric wall when using BC2, is evident in all variables. BC3, which includes the

thermal flux but neglects the diffusive flux, produced a higher electron mean energy at the

wall; however, that is the only significant difference between BC3-5, and BC1. The effect of

the SEE from the dielectric wall is not significant in this setup. BC5 shows a 1% decrease in

the bulk plasma density, compared to BC4, when an ion extrapolation BC is not used. So

the SEE effect disappears when an extrapolation BC is used for the ions. The electric field

at the dielectric wall is a function of the ion and electron flux to the wall, which suggests

that the change of the number density BC should have a significant effect on the electric

field. However, the results, Fig. 12d, show that all the boundary conditions except BC2

produce a RF-averaged radial electric field of 60-64 V/cm so the boundary conditions do not

have a significant impact on the electric field here. This indicates that while the different

boundary conditions specify different values for the electron and ion fluxes at the wall, the

increase or decrease in the electron flux is balanced out by a similar increase or decrease in

the ion flux. Hence, the total current to the wall is similar for all the BCs.

VI. CONCLUSIONS

The change of the BC kinds implemented for the electrodes, had a significant impact on

the plasma. For the ions, the mobility was larger than the diffusion which caused the ions

to be dominated by the drift motion. Therefore, since the electric field in an RF plasma

generally causes the ions to flow out of the domain, the ion BC should not have a significant

effect on the plasma. However, the BC kinds which include thermal or diffusion fluxes to

the surface overstate the ion flux at the surface. This overestimation becomes important

when secondary electron emission is considered since it is a function of the ion flux at the

boundary, and overstating the ion flux will result in an increase in the number of emitted

electrons and a spike in the mean energy in the sheath. Therefore, the ion extrapolation BC

is the best choice for the ion boundary condition.

The electrons have a larger diffusion and are not dominated by the drift motion in the
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same fashion as the ions. This behavior means the electron boundary condition should have

a significant effect and it is important to account for all the contributions to the electron

flux at the boundary. Neglecting the flux and using the zero number density BC produces

a 10% lower bulk plasma density than when the BC is based on a complete description of

the flux to the electrode. Neglecting the thermal and diffusion fluxes and including only

the drift towards the surface increases the bulk plasma density by a factor between two

and three, compared to all the other BCs. Including both the drift and the thermal fluxes

but neglecting the diffusion flux resulted in a 20-30% increase in the bulk plasma density.

Including secondary electron emission was only significant when the ion BC overstated the

ion flux to the surface. When the ion extrapolation BC was used, the effect of secondary

electron emission on both bulk and sheath was negligible. Our results suggested that the

best BC for the electron number and energy densities is the one that includes the drift,

thermal, and diffusion fluxes.

The plasma was less sensitive to the change of the dielectric wall BC than the electrode

BC with the exception of the case where the electron BC at the wall was based on only the

drift flux. The pure drift BC for the electrons failed to produce a sheath at the dielectric wall;

hence, this BC is not recommended for the dielectric wall. The remaining BCs produced

bulk plasma densities within 2% of each other.
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TABLE I: Plasma parameters

Parameter Value

Electrode gap, H 2.5 (cm)

Electrode radius, R 2.5 (cm)

Applied voltage, VRF 50 (V)

Frequency, f 13.56 (MHz)

Neutral gas pressure, Pgas 250 (mTorr)

Ion and neutral temperature, Ti = Tgas 300 (K)

Electron mobility µePgas 3×105

Electron diffusion DePgas 1.2×106

Ion mobility µiPgas 1400

Ion diffusion DiPgas 40

TABLE II: Number and energy density boundary conditions

Label Description

BC1 Zero number density (Sec. III B 1)

BC2 Pure drift towards the electrode (Sec. III B 2)

BC3 Thermal flux (Sec. III B 3)

BC4 (baseline) Thermal and diffusion fluxes (Sec. III B 4)

BC5 Secondary emission with γ = 0.5 (Sec. III B 5)
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TABLE III: Effect of boundary conditions on maximum bulk plasma density in the one

dimensional plasma.

Boundary Bulk plasma % difference

condition maximum density (cm−3) (vs BC4)

BC1 8.32×108 -10.8%

BC2 2.75×109 195%

BC3 1.18×109 26.1%

BC4 (baseline) 9.34×108 N/A

BC5 9.90×108 6.0%

BC5 (with ion extrapolation) 9.35×108 0.1%

TABLE IV: Effect of boundary conditions on maximum bulk plasma density for the

axisymmetric plasma; the lateral wall used BC4 and the electrode boundary condition was

varied.

Boundary Bulk plasma % difference

condition density (cm−3) (vs BC4)

BC1 1.45×109 -8.7%

BC2 3.89×109 145.3%

BC3 1.90×109 19.6%

BC4 (baseline) 1.58×109 N/A

BC5 1.77×109 11.4%

BC5 with ion extrapolation 1.59×109 0.1%
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TABLE V: Effect of boundary conditions on maximum bulk plasma density for the

axisymmetric plasma; the electrodes used BC4 and the wall boundary condition was varied.

Boundary Bulk plasma % difference

condition density (cm−3) (vs BC4)

BC1 1.60×109 0.8%

BC2 9.27×108 -41.5%

BC3 1.56×109 -1.5%

BC4 (baseline) 1.58×109 N/A

BC5 1.57×108 -0.9%

BC5 with ion extrapolation 1.58×108 0%
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two continuum models A (DDAn) & B (DDA53) of Becker et al.48 for an argon plasma:

(a) RF-averaged ion number density (in 109 cm−3) for a gas pressure of 150 mTorr; and (b)

maximum plasma density (in 109 cm−3) as a function of gas pressure (in mTorr).
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FIG. 4: Spatial variation of RF-averaged plasma variables: (a) electron number density (in

109 cm−3); (b) ion number density (in 109 cm−3); (c) electron energy density (in 1010 eV

cm−3); (d) mean electron energy (in eV); (e) electric potential (in V); and (f) electric field
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cm for the different electrode boundary conditions: (a) electron number density (in 109

cm−3); (b) mean electron energy (in eV); (c) electric potential (in V); and (d) vertical

electric field (in V/cm).
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FIG. 10: Spatial variation of RF-averaged plasma variables in the radial direction at

z = 1.25 cm, for the different electrode boundary conditions: (a) electron number density

(in 109 cm−3); (b) mean electron energy (in eV); (c) electric potential (in V); and (d)

radial electric field (in V/cm).
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FIG. 11: Contour plots of RF period-averaged electron number density (in 109 cm−3) for a

dielectric wall (right boundary) using (a) BC1 and (b) BC2. The results produced by BC3,

BC4, and BC5 were similar to BC1.
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FIG. 12: Spatial variation of RF-averaged plasma variables in the radial direction at

z=1.25 cm, for the different wall boundary conditions: (a) electron number density (in 109

cm−3); (b) mean electron energy (in eV); (c) electric potential (in V); and (d) radial

electric field (in V/cm).
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