
IEE
E P

ro
of

1 An Analysis Workflow-Aware Storage System
2 for Multi-Core Active Flash Arrays
3 Hyogi Sim, Geoffroy Vall�ee, Youngjae Kim, Sudharshan S. Vazhkudai , Devesh Tiwari, and Ali R. Butt

4 Abstract—The need for novel data analysis is urgent in the face of a data deluge frommodern applications. Traditional approaches to

5 data analysis incur significant datamovement costs, moving data back and forth between the storage system and the processor.

6 Emerging Active Flash devices enable processing on the flash, where the data already resides. An array of such Active Flash devices

7 allows us to revisit how analysis workflows interact with storage systems. By seamlessly blending together the flash storage and data

8 analysis, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply

9 ingrained in each and every layer of the storage, elevating data analyses as first-class citizens, and transforming AnalyzeThis into a

10 potent analytics-aware appliance. To evaluate the AnalyzeThis system, we have adopted both emulation and simulation approaches. In

11 particular, we have evaluated AnalyzeThis by implementing the AnalyzeThis storage system on top of the Active Flash Array’s emulation

12 platform.We have also implemented an event-driven AnalyzeThis simulator, called AnalyzeThisSim, which allows us to address the

13 limitations of the emulation platform, e.g., performance impact of using multi-core SSDs. The results from our emulation and simulation

14 platforms indicate that AnalyzeThis is a viable approach for expediting workflow execution andminimizing datamovement.

15 Index Terms—Distributed systems, storage management, scientific data management

Ç

16 1 INTRODUCTION

17 DATA analysis is often considered the fourth paradigm
18 of scientific discovery, complementing theory, experi-
19 ment, and simulation. Experimental facilities (e.g., Spall-
20 ation Neutron Source [51]), observational devices (e.g.,
21 Sloan Digital Sky Survey [46], Large Synoptic Survey Tele-
22 scope [27]) and high-performance computing (HPC) simula-
23 tions of scientific phenomena on clusters (e.g., Titan
24 supercomputer [55] and other Top500 machines [57]) pro-
25 duce hundreds of terabytes of data that need to analyzed to
26 glean insights. The data products are often stored in central,
27 shared repositories, supported by networked file systems
28 (NFS) or parallel file systems (PFS) (e.g., Lustre [45] or
29 GPFS [44]). Analyses that operate on these datasets are often
30 I/O-intensive, and involve running a complex workflow job
31 on a smaller cluster. The analysis workflow reads the input
32 data from the central storage, applies a series of analytics
33 kernels, such as statistics, reduction, clustering, feature
34 extraction and legacy application routines, and writes the
35 final, reduced data back to the storage system. We refer to
36 the entire sequence of reading the input data, followed by

37analysis on a cluster, and writing the output as Offline data
38analysis.
39Offline analysis incurs a substantial amount of redun-
40dant I/O, as it has to read the inputs from the storage sys-
41tem, and write the reduced results back. Reading back large
42data for analysis on a cluster exacerbates the I/O bandwidth
43bottleneck that is already acute in storage systems [22]. This
44is because, I/O bandwidth has traditionally been lagging
45behind the compute and memory subsystems, and the data
46production rates from simulations [56] and experimental
47facilities are compounding the problem further, creating a
48storage wall. Instead of an offline approach to data analysis,
49analyzing data in-situ on the storage system, where the data
50resides, can not only minimize data movement, but also
51expedite the time to solution of the analysis workflow. In
52this paper, we explore such an approach to data analysis.
53To alleviate the I/O bottleneck, network-attached storage
54systems for clusters are being built with solid-state devices
55(SSD), resulting in either hybrid SSD/HDD systems or all
56flash arrays. The lack of mechanical moving parts, coupled
57with a superior I/O bandwidth and low latency, has made
58SSDs an attractive choice. We argue that SSDs are not only
59beneficial for expediting I/O, but also for on-the-fly data
60analysis. SSDs boast an increasing computational capability
61on the controllers, which have the potential to execute data
62analysis kernels in an in-situ fashion. In this model, the anal-
63ysis is conducted near the data, instead of shipping the data
64to the compute cores of the analysis cluster.
65In our prior work on Active Flash [6], [56], we explored
66the viability of offloading data analysis kernels onto the
67flash controllers, and analyzed the performance and energy
68tradeoffs of such an offload. We found that Active Flash out-
69performed offline analysis via a PFS for several analysis
70tasks. In this paper, we explore how such an active

� H. Sim, G. Vall�ee, and S. Vazhkudai are with Oak Ridge National Labora-
tory, Oak Ridge, TN 37830. E-mail: {simh, valleegr, vazhkudaiss}@ornl.gov.

� Y. Kim is with Sogang University, Seoul 04107, South Korea.
E-mail: youkim@sogang.ac.kr.

� D. Tiwari is with Northeastern University, Boston, MA 02115.
E-mail: tiwari@northeastern.edu.

� A. Butt is with Virginia Tech, Blacksburg, VA 24061.
E-mail: butta@cs.vt.edu.

Manuscript received 14 Aug. 2017; revised 15 Feb. 2018; accepted 8 Apr.
2018. Date of publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Youngjae Kim.)
Recommended for acceptance by M. Kandemir.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2865471

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. X, XXXXX 2018 1

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
mailto:
mailto:
mailto:
mailto:

IEE
E P

ro
of

71 processing element can form the fabric of an entire storage
72 system that is workflow-aware.
73 An array of such Active Flash devices allows us to
74 rethink the way data analysis workflows interact with stor-
75 age systems. Traditionally, storage systems and workflow
76 systems have evolved independently of each other, creating
77 a disconnect between the two. By blending the flash storage
78 array and data analysis together in a seamless fashion, we
79 create an analysis workflow-aware storage system, Analyze-
80 This. Consider the following simple—yet powerful—
81 analogy from day-to-day desktop computing, which
82 explains our vision for AnalyzeThis. A smart folder on mod-
83 ern operating systems allows us to associate a set of rules
84 that will be implemented on files stored in that folder, e.g.,
85 convert all postscript files into pdfs or compress (zip) all
86 files in the folder. A similar idea extrapolated to large-scale
87 data analysis would be: writing data to an analysis-aware
88 storage system automatically triggers a sequence of prede-
89 fined analysis routines to be applied to the data.
90 Contributions. We propose AnalyzeThis, a storage system
91 atop an array of Active Flash devices. Our guiding princi-
92 ple is that analysis-awareness be deeply ingrained within
93 each and every layer of the storage system, thereby elevat-
94 ing the data analysis operations as first-class citizens. Ana-
95 lyzeThis realizes workflow-awareness by creating a novel
96 analysis data object abstraction, which integrally ties the
97 dataset on the flash device with the analysis sequence to
98 be performed on the dataset, and the lineage of the data-
99 set (Section 3.1). The analysis data object abstraction is

100 overlaid on the Active Flash device, and this entity is
101 referred to as the Active Flash Element, AFE. We mimic an
102 AFE array using an emulation platform. We explore how
103 scheduling, i.e., both data placement and workflow
104 orchestration, can be performed within the storage, in a
105 manner that minimizes unnecessary data movement
106 between the AFEs, and optimizes workflow performance
107 (Section 3.2). Moreover, we design easy-to-use file system
108 interfaces with which the AFE array can be exposed to the
109 user (Section 3.3). The FUSE-based file system layer ena-
110 bles users to read and write data, submit analysis work-
111 flow jobs, track and interact with them via a /proc-like
112 interface, and pose provenance queries to locate interme-
113 diate data (Section 3.4). Finally, we have developed an
114 AnalyzeThis simulator, called AnalyzeThisSim, to study
115 the performance impact of using a multi-core architecture
116 in the AFEs (Section 6). This simulator is event-driven,
117 capable of evaluating multi-core AFEs and host and AFE-
118 level (fabric) schedulers. We argue that these concepts
119 bring a fresh perspective to large-scale data analysis. Our
120 results with real-world, complex data analysis workflows
121 on AnalyzeThis, built atop an emulation-based AFE pro-
122 totype, indicate that it is very viable, and can expedite
123 workflows significantly.

124 1.1 Background on Active Flash

125 Here, we present a summary of our prior work, Active
126 Flash, upon which the AnalyzeThis storage system is built.
127 Enabling Trends. First, we highlight the trends that make
128 flash amenable for active processing.
129 High I/O throughput and internal bandwidth: SSDs offer
130 high I/O throughput and internal bandwidth due to

131interleaving techniques over multiple channels and flash
132chips. This bandwidth is likely to increase with devices pos-
133sessing more channels or flash chips with higher speed
134interfaces.
135Availability of Spare Cycles on the SSD Controller. SSD con-
136trollers exhibit idle cycles on many workloads. For example,
137HPC workloads are bursty, with distinct compute and I/O
138phases. Typically, a busy short phase of I/O activity is fol-
139lowed by a long phase of computation [8], [22]. Further, the
140I/O activity recurs periodically (e.g., once every hour), and
141the total time spent on I/O is usually low (below
1425 percent [23]). Even some enterprise workloads exhibit idle
143periods between their I/O bursts [28], [29]. Data ingest from
144experimental facilities, such as SNS [51] are based on the
145availability of beam time, and there are several opportuni-
146ties for idle periods between user experiments, which
147involve careful calibration of the sample before the beam
148can be applied to it to collect data. Such workloads expose
149spare cycles available on the SSD controller, making it a
150suitable candidate for offloading data analysis tasks.
151Multi-Core SSD Controllers. Recently marketed SSDs are
152equipped with fairly powerful mobile cores, and even
153multi-core controllers (e.g., a 4-core 780 MHz controller on
154the OCZ RevoDrive X2 [35]). Multi-core SSD controllers are
155likely to become more common place, and hence the avail-
156able idle time on the SSD controllers will increase as well.
157Active Flash. In our prior work o n Active Flash [6], [56],
158we presented an approach to perform in-situ data analysis
159on SSDs. We presented detailed performance and energy
160models for Active Flash and offline analysis via PFS, and
161studied their provisioning cost, performance, and energy
162consumption. Our modeling and simulation results indi-
163cated that Active Flash is better than the offline approach in
164helping to reduce both data movement, and energy con-
165sumption, while also improving the overall application per-
166formance. Interestingly, our results suggest that Active
167Flash can even help defray part of the capital expenditure of
168procuring flash devices through energy savings. We also
169studied hybrid analysis, involving processing on both flash
170and host cores, and explored when it might be suitable to
171offload analysis to flash. Next, our simulation of I/O-
172compute trade-offs demonstrated that internal scheduling
173may be used to allow Active Flash to perform data analysis
174without impact on I/O performance. To this end, we
175explored several internal scheduling strategies within the
176flash translation layer (FTL) such as analyzing while data
177written to the flash is still in the controller’s DRAM, analyz-
178ing only during idle times (when there is no I/O due to data
179ingest), and combining idle time analysis with the schedul-
180ing of garbage collection (GC) to preempt GC interrupting
181an ongoing data analysis due to the lack of available free
182pages. Finally, we have demonstrated the feasibility of
183Active Flash through the construction of a prototype, based
184on the OpenSSD development platform, extending the
185OpenSSD FTL with data analysis functions. We have
186explored the offloading of several data analysis kernels,
187such as edge detection, finding local extrema, heartbeat
188detection, data compression, statistics, pattern matching,
189transpose, PCA, Rabin fingerprinting and k-means cluster-
190ing, and found Active Flash to be very viable and cost-effec-
191tive for such data analysis.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. X, XXXXX 2018

IEE
E P

ro
of

192 2 ANALYZETHIS STORAGE SYSTEM

193 2.1 Goals

194 In this section, we discuss our key design principles.
195 Analysis-Awareness. Our main objective is to introduce
196 analysis-aware semantics into the storage system. There is
197 an urgent need to analyze the data in-situ, on the storage
198 component, where the data already resides.
199 Reduce Data Movement. It is expected that in future, exas-
200 cale data centers, the cost of data movement will rival that
201 of the computation itself [17]. Thus, we need to minimize
202 data movement in analysis workflows as well as across the
203 AFEs within the storage.
204 Capture Lineage. There is a need to track provenance and
205 intermediate data products generated by the analysis steps
206 on the distributed AFEs. The intermediate data can serve as
207 starting points for future workflows.
208 Easy-to-Use File System Interface. The workflow orchestra-
209 tion across the AFEs needs to be masqueraded behind an
210 easy-to-use, familiar interface. Users should be able to easily
211 submit workflow to the storage system, monitor and track
212 them, query the storage system for intermediate data prod-
213 ucts of interest and discover them.

214 2.2 Overview

215 We envision AnalyzeThis as a smart, analytics pipeline-
216 aware storage system atop an array of Active Flash devices
217 (Fig. 1). The analysis workflow job is submitted to the Ana-
218 lyzeThis storage system. As the input data to be processed
219 becomes available on AnalyzeThis (from experiments,
220 observations or simulations) the workflow that the user has
221 submitted is applied to it. The final processed data, or any
222 of the intermediate data is stored in AnalyzeThis, and may
223 be retained therein, transferred to other repositories that
224 may be available to the user (e.g., archive, PFS), or removed
225 based on lifetime metadata attributes that the user may
226 have associated with the dataset. Thematic to the design of
227 AnalyzeThis is that analysis-awareness be deeply embed-
228 ded within each layer of the storage system. In the future,
229 we expect that such analysis-aware semantics will be
230 adopted into existing PFS and NFS storage. Below is a
231 bottom-up description of the system.

232Active Flash Array. At the lowest level is the Active Flash
233array that is composed of discrete Active Flash devices,
234capable of running individual analysis kernels. Internally,
235an AFE has multiple processors that are capable of execut-
236ing user-provided codes. We envision an array of such devi-
237ces that are connected via SATA, PCIe or NVMe.
238Analysis Object Abstraction. On top of the Active Flash
239array, we propose to create a new data model, the analysis
240object abstraction that encapsulates the data collection, the
241analysis workflow to be performed on the data, and the line-
242age of how the data was derived. We argue that such a rich
243data model makes analysis a first-class citizen within the
244storage system by integrally tying together the data and the
245processing to be performed (or was performed) on the data.
246The analysis abstraction, coupled with the Active Flash
247device (capable of processing), is referred to as the Active
248Flash Element, “AFE.”
249Workflow Scheduling Layer. The goal of this layer is to
250mimic how users interact with batch computing systems
251and integrate similar semantics into the storage system.
252Such a strategy would be a concrete step towards bridging
253the gap between storage and analysis workflows. Users typ-
254ically submit a workflow, e.g., a PBS [16] or a DAGMAN [54]
255script, to a cluster’s batch scheduler, which creates a depen-
256dency graph and dispatches the tasks onto the compute
257nodes based on a policy. Similarly, we propose a Workflow
258Scheduler that determines both data placement and schedul-
259ing analysis computation across the AFEs in a manner that
260optimizes both end-to-end workflow performance and data
261movement costs.
262A File System Interface. We tie the above components
263together into a cohesive system for the user by employing a
264FUSE-based file system interface with limited functionality
265(“anFS”). anFS supports a namespace, reads and writes to
266the AFE array, directory creation, internal data movement
267between the AFEs, a “/proc-like” infrastructure, and the abil-
268ity to pose provenance queries to search for intermediate
269analysis data products. Similar to how /proc is a control and
270information center for the OS kernel, presenting runtime
271system information on memory, mounted devices and hard-
272ware, /mnt/anFS/.analyzethis/, allows users to sub-
273mit workflow jobs, track and interact with them, get status
274information, e.g., load about the AFEs.
275Together, these constructs provide a very potent in-situ data
276analytics-aware storage appliance.

2773 DESIGN AND IMPLEMENTATION

278Fig. 2a presents the architecture of AnalyzeThis. The Ana-
279lyzeThis appliance exposes a FUSE file system, “anFS,” to
280the users that can be mounted via an NFS protocol. Users
281submit analysis workflows and write data objects to Ana-
282lyzeThis via anFS that is mounted on their desktop computer
283or an analysis cluster. Thereafter, users can monitor and
284query the status of the jobs, and search for intermediate data
285products of branches of the workflow. In backend, the Ana-
286lyzeThis appliance comprises of one or more storage servers
287to which multiple Active Flash devices are connected. The
288storage server and the Active Flash devices run several serv-
289ices, and collectively help realize the analysis-aware storage
290appliance. Each Active Flash device runs the software

Fig. 1. AnalyzeThis overview. Figure shows analysis-awareness at each
and every layer of AnalyzeThis.

SIM ET AL.: AN ANALYSIS WORKFLOW-AWARE STORAGE SYSTEM FOR MULTI-CORE ACTIVE FLASH ARRAYS 3

IEE
E P

ro
of

291 service that overlays an analysis object abstraction atop,
292 transforming it into an AFE, as well as other services
293 required to handshake with the storage server. The storage
294 server runs services such as those required for making the
295 AFEs available as a file system (namespacemanagement and
296 data protocols), distributed workflow orchestration, distrib-
297 uted provenance capture, and interfacing with the AFEs
298 (device management). These services are implemented
299 behind a FUSE layer on the storage server. Together, in a dis-
300 tributed fashion, they achieveworkflow awareness.
301 Central to our design is the seamless integration of work-
302 flow scheduling and the file system. To this end, behind
303 anFS is a workflow scheduler that constructs a directed acyclic
304 graph (DAG) from the analysis workflow job. The scheduler
305 produces multiple mini DAGs based on task dependencies
306 and optimization strategies, e.g., to minimize data move-
307 ment. The mini DAGs comprise of a series of tasks, which
308 the storage server maintains in a lightweight database. The
309 scheduler dispatches the mini DAGs for execution on the
310 AFEs; AFEs form the bottom-most layer of our system, and
311 are capable of running analysis kernels on the device con-
312 trollers. We use an analysis object abstraction, which encapsu-
313 lates all necessary components of an task, including
314 analysis kernels, input and output datasets, and the lineage
315 information of all the objects therein. The analysis kernels
316 for a given workflow is assumed to be stored as a platform-
317 dependent binary executable object (.so format), compiled
318 for specific devices as needed, which can run on the AFEs.

319 3.1 Analysis Encapsulation

320 We introduce analysis awareness in theActive Flash array by
321 building on our prior work on Active Flash that has

322demonstrated how to run an analysis kernel on the flash con-
323troller [6], [56]. Our goal here is to study how to overlay an
324analysis object abstraction atop the Active Flash device, both of
325which together form the AFE. The construction of an AFE
326involves interactions with the flash hardware to expose fea-
327tures that higher-level layers can exploit, communication
328protocol with the storage server and flash device, and the
329necessary infrastructure for analysis object semantics. An
330array of AFEs serve as building blocks for AnalyzeThis.
331The first step to this end is to devise a richer construct
332than just files. Data formats, e.g., HDF [11], [37], [50], [59]
333NetCDF [24], [33], and NeXus [34], offer many desirable fea-
334tures such as access needs (parallel I/O, random I/O, par-
335tial I/O, etc.), portability, processing, efficient storage and
336self-describing behavior. However, we also need a way to
337tie the datasets with the analysis lifecycle in order to sup-
338port future data-intensive analysis. To address this, we
339extend the concept of a basic data storage unit from tradi-
340tional file(s) to an analysis object abstraction that includes a
341file(s) plus a sequence of analyses that operate on them plus
342the lineage of how the file(s) were derived. Such an abstrac-
343tion can be created at a data collection-level, which may
344contain thousands of files, e.g., climate community. The
345analysis data abstraction would at least have either the anal-
346ysis sequence or the lineage of analysis tools (used to create
347the data) associated with the dataset during its lifetime on
348AnalyzeThis. The elegance of integrating data and opera-
349tions is that one can even use this feature to record data man-
350agement activities as part of the dataset and not just analyses.
351For example, we could potentially annotate the dataset with
352a lifetime attribute that tells AnalyzeThis which datasets
353(final or intermediate data of analysis) to retain and for how
354long. The analysis object abstraction transforms the dataset
355into an encapsulation that is more than just a pointer to a
356byte stream; it is now an entity that lends itself to analysis.

3573.1.1 Extending OSD Implementation for AFE

358We realize the analysis object abstraction using the object
359storage device (OSD) protocol. The OSD protocol provides
360a foundation to build on, by supporting storage server to
361AFE communication and by enabling an object container-
362based view of the underlying storage. However, it does not
363support analysis-awareness specifically. We use an open
364source implementation of the OSD T10 standard, Linux
365open-osd target [36], and extend it further with new features
366to implement the AFEs. We refer to our version of the OSD
367implementation as “AFE-OSD” (Fig. 2a). Our extensions are
368as follows: (i)Mini Workflow supports the execution of entire
369branches of an analysis workflow that are handed down by
370the higher-level Workflow Scheduler on the storage server;
371(ii) Task Tracker tracks the status of running tasks on the
372AFE; (iii) AFE Status checks the internal status of the AFEs
373(e.g., load on the controller, capacity, wear-out), and makes
374them available to the higher-level Workflow Scheduler on
375the storage server to enable informed scheduling decisions;
376(iv) Lineage Container captures the lineage of the executed
377tasks; and (v) Lightweight Database Infrastructure supports
378the above components by cataloging the necessary informa-
379tion and their associations.
380Mini Workflow Engine. The AFE-OSD initiator on the stor-
381age server submits the mini DAG to the AFE-OSD target.

Fig. 2. AnalyzeThis architecture and components.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. X, XXXXX 2018

IEE
E P

ro
of

382 The mini DAG represents a self-contained branch of the
383 workflow that can be processed on an AFE independently.
384 Each mini DAG is composed of a set of tasks. A task is rep-
385 resented by an analysis kernel, and a series of inputs and
386 outputs. The storage server dispatches the mini DAGs to
387 the AFEs using a series of ANALYZE_THIS execution com-
388 mands, with metadata on the tasks. To handle the tasks on
389 the AFEs, we have implemented a new analysis task collection
390 primitive in the AFE-OSD, which is an encapsulation to
391 integrally tie together the analysis kernel, its inputs and out-
392 puts (Task Collection and the Task Collection Attribute Page
393 are represented in the bottom half of Fig. 3). Once the AFE
394 receives the execution command, it will create an analysis
395 task collection, and insert the task into a FIFO task queue
396 that it maintains internally. As we noted earlier, inputs and
397 outputs can comprise of thousands of files. To capture this
398 notion, we create a linked collection encapsulation for input
399 and output datasets (using an existing Linked collection
400 primitive), which denotes that a set of files are linked
401 together and belong to a particular dataset.
402 Kernel Executer: The kernel executer is a multi-threaded
403 entity that checks the task queue and dispatches the tasks to
404 the AFE controller. We have only used one core from the
405 multi-core controller, but the design allows for the use of
406 many cores. We rely on the ability of the Active Flash com-
407 ponent of the AFE to run the kernel on the controller core,
408 which has been studied in our prior work [6], [56]. Active
409 Flash locates the predefined entry point (start_kernel)
410 from the analysis kernel code (.so file), and begins the
411 execution. In our prior work on Active Flash [6] (summa-
412 rized in Section 1.1), we have explored FTL scheduling tech-
413 niques to coordinate regular flash I/O, active computation
414 and garbage collection, which can be used by the kernel
415 executer.

416Task Tracker. The Task Collection and the Task Collection
417Attribute page provide a way to track the execution status of
418a task and its execution history, i.e., run time. Each task col-
419lection has a unique task id. The storage server can check the
420status of a running task by reading an attribute page of its
421task collection using the get_attribute command and
422the task id. The workflow scheduler on the storage server
423also queries the AFE for the execution history of analysis ker-
424nels, to get an estimate of run times that are then used in
425scheduling algorithms, e.g.,MinimumWait (in Section 3.2).
426AFE Status. The storage server can use an AFE’s hard-
427ware status for better task scheduling. To this end, we have
428created a status object to expose the internal information to
429the storage server. The status object includes the AFE device
430details such as wear-out for the flash, resource usage for
431controller, the AFE task queue details, and Garbage Collec-
432tion status. The AFEs are configured to periodically update
433a local status object, which can then be retrieved by the stor-
434age server as needed. Thus, the storage server can check the
435status of the device by sending a get_attribute com-
436mand on the status object using its object id.
437Lineage Container. Lineage information of tasks and data
438objects are maintained in an AFE’s internal database. The
439lineage container helps answer provenance queries (more
440details in Section 3.4).
441Lightweight Database Infrastructure. We use a lightweight
442database infrastructure (Fig. 3), using SQLite [53], to imple-
443ment analysis-aware semantics into the storage system. One
444approach is to have the storage server maintain all of the
445analysis workflow, data, and analysis-semantics. However,
446such a centralized approach is not resilient in the face of
447storage server crashes. Instead, we implement a decentral-
448ized approach (refer to Fig. 2a), wherein the storage server
449(the FUSE layer) and the AFEs (the AFE-OSD Target) main-
450tain relevant information and linkages to collectively
451achieve the analysis abstraction.
452The storage server database table (anFS_wf) maintains
453high-level information about the analysis workflow, e.g.,
454mini DAGs (job ID), the associated tasks (task collection ID),
455and the AFE ID on which to run the task. For example, in
456Fig. 3 user Alice runs a job (id = 1) and executes an analysis
457task, kmeans (CID = 0x10), on AFE (id = 0). The local AFE
458database tables store detailed metadata on all objects,
459namely mini DAGs, task collections, input and output data-
460sets, their attributes and associations.
461Each AFE manages three tables. The Object table is used
462to identify the type of an object, e.g., whether it is a task col-
463lection, or a data object. For each object, it maintains object
464identifiers, and object types. The Dataset TaskCollection Mem-
465bership table, tcid_oid, manages the membership of data
466objects to task collections. Multiple data objects can belong
467to a task collection (e.g., multiple inputs to a task) or a data
468object can be a member of multiple task collections (e.g., a
469given dataset is input to multiple tasks). The Attribute table
470manages all the attributes of data objects and task collec-
471tions (e.g., those represented in the Task Collection Attri-
472bute Page). Each attribute (or record) in the attribute table is
473defined using a data object or task collection id, page num-
474ber, and attribute number inside the Attribute Page. Given
475this metadata, the storage server can query information on
476the tasks and their associated datasets. For example, given a

Fig. 3. Analysis object abstraction implemented using database engine.
CID: task collection id, OID: object id, Attr. offset: an offset in the attri-
bute page.

SIM ET AL.: AN ANALYSIS WORKFLOW-AWARE STORAGE SYSTEM FOR MULTI-CORE ACTIVE FLASH ARRAYS 5

IEE
E P

ro
of

477 task collection of 0x10 and an index into the attribute page, 1
478 (to refer to input datasets), the attribute table points to a
479 value of 0x15, which can be reconciled with the tcid_oid table
480 to obtain the input datasets 0x1002 and 0x1003.

481 3.2 Workflow Engine

482 We have built a workflow engine within AnalyzeThis, to
483 orchestrate both the placement of data objects as well as the
484 scheduling of analysis tasks across the AFEs. The scheduler
485 is implemented in the FUSE file system (anFS). Once a user
486 submits the analysis workflow script via anFS, it distin-
487 guishes this request from a normal I/O request. This is
488 accomplished by treating the “write” request coming
489 through the special file (.submit) as a job submission instead
490 of normal write operation by anFS. The script is delivered to
491 the scheduler which parses it to build a directed acyclic
492 graph, schedules the tasks, and sends the execution requests
493 to the AFEs via the AFE-OSD protocol. The vertices in the
494 DAG represent the analysis kernels, and inputs and outputs
495 represent incoming and outgoing edges. The scheduler
496 decides which branches (mini DAGs) will run on which
497 AFEs based on several heuristics. While the mapping of a
498 mini DAG to AFE is determined apriori by the scheduler,
499 the tasks are not dispatched until the analysis job’s inputs
500 are written to AnalyzeThis. This is akin to the smart folder
501 concept discussed in Section 1. The analysis sequence is first
502 registered with AnalyzeThis, and once the input data is
503 available the tasks are executed.
504 Workflow Description and DAG. In our implementation,
505 we have chosen to represent a job script using Libconfig [25],
506 a widely used library for processing structured configura-
507 tion files. Listing 1 shows an example of a job that finds the
508 maximum value in each input file. Each tasklet is repre-
509 sented by the input and output object lists, and a kernel
510 object that operates on the input objects. Any data depen-
511 dencies among the tasklets are detected by the scheduler
512 via a two-pass process. In the first pass, the scheduler exam-
513 ines each task in the script and inserts the task record (key:
514 output file, value: task) into a hash table. In the second pass,
515 the scheduler examines the input files of each task in the job
516 script. When an input file is found in the hash table, the
517 examined task is dependent on the output of the task in
518 the hash table. If the input file is not found in the hash table,
519 the scheduler checks if the input file already exists in the file
520 system. If the file does not exist, the job script is considered
521 to be invalid. In this way, the dependencies among the tasks
522 can be resolved. The dependency information is used to
523 build a DAG. In the following example, getmax.reduce
524 cannot be launched until getmax.1 and getmax.2 pro-
525 duce their output objects. Therefore, the overall perfor-
526 mance of AnalyzeThis depends on the efficient scheduling
527 of the analysis kernels on the AFE array.
528 Scheduling Heuristics. The design of the workflow sched-
529 uler is driven by two objectives: (1) minimizing the overall
530 execution time, and (2) reducing the data movement across
531 the AFEs. We point out that minimizing data movement is
532 critical as uncontrolled data movement may cause early
533 wear-out of the SSDs and increase in the energy consump-
534 tion [12]. We have designed and implemented several
535 scheduling strategies that attempt to strike a balance
536 between these two competing objectives.

537Round-Robin (RR). A simple round-robin approach
538schedules tasks as soon as their dependency requirements
539are met, and ensures a homogeneous load-distribution
540across all AFEs in a best-effort manner since the tasks are
541scheduled without a priori information about their execu-
542tion time. It picks the next available AFE in a round-robin
543fashion to balance the computational load. The round-robin
544strategy schedules the task on an available idle AFE control-
545ler, causing data movement, potentially in favor of a shorter
546execution time and load balance across the AFE controllers.
547Consequently, the technique may suffer from excessive data
548movement because it does not account for the amount of
549data to be moved.

550Listing 1. An Example Job Script

551name = “getmax”;
552workdir = “/scratch/getmax/”;
553tasks = (
554{ name = “getmax.1”; kernel = “getmax.so”;
555input = [“1.dat”]; output = [“1.max”]; },
556{ name = “getmax.2”; kernel = “getmax.so”;
557input = [“2.dat”]; output = [”2.max”]; },
558{ name = “getmax.reduce”; kernel = “mean.so”;
559input = [“1.max”, “2.max”];
560output = [“max.dat”]; }
561);

562Input Locality (IL). To minimize the data movement
563across the AFEs, this heuristic schedules tasks based on
564input locality. Tasks are scheduled on an AFE where maxi-
565mum amount of input data is present. The scheduler main-
566tains this information in memory during a job run,
567including the size and location of all involved files. Input-
568locality favors a reduction in data movement to perfor-
569mance (execution time). In our experiments with real work-
570flows, we observed that this scheduling policy is effective in
571reducing the data movement. However, it can potentially
572increase the overall execution time considerably because it
573will execute the analysis on the AFE that stores larger input,
574even if other AFEs are idle.
575Minimum Wait (MW). To reconcile execution time and
576data movement, we propose to explicitly account for the
577data transfer time and queuing delays on the AFE control-
578lers. The heuristic takes two inputs including a list of all
579available AFEs and the tasks to be scheduled next. The
580scheduler maintains information about the jobs currently
581queued on each AFE, their expected finish time and the size
582of the input file(s) for the task to be scheduled next. The
583scheduler iterates over each AFE to estimate the minimum
584wait time for the task to be scheduled. For each AFE, it cal-
585culates the queue wait time (due to other jobs) and data
586transfer time to that particular AFE. It chooses the AFE for
587which the sum of these two components is minimum. The
588minwait scheduler maintains and updates the “expected
589free time” of each AFE using the runtime history of jobs.
590When a task is ready to be executed, the scheduler calcu-
591lates the expected wait time of the task for every AFE. Since
592the precise estimation of the expected wait time can be com-
593plex, we adopt a heuristic-based approach based on the
594data transfer time [48]. The expected wait time at an AFE is
595calculated as: “expected free time” at the AFE plus the

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. X, XXXXX 2018

IEE
E P

ro
of

596 expected data transfer time (estimated using the input file
597 size and AFE location). The scheduler assigns the task to an
598 AFE that is expected to have the minimum wait time.
599 Hybrid (HY). In the hybrid strategy, we exploit the storage
600 server within the AnalyzeThis appliance (storage server in
601 Fig. 2a), in addition to the AFEs, to exploit additional oppor-
602 tunities. The storage server can run certain tasks in addition
603 to anFS services. Running computation on the servers to
604 which the disks are attached is a well-known practice
605 adopted by several commercial vendors. However, hybrid
606 processing offers more benefits by further exploiting the
607 internal, aggregate bandwidth of the multi-channel flash
608 device that exceeds the PCIe bandwidth between the storage
609 server and the flash device by a factor of 2-4� [9]. Analyze-
610 This does not blindly place all tasks on the AFEs or on the
611 host storage server. The challenge is in carefully determining
612 what to offload where (storage server versus AFE) and
613 when. Traditional solutions that simply perform server-side
614 processing do not address this optimization. Reduce tasks in
615 workflows involve high data movement cost because they
616 gather multiple intermediate inputs on the AFEs, and can be
617 moved to the storage server. This approach has the advan-
618 tage of minimizing the overhead of data movement between
619 the AFEs, beyond what Input Locality alone can achieve,
620 without sacrificing the parallelism. Also, tasks that cause an
621 uneven distribution on the AFEs cause stragglers, and can be
622 moved to the storage server (unaligned tasks). Such tasks
623 can be identified based on profiling of the workflows. The
624 hybrid approach can work in conjunction with any of the
625 aforementioned scheduling techniques.

626 3.3 anFS File System Interface

627 The functionalities of AnalyzeThis are exposed to the clients
628 via a specialized file system interface, “anFS.” Since the
629 analysis workflows operate on but do not modify the origi-
630 nal data from scientific experiments and simulations, anFS
631 is designed as a write-once-read-many file system. As dis-
632 cussed earlier (Section 3), anFS is exported to clients via
633 NFS. Thus, operations on shared files follow the NFS consis-
634 tency semantics. anFS provides standard APIs such as open
635 (), read(), and write(), as well as support special virtual files
636 (SVFs), serving as an interaction point, e.g., to submit and
637 track jobs, between users and AnalyzeThis.
638 Fig. 2b shows the overall architecture of anFS. It is imple-
639 mented using the FUSE user-space file system, and can be
640 mounted on the standard file system, e.g., /mnt/anFS/.
641 FUSE provides an elegant way to develop user-level file sys-
642 tems. anFS provides several custom features, such as work-
643 flow execution and provenance management, which are
644 more appropriate to be implemented in the user-space than
645 the kernel-level. Also, a FUSE-based, user-level implemen-
646 tation offers better portability than a kernel-based solution.
647 anFS is composed of the following components. The Name-
648 space Manager consolidates the array of available AFEs, and
649 provides a uniform namespace across all the elements. The
650 Workflow Manager implements the workflow engine of Ana-
651 lyzeThis (Section 3.2). The Device Manager provides the con-
652 trol path to the AFEs, implementing AFE-OSD (Section 3.1.1)
653 to allow interactions with the AFEs. Finally, the exoFS
654 (Extended Object File System) layer [13] provides the data path
655 to the AFEs.

656Namespace. anFS exposes a consolidated standard hierar-
657chical UNIX namespace view of the files and SVFs on the
658AFEs. To this end, the storage server metadata table
659(Section 3.1.1) includes additional information associated
660with every stored object and information to track the AFEs
661on which the objects are stored (Fig. 3). For example, there
662is an AFE identifier and an object identifier associated with
663every inode of a file stored by anFS. All file system opera-
664tions are first sent to the Namespace Manager that consults
665the metadata to route the operation to an appropriate AFE.
666To manage the large amount of metadata that increases
667with increasing number of files, provide easy and fast
668access, and support persistence across failures we employ
669the SQLite RDBMS [53] to store the metadata. We note that
670anFS implements features such as directories, special files,
671and symbolic links, entirely in the metadata database; the
672AFEs merely store and operate on the stored data objects.
673Instead of striping, anFS stores an entire file on a single AFE
674to facilitate on-element analysis and reduce data movement.
675The placement of a file on an AFE is either specified by the
676workflow manager, or a default AFE (i.e., inode modular
677number-of-AFEs) is used.
678Data and Control Path. To provide a data path to the AFEs,
679anFS uses exoFS, an ext2-based file system for object stores.
680anFS stores regular data files via the exoFS mount points,
681which are created one for each AFE. For reads and writes to
682a file, anFS first uses the most significant bit of the 64-bit
683inode number to distinguish between a regular file (MSB is
6840) and a SVF (MSB is 1). For regular files, the Namespace
685Manager locates the associated AFE and uses exoFS to route
686the operation to the AFEs as shown in Fig. 2b. Upon com-
687pletion, the return value is returned to the user similarly as
688in the standard file system. To provide a control path for
689active operations, anFS intercepts the files and routes it to
690the Workflow Manager, which uses the Device Manager to
691route the operations to the AFEs using the AFE-OSD library
692for further analysis and actions.
693Active File Operations—Job Submission. anFS supports SVFs
694to allow interaction between users and AnalyzeThis opera-
695tions, e.g., running an analysis job, checking the status of the
696job, etc. Specifically, we create a special mount point
697(.analyzethis) under the root directory for anFS (e.g., /mnt/
698anFS/), which offers similar functionality as that of /procbut
699for workflow submission and management (Fig. 2b). To sub-
700mit a job, e.g., JobA, the user first creates a submission script
701(/home/alice/joba-submission) that contains information
702about how the job should be executed and the data that it
703requires and produces. Next, the job is submitted by writing
704the full path of the submission script to the submission SVF,
705e.g., by using echo /home/alice/joba-submission > /mnt/
706anFS/.analyzethis/alice/submit. This SVF write is handed
707to the Workflow Manager for processing, which parses the
708script, assigns a unique opaque 64-bit job handle to the script,
709and takes appropriate actions such as creating a task sched-
710ule, and using the appropriate Device Manager thread to
711send the tasks to the AFEs. The Workflow Manager also
712updates a per-user active job list, e.g., SVF /mnt/anFS/.
713analyzethis/alice/joblistfor user alice, to include the job han-
714dle for the newly submitted job. Each line in the joblist file
715contains the full path of the submission script and the job
716handle. Moreover, the WorkflowManager also monitors the

SIM ET AL.: AN ANALYSIS WORKFLOW-AWARE STORAGE SYSTEM FOR MULTI-CORE ACTIVE FLASH ARRAYS 7

open()
open()
read()
write()
/mnt/anFS/
.analyzethis
/mnt/anFS/
/mnt/anFS/
/proc
/home/alice/joba-submission
echo /home/alice/joba-submission > /mnt/anFS/.analyzethis/alice/submit
echo /home/alice/joba-submission > /mnt/anFS/.analyzethis/alice/submit
echo /home/alice/joba-submission > /mnt/anFS/.analyzethis/alice/submit
/mnt/anFS/.analyzethis/alice/joblist
/mnt/anFS/.analyzethis/alice/joblist

IEE
E P

ro
of717 task progress, and the user can retrieve this information by

718 reading from the job handle SVF /mnt/anFS/.analyzethis/
719 alice/joba-status. When the user accesses the job handle, the
720 request is directed to the Device Manager thread for the AFE
721 via the Workflow Manager. The Device Manager thread
722 sends the get_attributecommand via the AFE-OSD protocol
723 to the Task Tracker in the Mini Workflow Engine on the AFE
724 to retrieve the status of the jobs.
725 Supporting Internal Data Movement. Ideally, AnalyzeThis
726 will schedule a task to an AFE that also stores the (most)
727 data needed by the task. While we attempt to minimize data
728 movement through smart heuristics, there is still the need
729 to move data between AFEs as a perfect assignment is not
730 feasible. To this end, anFS may need to replicate (or move)
731 data from one AFE to another by involving the storage
732 server. However, this incurs added overhead on the storage
733 server. In the future, direct PCI to PCI communication can
734 help expedite these transfers.
735 Data and Workflow Security. anFS ensures data security for
736 multiple users via the OSD2 standards. To protect the stored
737 data, OSDmaintains the ownership of objects as object attrib-
738 utes. When a data item is stored, it also provides the kernel-
739 level user-id of the data owner, which is then stored in the
740 OSD-level object ownership metadata automatically by the
741 device. When the data is accessed, the user-id information is
742 provided along with the request, and the OSD2 protocol
743 ensures that only the allowed user(s) are given access to the
744 data. Similarly, when a task is scheduled on the AFE, it is
745 associated with the user-id information, and must present
746 these credentials to access data. The access control for the
747 SVFs are set such that the submit SVF (.anFS/submit) is
748 world writable, but the resulting joblist and status files are
749 user specific. The sub-directories are named on a per-user
750 basis, e.g., Alice’s jobs are under .anFS/alice/, and the asso-
751 ciated POSIXACLs protect user files.

752 3.4 Provenance

753 AnalyzeThis tracks the lineage of the data produced as a
754 result of a workflow execution at very minimal cost. This
755 allows the user to utilize the intermediate data for future
756 analysis. We have implemented provenance support on top
757 of the distributed database infrastructure (Fig. 3) between
758 the storage server (workflow table, anFS_wf) and AFEs
759 (Dataset task collection membership table, tcid_oid). Recall
760 that anFS_wf stores information about the task and the AFE
761 on which the task is executed; tcid_oid stores the task collec-
762 tion to data object mapping and will also need to be main-
763 tained on the storage server. Upon receiving a provenance
764 query regarding a dataset, AnalyzeThis searches the

765anFS_dirent table to get the anFS_inode of the file, which is
766used to get the object id. The object id is then used to
767retrieve the task collection id from the tcid_oid table. The
768task collection id is used to obtain the AFE id from the
769anFS_wf table. Alternatively, if tcid_oid is not maintained on
770the storage server as well, we can broadcast to the AFEs to
771determine the task collection id for a data object id. Further
772analysis of the lineage is performed on that AFE. Using the
773task collection id and the attribute page we get the task col-
774lection attribute page number. Using the predefined attri-
775bute offset all the information regarding the task is fetched.
776The task provenance from multiple AFEs is merged with
777similar job-level information that is maintained at the stor-
778age server in the anFS_wf table.

7794 EXPERIMENTAL SETUP

780Testbed. Our emulation testbed (Fig. 4) is composed of the
781following: (1) client desktop computer that submits analysis
782workflows, (2) storage server within the AnalyzeThis appli-
783ance, and (3) the networked machines that emulate the
784AFEs (four AFEs are connected to the storage server). For
785the desktop computer and the storage server, we used a 1.8
786GHz Intel Xeon E5-2603 processor. We emulated the AFEs
787using Atom machines with RAM disks, to mimic the flash
788controller and the internal flash chips with high I/O band-
789width to the controller. The Atom-based AFEs use a single
7901.8 GHz Atom processor as the controller, a 3 GB RAM disk
791as the flash chip, and a 1 Gbps Ethernet connection to the
792storage server within the AnalyzeThis appliance. All servers
793run the Linux kernel 2.6.32-279. anFS offers a read and write
794bandwidth of 120 MB/s and 80 MB/s, respectively.
795Software. AnalyzeThis has been implemented using 10 K
796lines of C code. We extended the OSD iSCSI target emulator
797from the open-osd project [36], for the AFE target. The task
798executions in an AFE are serialized by spawning a dedi-
799cated thread, which mimics dedicating a device controller
800for active processing. For the AFE-OSD driver in the storage
801server, we extended the OSD initiator driver in the Linux
802kernel. We also extended exoFS [13] to synchronize the OSD
803object id space with the userspace anFS. anFS has been
804implemented using FUSE [14], and it keeps track of meta-
805data using SQLite [53].
806Scientific Workflows. We used several real-world complex
807workflows. We used Montage [30], Brain Atlas [31],
808Sipros [60], and Grep [15] workflows. The DAG representa-
809tions and the details of the workflows are shown in Fig. 6
810and Table 1. The Montage workflow [30] creates a mosaic
811with 10 astronomy images. It uses 8 analysis kernels, and is
812composed of 36 tasks, several of which can be parallelized
813to run on the AFEs. The Brain workflow [31] creates

Fig. 4. AnalyzeThis testbed.

TABLE 1
Workflow Input, Output and Intermediate Data Size

Input Intermediate Output Total Object

(MB) (#)

Montage 51 222 153 426 113
Brain 70 155 20 245 35
Sipros 84 87 1 172 45
Grep 463 363 1 827 13

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. X, XXXXX 2018

/mnt/anFS/.analyzethis/alice/joba-status
/mnt/anFS/.analyzethis/alice/joba-status
get_attribute
.anFS/submit
.anFS/alice/

IEE
E P

ro
of814 population-based brain atlases from the fMRI Data Center’s

815 archive of high resolution anatomical data, and is part of
816 the first provenance challenge [31] used in our provenance
817 evaluation. The Sipros workflow runs DNA search algo-
818 rithms with database files to identify and quantify proteins
819 and their variants from various community proteomics
820 studies. It consists of 12 analysis tasks, and uses three analy-
821 sis kernels. The Grep workflow counts the occurrences of
822 ANSI C keywords in the Linux source files.

823 5 EVALUATING ANALYZETHIS

824 5.1 AnalyzeThis Performance

825 We compare offline-anFS and AnalyzeThis. In offline-anFS,
826 data analyses are performed on desktops or clusters by pull-
827 ing data from the anFS, whereas in AnalyzeThis, they are
828 performed on the AFE cores. In Fig. 5, we show the total
829 runtime in terms of computation and I/O time. We further
830 break down the I/O time into anFS I/O and anFS-internal
831 I/O times (i.e., data movement between the AFEs). There-
832 fore, a break-down of the workflow run time comprises of
833 the following: (i) time to read the data from anFS (only
834 offline-anFS incurs this cost), (ii) compute time of the work-
835 flow on either the desktop or the AFEs, (iii) I/O time to
836 write the intermediate output to anFS during analysis (only
837 for offline-anFS), (iv) data shuffling time among the AFEs
838 (only for AnalyzeThis), and (v) time to write the final

839analysis output to anFS. We specifically compared the fol-
840lowing scenarios: (i) offline analysis using one client node
841and anFS (offline-anFS), (ii) AnalyzeThis using four Atom-
842based AFEs and round-robin scheduling across the AFEs,
843and (iii) AnalyzeThis-hybrid using the storage server, four
844AFEs and round-robin across the AFEs.
845In the Montage, Brain and Grep experiments for offline-
846anFS, the time to write the analysis outputs to anFS notice-
847ably increases the run time (i.e., more than 20 percent of the
848run time is consumed by I/O operations.) while, for Ana-
849lyzeThis, the I/O time, anFS-internal I/O, is much smaller
850compared to the overall run time. The run time for offline-
851anFS for Montage and Brain is slightly lower than Analyze-
852This due to relatively less computing power on the AFEs.
853This demonstrates that the benefit from introducing the
854active computation can vary depending on the application
855characteristics and behavior. In addition, as AFEs begin to
856havemulticores in the future, this small difference is likely to
857be overcome. In contrast, for Sipros and Grep, AnalyzeThis
858performs better than offline-anFS. The results indicate that
859offline’s performance is heavily affected by the data move-
860ment costs, whereas AnalyzeThis is less impacted. Further,
861AnalyzeThis can free up compute resources of desktops or
862clusters, enabling “true” out-of-core data analysis.
863Next, we evaluate (AnalyzeThis-Hybrid). For Montage,
864AnalyzeThis-Hybrid significantly reduced the total run
865time over AnalyzeThis and offline-anFS. Unaligned mPro-

866jectPP tasks (Fig. 6a) are executed on the storage server,
867which removed task stragglers. Also, more than 50 percent
868of data copies between AFEs are reduced by executing
869reduce tasks on the storage server. Similarly, for Brain, exe-
870cuting a single reduce task (softmean in Fig. 6b) on the
871storage server eliminated more than 75 percent of data cop-
872ies, which results in a 37 percent runtime reduction com-
873pared to AnalyzeThis. Similarly, for Sipros, AnalyzeThis-
874hybrid is better than both AnalyzeThis and offline-anFS as
875it ran unaligned tasks on the storage server.

8765.2 Scheduling Performance

877Here, we discuss the performance of scheduling techniques.
878Impact of Scheduling Heuristics. Fig. 7 compares the perfor-
879mance of round robin (RR), input locality (IL), minimum
880wait (MW), and hybrid (HY) based on AFE utilization and
881data movement. Fig. 7a compares the sum (first bar) of the
882computation time of the workflow and the data shuffling
883time among the AFEs against the AFE utilization time (other
884two bars). AFE utilization is denoted by the slowest (second
885bar) and the fastest (third bar) AFEs, and the disparity
886between them indicates a load imbalance across the AFEs.
887The smaller the difference, the better the utilization. Fig. 7bFig. 6. The DAGs representing the workflows.

Fig. 5. Comparison of AnalyzeThis round-robin, hybrid, and offline-anFS. Multiple runs for each case, without much variance.

SIM ET AL.: AN ANALYSIS WORKFLOW-AWARE STORAGE SYSTEM FOR MULTI-CORE ACTIVE FLASH ARRAYS 9

IEE
E P

ro
of

888 shows the amount of data shuffled between the AFEs. An
889 optimal technique strikes a balance between runtime, data
890 movement, and AFE utilization.
891 HY and RR show a balanced load distribution across the
892 AFEs with the least variability in utilization. However, RR
893 incurs the most data movement. IL can improve runtime by
894 significantly reducing data movement, however it may
895 degrade the overall performance due to inefficient load dis-
896 tribution. IL shows higher runtimes than RR in all work-
897 flows. In fact for IL, we observed in Montage that the
898 slowest AFE was assigned 21 tasks among 36 tasks; in Brain,
899 only two AFEs out of four executed all of the tasks; and in
900 Sipros, only one AFE was used during analysis. HY and
901 MW perform best in reconciling AFE utilization and data
902 movement cost. For Montage, MW shows a 10 percent lower
903 runtime than IL by incurring a 6 percent increase in data
904 movement. For Brain, RR and MW show very close run-
905 times, but MW further reduces the data movement cost of
906 RR by 16 percent, with less core utilization, suggesting that
907 it is likely to be more energy-efficient. For Sipros, MW
908 shows a 2.4 percent lower runtime than RR while reducing
909 the data movement cost by 3 percent. By executing reduce
910 tasks on the storage server, HY significantly reduces the
911 runtimes over other scheduling algorithms for all work-
912 flows. In Montage and Brain, this also reduces data move-
913 ment cost by 52 and 76 percent over RR, respectively.
914 Scaling Experiments. We performed scalability experi-
915 ments for AnalyzeThis by increasing the number of AFEs.
916 We observe that the overall performance scales only up to a
917 certain number of AFEs, since the maximum task parallel-
918 ism in the workflow can limit the performance gain. For
919 instance, in the Brain Atlas workflow, using more than four
920 AFEs does not improve the performance further [47].
921 Utilizing Host Cores for Analysis. We have evaluated the
922 impact of the host processor utilization in AnalyzeThis, in a
923 Hybrid workflow run. We run the reduce tasks of the work-
924 flow on the host processor. The reduce task collects multiple
925 intermediate inputs from the AFEs, which can result in high
926 data movement costs between AFEs. And unaligned

927operations often create stragglers. Running these unaligned
928operations on the host processor can eliminate the runtime
929effects from these stragglers.
930In Fig. 7, shows the results of our evaluation for RR and
931Hybrid scheduling algorithms with Montage, BrainAtlas,
932and Sipros workloads. We observe that both runtime and
933data copy overhead are significantly reduced by Hybrid
934compared with RR. In Montage, unalgined mProjectPP

935tasks were executed on the host processor, which does
936away with the extra parallel wave of 10 seconds. Similar
937improvements were observed in the Sipros results, where
938the extra wave is more than 300 seconds. Also, in Montage,
939more than 50 percent of the data copies are reduced by exe-
940cuting reduce tasks on the host processor. In BrainAtlas,
941executing a single reduce task (softmean) on the host elim-
942inates more than 75 percent of the data movement cost,
943which results in 37 percent runtime improvement.
944Provenance Performance. We have conducted the experi-
945ments of AnalyzeThis for the provenance queries using the
946BrainAtlas workflow, and our evaluation results are shown
947in our prior work [47].

9486 EVALUATING ANALYZETHIS WITH MULTI-CORE

949ACTIVE FLASH ELEMENTS

950Recent SSDs are configured with multicore CPUs. However,
951in the current emulation-based approach, each single core
952AFE is emulated as a server. Therefore, single core AFE
953arrays can only be tested, and scalable experiments require
954expensive hardware server resources. Therefore, in this sec-
955tion, we describe a simulation-based study of AnalyzeThis
956to evaluate scalable multicore AFE arrays. We have devel-
957oped an event-driven simulator, AnalyzeThisSim, which
958simulates workflow processing in the AnalyzeThis emula-
959tion framework (in Section 3). We assume that a set of AFEs
960are exclusively allocated to a single job, similarly to other
961resource allocation policies in the scientific computing.

9626.1 AnalyzeThis Simulator

963The AnalyzeThisSim takes workflow script as its input and
964reports timing information of each step during the work-
965flow process. Specifically, the AnalyzeThisSim runs as fol-
966lows: First, it parses an input workflow script and places all
967the initial input files of the workflow across the array of
968AFEs. AnalyzeThisSim supports two initial data placement
969policies of random and round-robin. Once the initial files
970are deployed, AnalyzeThisSim starts the execution of the
971workflow. AnalyzeThis parases all the tasks and files in the
972workflow and triggers internal events accordingly. For
973instance, a task event is generated based on the availability
974of the input files. If all the input files are available, Analyze-
975ThisSim schedules the task to the target core of the AFE.
976The event-driven design of the simulator allows calculate
977the time taken to send the input file, the execution time of
978the task, and the time to write the output file to the local
979AFE. All these times are calculated based on task in the
980workflow and hardware characteristics of the emulated tar-
981get system by the simulator. By iterating over the workflow,
982all the tasks are progressively executed. AnalyzeThisSim
983collects, stores, and updates all the metrics related to job
984execution, including implicit data movement.

Fig. 7. Performance of scheduling heuristics.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. X, XXXXX 2018

IEE
E P

ro
of985 AnalyzeThisSim was implemented considering the fol-

986 lowing: (i) an AFE is characterized by the number of cores,
987 read bandwidth, write bandwidth, read latency and write
988 latency, and (ii) all AFEs are the same in terms of number of
989 cores, bandwidth and latencies (for both read and write). A
990 key aspect of the AnalyzeThisSim is the capability of simu-
991 lating various configurations of the array of AFEs. The sim-
992 ulator uses INI file to describe the AFE array as shown in
993 Fig. 9.
994 Validation. AnalyzeThisSim has been implemented to
995 accurately simulate the architecture and behavior of the
996 emulator. Moreover, we have validated the validated simu-
997 lation and emulation results with Montage and BrainAtlas
998 workloads. We recorded the timing information at impor-
999 tant tracing points. For example, when a task is scheduled

1000 or executed in the simulation and emulation run, we have
1001 designed the simulator to exhibit less than 10 percent of
1002 errors from the tracing points in the emulation.

1003 6.2 Multi-Level Scheduling Framework

1004 The scheduling strategy studied in the emulator-based
1005 approach was implemented at the host-level, to manage
1006 task execution and data movement across AFEs. On the
1007 other hand, each AFE can implement its own scheduling
1008 strategy, as it is since it is composed of multiple cores capa-
1009 ble of task execution. As shown in Fig. 8, we implement
1010 two-level schedulers, at host level and at the AFE level,
1011 which attempts AFE level, to study the efficiency of differ-
1012 ent levels of scheduling in the multicore AFE environment.

1013 � Host-scheduler: The host scheduler is a host-level
1014 scheduler, in charge of executing a set of tasks on the
1015 local AFE or the array of AFEs. Since the host sched-
1016 uler deals with input files for the kernels that need to
1017 be executed, it is in charge of copying and moving
1018 files to and from other AFEs, as well as starting the
1019 execution of the task on a specific AFE when all the
1020 required files are locally available.
1021 � Fabric Scheduler: The fabric-scheduler is a device-
1022 level scheduler within each AFE, placing a task on
1023 the various cores of the AFE and receiving/sending
1024 information from/to the host-scheduler for schedul-
1025 ing purposes. In addition, we define a set of internal
1026 status records, each of which is represented as a
1027 key/value pair, i.e., the key being a unique identifier
1028 for the identification of a specific characteristic of
1029 any SSD. For instance, the write amplification (WA)
1030 ratio could be represented via the (WA, X) key/value
1031 pair where X denotes the write amplification ratio of
1032 the SSDs. Such status records are used as metrics for
1033 the scheduling policy.

10346.3 Performance Impact of Using Multi-Core AFEs

1035To study the performance impact of using multi-core AFEs,
1036we have used used the same set of workflows from the pre-
1037vious emulation-based experiments. Specifically, we ran a
1038series of simulations and collected runtime statistics of
1039Montage, BrainAtlas and Grep workflows. For each run, we
1040configure a specific number of AFEs and cores per a single
1041AFE. We vary the number of AFEs from 1 to 8, while
1042increasing the number of cores per each AFE from 1 to 12.
1043We have also also implemented three scheduling policies in
1044the simulator: Round-Robin (RR), Write Amplification
1045(WA) and Random.
1046The RR policy schedules tasks across AFEs. When the
1047AFE is selected, the scheduler still schedules the tasks on
1048the local cores based on a round-robin algorithm. A task to
1049an AFE, the The WA policy calculates the write amplifica-
1050tion ratio of all AFEs before assigning the task to the AFE
1051and then it selects the AFE with the lowest ratio. To calcu-
1052late the ratio, the WA algorithm implements the following
1053model:

X
SizeðInput FilesÞ þ

P
SizeðFile TransfersÞP
SizeðInput FlesÞ ; (1)

10551055

1056where
P

SizeðInput FilesÞ is the total size of the input files
1057required by the task, and

P
SizeðFile TransfersÞ is the sizes

1058of the files that would need to be transferred to the AFE, that
1059are not locally present. Task scheduling of cores in the AFE
1060follows a round-robin algorithm. The Random policy ran-
1061domly selects the target AFE when scheduling a task and
1062schedules the task on the cores according to a round-robin
1063algorithm (reusing the code in the RR policy). All files are
1064placed on the AFEs according to the round-robin policy.
1065Fig. 10 shows the results of the Montage, BrainAtlas and
1066Grep workflows using RR andWA policies. From the figure,
1067we can observe that the overall execution of various work-
1068flows can be greatly improved by adding more AFEs or
1069adding hardware parallelism using multi-cores on the AFE.
1070However, due to the limited parallelism available in the
1071workflow, it can be seen that adding more computational
1072resources (more AFEs or more cores to the AFE) will not
1073improve the performance. This can be explained by the fact
1074that overall performance is limited by the number of data
1075transfers between AFEs or the amount of data transferred.
1076In particular, WA policy results show high performance
1077using AFE with a large number of cores, over using a large
1078number of AFEs with a small number of cores. The use of a
1079multi-core AFE minimizes the data transfer overhead
1080between AFEs.
1081Especially, we can see there is a slight difference in per-
1082formance when comparing simulated and emulated results
1083(Figs. 10 and 5 respectively) using four single-core AFEs

Fig. 9. Example: simulation platform description INI File.

Fig. 8. Multi-level scheduling architecture in AnalyzeThis with multi-core
AFEs.

SIM ET AL.: AN ANALYSIS WORKFLOW-AWARE STORAGE SYSTEM FOR MULTI-CORE ACTIVE FLASH ARRAYS 11

IEE
E P

ro
of

1084 with the RR scheduling policy. This is due to the difference
1085 in the initial file placement, i.e., in the emulator initial input
1086 files were copied to the distributed file system without con-
1087 trol over their placement, while the simulator places files on
1088 the AFE according to the round-robin policy. We observe
1089 that the performance impact of the initial data placement
1090 varies depending on workloads. For instance, Grep
1091 workload only exhibits 3 percent performance difference
1092 (33.97 seconds in emulation and 38.48 seconds in simula-
1093 tion), while Montage and BrainAtlas workload shows
1094 11 and 16 percent variation from the initial data placement.
1095 Fig. 11, a two-dimensional graph shows the results for a
1096 random policy. We run 50 iterations per experiment and the
1097 figure show the results with an average and 99 percentile
1098 error bar graph. We can see that using a larger number of
1099 AFEs with more cores will dramatically improve the execu-
1100 tion of various workflows. A slight variance of performance
1101 is observed in each experiment, which is not significant. In
1102 particular, in experiments with less than 4 AFEs, fewer
1103 AFEs with small number of cores can have higher workflow
1104 processing performance than many AFE approaches with
1105 fewer cores. However, due to workflow parallelism limita-
1106 tion, there is little difference in performance improvement
1107 in four or more AFE experiments, regardless the number of
1108 AFEs and the number of cores.

11097 RELATED WORK

1110Migrating tasks to disks has been explored before [20], [40].
1111There is a renewed interest in active processing given the
1112recent advances in SSD technology [42]. Recent efforts, such
1113as iSSD [9], SmartSSD [19], and Active Flash [56] have dem-
1114onstrated the feasibility and the potential of processing on
1115the SSD. In addition, recently, several studies have been
1116introduced to build SSDs using key-value interfaces [18],
1117[21]. These early studies lay the foundation for AnalyzeThis.
1118However, we take significant strides further by building a
1119complete workflow-aware storage system, and positioning
1120it as an in-situ processing storage appliance. The active stor-
1121age community has leveraged the object storage device pro-
1122tocol to enable computation within a storage device. The
1123OSD T10 standard [41], [61], [62] defines a communication
1124protocol between the host and the OSD. Recent efforts lever-
1125age the protocol for different purposes, including executing
1126remote kernels [41], security, and QoS [39], [62]. In contrast,
1127we extend the OSD implementation to support entire work-
1128flows, and to integrally tie together the data with both the
1129analysis sequence and its lineage.
1130Table 2 provides a comparison between other closely
1131related efforts and AnalyzeThis along different dimensions,
1132e.g., active storage processing, workflow and provenance-
1133awareness, OSD model, file system interface and, in-situ

Fig. 10. Simulation results of workflow execution with Round-Robin (RR) and Write-Amplification (WA) policies.

Fig. 11. Simulation results with Random policy. The 99 percent confidence intervals are shown in error bars. The number N in CN of the label repre-
sents the number of cores in the AFE.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. X, XXXXX 2018

IEE
E P

ro
of

1134 data analysis. While there are approaches that provide solu-
1135 tions targeting a few dimensions, none of them provide a
1136 complete solution, satisfying all of the dimensions.
1137 Some extensions to parallel file systems, e.g., PVFS [52]
1138 and Lustre [38], provide support for analysis on the I/O
1139 node’s computing core. However, they are not workflow-
1140 aware, a key trait for efficient analysis execution, and neither
1141 is the analysis conducted on the storage device. The
1142 ADIOS [26] I/O middleware uses a subset of staging nodes
1143 alongside a running simulation on a cluster to reduce the sim-
1144 ulation output on-the-fly; while workflow-aware, it also only
1145 uses the computing elements of the staging nodes. Instead,
1146 AnalyzeThis uses theAFEs on the storage themselves, obviat-
1147 ing the need for a separate set of staging nodes for analysis.
1148 Enterprise solutions such as IBM Netezza [49] enable prove-
1149 nance tracking and in-situ analysis, but lack an easy-to-use
1150 file system interface and workflow-awareness. Workflow-
1151 and provenance-aware systems, such as PASS [32], LinFS [43],
1152 BadFS [5], WOSS [2], and Kepler [3], are not meant for in-situ
1153 analysis. The batch-aware distributed file system (BadFS)
1154 attempts to orchestrate IO-intensive batch workloads and
1155 data movement on remote systems, by layering a scheduler
1156 atop storage and compute systems in a grid network. In con-
1157 trast, AnalyzeThis operates on AFEs, scheduling and colocat-
1158 ing data and computation therein. Compared to dedicated
1159 provenance systems like PASS and LinFS, lineage tracking in
1160 AnalyzeThis is a natural byproduct of executing workflows
1161 in the storage. Distributed execution engines, such as
1162 Dryad [63], Nephele [4], Hyracks [7], and MapReduce [10],
1163 can execute data-intensive DAG-based workflows on distrib-
1164 uted computing resources. AnalyzeThis fundamentally dif-
1165 fers from these systems as it exploits the SSDs as the primary
1166 computing resources.

1167 8 CONCLUSION

1168 The need to facilitate efficient data analysis is crucial to
1169 derive insights from mountains of data. However, extant

1170techniques incur excessive data movement on the storage
1171system.We have shown how analysis-awareness can be built
1172into each and every layer of a storage system. The concepts of
1173building an analysis object abstraction atop an Active Flash
1174array, integrating a workflow scheduler with the storage,
1175and exposing them via a /proc-like file system bring a fresh
1176perspective to purpose-built storage systems. We have
1177developed the AnalyzeThis storage system on top of an emu-
1178lation platform of the Active Flash array. In addition, We
1179have developed an event-driven AnalyzeThis simulator to
1180evaluate the highly scalable AnalyzeThis environment with
1181multicore AFEs. Our evaluation of AnalyzeThis shows that
1182is viable, and can be used to capture complex workflows. In
1183future, we plan to investigate a distributed appliance model,
1184with multiple servers, each with its own AFE arrays, thereby
1185introducing analysis-awareness semantics into a distributed
1186file system.

1187ACKNOWLEDGMENTS

1188This researchwas supported in part by the U.S. DOE’s Office
1189of Advanced Scientific Computing Research (ASCR) under
1190the Scientific data management program, by NSF through
1191grants CNS-1405697 andCNS-1422788, andNext-Generation
1192Information Computing Development Program through
1193National Research Foundation of Korea (NRF) funded by the
1194Ministry of Science, ICT (2017M3C4A7080243). The work
1195was also supported by, and used the resources of, the
1196Oak Ridge Leadership Computing Facility, located in the
1197National Center for Computational Sciences at ORNL, which
1198is managed by UT Battelle, LLC for the U.S. DOE, under the
1199contract No. DE-AC05-00OR22725.

1200REFERENCES

1201[1] A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming
1202model, algorithms and evaluation,” SIGPLAN Not., vol. 33, no. 11,
1203pp. 81–91, 1998.

TABLE 2
Comparison with Related Active Storage Systems and Worklflow-Aware Systems

Systems Active Device Workflow OSDModel Provenance FS Interface In-Situ

Provenance-awareness
PASS [32], LinFS [43] � � � � � �
VDT [58] � � � � � �
Workflow�awareness
BadFS [5] � � � � � �
WOSS [2] � � � � � �
Kepler [3] � � � � � �
Active Storage
Active Disks [1], Active Flash [56], iSSD [9] � � � � � �
SmartSSD [19] � � � � � �
Data Analytics Appliance
IBM Netezza [49] � � � � � �
Active Computation in PFS
PVFS [52], Lustre [38] � � � � � �
I/O Middleware
ADIOS [26] � � � � � �
AnalyzeThis � � � � � �
‘�’ means that a system implements the listed feature, whereas ‘�’ implies that the system does not provide the feature.

SIM ET AL.: AN ANALYSIS WORKFLOW-AWARE STORAGE SYSTEM FOR MULTI-CORE ACTIVE FLASH ARRAYS 13

IEE
E P

ro
of

1204 [2] S. Al-Kiswany, E. Vairavanathan, L. B. Costa, H. Yang, and
1205 M. Ripeanu, “The case for cross-layer optimizations in Storage: A
1206 workflow-optimized storage system,” arXiv:1301.6195, 2013.Q1
1207 [3] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and
1208 S. Mock, “Kepler: An extensible system for design and execution
1209 of scientific workflows,” in Proc. 16th Int. Conf. Sci. Statist. Database
1210 Manage., 2004, pp. 423–424.
1211 [4] D. Battr�e, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,
1212 “Nephele/PACTs: A programming model and execution frame-
1213 work for web-scale analytical processing,” in Proc. 1st ACM Symp.
1214 Cloud Comput., 2010, pp. 119–130.
1215 [5] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
1216 and M. Livny, “Explicit control a batch-aware distributed file sys-
1217 tem,” in Proc. 1st Conf. Symp. Networked Syst. Des. Implementation -
1218 Vol. 1, 2004, pp. 27–27.
1219 [6] S. Boboila, Y. Kim, S. Vazhkudai, P. Desnoyers, and G. Shipman,
1220 “Active flash: Out-of-core data analytics on flash storage,” in Proc.
1221 IEEE 28th Symp. Mass Storage Syst. Technol., 2012, pp. 1–12.
1222 [7] V. Borkar,M.Carey, R.Grover,N.Onose, andR.Vernica, “Hyracks:
1223 A flexible and extensible foundation for data-intensive computing,”
1224 in Proc. IEEE 27th Int. Conf. Data Eng., 2011, pp. 1151–1162.
1225 [8] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
1226 R. Ross, “Understanding and improving computational science
1227 storage access through continuous characterization,” Trans. Stor-
1228 age, vol. 7, no. 3, pp. 8:1–8:26, Oct. 2011.
1229 [9] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active
1230 disk meets flash: A case for intelligent SSDs,” in Proc. 27th Int.
1231 ACM Conf. Int. Conf. Supercomputing, 2013, pp. 91–102.
1232 [10] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
1233 ing on large clusters,” in Proc. 6th Conf. Symp. Opearting Syst. Des.
1234 Implementation - Vol. 6, 2004, pp. 10–10.
1235 [11] HDF5 - A New Generation of HDF. [Online]. Available: http://
1236 hdf.ncsa.uiuc.edu/HDF5/doc/Q2
1237 [12] The Opportunities and Challenges of Exascale Computing.
1238 [Online]. Available: http://science.energy.gov/ /media/ascr/
1239 ascac/pdf/reports/exascale_subcommittee_report.pdf
1240 [13] exofs [LWN.net]. [Online]. Available: http://lwn.net/Articles/
1241 318564/
1242 [14] Filesystem in Userspace. [Online]. Available: http://fuse.
1243 sourceforge.net/
1244 [15] Grep - Hadoop Wiki. [Online]. Available: http://wiki.apache.
1245 org/hadoop/Grep.
1246 [16] R. L. Henderson, “Job scheduling under the portable batch sys-
1247 tem,” in Job Scheduling Strategies for Parallel Processing. New York,
1248 NY, USA: Springer, 1995, pp. 279–294.
1249 [17] DOEExascale InitiativeTechnical RoadMap, 2009. [Online].Available:
1250 http://extremecomputing.labworks.org/hardware/collaboration/
1251 EI-RoadMapV21-SanDiego.pdf
1252 [18] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swason, “KAML:
1253 A flexible, high-performance key-value SSD,” in Proc. IEEE Int.
1254 Symp. High Perform. Comput. Archit., 2017, pp. 373–384.
1255 [19] Y. Kang, Y.-s. Kee, E. L. Miller, and C. Park, “Enabling cost-
1256 effective data processing with smart SSD,” in Proc. IEEE 29th
1257 Symp. Mass Storage Syst. Technol., 2013, pp. 1–12.
1258 [20] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A case for intel-
1259 ligent disks (IDISKs),” ACM SIGMOD Record, vol. 27, no. 3,
1260 pp. 42–52, 1998.
1261 [21] Samsung key value ssd enables high performance scaling.
1262 [Online]. Available: https://www.samsung.com/us/labs/pdfs/
1263 collateral/Samsung_Key_Value_Technology_Brief_v7.pdf
1264 [22] Y. Kim, R. Gunasekaran, G. Shipman, D. Dillow, Z. Zhang, and
1265 B. Settlemyer, “Workload characterization of a leadership class
1266 storage cluster,” in Proc. 15th Petascale Data Storage Workshop,
1267 Nov. 2010, pp. 1–5.
1268 [23] Computational Science Requirements for Leadership Computing,
1269 2007. [Online]. Available: https://www.olcf.ornl.gov/wp-
1270 content/uploads/2010/03/ORNL_TM-2007_44.pdf
1271 [24] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
1272 R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel
1273 netCDF: A high-performance scientific I/O interface,” in Proc.
1274 SC2003: High Perform. Netw. Comput., 2003.Q3
1275 [25] libconfig, 2013. [Online]. Available: http://www.hyperrealm.
1276 com/libconfig/
1277 [26] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
1278 “Flexible IO and integration for scientific codes through the adapt-
1279 able IO system (ADIOS),” in Proc. 6th Int. Workshop Challenges
1280 Large Appl. Distrib. Environments, 2008, pp. 15–24.

1281[27] The New Sky | LSST. [Online]. Available: http://www.lsst.org/
1282lsst/
1283[28] N. Mi, A. Riska, E. Smirni, and E. Riedel, “Enhancing data avail-
1284ability in disk drives through background activities,” in Proc.
1285IEEE Int. Conf. Dependable Syst. Netw. FTCS DCC, Jun. 2008,
1286pp. 492–501.
1287[29] N. Mi, A. Riska, Q. Zhang, E. Smirni, and E. Riedel, “Efficient
1288management of idleness in storage systems,” Trans. Storage, vol. 5,
1289no. 2, pp. 4:1–4:25, Jun. 2009.
1290[30] Montage - An Astronomical ImageMosaic Engine. [Online]. Avail-
1291able: http://montage.ipac.caltech.edu/docs/m101tutorial.html
1292[31] L. Moreau, B. Lud€ascher, I. Altintas, R. S. Barga, S. Bowers,
1293S. Callahan, G. Chin, B. Clifford, S. Cohen, S. Cohen-Boulakia,
1294et al, “Special issue: The first provenance challenge,” Concurrency
1295Comput.: Practice Experience, vol. 20, no. 5, pp. 409–418, 2008.
1296[32] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
1297M. Seltzer, “Provenance-aware storage systems,” in Proc. Annu.
1298Conf. USENIX ’06 Annu. Tech. Conf., 2006, pp. 4–4.
1299[33] NetCDF Documentation. [Online]. Available: http://www.
1300unidata.ucar.edu/packages/netcdf/docs.html
1301[34] Nexus. [Online]. Available: http://trac.nexusformat.org/code/
1302wiki
1303[35] OCZ RevoDrive 3 X2 (EOL) PCI Express (PCIe) SSD. [Online].
1304Available: http://ocz.com/consumer/revodrive-3-x2-pcie-ssd
1305[36] Open-OSD project, 2013. [Online]. Available: http://www.open-
1306osd.org
1307[37] HDF5 Tutorial: Parallel HDF5 Topics. [Online]. Available: http://
1308hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/parallel.html
1309[38] J. Piernas, J. Nieplocha, and E. J. Felix, “Evaluation of active stor-
1310age strategies for the lustre parallel file system,” in Proc. ACM/
1311IEEE Conf. Supercomputing, 2007, Art. no. 28.
1312[39] L. Qin and D. Feng, “Active storage framework for object-based
1313storage device,” in Proc. 20th Int. Conf. Adv. Inf. Netw. Appl., 2006,
1314pp. 97–101.
1315[40] E. Riedel, G. Gibson, and C. Faloutsos, “Active storage for large
1316scale data mining and multimedia applications,” in Proc. 24th
1317Conf. Very Large Databases, 1998, pp. 62–73.
1318[41] M. T. Runde, W. G. Stevens, P. A. Wortman, and J. A. Chandy,
1319“An active storage framework for object storage devices,” in Proc.
1320IEEE 28th Symp. Mass Storage Syst. Technol., 2012, pp. 1–12.
1321[42] Samsung SSD. [Online]. Available: http://www.samsung.com/
1322uk/consumer/memory-cards-hdd-odd/ssd/830
1323[43] C. Sar and P. Cao, Lineage File System, 2005. [Online]. Available:
1324http://crypto. stanford. edu/cao/lineage.html
1325[44] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system
1326for large computing clusters,” in Proc. 1st USENIX Conf. File Stor-
1327age Technol., 2002, Art. no. 19.
1328[45] P. Schwan, “Lustre: Building a file system for 1000-node clusters,”
1329in Proc. Linux Symp., 2003.
1330[46] SDSS-III DR12. [Online]. Available: http://www.sdss.org
1331[47] H. Sim, Y. Kim, S. S. Vazhkudai, D. Tiwari, A. Anwar, A. R. Butt,
1332and L. Ramakrishnan, “AnalyzeThis: An analysis workflow-
1333aware storage system,” in Proc. Int. Conf. High Perform. Comput.
1334Netw. Storage Anal., 2015, pp. 1–12.
1335[48] A. Simonet, G. Fedak, M. Ripeanu, and S. Al-Kiswany , “Active
1336data: A data-centric approach to data life-cycle management,” in
1337Proc. 8th Parallel Data Storage Workshop, 2013, pp. 37–44.
1338[49] M. Singh and B. Leonhardi, “Introduction to the IBM Netezza
1339warehouse appliance,” in Proc. Conf. Center Adv. Stud. Collaborative
1340Res., 2011, pp. 385–386.
1341[50] HDF 4.1r3 User’s Guide. [Online]. Available: http://hdf.ncsa.
1342uiuc.edu/UG41r3_html/
1343[51] Spallation Neutron Source | ORNL Neutron Sciences. [Online].
1344Available: http://neutrons.ornl.gov/facilities/SNS/
1345[52] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz,
1346P. Kumar, W.-K. Liao, and A. Choudhary, “Enabling active stor-
1347age on parallel I/O software stacks,” in Proc. IEEE 26th Symp.
1348Mass Storage Syst. Technol., 2010, pp. 1–12.
1349[53] SQLite. [Online]. Available: https://sqlite.org/
1350[54] DAGMan:ADirectedAcyclic GraphManager. [Online]. Available:
1351http://research.cs.wisc.edu/htcondor/dagman/dagman.html
1352[55] Introducing Titan. [Online]. Available: https://www.olcf.ornl.
1353gov/titan/
1354[56] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma,
1355P. J. Desnoyers, and Y. Solihin, “Active flash: Towards energy-
1356efficient, in-situ data analytics on extreme-scale machines,” in
1357Proc. 11th USENIX Conf. File Storage Technol., 2013, pp. 119–132.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. X, XXXXX 2018

http://hdf.ncsa.uiuc.edu/HDF5/doc/
http://hdf.ncsa.uiuc.edu/HDF5/doc/
http://science.energy.gov/ /media/ascr/ascac/pdf/reports/exascale_subcommittee_report.pdf
http://science.energy.gov/ /media/ascr/ascac/pdf/reports/exascale_subcommittee_report.pdf
http://lwn.net/Articles/318564/
http://lwn.net/Articles/318564/
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://wiki.apache.org/hadoop/Grep.
http://wiki.apache.org/hadoop/Grep.
http://extremecomputing.labworks.org/hardware/collaboration/EI-RoadMapV21-SanDiego.pdf
http://extremecomputing.labworks.org/hardware/collaboration/EI-RoadMapV21-SanDiego.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Key_Value_Technology_Brief_v7.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Key_Value_Technology_Brief_v7.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2010/03/ORNL_TM-2007_44.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2010/03/ORNL_TM-2007_44.pdf
http://www.hyperrealm.com/libconfig/
http://www.hyperrealm.com/libconfig/
http://www.lsst.org/lsst/
http://www.lsst.org/lsst/
http://montage.ipac.caltech.edu/docs/m101tutorial.html
http://www.unidata.ucar.edu/packages/netcdf/docs.html
http://www.unidata.ucar.edu/packages/netcdf/docs.html
http://trac.nexusformat.org/code/wiki
http://trac.nexusformat.org/code/wiki
http://ocz.com/consumer/revodrive-3-x2-pcie-ssd
http://www.open-osd.org
http://www.open-osd.org
http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/parallel.html
http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/parallel.html
http://www.samsung.com/uk/consumer/memory-cards-hdd-odd/ssd/830
http://www.samsung.com/uk/consumer/memory-cards-hdd-odd/ssd/830
http://crypto. stanford. edu/cao/lineage.html
http://www.sdss.org
http://hdf.ncsa.uiuc.edu/UG41r3_html/
http://hdf.ncsa.uiuc.edu/UG41r3_html/
http://neutrons.ornl.gov/facilities/SNS/
https://sqlite.org/
http://research.cs.wisc.edu/htcondor/dagman/dagman.html
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/

IEE
E P

ro
of

1358 [57] Top 500 Supercomputer Sites. [Online]. Available: http://www.
1359 top500.org/
1360 [58] Virtual Data Toolkit. [Online]. Available: http://vdt.cs.wisc.edu/
1361 [59] G. Velamparampil, “Data management techniques to handle large
1362 data arrays in HDF,” Master’s thesis, Dept. Comput. Sci., Univ.
1363 Illinois, Champaign, IL, USA, Jan. 1997.
1364 [60] Y. Wang, T.-H. Ahn, Z. Li, and C. Pan, “Sipros/ProRata: A versa-
1365 tile informatics system for quantitative community proteomics,”
1366 Bioinf., vol. 29, no. 16, pp. 2064–2065, 2013.
1367 [61] R. O. Weber, “Information technology - SCSI object-based storage
1368 device commands (OSD),” Tech. Council Proposal Document,
1369 vol. 10, pp. 201–225, 2004.
1370 [62] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, D. D. E. Long, Y. Kang,
1371 Z. Niu, and Z. Tan, “Design and evaluation of oasis: An active
1372 storage framework based on T10 OSD standard,” in Proc. IEEE
1373 27th Symp. Mass Storage Syst. Technol., 2011, pp. 1–12.
1374 [63] Y. Yu, M. Isard, D. Fetterly, M. Budiu, �U. Erlingsson, P. K. Gunda,
1375 and J. Currey, “DryadLINQ: A system for general-purpose dis-
1376 tributed data-parallel computing using a high-level language. in
1377 Proc. 8th USENIX Conf. Operating Syst. Des. Implementation, 2008,
1378 pp. 1–14.

1379 Hyogi Sim received the BS degree in civil engi-
1380 neering and the MS degree in computer engi-
1381 neering from Hanyang University in South Korea,
1382 and the MS degree in computer science from
1383 Virginia Tech, in 2014. He is currently working
1384 towards the PhD degree at Virginia Tech. He
1385 joined Oak Ridge National Laboratory, in 2015,
1386 as a post-masters associate. During this appoint-
1387 ment, he conducted research and development
1388 on active storage systems and scientific data
1389 management for HPC systems. He is currently
1390 an HPC systems engineer with Oak Ridge National Laboratory. His pri-
1391 mary role is to design and develop a checkpoint-restart storage system
1392 for the exascale computing project. His areas of interest include storage
1393 systems and distributed systems.

1394

1395 Geoffroy Vall�ee received the MS degree in com-
1396 puter science from the Universite de Versailles
1397 Saint-Quentin-en-Yvelines, France, in 2000, the
1398 PhD degree in computer science from Universite
1399 Rennes 1, France, in 2004 during which he col-
1400 laborated with both INRIA and Electricite de
1401 France (EDF). He joined Oak Ridge National
1402 Laboratory in 2004 as a postdoctoral researcher
1403 and became a research scientist in 2007. His
1404 research interests include system for high-
1405 performance computing, including operating sys-
1406 tems, networking substrates, run-time systems,
1407 resilience, and fault tolerance.

1408 Youngjae Kim received the BS degree in com-
1409 puter science from Sogang University, Republic
1410 of Korea, in 2001, and the MS degree from
1411 KAIST, in 2003, and the PhD degree in computer
1412 science and engineering from Pennsylvania State
1413 University, University Park, Pennsylvania, in
1414 2009. He is currently an assistant professor with
1415 the Department of Computer Science and Engi-
1416 neering, Sogang University, Seoul, Republic of
1417 Korea. Before joining Sogang University, he was
1418 a staff scientist with the US Department of Ener-
1419 gy’s Oak Ridge National Laboratory (2009-2015) and an assistant pro-
1420 fessor with Ajou University, Suwon, Republic of Korea (2015-2016). His
1421 research interests include distributed file and storage, parallel I/O,
1422 operating systems, emerging storage technologies, and performance
1423 evaluation.

1424Sudharshan S. Vazhkudai received the mas-
1425ter’s and PhD degrees in computer science from
1426the University of Mississippi, in 2003 and 1998,
1427respectively. He leads the Technology Integration
1428(TechInt) group in the National Center for
1429Computational Sciences (NCCS), Oak Ridge
1430National Laboratory (ORNL). NCCS hosts the
1431Oak Ridge Leadership Computing Facility
1432(OLCF), which is home to the 27 petaflops Titan
1433supercomputer. He leads a group of 17 HPC
1434researchers and systems software engineers; the
1435group is charged with delivering new technologies into OLCF by identify-
1436ing gaps in the system software/hardware stack, and developing, hard-
1437ening and deploying solutions. His group’s technology scope includes
1438the deep-storage hierarchy, non-volatile memory, system architecture,
1439system monitoring, and data and metadata management.

1440

1441Devesh Tiwari received the BS degree in com-
1442puter science and engineering from the Indian
1443Institute of Technology (IIT) Kanpur, India, and
1444the PhD degree in electrical and computer engi-
1445neering from North Carolina State University. He
1446is an assistant professor with Northeastern Uni-
1447versity. Before joining Northeastern, Devesh was
1448a staff scientist with the Oak Ridge National Lab-
1449oratory. His research interests include designing
1450efficient and scalable large scale computing and
1451storage systems. His research publications have
1452received best paper award nominations at conferences including Super-
1453computing (SC), Dependable Systems and Networks (DSN), and Paral-
1454lel & Distributed Processing Symposium (IPDPS). His work has
1455appeared in various conferences such as USENIX FAST, SC, DSN,
1456HPCA, MICRO, IPDPS, and have been covered by the news media
1457including Slashdot and HPCWire.

1458

1459Ali R. Butt received the PhD degree in electrical
1460and computer engineering from Purdue Univer-
1461sity, in 2006. He is a recipient of an NSF
1462CAREER Award (2008), IBM Faculty Awards
1463(2008, 2015), a VT College of Engineering (COE)
1464Dean’s award for ”Outstanding New Assistant
1465Professor” (2009), an IBM Shared University
1466Research Award (2009), and NetApp Faculty Fel-
1467lowships (2011, 2015). He was named a VT COE
1468Faculty Fellow in 2013. He was an academic visi-
1469tor at IBM Almaden Research Center (Summer
14702012) and a visiting research fellow at Queen’s University of Belfast
1471(Summer 2013). He has served as an associate editor for the ACM
1472Transactions on Storage (2016-present), the IEEE Transactions on Par-
1473allel and Distributed Systems (2013-present), Cluster Computing: The
1474Journal of Networks, Software Tools and Applications (2013-present),
1475and the Sustainable Computing: Informatics and Systems (2010-2015).
1476He is an alumni of the National Academy of Engineering’s US Frontiers
1477of Engineering (FOE) Symposium (2009), US-Japan FOE (2012), and
1478National Academy of Science’s AA Symposium on Sensor Science
1479(2015). He was also an organizer for the US FOE in 2010. His research
1480interests include distributed computing systems, cloud computing, file
1481and storage systems, Internet of Things, I/O systems, and operating
1482systems. At Virginia Tech he leads the Distributed Systems & Storage
1483Laboratory (DSSL).

1484

1485" For more information on this or any other computing topic,
1486please visit our Digital Library at www.computer.org/publications/dlib.

SIM ET AL.: AN ANALYSIS WORKFLOW-AWARE STORAGE SYSTEM FOR MULTI-CORE ACTIVE FLASH ARRAYS 15

http://www.top500.org/
http://www.top500.org/
http://vdt.cs.wisc.edu/

IEE
E P

ro
of

1487 Queries to the Author

1488 Q1. Please provide complete bibliography details for Ref. [2].
1489 Q2. Please provide publication year for Refs. [11], [12], [13], [14], [15], [21], [27], [30], [33], [34], [35], [37], [42], [46], [50],
1490 [53], [57], and [58].
1491 Q3. Please provide page-range for Refs. [24], and [45].

