

An Analysis Workflow-Aware Storage System for Multi-Core Active Flash Arrays

Hyogi Sim, Geoffroy Vallée, Youngjae Kim, Sudharshan S. Vazhkudai[✉], Devesh Tiwari, and Ali R. Butt

Abstract—The need for novel data analysis is urgent in the face of a data deluge from modern applications. Traditional approaches to data analysis incur significant data movement costs, moving data back and forth between the storage system and the processor. Emerging Active Flash devices enable processing on the flash, where the data already resides. An array of such Active Flash devices allows us to revisit how analysis workflows interact with storage systems. By seamlessly blending together the flash storage and data analysis, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply ingrained in each and every layer of the storage, elevating data analyses as first-class citizens, and transforming AnalyzeThis into a potent analytics-aware appliance. To evaluate the AnalyzeThis system, we have adopted both emulation and simulation approaches. In particular, we have evaluated AnalyzeThis by implementing the AnalyzeThis storage system on top of the Active Flash Array’s emulation platform. We have also implemented an event-driven AnalyzeThis simulator, called AnalyzeThisSim, which allows us to address the limitations of the emulation platform, e.g., performance impact of using multi-core SSDs. The results from our emulation and simulation platforms indicate that AnalyzeThis is a viable approach for expediting workflow execution and minimizing data movement.

Index Terms—Distributed systems, storage management, scientific data management

1 INTRODUCTION

DATA analysis is often considered the fourth paradigm of scientific discovery, complementing theory, experiment, and simulation. Experimental facilities (e.g., Spallation Neutron Source [51]), observational devices (e.g., Sloan Digital Sky Survey [46], Large Synoptic Survey Telescope [27]) and high-performance computing (HPC) simulations of scientific phenomena on clusters (e.g., Titan supercomputer [55] and other Top500 machines [57]) produce hundreds of terabytes of data that need to be analyzed to glean insights. The data products are often stored in central, shared repositories, supported by networked file systems (NFS) or parallel file systems (PFS) (e.g., Lustre [45] or GPFS [44]). Analyses that operate on these datasets are often I/O-intensive, and involve running a complex workflow job on a smaller cluster. The analysis workflow reads the input data from the central storage, applies a series of analytics kernels, such as statistics, reduction, clustering, feature extraction and legacy application routines, and writes the final, reduced data back to the storage system. We refer to the entire sequence of reading the input data, followed by

analysis on a cluster, and writing the output as *Offline data analysis*.

Offline analysis incurs a substantial amount of redundant I/O, as it has to read the inputs from the storage system, and write the reduced results back. Reading back large data for analysis on a cluster exacerbates the I/O bandwidth bottleneck that is already acute in storage systems [22]. This is because, I/O bandwidth has traditionally been lagging behind the compute and memory subsystems, and the data production rates from simulations [56] and experimental facilities are compounding the problem further, creating a *storage wall*. Instead of an offline approach to data analysis, analyzing data *in-situ* on the storage system, where the data resides, can not only minimize data movement, but also expedite the time to solution of the analysis workflow. In this paper, we explore such an approach to data analysis.

To alleviate the I/O bottleneck, network-attached storage systems for clusters are being built with solid-state devices (SSD), resulting in either hybrid SSD/HDD systems or all flash arrays. The lack of mechanical moving parts, coupled with a superior I/O bandwidth and low latency, has made SSDs an attractive choice. We argue that SSDs are not only beneficial for expediting I/O, but also for on-the-fly data analysis. SSDs boast an increasing computational capability on the controllers, which have the potential to execute data analysis kernels in an *in-situ* fashion. In this model, the analysis is conducted near the data, instead of shipping the data to the compute cores of the analysis cluster.

In our prior work on Active Flash [6], [56], we explored the viability of offloading data analysis kernels onto the flash controllers, and analyzed the performance and energy tradeoffs of such an offload. We found that Active Flash outperformed offline analysis via a PFS for several analysis tasks. In this paper, we explore how such an active

- H. Sim, G. Vallée, and S. Vazhkudai are with Oak Ridge National Laboratory, Oak Ridge, TN 37830. E-mail: {simh, valleeg, vazhkudaiss}@ornl.gov.
- Y. Kim is with Sogang University, Seoul 04107, South Korea. E-mail: youkim@sogang.ac.kr.
- D. Tiwari is with Northeastern University, Boston, MA 02115. E-mail: tiwari@northeastern.edu.
- A. Butt is with Virginia Tech, Blacksburg, VA 24061. E-mail: butta@cs.vt.edu.

Manuscript received 14 Aug. 2017; revised 15 Feb. 2018; accepted 8 Apr. 2018. Date of publication 0 . 0000; date of current version 0 . 0000. (Corresponding author: Youngjae Kim.)

Recommended for acceptance by M. Kandemir.

For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.org, and reference the Digital Object Identifier below. Digital Object Identifier no. 10.1109/TPDS.2018.2865471

71 processing element can form the fabric of an entire storage
 72 system that is workflow-aware.

73 An array of such Active Flash devices allows us to
 74 rethink the way data analysis workflows interact with stor-
 75 age systems. Traditionally, storage systems and workflow
 76 systems have evolved independently of each other, creating
 77 a disconnect between the two. By blending the flash storage
 78 array and data analysis together in a seamless fashion, we
 79 create an analysis workflow-aware storage system, *Analyze-
 80 This*. Consider the following simple—yet powerful—
 81 analogy from day-to-day desktop computing, which
 82 explains our vision for *AnalyzeThis*. A *smart folder* on mod-
 83 ern operating systems allows us to associate a set of rules
 84 that will be implemented on files stored in that folder, e.g.,
 85 convert all postscript files into pdfs or compress (zip) all
 86 files in the folder. A similar idea extrapolated to large-scale
 87 data analysis would be: writing data to an analysis-aware
 88 storage system automatically *triggers* a sequence of pre-
 89 defined analysis routines to be applied to the data.

90 *Contributions.* We propose *AnalyzeThis*, a storage system
 91 atop an array of Active Flash devices. Our guiding principle
 92 is that analysis-awareness be deeply ingrained within
 93 each and every layer of the storage system, thereby elevat-
 94 ing the data analysis operations as *first-class citizens*. *Ana-
 95 lyzeThis* realizes workflow-awareness by creating a novel
 96 *analysis data object abstraction*, which integrally ties the
 97 dataset on the flash device with the analysis sequence to
 98 be performed on the dataset, and the lineage of the data-
 99 set (Section 3.1). The analysis data object abstraction is
 100 overlaid on the Active Flash device, and this entity is
 101 referred to as the *Active Flash Element*, *AFE*. We mimic an
 102 *AFE* array using an emulation platform. We explore how
 103 scheduling, i.e., both data placement and workflow
 104 orchestration, can be performed within the storage, in a
 105 manner that minimizes unnecessary data movement
 106 between the *AFEs*, and optimizes workflow performance
 107 (Section 3.2). Moreover, we design easy-to-use file system
 108 interfaces with which the *AFE* array can be exposed to the
 109 user (Section 3.3). The FUSE-based file system layer ena-
 110 bles users to read and write data, submit analysis work-
 111 flow jobs, track and interact with them via a */proc-like*
 112 interface, and pose provenance queries to locate interme-
 113 diate data (Section 3.4). Finally, we have developed an
 114 *AnalyzeThis* simulator, called *AnalyzeThisSim*, to study
 115 the performance impact of using a multi-core architecture
 116 in the *AFEs* (Section 6). This simulator is event-driven,
 117 capable of evaluating multi-core *AFEs* and host and *AFE*-
 118 level (fabric) schedulers. We argue that these concepts
 119 bring a fresh perspective to large-scale data analysis. Our
 120 results with real-world, complex data analysis workflows
 121 on *AnalyzeThis*, built atop an emulation-based *AFE* pro-
 122 totype, indicate that it is very viable, and can expedite
 123 workflows significantly.

1.1 Background on Active Flash

124 Here, we present a summary of our prior work, Active
 125 Flash, upon which the *AnalyzeThis* storage system is built.

126 *Enabling Trends.* First, we highlight the trends that make
 127 flash amenable for active processing.

128 *High I/O throughput and internal bandwidth:* SSDs offer
 129 high I/O throughput and internal bandwidth due to

130 interleaving techniques over multiple channels and flash
 131 chips. This bandwidth is likely to increase with devices pos-
 132 ssessing more channels or flash chips with higher speed
 133 interfaces.

134 *Availability of Spare Cycles on the SSD Controller.* SSD con-
 135 trollers exhibit idle cycles on many workloads. For example,
 136 HPC workloads are bursty, with distinct compute and I/O
 137 phases. Typically, a busy short phase of I/O activity is fol-
 138 lowed by a long phase of computation [8], [22]. Further, the
 139 I/O activity recurs periodically (e.g., once every hour), and
 140 the total time spent on I/O is usually low (below
 141 5 percent [23]). Even some enterprise workloads exhibit idle
 142 periods between their I/O bursts [28], [29]. Data ingest from
 143 experimental facilities, such as SNS [51] are based on the
 144 availability of beam time, and there are several opportuni-
 145 ties for idle periods between user experiments, which
 146 involve careful calibration of the sample before the beam
 147 can be applied to it to collect data. Such workloads expose
 148 spare cycles available on the SSD controller, making it a
 149 suitable candidate for offloading data analysis tasks.

150 *Multi-Core SSD Controllers.* Recently marketed SSDs are
 151 equipped with fairly powerful mobile cores, and even
 152 multi-core controllers (e.g., a 4-core 780 MHz controller on
 153 the OCZ RevoDrive X2 [35]). Multi-core SSD controllers are
 154 likely to become more common place, and hence the avail-
 155 able idle time on the SSD controllers will increase as well.

156 *Active Flash.* In our prior work on Active Flash [6], [56],
 157 we presented an approach to perform in-situ data analysis
 158 on SSDs. We presented detailed performance and energy
 159 models for Active Flash and offline analysis via PFS, and
 160 studied their provisioning cost, performance, and energy
 161 consumption. Our modeling and simulation results indi-
 162 cated that Active Flash is better than the offline approach in
 163 helping to reduce both data movement, and energy con-
 164 sumption, while also improving the overall application per-
 165 formance. Interestingly, our results suggest that Active
 166 Flash can even help defray part of the capital expenditure of
 167 procuring flash devices through energy savings. We also
 168 studied hybrid analysis, involving processing on both flash
 169 and host cores, and explored when it might be suitable to
 170 offload analysis to flash. Next, our simulation of I/O-
 171 compute trade-offs demonstrated that internal scheduling
 172 may be used to allow Active Flash to perform data analysis
 173 without impact on I/O performance. To this end, we
 174 explored several internal scheduling strategies within the
 175 flash translation layer (FTL) such as analyzing while data
 176 written to the flash is still in the controller’s DRAM, analyz-
 177 ing only during idle times (when there is no I/O due to data
 178 ingest), and combining idle time analysis with the schedul-
 179 ing of garbage collection (GC) to preempt GC interrupting
 180 an ongoing data analysis due to the lack of available free
 181 pages. Finally, we have demonstrated the feasibility of
 182 Active Flash through the construction of a prototype, based
 183 on the OpenSSD development platform, extending the
 184 OpenSSD FTL with data analysis functions. We have
 185 explored the offloading of several data analysis kernels,
 186 such as edge detection, finding local extrema, heartbeat
 187 detection, data compression, statistics, pattern matching,
 188 transpose, PCA, Rabin fingerprinting and k-means cluster-
 189 ing, and found Active Flash to be very viable and cost-effec-
 190 tive for such data analysis.

Fig. 1. *AnalyzeThis* overview. Figure shows analysis-awareness at each and every layer of *AnalyzeThis*.

2 ANALYZETHIS STORAGE SYSTEM

2.1 Goals

In this section, we discuss our key design principles.

Analysis-Awareness. Our main objective is to introduce analysis-aware semantics into the storage system. There is an urgent need to analyze the data in-situ, on the storage component, where the data already resides.

Reduce Data Movement. It is expected that in future, exascale data centers, the cost of data movement will rival that of the computation itself [17]. Thus, we need to minimize data movement in analysis workflows as well as across the AFEs within the storage.

Capture Lineage. There is a need to track provenance and intermediate data products generated by the analysis steps on the distributed AFEs. The intermediate data can serve as starting points for future workflows.

Easy-to-Use File System Interface. The workflow orchestration across the AFEs needs to be masqueraded behind an easy-to-use, familiar interface. Users should be able to easily submit workflow to the storage system, monitor and track them, query the storage system for intermediate data products of interest and discover them.

2.2 Overview

We envision *AnalyzeThis* as a smart, analytics pipeline-aware storage system atop an array of Active Flash devices (Fig. 1). The analysis workflow job is submitted to the *AnalyzeThis* storage system. As the input data to be processed becomes available on *AnalyzeThis* (from experiments, observations or simulations) the workflow that the user has submitted is applied to it. The final processed data, or any of the intermediate data is stored in *AnalyzeThis*, and may be retained therein, transferred to other repositories that may be available to the user (e.g., archive, PFS), or removed based on lifetime metadata attributes that the user may have associated with the dataset. Thematic to the design of *AnalyzeThis* is that analysis-awareness be deeply embedded within each layer of the storage system. In the future, we expect that such analysis-aware semantics will be adopted into existing PFS and NFS storage. Below is a bottom-up description of the system.

Active Flash Array. At the lowest level is the Active Flash array that is composed of discrete Active Flash devices, capable of running individual analysis kernels. Internally, an AFE has multiple processors that are capable of executing user-provided codes. We envision an array of such devices that are connected via SATA, PCIe or NVMe.

Analysis Object Abstraction. On top of the Active Flash array, we propose to create a new data model, the *analysis object abstraction* that encapsulates the data collection, the analysis workflow to be performed on the data, and the lineage of how the data was derived. We argue that such a rich data model makes analysis a *first-class citizen* within the storage system by integrally tying together the data and the processing to be performed (or was performed) on the data. The analysis abstraction, coupled with the Active Flash device (capable of processing), is referred to as the *Active Flash Element*, “AFE.”

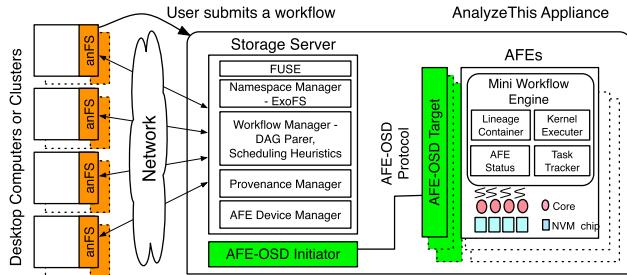
Workflow Scheduling Layer. The goal of this layer is to mimic how users interact with batch computing systems and integrate similar semantics into the storage system. Such a strategy would be a concrete step towards bridging the gap between storage and analysis workflows. Users typically submit a workflow, e.g., a PBS [16] or a DAGMAN [54] script, to a cluster’s batch scheduler, which creates a dependency graph and dispatches the tasks onto the compute nodes based on a policy. Similarly, we propose a *Workflow Scheduler* that determines both data placement and scheduling analysis computation across the AFEs in a manner that optimizes both end-to-end workflow performance and data movement costs.

A File System Interface. We tie the above components together into a cohesive system for the user by employing a FUSE-based file system interface with limited functionality (“*anFS*”). *anFS* supports a namespace, reads and writes to the AFE array, directory creation, internal data movement between the AFEs, a “/proc-like” infrastructure, and the ability to pose provenance queries to search for intermediate analysis data products. Similar to how */proc* is a control and information center for the OS kernel, presenting runtime system information on memory, mounted devices and hardware, */mnt/anFS/.analyzethis/*, allows users to submit workflow jobs, track and interact with them, get status information, e.g., load about the AFEs.

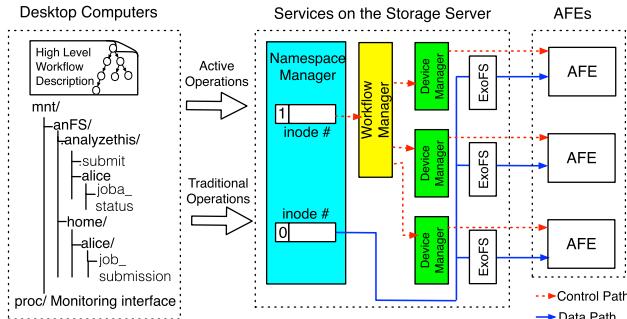
Together, these constructs provide a very potent in-situ data analytics-aware storage appliance.

3 DESIGN AND IMPLEMENTATION

Fig. 2a presents the architecture of *AnalyzeThis*. The *AnalyzeThis* appliance exposes a FUSE file system, “*anFS*,” to the users that can be mounted via an NFS protocol. Users submit analysis workflows and write data objects to *AnalyzeThis* via *anFS* that is mounted on their desktop computer or an analysis cluster. Thereafter, users can monitor and query the status of the jobs, and search for intermediate data products of branches of the workflow. In backend, the *AnalyzeThis* appliance comprises of one or more *storage servers* to which multiple Active Flash devices are connected. The storage server and the Active Flash devices run several services, and collectively help realize the analysis-aware storage appliance. Each Active Flash device runs the software



(a) AnalyzeThis Architecture: The figure shows how the desktop clients interact with AnalyzeThis by mounting the anFS client via the NFS protocol. AnalyzeThis comprises of multiple Active Flash devices, connected to one or more storage servers. Together, they run several services such as AFE, anFS servers, namespace, workflow, provenance and device managers.



(b) anFS Architecture and Data and Control Paths: The Workflow and device managers handle the active file operations or the control path. The Namespace manager, along with ExoFS, exposes the AFE as a file system to the FUSE layer for traditional data operations. The FUSE layer of anFS ties together the control and data paths into a user-level file system.

Fig. 2. AnalyzeThis architecture and components.

service that overlays an analysis object abstraction atop, transforming it into an AFE, as well as other services required to handshake with the storage server. The storage server runs services such as those required for making the AFEs available as a file system (namespace management and data protocols), distributed workflow orchestration, distributed provenance capture, and interfacing with the AFEs (device management). These services are implemented behind a FUSE layer on the storage server. Together, in a distributed fashion, they achieve workflow awareness.

Central to our design is the seamless integration of workflow scheduling and the file system. To this end, behind anFS is a *workflow scheduler* that constructs a directed acyclic graph (DAG) from the analysis workflow job. The scheduler produces multiple mini DAGs based on task dependencies and optimization strategies, e.g., to minimize data movement. The mini DAGs comprise of a series of tasks, which the storage server maintains in a lightweight database. The scheduler dispatches the mini DAGs for execution on the AFEs; AFEs form the bottom-most layer of our system, and are capable of running analysis kernels on the device controllers. We use an *analysis object abstraction*, which encapsulates all necessary components of a task, including analysis kernels, input and output datasets, and the lineage information of all the objects therein. The analysis kernels for a given workflow is assumed to be stored as a platform-dependent binary executable object (.so format), compiled for specific devices as needed, which can run on the AFEs.

3.1 Analysis Encapsulation

We introduce analysis awareness in the Active Flash array by building on our prior work on Active Flash that has

demonstrated how to run an analysis kernel on the flash controller [6], [56]. Our goal here is to study how to overlay an *analysis object abstraction* atop the Active Flash device, both of which together form the AFE. The construction of an AFE involves interactions with the flash hardware to expose features that higher-level layers can exploit, communication protocol with the storage server and flash device, and the necessary infrastructure for analysis object semantics. An array of AFEs serve as building blocks for AnalyzeThis.

The first step to this end is to devise a richer construct than just files. Data formats, e.g., HDF [11], [37], [50], [59] NetCDF [24], [33], and NeXus [34], offer many desirable features such as access needs (parallel I/O, random I/O, partial I/O, etc.), portability, processing, efficient storage and self-describing behavior. However, we also need a way to tie the datasets with the analysis lifecycle in order to support future data-intensive analysis. To address this, we extend the concept of a basic data storage unit from traditional file(s) to an analysis object abstraction that includes a file(s) plus a sequence of analyses that operate on them plus the lineage of how the file(s) were derived. Such an abstraction can be created at a data collection-level, which may contain thousands of files, e.g., climate community. The analysis data abstraction would at least have either the analysis sequence or the lineage of analysis tools (used to create the data) associated with the dataset during its lifetime on AnalyzeThis. The elegance of integrating data and operations is that one can even use this feature to record *data management* activities as part of the dataset and not just analyses. For example, we could potentially annotate the dataset with a *lifetime* attribute that tells AnalyzeThis which datasets (final or intermediate data of analysis) to retain and for how long. The analysis object abstraction transforms the dataset into an encapsulation that is more than just a pointer to a byte stream; it is now an entity that lends itself to analysis.

3.1.1 Extending OSD Implementation for AFE

We realize the analysis object abstraction using the object storage device (OSD) protocol. The OSD protocol provides a foundation to build on, by supporting storage server to AFE communication and by enabling an object container-based view of the underlying storage. However, it does not support analysis-awareness specifically. We use an open source implementation of the OSD T10 standard, Linux open-osd target [36], and extend it further with new features to implement the AFEs. We refer to our version of the OSD implementation as “AFE-OSD” (Fig. 2a). Our extensions are as follows: (i) *Mini Workflow* supports the execution of entire branches of an analysis workflow that are handed down by the higher-level Workflow Scheduler on the storage server; (ii) *Task Tracker* tracks the status of running tasks on the AFE; (iii) *AFE Status* checks the internal status of the AFEs (e.g., load on the controller, capacity, wear-out), and makes them available to the higher-level Workflow Scheduler on the storage server to enable informed scheduling decisions; (iv) *Lineage Container* captures the lineage of the executed tasks; and (v) *Lightweight Database Infrastructure* supports the above components by cataloging the necessary information and their associations.

Mini Workflow Engine. The AFE-OSD initiator on the storage server submits the mini DAG to the AFE-OSD target.

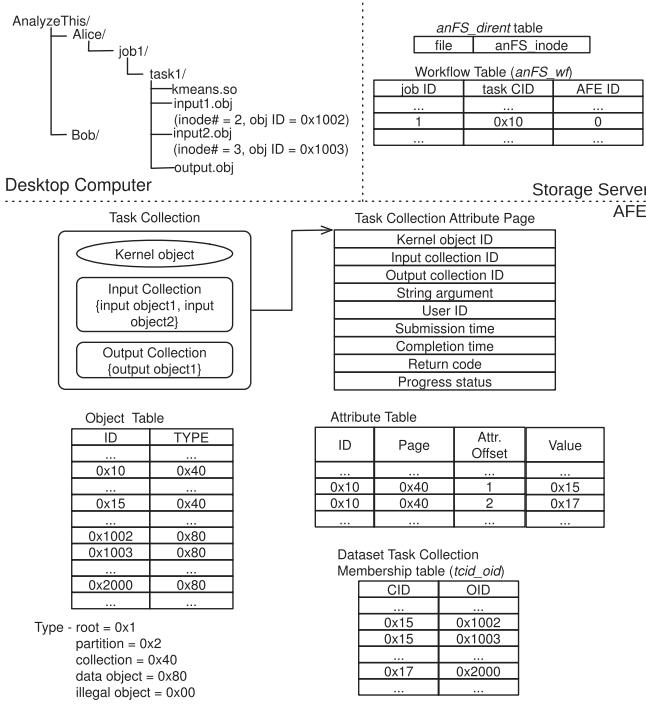


Fig. 3. Analysis object abstraction implemented using database engine. CID: task collection id, OID: object id, Attr. offset: an offset in the attribute page.

The mini DAG represents a self-contained branch of the workflow that can be processed on an AFE independently. Each mini DAG is composed of a set of tasks. A task is represented by an analysis kernel, and a series of inputs and outputs. The storage server dispatches the mini DAGs to the AFEs using a series of ANALYZE_THIS execution commands, with metadata on the tasks. To handle the tasks on the AFEs, we have implemented a new *analysis task collection* primitive in the AFE-OSD, which is an encapsulation to integrally tie together the analysis kernel, its inputs and outputs (*Task Collection* and the *Task Collection Attribute Page* are represented in the bottom half of Fig. 3). Once the AFE receives the execution command, it will create an analysis task collection, and insert the task into a FIFO task queue that it maintains internally. As we noted earlier, inputs and outputs can comprise of thousands of files. To capture this notion, we create a *linked collection* encapsulation for input and output datasets (using an existing *Linked collection* primitive), which denotes that a set of files are linked together and belong to a particular dataset.

Kernel Executer: The kernel executer is a multi-threaded entity that checks the task queue and dispatches the tasks to the AFE controller. We have only used one core from the multi-core controller, but the design allows for the use of many cores. We rely on the ability of the Active Flash component of the AFE to run the kernel on the controller core, which has been studied in our prior work [6], [56]. Active Flash locates the predefined entry point (`start_kernel`) from the analysis kernel code (.so file), and begins the execution. In our prior work on Active Flash [6] (summarized in Section 1.1), we have explored FTL scheduling techniques to coordinate regular flash I/O, active computation and garbage collection, which can be used by the kernel executer.

Task Tracker. The Task Collection and the Task Collection Attribute page provide a way to track the execution status of a task and its execution history, i.e., run time. Each task collection has a unique task id. The storage server can check the status of a running task by reading an attribute page of its task collection using the `get_attribute` command and the task id. The workflow scheduler on the storage server also queries the AFE for the execution history of analysis kernels, to get an estimate of run times that are then used in scheduling algorithms, e.g., *Minimum Wait* (in Section 3.2).

AFE Status. The storage server can use an AFE's hardware status for better task scheduling. To this end, we have created a *status object* to expose the internal information to the storage server. The status object includes the AFE device details such as wear-out for the flash, resource usage for controller, the AFE task queue details, and Garbage Collection status. The AFEs are configured to periodically update a local status object, which can then be retrieved by the storage server as needed. Thus, the storage server can check the status of the device by sending a `get_attribute` command on the status object using its object id.

Lineage Container. Lineage information of tasks and data objects are maintained in an AFE's internal database. The lineage container helps answer provenance queries (more details in Section 3.4).

Lightweight Database Infrastructure. We use a lightweight database infrastructure (Fig. 3), using SQLite [53], to implement analysis-aware semantics into the storage system. One approach is to have the storage server maintain all of the analysis workflow, data, and analysis-semantics. However, such a centralized approach is not resilient in the face of storage server crashes. Instead, we implement a decentralized approach (refer to Fig. 2a), wherein the storage server (the FUSE layer) and the AFEs (the AFE-OSD Target) maintain relevant information and linkages to collectively achieve the analysis abstraction.

The storage server database table (*anFS_wf*) maintains high-level information about the analysis workflow, e.g., mini DAGs (job ID), the associated tasks (task collection ID), and the AFE ID on which to run the task. For example, in Fig. 3 user Alice runs a job (id = 1) and executes an analysis task, *kmeans* (CID = 0x10), on AFE (id = 0). The local AFE database tables store detailed metadata on all objects, namely mini DAGs, task collections, input and output datasets, their attributes and associations.

Each AFE manages three tables. The *Object table* is used to identify the type of an object, e.g., whether it is a task collection, or a data object. For each object, it maintains object identifiers, and object types. The *Dataset TaskCollection Membership table*, *tcid_oid*, manages the membership of data objects to task collections. Multiple data objects can belong to a task collection (e.g., multiple inputs to a task) or a data object can be a member of multiple task collections (e.g., a given dataset is input to multiple tasks). The *Attribute table* manages all the attributes of data objects and task collections (e.g., those represented in the Task Collection Attribute Page). Each attribute (or record) in the attribute table is defined using a data object or task collection id, page number, and attribute number inside the Attribute Page. Given this metadata, the storage server can query information on the tasks and their associated datasets. For example, given a

477 task collection of 0x10 and an index into the attribute page, 1
 478 (to refer to input datasets), the attribute table points to a
 479 value of 0x15, which can be reconciled with the *tcid_oid* table
 480 to obtain the input datasets 0x1002 and 0x1003.

481 3.2 Workflow Engine

482 We have built a *workflow engine* within AnalyzeThis, to
 483 orchestrate both the placement of data objects as well as the
 484 scheduling of analysis tasks across the AFEs. The scheduler
 485 is implemented in the FUSE file system (anFS). Once a user
 486 submits the analysis workflow script via anFS, it distin-
 487 guishes this request from a normal I/O request. This is
 488 accomplished by treating the “write” request coming
 489 through the special file (.submit) as a job submission instead
 490 of normal write operation by anFS. The script is delivered to
 491 the scheduler which parses it to build a directed acyclic
 492 graph, schedules the tasks, and sends the execution requests
 493 to the AFEs via the AFE-OSD protocol. The vertices in the
 494 DAG represent the analysis kernels, and inputs and outputs
 495 represent incoming and outgoing edges. The scheduler
 496 decides which branches (mini DAGs) will run on which
 497 AFEs based on several heuristics. While the mapping of a
 498 mini DAG to AFE is determined *a priori* by the scheduler,
 499 the tasks are not dispatched until the analysis job’s inputs
 500 are written to AnalyzeThis. This is akin to the *smart folder*
 501 concept discussed in Section 1. The analysis sequence is first
 502 registered with AnalyzeThis, and once the input data is
 503 available the tasks are executed.

504 *Workflow Description and DAG.* In our implementation,
 505 we have chosen to represent a job script using *Libconfig* [25],
 506 a widely used library for processing structured configura-
 507 tion files. Listing 1 shows an example of a job that finds the
 508 maximum value in each input file. Each tasklet is repre-
 509 sented by the input and output object lists, and a kernel
 510 object that operates on the input objects. Any data depen-
 511 dencies among the tasklets are detected by the scheduler
 512 via a two-pass process. In the first pass, the scheduler exam-
 513 ines each task in the script and inserts the task record (key:
 514 output file, value: task) into a hash table. In the second pass,
 515 the scheduler examines the input files of each task in the job
 516 script. When an input file is found in the hash table, the
 517 examined task is dependent on the output of the task in
 518 the hash table. If the input file is not found in the hash table,
 519 the scheduler checks if the input file already exists in the file
 520 system. If the file does not exist, the job script is considered
 521 to be invalid. In this way, the dependencies among the tasks
 522 can be resolved. The dependency information is used to
 523 build a DAG. In the following example, *getmax.reduce*
 524 cannot be launched until *getmax.1* and *getmax.2* pro-
 525 duce their output objects. Therefore, the overall perfor-
 526 mance of AnalyzeThis depends on the efficient scheduling
 527 of the analysis kernels on the AFE array.

528 *Scheduling Heuristics.* The design of the workflow sched-
 529 uler is driven by two objectives: (1) minimizing the overall
 530 execution time, and (2) reducing the data movement across
 531 the AFEs. We point out that minimizing data movement is
 532 critical as uncontrolled data movement may cause early
 533 wear-out of the SSDs and increase in the energy consump-
 534 tion [12]. We have designed and implemented several
 535 scheduling strategies that attempt to strike a balance
 536 between these two competing objectives.

537 *Round-Robin (RR).* A simple round-robin approach
 538 schedules tasks as soon as their dependency requirements
 539 are met, and ensures a homogeneous load-distribution
 540 across all AFEs in a best-effort manner since the tasks are
 541 scheduled without a priori information about their execu-
 542 tion time. It picks the next available AFE in a round-robin
 543 fashion to balance the computational load. The round-robin
 544 strategy schedules the task on an available idle AFE control-
 545 ler, causing data movement, potentially in favor of a shorter
 546 execution time and load balance across the AFE controllers.
 547 Consequently, the technique may suffer from excessive data
 548 movement because it does not account for the amount of
 549 data to be moved.

550 Listing 1. An Example Job Script

```
551 name = "getmax";
552 workdir = "/scratch/getmax/";
553 tasks = (
554   { name = "getmax.1"; kernel = "getmax.so";
555     input = [ "1.dat" ]; output = [ "1.max" ]; },
556   { name = "getmax.2"; kernel = "getmax.so";
557     input = [ "2.dat" ]; output = [ "2.max" ]; },
558   { name = "getmax.reduce"; kernel = "mean.so";
559     input = [ "1.max", "2.max" ];
560     output = [ "max.dat" ]; }
561 );
```

562 *Input Locality (IL).* To minimize the data movement
 563 across the AFEs, this heuristic schedules tasks based on
 564 input locality. Tasks are scheduled on an AFE where maxi-
 565 mum amount of input data is present. The scheduler main-
 566 tains this information in memory during a job run,
 567 including the size and location of all involved files. Input-
 568 locality favors a reduction in data movement to perfor-
 569 mance (execution time). In our experiments with real work-
 570 flows, we observed that this scheduling policy is effective in
 571 reducing the data movement. However, it can potentially
 572 increase the overall execution time considerably because it
 573 will execute the analysis on the AFE that stores larger input,
 574 even if other AFEs are idle.

575 *Minimum Wait (MW).* To reconcile execution time and
 576 data movement, we propose to explicitly account for the
 577 data transfer time and queuing delays on the AFE control-
 578 lers. The heuristic takes two inputs including a list of all
 579 available AFEs and the tasks to be scheduled next. The
 580 scheduler maintains information about the jobs currently
 581 queued on each AFE, their expected finish time and the size
 582 of the input file(s) for the task to be scheduled next. The
 583 scheduler iterates over each AFE to estimate the minimum
 584 wait time for the task to be scheduled. For each AFE, it cal-
 585 culates the queue wait time (due to other jobs) and data
 586 transfer time to that particular AFE. It chooses the AFE for
 587 which the sum of these two components is minimum. The
 588 minwait scheduler maintains and updates the “expected
 589 free time” of each AFE using the runtime history of jobs.
 590 When a task is ready to be executed, the scheduler calcu-
 591 lates the expected wait time of the task for every AFE. Since
 592 the precise estimation of the expected wait time can be
 593 complex, we adopt a heuristic-based approach based on the
 594 data transfer time [48]. The expected wait time at an AFE is
 595 calculated as: “expected free time” at the AFE plus the

596 expected data transfer time (estimated using the input file
 597 size and AFE location). The scheduler assigns the task to an
 598 AFE that is expected to have the minimum wait time.

599 *Hybrid (HY).* In the hybrid strategy, we exploit the storage
 600 server within the AnalyzeThis appliance (storage server in
 601 Fig. 2a), in addition to the AFEs, to exploit additional opportu-
 602 nities. The storage server can run certain tasks in addition
 603 to anFS services. Running computation on the servers to
 604 which the disks are attached is a well-known practice
 605 adopted by several commercial vendors. However, hybrid
 606 processing offers more benefits by further exploiting the
 607 internal, aggregate bandwidth of the multi-channel flash
 608 device that exceeds the PCIe bandwidth between the storage
 609 server and the flash device by a factor of 2-4× [9]. Analyze-
 610 This does not blindly place all tasks on the AFEs or on the
 611 host storage server. The challenge is in carefully determining
 612 what to offload where (storage server versus AFE) and when.
 613 Traditional solutions that simply perform server-side
 614 processing do not address this optimization. Reduce tasks in
 615 workflows involve high data movement cost because they
 616 gather multiple intermediate inputs on the AFEs, and can be
 617 moved to the storage server. This approach has the advan-
 618 tage of minimizing the overhead of data movement between
 619 the AFEs, beyond what Input Locality alone can achieve,
 620 without sacrificing the parallelism. Also, tasks that cause an
 621 uneven distribution on the AFEs cause stragglers, and can be
 622 moved to the storage server (unaligned tasks). Such tasks
 623 can be identified based on profiling of the workflows. The
 624 hybrid approach can work in conjunction with any of the
 625 aforementioned scheduling techniques.

626 3.3 anFS File System Interface

627 The functionalities of AnalyzeThis are exposed to the clients
 628 via a specialized file system interface, “anFS.” Since the
 629 analysis workflows operate on but do not modify the original
 630 data from scientific experiments and simulations, anFS
 631 is designed as a write-once-read-many file system. As dis-
 632 cussed earlier (Section 3), anFS is exported to clients via
 633 NFS. Thus, operations on shared files follow the NFS consis-
 634 tency semantics. anFS provides standard APIs such as open
 635 () , read() , and write() , as well as support special virtual files
 636 (SVFs), serving as an interaction point, e.g., to submit and
 637 track jobs, between users and AnalyzeThis.

638 Fig. 2b shows the overall architecture of anFS. It is imple-
 639 mented using the FUSE user-space file system, and can be
 640 mounted on the standard file system, e.g., /mnt/anFS/.
 641 FUSE provides an elegant way to develop user-level file sys-
 642 tems. anFS provides several custom features, such as work-
 643 flow execution and provenance management, which are
 644 more appropriate to be implemented in the user-space than
 645 the kernel-level. Also, a FUSE-based, user-level implemen-
 646 tation offers better portability than a kernel-based solution.
 647 anFS is composed of the following components. The *Namespace*
 648 *Manager* consolidates the array of available AFEs, and
 649 provides a uniform namespace across all the elements. The
 650 *Workflow Manager* implements the workflow engine of AnalyzeThis
 651 (Section 3.2). The *Device Manager* provides the *control path* to the AFEs, imple-
 652 menting AFE-OSD (Section 3.1.1) to allow interactions with the AFEs. Finally, the *exoFS*
 653 (*Extended Object File System*) layer [13] provides the *data path*
 654 to the AFEs.

655 *Namespace.* anFS exposes a consolidated standard hierar-
 656 chical UNIX namespace view of the files and SVFs on the
 657 AFEs. To this end, the storage server metadata table
 658 (Section 3.1.1) includes additional information associated
 659 with every stored object and information to track the AFEs
 660 on which the objects are stored (Fig. 3). For example, there
 661 is an AFE identifier and an object identifier associated with
 662 every inode of a file stored by anFS. All file system opera-
 663 tions are first sent to the Namespace Manager that consults
 664 the metadata to route the operation to an appropriate AFE.
 665 To manage the large amount of metadata that increases
 666 with increasing number of files, provide easy and fast
 667 access, and support persistence across failures we employ
 668 the SQLite RDBMS [53] to store the metadata. We note that
 669 anFS implements features such as directories, special files,
 670 and symbolic links, entirely in the metadata database; the
 671 AFEs merely store and operate on the stored data objects.
 672 Instead of striping, anFS stores an entire file on a single AFE
 673 to facilitate on-element analysis and reduce data movement.
 674 The placement of a file on an AFE is either specified by the
 675 workflow manager, or a default AFE (i.e., inode modular
 676 number-of-AFEs) is used.

677 *Data and Control Path.* To provide a data path to the AFEs,
 678 anFS uses exoFS, an ext2-based file system for object stores.
 679 anFS stores regular data files via the exoFS mount points,
 680 which are created one for each AFE. For reads and writes to
 681 a file, anFS first uses the most significant bit of the 64-bit
 682 inode number to distinguish between a regular file (MSB is
 683 0) and a SVF (MSB is 1). For regular files, the Namespace
 684 Manager locates the associated AFE and uses exoFS to route
 685 the operation to the AFEs as shown in Fig. 2b. Upon com-
 686 pletion, the return value is returned to the user similarly as
 687 in the standard file system. To provide a control path for
 688 active operations, anFS intercepts the files and routes it to
 689 the Workflow Manager, which uses the Device Manager to
 690 route the operations to the AFEs using the AFE-OSD library
 691 for further analysis and actions.

692 *Active File Operations—Job Submission.* anFS supports SVFs
 693 to allow interaction between users and AnalyzeThis opera-
 694 tions, e.g., running an analysis job, checking the status of the
 695 job, etc. Specifically, we create a special mount point
 696 (.analyzethis) under the root directory for anFS (e.g., /mnt/
 697 anFS/), which offers similar functionality as that of /procbut
 698 for workflow submission and management (Fig. 2b). To sub-
 699 mit a job, e.g., JobA, the user first creates a submission script
 700 (/home/alice/joba-submission) that contains information
 701 about how the job should be executed and the data that it
 702 requires and produces. Next, the job is submitted by writing
 703 the full path of the submission script to the submission SVF,
 704 e.g., by using echo /home/alice/joba-submission > /mnt/
 705 anFS/.analyzethis/alice/submit. This SVF write is handed
 706 to the Workflow Manager for processing, which parses the
 707 script, assigns a unique opaque 64-bit job handle to the script,
 708 and takes appropriate actions such as creating a task sched-
 709 ule, and using the appropriate Device Manager thread to
 710 send the tasks to the AFEs. The Workflow Manager also
 711 updates a per-user active job list, e.g., SVF /mnt/anFS/.
 712 analyzethis/alice/joblistfor user alice, to include the job han-
 713 dle for the newly submitted job. Each line in the joblist file
 714 contains the full path of the submission script and the job
 715 handle. Moreover, the Workflow Manager also monitors the

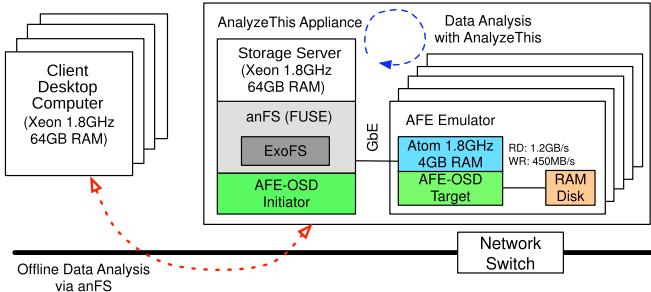


Fig. 4. AnalyzeThis testbed.

task progress, and the user can retrieve this information by reading from the job handle `SVF /mnt/anFS/.analyzethis/alice/job-a-status`. When the user accesses the job handle, the request is directed to the Device Manager thread for the AFE via the Workflow Manager. The Device Manager thread sends the `get_attribute` command via the AFE-OSD protocol to the *Task Tracker* in the Mini Workflow Engine on the AFE to retrieve the status of the jobs.

Supporting Internal Data Movement. Ideally, AnalyzeThis will schedule a task to an AFE that also stores the (*most*) data needed by the task. While we attempt to minimize data movement through smart heuristics, there is still the need to move data between AFEs as a perfect assignment is not feasible. To this end, anFS may need to replicate (or move) data from one AFE to another by involving the storage server. However, this incurs added overhead on the storage server. In the future, direct PCI to PCI communication can help expedite these transfers.

Data and Workflow Security. anFS ensures data security for multiple users via the OSD2 standards. To protect the stored data, OSD maintains the ownership of objects as object attributes. When a data item is stored, it also provides the kernel-level user-id of the data owner, which is then stored in the OSD-level object ownership metadata automatically by the device. When the data is accessed, the user-id information is provided along with the request, and the OSD2 protocol ensures that only the allowed user(s) are given access to the data. Similarly, when a task is scheduled on the AFE, it is associated with the user-id information, and must present these credentials to access data. The access control for the SVFs are set such that the submit SVF (`.anFS/submit`) is world writable, but the resulting joblist and status files are user specific. The sub-directories are named on a per-user basis, e.g., Alice's jobs are under `.anFS/alice/`, and the associated POSIX ACLs protect user files.

3.4 Provenance

AnalyzeThis tracks the lineage of the data produced as a result of a workflow execution at very minimal cost. This allows the user to utilize the intermediate data for future analysis. We have implemented provenance support on top of the distributed database infrastructure (Fig. 3) between the storage server (workflow table, `anFS_wf`) and AFEs (Dataset task collection membership table, `tcid_oid`). Recall that `anFS_wf` stores information about the task and the AFE on which the task is executed; `tcid_oid` stores the task collection to data object mapping and will also need to be maintained on the storage server. Upon receiving a provenance query regarding a dataset, AnalyzeThis searches the

TABLE 1
Workflow Input, Output and Intermediate Data Size

	Input	Intermediate	Output	Total	Object
	(MB)		(#)		
Montage	51	222	153	426	113
Brain	70	155	20	245	35
Sipros	84	87	1	172	45
Grep	463	363	1	827	13

anFS dirent table to get the *anFS_inode* of the file, which is used to get the object id. The object id is then used to retrieve the task collection id from the *tcid_oid* table. The task collection id is used to obtain the AFE id from the *anFS_wf* table. Alternatively, if *tcid_oid* is not maintained on the storage server as well, we can broadcast to the AFEs to determine the task collection id for a data object id. Further analysis of the lineage is performed on that AFE. Using the task collection id and the attribute page we get the task collection attribute page number. Using the predefined attribute offset all the information regarding the task is fetched. The task provenance from multiple AFEs is merged with similar job-level information that is maintained at the storage server in the *anFS_wf* table.

4 EXPERIMENTAL SETUP

Testbed. Our emulation testbed (Fig. 4) is composed of the following: (1) client desktop computer that submits analysis workflows, (2) storage server within the AnalyzeThis appliance, and (3) the networked machines that emulate the AFEs (four AFEs are connected to the storage server). For the desktop computer and the storage server, we used a 1.8 GHz Intel Xeon E5-2603 processor. We emulated the AFEs using Atom machines with RAM disks, to mimic the flash controller and the internal flash chips with high I/O bandwidth to the controller. The Atom-based AFEs use a single 1.8 GHz Atom processor as the controller, a 3 GB RAM disk as the flash chip, and a 1 Gbps Ethernet connection to the storage server within the AnalyzeThis appliance. All servers run the Linux kernel 2.6.32-279. anFS offers a read and write bandwidth of 120 MB/s and 80 MB/s, respectively.

Software. AnalyzeThis has been implemented using 10 K lines of C code. We extended the OSD iSCSI target emulator from the open-osd project [36], for the AFE target. The task executions in an AFE are serialized by spawning a dedicated thread, which mimics dedicating a device controller for active processing. For the AFE-OSD driver in the storage server, we extended the OSD initiator driver in the Linux kernel. We also extended exoFS [13] to synchronize the OSD object id space with the userspace anFS. anFS has been implemented using FUSE [14], and it keeps track of metadata using SQLite [53].

Scientific Workflows. We used several real-world complex workflows. We used Montage [30], Brain Atlas [31], Sipros [60], and Grep [15] workflows. The DAG representations and the details of the workflows are shown in Fig. 6 and Table 1. The Montage workflow [30] creates a mosaic with 10 astronomy images. It uses 8 analysis kernels, and is composed of 36 tasks, several of which can be parallelized to run on the AFEs. The Brain workflow [31] creates

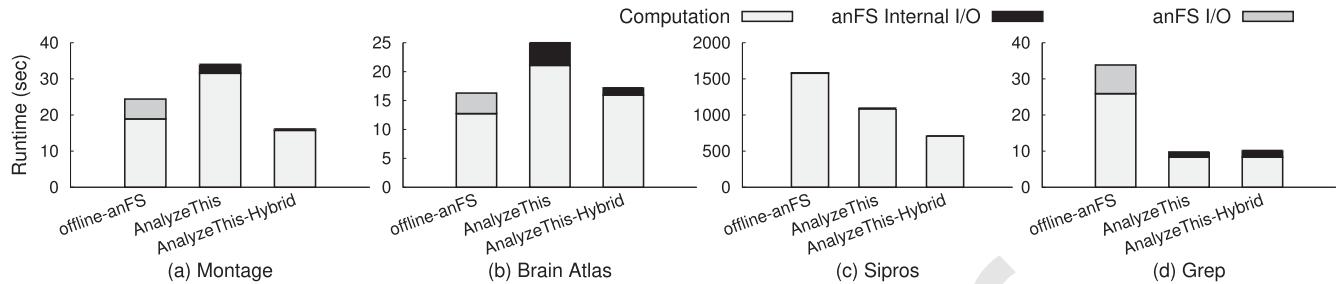


Fig. 5. Comparison of AnalyzeThis round-robin, hybrid, and offline-anFS. Multiple runs for each case, without much variance.

population-based brain atlases from the fMRI Data Center's archive of high resolution anatomical data, and is part of the first provenance challenge [31] used in our provenance evaluation. The Sipros workflow runs DNA search algorithms with database files to identify and quantify proteins and their variants from various community proteomics studies. It consists of 12 analysis tasks, and uses three analysis kernels. The Grep workflow counts the occurrences of ANSI C keywords in the Linux source files.

5 EVALUATING ANALYZETHIS

5.1 AnalyzeThis Performance

We compare offline-anFS and AnalyzeThis. In offline-anFS, data analyses are performed on desktops or clusters by pulling data from the anFS, whereas in *AnalyzeThis*, they are performed on the AFE cores. In Fig. 5, we show the total runtime in terms of computation and I/O time. We further break down the I/O time into anFS I/O and anFS-internal I/O times (i.e., data movement between the AFEs). Therefore, a break-down of the workflow run time comprises of the following: (i) time to read the data from anFS (only offline-anFS incurs this cost), (ii) compute time of the workflow on either the desktop or the AFEs, (iii) I/O time to write the intermediate output to anFS during analysis (only for offline-anFS), (iv) data shuffling time among the AFEs (only for AnalyzeThis), and (v) time to write the final

analysis output to anFS. We specifically compared the following scenarios: (i) offline analysis using one client node and anFS (offline-anFS), (ii) AnalyzeThis using four Atom-based AFEs and round-robin scheduling across the AFEs, and (iii) AnalyzeThis-hybrid using the storage server, four AFEs and round-robin across the AFEs.

In the Montage, Brain and Grep experiments for offline-anFS, the time to write the analysis outputs to anFS noticeably increases the run time (i.e., more than 20 percent of the run time is consumed by I/O operations.) while, for AnalyzeThis, the I/O time, anFS-internal I/O, is much smaller compared to the overall run time. The run time for offline-anFS for Montage and Brain is slightly lower than AnalyzeThis due to relatively less computing power on the AFEs. This demonstrates that the benefit from introducing the active computation can vary depending on the application characteristics and behavior. In addition, as AFEs begin to have multicores in the future, this small difference is likely to be overcome. In contrast, for Sipros and Grep, AnalyzeThis performs better than offline-anFS. The results indicate that offline's performance is heavily affected by the data movement costs, whereas AnalyzeThis is less impacted. Further, AnalyzeThis can free up compute resources of desktops or clusters, enabling "true" out-of-core data analysis.

Next, we evaluate (AnalyzeThis-Hybrid). For Montage, AnalyzeThis-Hybrid significantly reduced the total run time over AnalyzeThis and offline-anFS. Unaligned mProjectPP tasks (Fig. 6a) are executed on the storage server, which removed task stragglers. Also, more than 50 percent of data copies between AFEs are reduced by executing reduce tasks on the storage server. Similarly, for Brain, executing a single reduce task (softmean in Fig. 6b) on the storage server eliminated more than 75 percent of data copies, which results in a 37 percent runtime reduction compared to AnalyzeThis. Similarly, for Sipros, AnalyzeThis-hybrid is better than both AnalyzeThis and offline-anFS as it ran unaligned tasks on the storage server.

5.2 Scheduling Performance

Here, we discuss the performance of scheduling techniques.

Impact of Scheduling Heuristics. Fig. 7 compares the performance of round robin (RR), input locality (IL), minimum wait (MW), and hybrid (HY) based on AFE utilization and data movement. Fig. 7a compares the sum (first bar) of the computation time of the workflow and the data shuffling time among the AFEs against the AFE utilization time (other two bars). AFE utilization is denoted by the slowest (second bar) and the fastest (third bar) AFEs, and the disparity between them indicates a load imbalance across the AFEs. The smaller the difference, the better the utilization. Fig. 7b

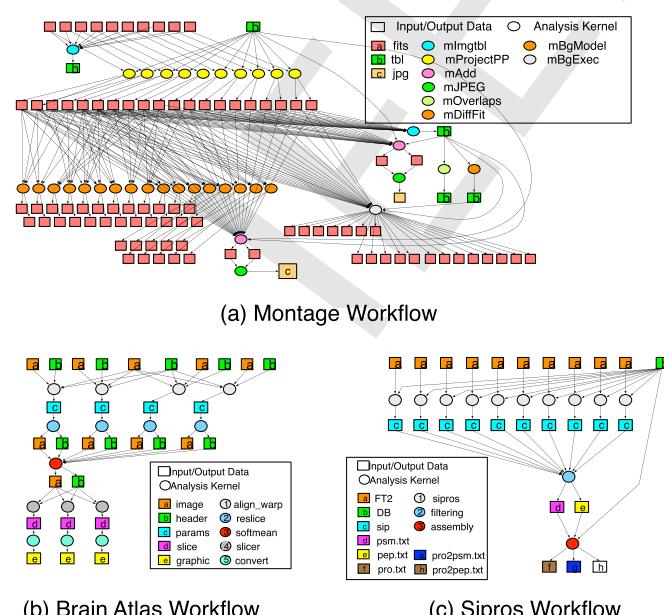


Fig. 6. The DAGs representing the workflows.

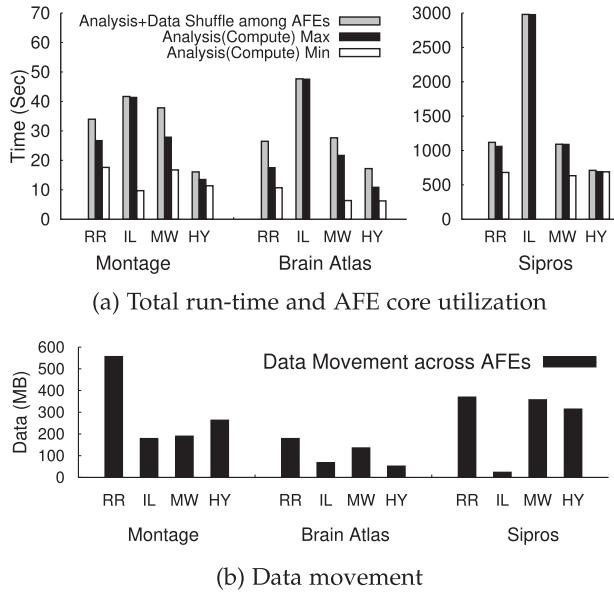


Fig. 7. Performance of scheduling heuristics.

888 shows the amount of data shuffled between the AFEs. An
889 optimal technique strikes a balance between runtime, data
890 movement, and AFE utilization.

891 HY and RR show a balanced load distribution across the
892 AFEs with the least variability in utilization. However, RR
893 incurs the most data movement. IL can improve runtime by
894 significantly reducing data movement, however it may
895 degrade the overall performance due to inefficient load dis-
896 tribution. IL shows higher runtimes than RR in all work-
897 flows. In fact for IL, we observed in Montage that the
898 slowest AFE was assigned 21 tasks among 36 tasks; in Brain,
899 only two AFEs out of four executed all of the tasks; and in
900 Sipros, only one AFE was used during analysis. HY and
901 MW perform best in reconciling AFE utilization and data
902 movement cost. For Montage, MW shows a 10 percent lower
903 runtime than IL by incurring a 6 percent increase in data
904 movement. For Brain, RR and MW show very close run-
905 times, but MW further reduces the data movement cost of
906 RR by 16 percent, with less core utilization, suggesting that
907 it is likely to be more energy-efficient. For Sipros, MW
908 shows a 2.4 percent lower runtime than RR while reducing
909 the data movement cost by 3 percent. By executing reduce
910 tasks on the storage server, HY significantly reduces the
911 runtimes over other scheduling algorithms for all work-
912 flows. In Montage and Brain, this also reduces data move-
913 ment cost by 52 and 76 percent over RR, respectively.

914 *Scaling Experiments.* We performed scalability experiments
915 for AnalyzeThis by increasing the number of AFEs. We ob-
916 serve that the overall performance scales only up to a
917 certain number of AFEs, since the maximum task parallel-
918 ism in the workflow can limit the performance gain. For
919 instance, in the Brain Atlas workflow, using more than four
920 AFEs does not improve the performance further [47].

921 *Utilizing Host Cores for Analysis.* We have evaluated the
922 impact of the host processor utilization in AnalyzeThis, in a
923 Hybrid workflow run. We run the reduce tasks of the work-
924 flow on the host processor. The reduce task collects multiple
925 intermediate inputs from the AFEs, which can result in high
926 data movement costs between AFEs. And unaligned

operations often create stragglers. Running these unaligned
927 operations on the host processor can eliminate the runtime
928 effects from these stragglers.

929 In Fig. 7, shows the results of our evaluation for RR and
930 Hybrid scheduling algorithms with Montage, BrainAtlas,
931 and Sipros workloads. We observe that both runtime and
932 data copy overhead are significantly reduced by Hybrid
933 compared with RR. In Montage, unaligned mProjectPP
934 tasks were executed on the host processor, which does
935 away with the extra parallel wave of 10 seconds. Similar
936 improvements were observed in the Sipros results, where
937 the extra wave is more than 300 seconds. Also, in Montage,
938 more than 50 percent of the data copies are reduced by ex-
939 ecuting reduce tasks on the host processor. In BrainAtlas,
940 executing a single reduce task (softmean) on the host elim-
941 inates more than 75 percent of the data movement cost,
942 which results in 37 percent runtime improvement.

943 *Provenance Performance.* We have conducted the experi-
944 ments of AnalyzeThis for the provenance queries using the
945 BrainAtlas workflow, and our evaluation results are shown
946 in our prior work [47].

6 EVALUATING ANALYZETHIS WITH MULTI-CORE ACTIVE FLASH ELEMENTS

947 Recent SSDs are configured with multicore CPUs. However,
948 in the current emulation-based approach, each single core
949 AFE is emulated as a server. Therefore, single core AFE
950 arrays can only be tested, and scalable experiments require
951 expensive hardware server resources. Therefore, in this sec-
952 tion, we describe a simulation-based study of AnalyzeThis
953 to evaluate scalable multicore AFE arrays. We have devel-
954 oped an event-driven simulator, AnalyzeThisSim, which
955 simulates workflow processing in the AnalyzeThis emula-
956 tion framework (in Section 3). We assume that a set of AFEs
957 are exclusively allocated to a single job, similarly to other
958 resource allocation policies in the scientific computing.

6.1 AnalyzeThis Simulator

959 The AnalyzeThisSim takes workflow script as its input and
960 reports timing information of each step during the work-
961 flow process. Specifically, the AnalyzeThisSim runs as fol-
962 lows: First, it parses an input workflow script and places all
963 the initial input files of the workflow across the array of
964 AFEs. AnalyzeThisSim supports two initial data placement
965 policies of random and round-robin. Once the initial files
966 are deployed, AnalyzeThisSim starts the execution of the
967 workflow. AnalyzeThis parses all the tasks and files in the
968 workflow and triggers internal events accordingly. For
969 instance, a task event is generated based on the availability
970 of the input files. If all the input files are available, Analyze-
971 ThisSim schedules the task to the target core of the AFE.
972 The event-driven design of the simulator allows calculate
973 the time taken to send the input file, the execution time of
974 the task, and the time to write the output file to the local
975 AFE. All these times are calculated based on task in the
976 workflow and hardware characteristics of the emulated tar-
977 get system by the simulator. By iterating over the workflow,
978 all the tasks are progressively executed. AnalyzeThisSim
979 collects, stores, and updates all the metrics related to job
980 execution, including implicit data movement.

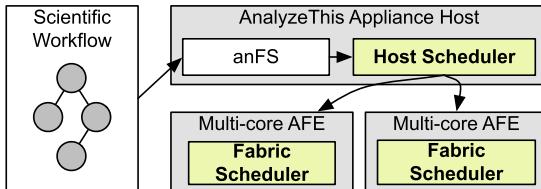


Fig. 8. Multi-level scheduling architecture in AnalyzeThis with multi-core AFEs.

AnalyzeThisSim was implemented considering the following: (i) an AFE is characterized by the number of cores, read bandwidth, write bandwidth, read latency and write latency, and (ii) all AFEs are the same in terms of number of cores, bandwidth and latencies (for both read and write). A key aspect of the AnalyzeThisSim is the capability of simulating various configurations of the array of AFEs. The simulator uses INI file to describe the AFE array as shown in Fig. 9.

Validation. AnalyzeThisSim has been implemented to accurately simulate the architecture and behavior of the emulator. Moreover, we have validated the validated simulation and emulation results with Montage and BrainAtlas workloads. We recorded the timing information at important tracing points. For example, when a task is scheduled or executed in the simulation and emulation run, we have designed the simulator to exhibit less than 10 percent of errors from the tracing points in the emulation.

6.2 Multi-Level Scheduling Framework

The scheduling strategy studied in the emulator-based approach was implemented at the host-level, to manage task execution and data movement across AFEs. On the other hand, each AFE can implement its own scheduling strategy, as it is since it is composed of multiple cores capable of task execution. As shown in Fig. 8, we implement two-level schedulers, at host level and at the AFE level, which attempts AFE level, to study the efficiency of different levels of scheduling in the multicore AFE environment.

- *Host-scheduler:* The host scheduler is a host-level scheduler, in charge of executing a set of tasks on the local AFE or the array of AFEs. Since the host scheduler deals with input files for the kernels that need to be executed, it is in charge of copying and moving files to and from other AFEs, as well as starting the execution of the task on a specific AFE when all the required files are locally available.
- *Fabric Scheduler:* The fabric-scheduler is a device-level scheduler within each AFE, placing a task on the various cores of the AFE and receiving/sending information from/to the host-scheduler for scheduling purposes. In addition, we define a set of internal status records, each of which is represented as a key/value pair, i.e., the key being a unique identifier for the identification of a specific characteristic of any SSD. For instance, the write amplification (WA) ratio could be represented via the (WA, X) key/value pair where X denotes the write amplification ratio of the SSDs. Such status records are used as metrics for the scheduling policy.

```
[AFE]
cores_per_afe = 4
read_bandwidth = 550 # in MB/s
write_bandwidth = 450 # in MB/s
read_latency = 15 # in ms
write_latency = 15 # in ms
```

```
[SERVER]
number_afes = 4 # AFEs in array
```

Fig. 9. Example: simulation platform description INI File.

6.3 Performance Impact of Using Multi-Core AFEs

To study the performance impact of using multi-core AFEs, we have used the same set of workflows from the previous emulation-based experiments. Specifically, we ran a series of simulations and collected runtime statistics of Montage, BrainAtlas and Grep workflows. For each run, we configure a specific number of AFEs and cores per a single AFE. We vary the number of AFEs from 1 to 8, while increasing the number of cores per each AFE from 1 to 12. We have also implemented three scheduling policies in the simulator: Round-Robin (RR), Write Amplification (WA) and Random.

The RR policy schedules tasks across AFEs. When the AFE is selected, the scheduler still schedules the tasks on the local cores based on a round-robin algorithm. A task to an AFE, the WA policy calculates the write amplification ratio of all AFEs before assigning the task to the AFE and then it selects the AFE with the lowest ratio. To calculate the ratio, the WA algorithm implements the following model:

$$\sum \text{Size}(\text{Input_Files}) + \frac{\sum \text{Size}(\text{File_Transfers})}{\sum \text{Size}(\text{Input_Files})}, \quad (1)$$

where $\sum \text{Size}(\text{Input_Files})$ is the total size of the input files required by the task, and $\sum \text{Size}(\text{File_Transfers})$ is the sizes of the files that would need to be transferred to the AFE, that are not locally present. Task scheduling of cores in the AFE follows a round-robin algorithm. The Random policy randomly selects the target AFE when scheduling a task and schedules the task on the cores according to a round-robin algorithm (reusing the code in the RR policy). All files are placed on the AFEs according to the round-robin policy.

Fig. 10 shows the results of the Montage, BrainAtlas and Grep workflows using RR and WA policies. From the figure, we can observe that the overall execution of various workflows can be greatly improved by adding more AFEs or adding hardware parallelism using multi-cores on the AFE. However, due to the limited parallelism available in the workflow, it can be seen that adding more computational resources (more AFEs or more cores to the AFE) will not improve the performance. This can be explained by the fact that overall performance is limited by the number of data transfers between AFEs or the amount of data transferred. In particular, WA policy results show high performance using AFE with a large number of cores, over using a large number of AFEs with a small number of cores. The use of a multi-core AFE minimizes the data transfer overhead between AFEs.

Especially, we can see there is a slight difference in performance when comparing simulated and emulated results (Figs. 10 and 5 respectively) using four single-core AFEs

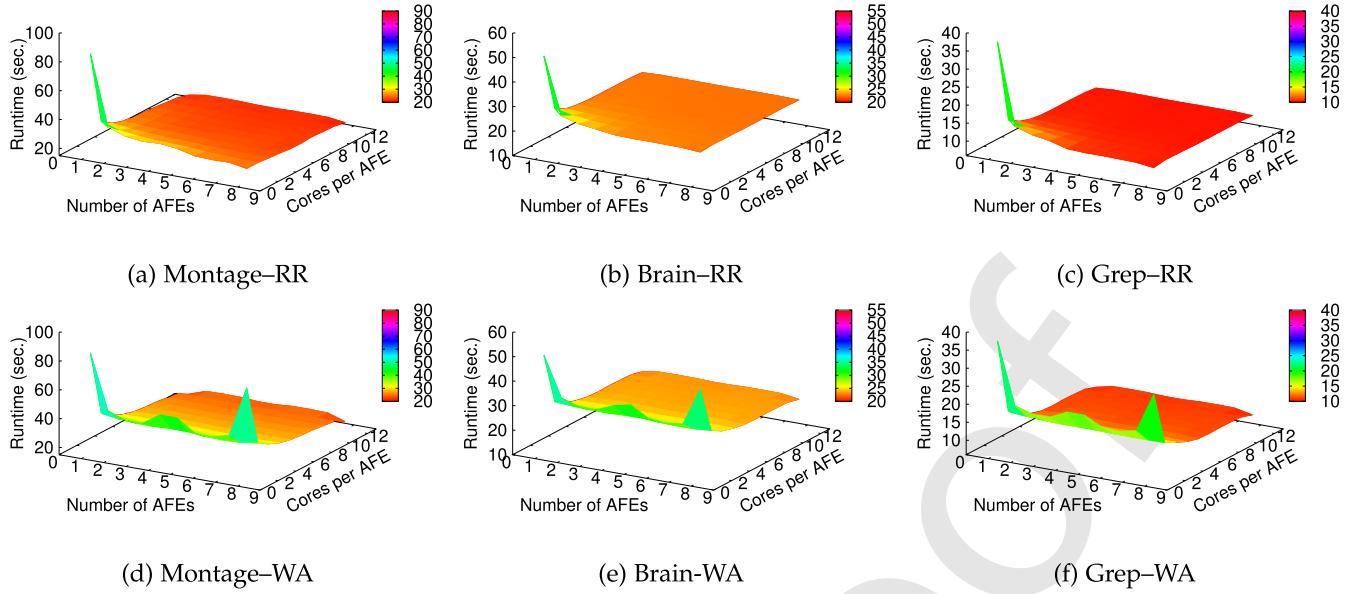


Fig. 10. Simulation results of workflow execution with Round-Robin (RR) and Write-Amplification (WA) policies.

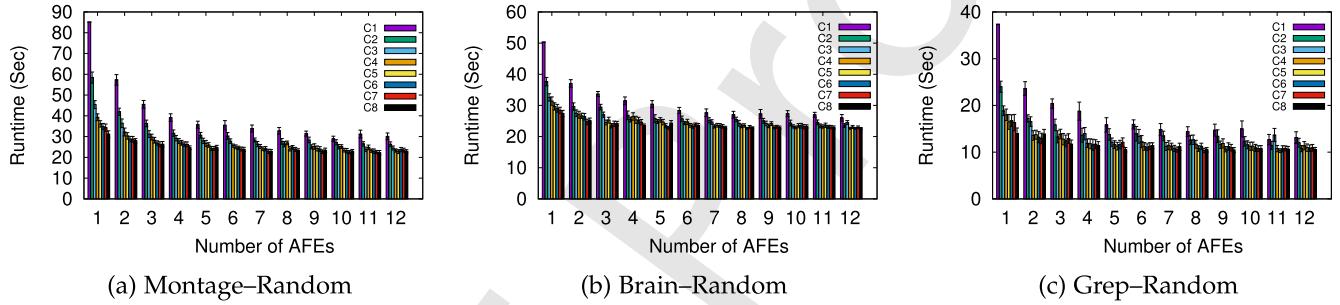


Fig. 11. Simulation results with Random policy. The 99 percent confidence intervals are shown in error bars. The number N in CN of the label represents the number of cores in the AFE.

with the RR scheduling policy. This is due to the difference in the initial file placement, i.e., in the emulator initial input files were copied to the distributed file system without control over their placement, while the simulator places files on the AFE according to the round-robin policy. We observe that the performance impact of the initial data placement varies depending on workloads. For instance, Grep workload only exhibits 3 percent performance difference (33.97 seconds in emulation and 38.48 seconds in simulation), while Montage and BrainAtlas workload shows 11 and 16 percent variation from the initial data placement.

Fig. 11, a two-dimensional graph shows the results for a random policy. We run 50 iterations per experiment and the figure show the results with an average and 99 percentile error bar graph. We can see that using a larger number of AFEs with more cores will dramatically improve the execution of various workflows. A slight variance of performance is observed in each experiment, which is not significant. In particular, in experiments with less than 4 AFEs, fewer AFEs with small number of cores can have higher workflow processing performance than many AFE approaches with fewer cores. However, due to workflow parallelism limitation, there is little difference in performance improvement in four or more AFE experiments, regardless the number of AFEs and the number of cores.

7 RELATED WORK

Migrating tasks to disks has been explored before [20], [40]. There is a renewed interest in active processing given the recent advances in SSD technology [42]. Recent efforts, such as iSSD [9], SmartSSD [19], and Active Flash [56] have demonstrated the feasibility and the potential of processing on the SSD. In addition, recently, several studies have been introduced to build SSDs using key-value interfaces [18], [21]. These early studies lay the foundation for AnalyzeThis. However, we take significant strides further by building a complete workflow-aware storage system, and positioning it as an in-situ processing storage appliance. The active storage community has leveraged the object storage device protocol to enable computation within a storage device. The OSD T10 standard [41], [61], [62] defines a communication protocol between the host and the OSD. Recent efforts leverage the protocol for different purposes, including executing remote kernels [41], security, and QoS [39], [62]. In contrast, we extend the OSD implementation to support entire workflows, and to integrally tie together the data with both the analysis sequence and its lineage.

Table 2 provides a comparison between other closely related efforts and AnalyzeThis along different dimensions, e.g., active storage processing, workflow and provenance-awareness, OSD model, file system interface and, in-situ

TABLE 2
Comparison with Related Active Storage Systems and Workflow-Aware Systems

Systems	Active Device	Workflow	OSD Model	Provenance	FS Interface	In-Situ
Provenance-awareness						
PASS [32], LinFS [43]	.	.	.	x	x	.
VDT [58]	.	.	.	x	.	.
Workflow-awareness						
BadFS [5]	.	x
WOSS [2]	.	x	.	.	x	.
Kepler [3]	.	x	.	x	.	.
Active Storage						
Active Disks [1], Active Flash [56], iSSD [9]	x	x
SmartSSD [19]	x	.	x	.	.	x
Data Analytics Appliance						
IBM Netezza [49]	.	.	.	x	.	x
Active Computation in PFS						
PVFS [52], Lustre [38]	.	.	x	.	x	x
I/O Middleware						
ADIOS [26]	.	x	.	.	.	x
AnalyzeThis	x	x	x	x	x	x

'x' means that a system implements the listed feature, whereas '-' implies that the system does not provide the feature.

1134 data analysis. While there are approaches that provide solutions targeting a few dimensions, none of them provide a 1135 complete solution, satisfying all of the dimensions.

1136 1137 Some extensions to parallel file systems, e.g., PVFS [52] 1138 and Lustre [38], provide support for analysis on the I/O 1139 node's computing core. However, they are not workflow- 1140 aware, a key trait for efficient analysis execution, and neither 1141 is the analysis conducted on the storage device. The 1142 ADIOS [26] I/O middleware uses a subset of staging nodes 1143 alongside a running simulation on a cluster to reduce the 1144 simulation output on-the-fly; while workflow-aware, it also only 1145 uses the computing elements of the staging nodes. Instead, 1146 AnalyzeThis uses the AFEs on the storage themselves, obviating 1147 the need for a separate set of staging nodes for analysis. 1148 Enterprise solutions such as IBM Netezza [49] enable 1149 provenance tracking and in-situ analysis, but lack an easy-to-use 1150 file system interface and workflow-awareness. Workflow- 1151 and provenance-aware systems, such as PASS [32], LinFS [43], 1152 BadFS [5], WOSS [2], and Kepler [3], are not meant for in-situ 1153 analysis. The batch-aware distributed file system (BadFS) 1154 attempts to orchestrate IO-intensive batch workloads and 1155 data movement on remote systems, by layering a scheduler 1156 atop storage and compute systems in a grid network. In 1157 contrast, AnalyzeThis operates on AFEs, scheduling and colocating 1158 data and computation therein. Compared to dedicated 1159 provenance systems like PASS and LinFS, lineage tracking in 1160 AnalyzeThis is a natural byproduct of executing workflows 1161 in the storage. Distributed execution engines, such as 1162 Dryad [63], Nephele [4], Hyracks [7], and MapReduce [10], 1163 can execute data-intensive DAG-based workflows on distributed 1164 computing resources. AnalyzeThis fundamentally differs 1165 from these systems as it exploits the SSDs as the primary 1166 computing resources.

1167 8 CONCLUSION

1168 The need to facilitate efficient data analysis is crucial to 1169 derive insights from mountains of data. However, extant

1170 techniques incur excessive data movement on the storage 1171 system. We have shown how analysis-awareness can be built 1172 into each and every layer of a storage system. The concepts of 1173 building an analysis object abstraction atop an Active Flash 1174 array, integrating a workflow scheduler with the storage, 1175 and exposing them via a /proc-like file system bring a fresh 1176 perspective to purpose-built storage systems. We have 1177 developed the AnalyzeThis storage system on top of an emu- 1178 lation platform of the Active Flash array. In addition, We 1179 have developed an event-driven AnalyzeThis simulator to 1180 evaluate the highly scalable AnalyzeThis environment with 1181 multicore AFEs. Our evaluation of AnalyzeThis shows that 1182 is viable, and can be used to capture complex workflows. In 1183 future, we plan to investigate a distributed appliance model, 1184 with multiple servers, each with its own AFE arrays, thereby 1185 introducing analysis-awareness semantics into a distributed 1186 file system.

1187 ACKNOWLEDGMENTS

1188 This research was supported in part by the U.S. DOE's Office 1189 of Advanced Scientific Computing Research (ASCR) under 1190 the Scientific data management program, by NSF through 1191 grants CNS-1405697 and CNS-1422788, and Next-Generation 1192 Information Computing Development Program through 1193 National Research Foundation of Korea (NRF) funded by the 1194 Ministry of Science, ICT (2017M3C4A7080243). The work 1195 was also supported by, and used the resources of, the 1196 Oak Ridge Leadership Computing Facility, located in the 1197 National Center for Computational Sciences at ORNL, which 1198 is managed by UT Battelle, LLC for the U.S. DOE, under the 1199 contract No. DE-AC05-00OR22725.

1200 REFERENCES

[1] A. Acharya, M. Uysal, and J. Saltz, "Active disks: Programming model, algorithms and evaluation," *SIGPLAN Not.*, vol. 33, no. 11, pp. 81–91, 1998.

[2] S. Al-Kiswany, E. Vairavanathan, L. B. Costa, H. Yang, and M. Ripeanu, "The case for cross-layer optimizations in Storage: A workflow-optimized storage system," *arXiv:1301.6195*, 2013.

[3] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock, "Kepler: An extensible system for design and execution of scientific workflows," in *Proc. 16th Int. Conf. Sci. Statist. Database Manage.*, 2004, pp. 423–424.

[4] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke, "Nephele/PACTs: A programming model and execution framework for web-scale analytical processing," in *Proc. 1st ACM Symp. Cloud Comput.*, 2010, pp. 119–130.

[5] J. Bent, D. Thain, A. C. Arpacı-Dusseau, R. H. Arpacı-Dusseau, and M. Livny, "Explicit control a batch-aware distributed file system," in *Proc. 1st Conf. Symp. Networked Syst. Des. Implementation - Vol. 1*, 2004, pp. 27–27.

[6] S. Boboila, Y. Kim, S. Vazhkudai, P. Desnoyers, and G. Shipman, "Active flash: Out-of-core data analytics on flash storage," in *Proc. IEEE 28th Symp. Mass Storage Syst. Technol.*, 2012, pp. 1–12.

[7] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica, "Hyracks: A flexible and extensible foundation for data-intensive computing," in *Proc. IEEE 27th Int. Conf. Data Eng.*, 2011, pp. 1151–1162.

[8] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross, "Understanding and improving computational science storage access through continuous characterization," *Trans. Storage*, vol. 7, no. 3, pp. 8:1–8:26, Oct. 2011.

[9] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, "Active disk meets flash: A case for intelligent SSDs," in *Proc. 27th Int. ACM Conf. Int. Conf. Supercomputing*, 2013, pp. 91–102.

[10] J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large clusters," in *Proc. 6th Conf. Symp. Operating Syst. Des. Implementation - Vol. 6*, 2004, pp. 10–10.

[11] HDF5 - A New Generation of HDF. [Online]. Available: <http://hdf.ncsa.uiuc.edu/HDF5/doc/>

[12] The Opportunities and Challenges of Exascale Computing. [Online]. Available: http://science.energy.gov/_/media/ascr/ascac/pdf/reports/exascale_subcommittee_report.pdf

[13] exofs [LWN.net]. [Online]. Available: <http://lwn.net/Articles/318564/>

[14] Filesystem in Userspace. [Online]. Available: <http://fuse.sourceforge.net/>

[15] Grep - Hadoop Wiki. [Online]. Available: <http://wiki.apache.org/hadoop/Grep>.

[16] R. L. Henderson, "Job scheduling under the portable batch system," in *Job Scheduling Strategies for Parallel Processing*. New York, NY, USA: Springer, 1995, pp. 279–294.

[17] DOE Exascale Initiative Technical RoadMap, 2009. [Online]. Available: <http://extremecomputing.labworks.org/hardware/collaboration/EI-RoadMapV21-SanDiego.pdf>

[18] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, "KAML: A flexible, high-performance key-value SSD," in *Proc. IEEE Int. Symp. High Perform. Comput. Archit.*, 2017, pp. 373–384.

[19] Y. Kang, Y.-s. Kee, E. L. Miller, and C. Park, "Enabling cost-effective data processing with smart SSD," in *Proc. IEEE 29th Symp. Mass Storage Syst. Technol.*, 2013, pp. 1–12.

[20] K. Keeton, D. A. Patterson, and J. M. Hellerstein, "A case for intelligent disks (IDISKs)," *ACM SIGMOD Record*, vol. 27, no. 3, pp. 42–52, 1998.

[21] Samsung key value ssd enables high performance scaling. [Online]. Available: https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Key_Value_Technology_Brief_v7.pdf

[22] Y. Kim, R. Gunasekaran, G. Shipman, D. Dill, Z. Zhang, and B. Settlemyer, "Workload characterization of a leadership class storage cluster," in *Proc. 15th Petascale Data Storage Workshop*, Nov. 2010, pp. 1–5.

[23] Computational Science Requirements for Leadership Computing, 2007. [Online]. Available: https://www.olcf.ornl.gov/wp-content/uploads/2010/03/ORNLL TM-2007_44.pdf

[24] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gallagher, and M. Zingale, "Parallel netCDF: A high-performance scientific I/O interface," in *Proc. SC2003: High Perform. Netw. Comput.*, 2003.

[25] libconfig, 2013. [Online]. Available: <http://www.hyperrealm.com/libconfig/>

[26] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, "Flexible IO and integration for scientific codes through the adaptable IO system (ADIOS)," in *Proc. 6th Int. Workshop Challenges Large Appl. Distrib. Environments*, 2008, pp. 15–24.

[27] The New Sky | LSST. [Online]. Available: <http://www.lsst.org/lsst/>

[28] N. Mi, A. Riska, E. Smirni, and E. Riedel, "Enhancing data availability in disk drives through background activities," in *Proc. IEEE Int. Conf. Dependable Syst. Netw. FTCS DCC*, Jun. 2008, pp. 492–501.

[29] N. Mi, A. Riska, Q. Zhang, E. Smirni, and E. Riedel, "Efficient management of idleness in storage systems," *Trans. Storage*, vol. 5, no. 2, pp. 4:1–4:25, Jun. 2009.

[30] Montage - An Astronomical Image Mosaic Engine. [Online]. Available: <http://montage.ipac.caltech.edu/docs/m101tutorial.html>

[31] L. Moreau, B. Ludäscher, I. Altintas, R. S. Barga, S. Bowers, S. Callahan, G. Chin, B. Clifford, S. Cohen, S. Cohen-Boulakia, et al, "Special issue: The first provenance challenge," *Concurrency Comput.: Practice Experience*, vol. 20, no. 5, pp. 409–418, 2008.

[32] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer, "Provenance-aware storage systems," in *Proc. Annu. Conf. USENIX '06 Annu. Tech. Conf.*, 2006, pp. 4–4.

[33] NetCDF Documentation. [Online]. Available: <http://www.unidata.ucar.edu/packages/netcdf/docs.html>

[34] Nexus. [Online]. Available: <http://trac.nexusformat.org/code/wiki>

[35] OCZ RevoDrive 3 X2 (EOL) PCI Express (PCIe) SSD. [Online]. Available: <http://ocz.com/consumer/revodrive-3-x2-pcie-ssd>

[36] Open-OSD project, 2013. [Online]. Available: <http://www.open-osd.org>

[37] HDF5 Tutorial: Parallel HDF5 Topics. [Online]. Available: <http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/parallel.html>

[38] J. Piernas, J. Nieplocha, and E. J. Felix, "Evaluation of active storage strategies for the lustre parallel file system," in *Proc. ACM/IEEE Conf. Supercomputing*, 2007, Art. no. 28.

[39] L. Qin and D. Feng, "Active storage framework for object-based storage device," in *Proc. 20th Int. Conf. Adv. Inf. Netw. Appl.*, 2006, pp. 97–101.

[40] E. Riedel, G. Gibson, and C. Faloutsos, "Active storage for large scale data mining and multimedia applications," in *Proc. 24th Conf. Very Large Databases*, 1998, pp. 62–73.

[41] M. T. Runde, W. G. Stevens, P. A. Wortman, and J. A. Chandy, "An active storage framework for object storage devices," in *Proc. IEEE 28th Symp. Mass Storage Syst. Technol.*, 2012, pp. 1–12.

[42] Samsung SSD. [Online]. Available: <http://www.samsung.com/uk/consumer/memory-cards-hdd-odd/ssd/830>

[43] C. Sar and P. Cao, Lineage File System, 2005. [Online]. Available: <http://crypto.stanford.edu/cao/lineage.html>

[44] F. B. Schmuck and R. L. Haskin, "GPFS: A shared-disk file system for large computing clusters," in *Proc. 1st USENIX Conf. File Storage Technol.*, 2002, Art. no. 19.

[45] P. Schwan, "Lustre: Building a file system for 1000-node clusters," in *Proc. Linux Symp.*, 2003.

[46] SDSS-III DR12. [Online]. Available: <http://www.sdss.org>

[47] H. Sim, Y. Kim, S. S. Vazhkudai, D. Tiwari, A. Anwar, A. R. Butt, and L. Ramakrishnan, "AnalyzeThis: An analysis workflow-aware storage system," in *Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.*, 2015, pp. 1–12.

[48] A. Simonet, G. Fedak, M. Ripeanu, and S. Al-Kiswany, "Active data: A data-centric approach to data life-cycle management," in *Proc. 8th Parallel Data Storage Workshop*, 2013, pp. 37–44.

[49] M. Singh and B. Leonardi, "Introduction to the IBM Netezza warehouse appliance," in *Proc. Conf. Center Adv. Stud. Collaborative Res.*, 2011, pp. 385–386.

[50] HDF 4.1r3 User's Guide. [Online]. Available: http://hdf.ncsa.uiuc.edu/UG41r3_html/

[51] Spallation Neutron Source | ORNL Neutron Sciences. [Online]. Available: <http://neutrons.ornl.gov/facilities/SNS/>

[52] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz, P. Kumar, W.-K. Liao, and A. Choudhary, "Enabling active storage on parallel I/O software stacks," in *Proc. IEEE 26th Symp. Mass Storage Syst. Technol.*, 2010, pp. 1–12.

[53] SQLite. [Online]. Available: <https://sqlite.org/>

[54] DAGMan: A Directed Acyclic Graph Manager. [Online]. Available: <http://research.cs.wisc.edu/htcondor/dagman/dagman.html>

[55] Introducing Titan. [Online]. Available: <https://www.olcf.ornl.gov/titan/>

[56] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J. Desnoyers, and Y. Solihin, "Active flash: Towards energy-efficient, in-situ data analytics on extreme-scale machines," in *Proc. 11th USENIX Conf. File Storage Technol.*, 2013, pp. 119–132.

1358 [57] Top 500 Supercomputer Sites. [Online]. Available: <http://www.top500.org/>
 1359 [58] Virtual Data Toolkit. [Online]. Available: <http://vdt.cs.wisc.edu/>
 1360 [59] G. Velampampil, "Data management techniques to handle large
 1361 data arrays in HDF," Master's thesis, Dept. Comput. Sci., Univ.
 1362 Illinois, Champaign, IL, USA, Jan. 1997.
 1363 [60] Y. Wang, T.-H. Ahn, Z. Li, and C. Pan, "Sipros/ProRata: A versa-
 1364 tile informatics system for quantitative community proteomics,"
 1365 *Bioinf.*, vol. 29, no. 16, pp. 2064–2065, 2013.
 1366 [61] R. O. Weber, "Information technology - SCSI object-based storage
 1367 device commands (OSD)," *Tech. Council Proposal Document*,
 1368 vol. 10, pp. 201–225, 2004.
 1369 [62] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, D. D. E. Long, Y. Kang,
 1370 Z. Niu, and Z. Tan, "Design and evaluation of oasis: An active
 1371 storage framework based on T10 OSD standard," in *Proc. IEEE*
 1372 *27th Symp. Mass Storage Syst. Technol.*, 2011, pp. 1–12.
 1373 [63] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda,
 1374 and J. Currey, "DryadLINQ: A system for general-purpose dis-
 1375 tributed data-parallel computing using a high-level language. in
 1376 *Proc. 8th USENIX Conf. Operating Syst. Des. Implementation*, 2008,
 1377 pp. 1–14.
 1378

Hyogi Sim received the BS degree in civil engineering and the MS degree in computer engineering from Hanyang University in South Korea, and the MS degree in computer science from Virginia Tech, in 2014. He is currently working towards the PhD degree at Virginia Tech. He joined Oak Ridge National Laboratory, in 2015, as a post-masters associate. During this appointment, he conducted research and development on active storage systems and scientific data management for HPC systems. He is currently an HPC systems engineer with Oak Ridge National Laboratory. His primary role is to design and develop a checkpoint-restart storage system for the exascale computing project. His areas of interest include storage systems and distributed systems.

Geoffroy Vallée received the MS degree in computer science from the Université de Versailles Saint-Quentin-en-Yvelines, France, in 2000, the PhD degree in computer science from Université Rennes 1, France, in 2004 during which he collaborated with both INRIA and Electricité de France (EDF). He joined Oak Ridge National Laboratory in 2004 as a postdoctoral researcher and became a research scientist in 2007. His research interests include system for high-performance computing, including operating systems, networking substrates, run-time systems, resilience, and fault tolerance.

Youngjae Kim received the BS degree in computer science from Sogang University, Republic of Korea, in 2001, and the MS degree from KAIST, in 2003, and the PhD degree in computer science and engineering from Pennsylvania State University, University Park, Pennsylvania, in 2009. He is currently an assistant professor with the Department of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea. Before joining Sogang University, he was a staff scientist with the US Department of Energy's Oak Ridge National Laboratory (2009–2015) and an assistant professor with Ajou University, Suwon, Republic of Korea (2015–2016). His research interests include distributed file and storage, parallel I/O, operating systems, emerging storage technologies, and performance evaluation.



Sudharshan S. Vazhkudai received the master's and PhD degrees in computer science from the University of Mississippi, in 2003 and 1998, respectively. He leads the Technology Integration (TechInt) group in the National Center for Computational Sciences (NCCS), Oak Ridge National Laboratory (ORNL). NCCS hosts the Oak Ridge Leadership Computing Facility (OLCF), which is home to the 27 petaflops Titan supercomputer. He leads a group of 17 HPC researchers and systems software engineers; the group is charged with delivering new technologies into OLCF by identifying gaps in the system software/hardware stack, and developing, hardening and deploying solutions. His group's technology scope includes the deep-storage hierarchy, non-volatile memory, system architecture, system monitoring, and data and metadata management.

Devesh Tiwari received the BS degree in computer science and engineering from the Indian Institute of Technology (IIT) Kanpur, India, and the PhD degree in electrical and computer engineering from North Carolina State University. He is an assistant professor with Northeastern University. Before joining Northeastern, Devesh was a staff scientist with the Oak Ridge National Laboratory. His research interests include designing efficient and scalable large scale computing and storage systems. His research publications have received best paper award nominations at conferences including Supercomputing (SC), Dependable Systems and Networks (DSN), and Parallel & Distributed Processing Symposium (IPDPS). His work has appeared in various conferences such as USENIX FAST, SC, DSN, HPCA, MICRO, IPDPS, and have been covered by the news media including Slashdot and HPCWire.

Ali R. Butt received the PhD degree in electrical and computer engineering from Purdue University, in 2006. He is a recipient of an NSF CAREER Award (2008), IBM Faculty Awards (2008, 2015), a VT College of Engineering (COE) Dean's award for "Outstanding New Assistant Professor" (2009), an IBM Shared University Research Award (2009), and NetApp Faculty Fellowships (2011, 2015). He was named a VT COE Faculty Fellow in 2013. He was an academic visitor at IBM Almaden Research Center (Summer 2012) and a visiting research fellow at Queen's University of Belfast (Summer 2013). He has served as an associate editor for the *ACM Transactions on Storage* (2016–present), the *IEEE Transactions on Parallel and Distributed Systems* (2013–present), *Cluster Computing: The Journal of Networks, Software Tools and Applications* (2013–present), and the *Sustainable Computing: Informatics and Systems* (2010–2015). He is an alumnus of the National Academy of Engineering's US Frontiers of Engineering (FOE) Symposium (2009), US-Japan FOE (2012), and National Academy of Science's AA Symposium on Sensor Science (2015). He was also an organizer for the US FOE in 2010. His research interests include distributed computing systems, cloud computing, file and storage systems, Internet of Things, I/O systems, and operating systems. At Virginia Tech he leads the Distributed Systems & Storage Laboratory (DSSL).

▷ For more information on this or any other computing topic, 1485
 please visit our Digital Library at www.computer.org/publications/dlib. 1486

Queries to the Author

1488 Q1. Please provide complete bibliography details for Ref. [2].

1489 Q2. Please provide publication year for Refs. [11], [12], [13], [14], [15], [21], [27], [30], [33], [34], [35], [37], [42], [46], [50],
1490 [53], [57], and [58].

1491 Q3. Please provide page-range for Refs. [24], and [45].