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An Analysis Workflow-Aware Storage System
for Multi-Core Active Flash Arrays

Hyogi Sim, Geoffroy Vallée, Youngjae Kim, Sudharshan S. Vazhkudai®, Devesh Tiwari, and Ali R. Butt

Abstract—The need for novel data analysis is urgent in the face of a data deluge from modern applications. Traditional approaches to
data analysis incur significant data movement costs, moving data back and forth between the storage system and the processor.
Emerging Active Flash devices enable processing on the flash, where the data already resides. An array of such Active Flash devices
allows us to revisit how analysis workflows interact with storage systems. By seamlessly blending together the flash storage and data
analysis, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply
ingrained in each and every layer of the storage, elevating data analyses as first-class citizens, and transforming AnalyzeThis into a
potent analytics-aware appliance. To evaluate the AnalyzeThis system, we have adopted both emulation and simulation approaches. In
particular, we have evaluated AnalyzeThis by implementing the AnalyzeThis storage system on top of the Active Flash Array’s emulation
platform. We have also implemented an event-driven AnalyzeThis simulator, called AnalyzeThisSim, which allows us to address the
limitations of the emulation platform, e.g., performance impact of using multi-core SSDs. The results from our emulation and simulation
platforms indicate that AnalyzeThis is a viable approach for expediting workflow execution and minimizing data movement.

Index Terms—Distributed systems, storage management, scientific data management

1 INTRODUCTION

DATA analysis is often considered the fourth paradigm
of scientific discovery, complementing theory, experi-
ment, and simulation. Experimental facilities (e.g., Spall-
ation Neutron Source [51]), observational devices (e.g.,
Sloan Digital Sky Survey [46], Large Synoptic Survey Tele-
scope [27]) and high-performance computing (HPC) simula-
tions of scientific phenomena on clusters (e.g., Titan
supercomputer [55] and other Top500 machines [57]) pro-
duce hundreds of terabytes of data that need to analyzed to
glean insights. The data products are often stored in central,
shared repositories, supported by networked file systems
(NFS) or parallel file systems (PFS) (e.g., Lustre [45] or
GPFS [44]). Analyses that operate on these datasets are often
I/O-intensive, and involve running a complex workflow job
on a smaller cluster. The analysis workflow reads the input
data from the central storage, applies a series of analytics
kernels, such as statistics, reduction, clustering, feature
extraction and legacy application routines, and writes the
final, reduced data back to the storage system. We refer to
the entire sequence of reading the input data, followed by
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analysis on a cluster, and writing the output as Offline data
analysis.

Offline analysis incurs a substantial amount of redun-
dant I/0O, as it has to read the inputs from the storage sys-
tem, and write the reduced results back. Reading back large
data for analysis on a cluster exacerbates the I/O bandwidth
bottleneck that is already acute in storage systems [22]. This
is because, I/O bandwidth has traditionally been lagging
behind the compute and memory subsystems, and the data
production rates from simulations [56] and experimental
facilities are compounding the problem further, creating a
storage wall. Instead of an offline approach to data analysis,
analyzing data in-situ on the storage system, where the data
resides, can not only minimize data movement, but also
expedite the time to solution of the analysis workflow. In
this paper, we explore such an approach to data analysis.

To alleviate the I/O bottleneck, network-attached storage
systems for clusters are being built with solid-state devices
(SSD), resulting in either hybrid SSD/HDD systems or all
flash arrays. The lack of mechanical moving parts, coupled
with a superior I/O bandwidth and low latency, has made
SSDs an attractive choice. We argue that SSDs are not only
beneficial for expediting 1/0O, but also for on-the-fly data
analysis. SSDs boast an increasing computational capability
on the controllers, which have the potential to execute data
analysis kernels in an in-situ fashion. In this model, the anal-
ysis is conducted near the data, instead of shipping the data
to the compute cores of the analysis cluster.

In our prior work on Active Flash [6], [56], we explored
the viability of offloading data analysis kernels onto the
flash controllers, and analyzed the performance and energy
tradeoffs of such an offload. We found that Active Flash out-
performed offline analysis via a PFS for several analysis
tasks. In this paper, we explore how such an active

1045-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

37
38
39
40

42

66

69
70


https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
mailto:
mailto:
mailto:
mailto:

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.X, XXXXX2018

processing element can form the fabric of an entire storage
system that is workflow-aware.

An array of such Active Flash devices allows us to
rethink the way data analysis workflows interact with stor-
age systems. Traditionally, storage systems and workflow
systems have evolved independently of each other, creating
a disconnect between the two. By blending the flash storage
array and data analysis together in a seamless fashion, we
create an analysis workflow-aware storage system, Analyze-
This. Consider the following simple—yet powerful—
analogy from day-to-day desktop computing, which
explains our vision for AnalyzeThis. A smart folder on mod-
ern operating systems allows us to associate a set of rules
that will be implemented on files stored in that folder, e.g.,
convert all postscript files into pdfs or compress (zip) all
files in the folder. A similar idea extrapolated to large-scale
data analysis would be: writing data to an analysis-aware
storage system automatically triggers a sequence of prede-
fined analysis routines to be applied to the data.

Contributions. We propose AnalyzeThis, a storage system
atop an array of Active Flash devices. Our guiding princi-
ple is that analysis-awareness be deeply ingrained within
each and every layer of the storage system, thereby elevat-
ing the data analysis operations as first-class citizens. Ana-
lyzeThis realizes workflow-awareness by creating a novel
analysis data object abstraction, which integrally ties the
dataset on the flash device with the analysis sequence to
be performed on the dataset, and the lineage of the data-
set (Section 3.1). The analysis data object abstraction is
overlaid on the Active Flash device, and this entity is
referred to as the Active Flash Element, AFE. We mimic an
AFE array using an emulation platform. We explore how
scheduling, i.e., both data placement and workflow
orchestration, can be performed within the storage, in a
manner that minimizes unnecessary data movement
between the AFEs, and optimizes workflow performance
(Section 3.2). Moreover, we design easy-to-use file system
interfaces with which the AFE array can be exposed to the
user (Section 3.3). The FUSE-based file system layer ena-
bles users to read and write data, submit analysis work-
flow jobs, track and interact with them via a /proc-like
interface, and pose provenance queries to locate interme-
diate data (Section 3.4). Finally, we have developed an
AnalyzeThis simulator, called AnalyzeThisSim, to study
the performance impact of using a multi-core architecture
in the AFEs (Section 6). This simulator is event-driven,
capable of evaluating multi-core AFEs and host and AFE-
level (fabric) schedulers. We argue that these concepts
bring a fresh perspective to large-scale data analysis. Our
results with real-world, complex data analysis workflows
on AnalyzeThis, built atop an emulation-based AFE pro-
totype, indicate that it is very viable, and can expedite
workflows significantly.

1.1 Background on Active Flash
Here, we present a summary of our prior work, Active
Flash, upon which the AnalyzeThis storage system is built.
Enabling Trends. First, we highlight the trends that make
flash amenable for active processing.
High I/O throughput and internal bandwidth: SSDs offer
high 1/O throughput and internal bandwidth due to

interleaving techniques over multiple channels and flash
chips. This bandwidth is likely to increase with devices pos-
sessing more channels or flash chips with higher speed
interfaces.

Availability of Spare Cycles on the SSD Controller. SSD con-
trollers exhibit idle cycles on many workloads. For example,
HPC workloads are bursty, with distinct compute and I/O
phases. Typically, a busy short phase of I/O activity is fol-
lowed by a long phase of computation [8], [22]. Further, the
I/0 activity recurs periodically (e.g., once every hour), and
the total time spent on I/O is usually low (below
5 percent [23]). Even some enterprise workloads exhibit idle
periods between their I/O bursts [28], [29]. Data ingest from
experimental facilities, such as SNS [51] are based on the
availability of beam time, and there are several opportuni-
ties for idle periods between user experiments, which
involve careful calibration of the sample before the beam
can be applied to it to collect data. Such workloads expose
spare cycles available on the SSD controller, making it a
suitable candidate for offloading data analysis tasks.

Multi-Core SSD Controllers. Recently marketed SSDs are
equipped with fairly powerful mobile cores, and even
multi-core controllers (e.g., a 4-core 780 MHz controller on
the OCZ RevoDrive X2 [35]). Multi-core SSD controllers are
likely to become more common place, and hence the avail-
able idle time on the SSD controllers will increase as well.

Active Flash. In our prior work o n Active Flash [6], [56],
we presented an approach to perform in-situ data analysis
on SSDs. We presented detailed performance and energy
models for Active Flash and offline analysis via PFS, and
studied their provisioning cost, performance, and energy
consumption. Our modeling and simulation results indi-
cated that Active Flash is better than the offline approach in
helping to reduce both data movement, and energy con-
sumption, while also improving the overall application per-
formance. Interestingly, our results suggest that Active
Flash can even help defray part of the capital expenditure of
procuring flash devices through energy savings. We also
studied hybrid analysis, involving processing on both flash
and host cores, and explored when it might be suitable to
offload analysis to flash. Next, our simulation of I/O-
compute trade-offs demonstrated that internal scheduling
may be used to allow Active Flash to perform data analysis
without impact on I/O performance. To this end, we
explored several internal scheduling strategies within the
flash translation layer (FTL) such as analyzing while data
written to the flash is still in the controller’s DRAM, analyz-
ing only during idle times (when there is no I/O due to data
ingest), and combining idle time analysis with the schedul-
ing of garbage collection (GC) to preempt GC interrupting
an ongoing data analysis due to the lack of available free
pages. Finally, we have demonstrated the feasibility of
Active Flash through the construction of a prototype, based
on the OpenSSD development platform, extending the
OpenSSD FTL with data analysis functions. We have
explored the offloading of several data analysis kernels,
such as edge detection, finding local extrema, heartbeat
detection, data compression, statistics, pattern matching,
transpose, PCA, Rabin fingerprinting and k-means cluster-
ing, and found Active Flash to be very viable and cost-effec-
tive for such data analysis.
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Fig. 1. AnalyzeThis overview. Figure shows analysis-awareness at each
and every layer of AnalyzeThis.

2 ANALYZETHIS STORAGE SYSTEM

2.1 Goals
In this section, we discuss our key design principles.

Analysis-Awareness. Our main objective is to introduce
analysis-aware semantics into the storage system. There is
an urgent need to analyze the data in-situ, on the storage
component, where the data already resides.

Reduce Data Movement. It is expected that in future, exas-
cale data centers, the cost of data movement will rival that
of the computation itself [17]. Thus, we need to minimize
data movement in analysis workflows as well as across the
AFEs within the storage.

Capture Lineage. There is a need to track provenance and
intermediate data products generated by the analysis steps
on the distributed AFEs. The intermediate data can serve as
starting points for future workflows.

Easy-to-Use File System Interface. The workflow orchestra-
tion across the AFEs needs to be masqueraded behind an
easy-to-use, familiar interface. Users should be able to easily
submit workflow to the storage system, monitor and track
them, query the storage system for intermediate data prod-
ucts of interest and discover them.

2.2 Overview

We envision AnalyzeThis as a smart, analytics pipeline-
aware storage system atop an array of Active Flash devices
(Fig. 1). The analysis workflow job is submitted to the Ana-
lyzeThis storage system. As the input data to be processed
becomes available on AnalyzeThis (from experiments,
observations or simulations) the workflow that the user has
submitted is applied to it. The final processed data, or any
of the intermediate data is stored in AnalyzeThis, and may
be retained therein, transferred to other repositories that
may be available to the user (e.g., archive, PFS), or removed
based on lifetime metadata attributes that the user may
have associated with the dataset. Thematic to the design of
AnalyzeThis is that analysis-awareness be deeply embed-
ded within each layer of the storage system. In the future,
we expect that such analysis-aware semantics will be
adopted into existing PFS and NFS storage. Below is a
bottom-up description of the system.

Active Flash Array. At the lowest level is the Active Flash
array that is composed of discrete Active Flash devices,
capable of running individual analysis kernels. Internally,
an AFE has multiple processors that are capable of execut-
ing user-provided codes. We envision an array of such devi-
ces that are connected via SATA, PCle or NVMe.

Analysis Object Abstraction. On top of the Active Flash
array, we propose to create a new data model, the analysis
object abstraction that encapsulates the data collection, the
analysis workflow to be performed on the data, and the line-
age of how the data was derived. We argue that such a rich
data model makes analysis a first-class citizen within the
storage system by integrally tying together the data and the
processing to be performed (or was performed) on the data.
The analysis abstraction, coupled with the Active Flash
device (capable of processing), is referred to as the Active
Flash Element, “AFE.”

Workflow Scheduling Layer. The goal of this layer is to
mimic how users interact with batch computing systems
and integrate similar semantics into the storage system.
Such a strategy would be a concrete step towards bridging
the gap between storage and analysis workflows. Users typ-
ically submit a workflow, e.g., a PBS [16] or a DAGMAN [54]
script, to a cluster’s batch scheduler, which creates a depen-
dency graph and dispatches the tasks onto the compute
nodes based on a policy. Similarly, we propose a Workflow
Scheduler that determines both data placement and schedul-
ing analysis computation across the AFEs in a manner that
optimizes both end-to-end workflow performance and data
movement costs.

A File System Interface. We tie the above components
together into a cohesive system for the user by employing a
FUSE-based file system interface with limited functionality
(“anFS”). anFS supports a namespace, reads and writes to
the AFE array, directory creation, internal data movement
between the AFEs, a “/proc-like” infrastructure, and the abil-
ity to pose provenance queries to search for intermediate
analysis data products. Similar to how /proc is a control and
information center for the OS kernel, presenting runtime
system information on memory, mounted devices and hard-
ware, /mnt/anFS/.analyzethis/, allows users to sub-
mit workflow jobs, track and interact with them, get status
information, e.g., load about the AFEs.

Together, these constructs provide a very potent in-situ data
analytics-aware storage appliance.

3 DESIGN AND IMPLEMENTATION

Fig. 2a presents the architecture of AnalyzeThis. The Ana-
lyzeThis appliance exposes a FUSE file system, “anFS,” to
the users that can be mounted via an NFS protocol. Users
submit analysis workflows and write data objects to Ana-
lyzeThis via anFS that is mounted on their desktop computer
or an analysis cluster. Thereafter, users can monitor and
query the status of the jobs, and search for intermediate data
products of branches of the workflow. In backend, the Ana-
lyzeThis appliance comprises of one or more storage servers
to which multiple Active Flash devices are connected. The
storage server and the Active Flash devices run several serv-
ices, and collectively help realize the analysis-aware storage
appliance. Each Active Flash device runs the software
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(a) AnalyzeThis Architecture: The figure shows how the desktop clients interact with
AnalyzeThis by mounting the anfs client via the NFS protocol. AnalyzeThis comprises of
multiple Active Flash devices, connected to one or more storage servers. Together, they
run several services such as AFE, anFS servers, namespace, workflow, provenance and
device managers.

Desktop Computers

Services on the Storage Server
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Workflow ¢ Active ! ;\l/i
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--»Control Path
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(b) anFS Architecture and Data and Control Paths: The Workflow and device managers
handle the active file operations or the control path. The Namespace manager, along with
ExoFS, exposes the AFE as a file system to the FUSE layer for traditional data operations.
The FUSE layer of anFsS ties together the control and data paths into a user-level file system.

Fig. 2. AnalyzeThis architecture and components.

service that overlays an analysis object abstraction atop,
transforming it into an AFE, as well as other services
required to handshake with the storage server. The storage
server runs services such as those required for making the
AFEs available as a file system (namespace management and
data protocols), distributed workflow orchestration, distrib-
uted provenance capture, and interfacing with the AFEs
(device management). These services are implemented
behind a FUSE layer on the storage server. Together, in a dis-
tributed fashion, they achieve workflow awareness.

Central to our design is the seamless integration of work-
flow scheduling and the file system. To this end, behind
anFS is a workflow scheduler that constructs a directed acyclic
graph (DAG) from the analysis workflow job. The scheduler
produces multiple mini DAGs based on task dependencies
and optimization strategies, e.g., to minimize data move-
ment. The mini DAGs comprise of a series of tasks, which
the storage server maintains in a lightweight database. The
scheduler dispatches the mini DAGs for execution on the
AFEs; AFEs form the bottom-most layer of our system, and
are capable of running analysis kernels on the device con-
trollers. We use an analysis object abstraction, which encapsu-
lates all necessary components of an task, including
analysis kernels, input and output datasets, and the lineage
information of all the objects therein. The analysis kernels
for a given workflow is assumed to be stored as a platform-
dependent binary executable object (. so format), compiled
for specific devices as needed, which can run on the AFEs.

3.1 Analysis Encapsulation
We introduce analysis awareness in the Active Flash array by
building on our prior work on Active Flash that has

demonstrated how to run an analysis kernel on the flash con-
troller [6], [56]. Our goal here is to study how to overlay an
analysis object abstraction atop the Active Flash device, both of
which together form the AFE. The construction of an AFE
involves interactions with the flash hardware to expose fea-
tures that higher-level layers can exploit, communication
protocol with the storage server and flash device, and the
necessary infrastructure for analysis object semantics. An
array of AFEs serve as building blocks for AnalyzeThis.

The first step to this end is to devise a richer construct
than just files. Data formats, e.g., HDF [11], [37], [50], [59]
NetCDF [24], [33], and NeXus [34], offer many desirable fea-
tures such as access needs (parallel I/O, random 1/O, par-
tial I/O, etc.), portability, processing, efficient storage and
self-describing behavior. However, we also need a way to
tie the datasets with the analysis lifecycle in order to sup-
port future data-intensive analysis. To address this, we
extend the concept of a basic data storage unit from tradi-
tional file(s) to an analysis object abstraction that includes a
file(s) plus a sequence of analyses that operate on them plus
the lineage of how the file(s) were derived. Such an abstrac-
tion can be created at a data collection-level, which may
contain thousands of files, e.g., climate community. The
analysis data abstraction would at least have either the anal-
ysis sequence or the lineage of analysis tools (used to create
the data) associated with the dataset during its lifetime on
AnalyzeThis. The elegance of integrating data and opera-
tions is that one can even use this feature to record data man-
agement activities as part of the dataset and not just analyses.
For example, we could potentially annotate the dataset with
a lifetime attribute that tells AnalyzeThis which datasets
(final or intermediate data of analysis) to retain and for how
long. The analysis object abstraction transforms the dataset
into an encapsulation that is more than just a pointer to a
byte stream; it is now an entity that lends itself to analysis.

3.1.1  Extending OSD Implementation for AFE

We realize the analysis object abstraction using the object
storage device (OSD) protocol. The OSD protocol provides
a foundation to build on, by supporting storage server to
AFE communication and by enabling an object container-
based view of the underlying storage. However, it does not
support analysis-awareness specifically. We use an open
source implementation of the OSD T10 standard, Linux
open-osd target [36], and extend it further with new features
to implement the AFEs. We refer to our version of the OSD
implementation as “AFE-OSD” (Fig. 2a). Our extensions are
as follows: (i) Mini Workflow supports the execution of entire
branches of an analysis workflow that are handed down by
the higher-level Workflow Scheduler on the storage server;
(ii) Task Tracker tracks the status of running tasks on the
AFE; (iii) AFE Status checks the internal status of the AFEs
(e.g., load on the controller, capacity, wear-out), and makes
them available to the higher-level Workflow Scheduler on
the storage server to enable informed scheduling decisions;
(iv) Lineage Container captures the lineage of the executed
tasks; and (v) Lightweight Database Infrastructure supports
the above components by cataloging the necessary informa-
tion and their associations.

Mini Workflow Engine. The AFE-OSD initiator on the stor-
age server submits the mini DAG to the AFE-OSD target.
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AnalyzeThis/
Alice/
L job1/

anFS_dirent table

task1/ Workflow Table (anFS_wf)
means.so job ID task CID AFE ID
input1.obj H
(inodet# = 2, obj ID = 0x1002) : 1 0x10 0
Bob/ input2.obj .
(inode# = 3, obj ID = 0x1003)
utput.obj :

Desktop Computer

Task Collection Task Collection Attribute Page

Kernel object ID
Kernel object

Input collection ID
Output collection 1D
String argument
User ID
Submission time
Completion time
Return code
Progress status

Input Collection
{input object1, input
object2}

Output Collection
output object1

Object Table Attribute Table
1D TYPE Attr.
ID Page Offset Value
0x10 0x40
0x10 0x40 1 0x15
0x15 0x40 0x10 0x40 2 0x17
0x1002 0x80
0x1003 0x80 Dataset Task Collection
Membership table (tcid_oid)
0x2000 0x80 D) oD
Type - root = Ox1 0x15 0x1002
partition = 0x2 0x15 0x1003
collection = 0x40
data object = 0x80 0x17 0x2000
illegal object = 0x00

Fig. 3. Analysis object abstraction implemented using database engine.
CID: task collection id, OID: object id, Attr. offset: an offset in the attri-
bute page.

The mini DAG represents a self-contained branch of the
workflow that can be processed on an AFE independently.
Each mini DAG is composed of a set of tasks. A task is rep-
resented by an analysis kernel, and a series of inputs and
outputs. The storage server dispatches the mini DAGs to
the AFEs using a series of ANALYZE_THIS execution com-
mands, with metadata on the tasks. To handle the tasks on
the AFEs, we have implemented a new analysis task collection
primitive in the AFE-OSD, which is an encapsulation to
integrally tie together the analysis kernel, its inputs and out-
puts (Task Collection and the Task Collection Attribute Page
are represented in the bottom half of Fig. 3). Once the AFE
receives the execution command, it will create an analysis
task collection, and insert the task into a FIFO task queue
that it maintains internally. As we noted earlier, inputs and
outputs can comprise of thousands of files. To capture this
notion, we create a linked collection encapsulation for input
and output datasets (using an existing Linked collection
primitive), which denotes that a set of files are linked
together and belong to a particular dataset.

Kernel Executer: The kernel executer is a multi-threaded
entity that checks the task queue and dispatches the tasks to
the AFE controller. We have only used one core from the
multi-core controller, but the design allows for the use of
many cores. We rely on the ability of the Active Flash com-
ponent of the AFE to run the kernel on the controller core,
which has been studied in our prior work [6], [56]. Active
Flash locates the predefined entry point (start_kernel)
from the analysis kernel code (.so file), and begins the
execution. In our prior work on Active Flash [6] (summa-
rized in Section 1.1), we have explored FTL scheduling tech-
niques to coordinate regular flash I/O, active computation
and garbage collection, which can be used by the kernel
executer.

Task Tracker. The Task Collection and the Task Collection
Attribute page provide a way to track the execution status of
a task and its execution history, i.e., run time. Each task col-
lection has a unique task id. The storage server can check the
status of a running task by reading an attribute page of its
task collection using the get_attribute command and
the task id. The workflow scheduler on the storage server
also queries the AFE for the execution history of analysis ker-
nels, to get an estimate of run times that are then used in
scheduling algorithms, e.g., Minimum Wait (in Section 3.2).

AFE Status. The storage server can use an AFE’s hard-
ware status for better task scheduling. To this end, we have
created a status object to expose the internal information to
the storage server. The status object includes the AFE device
details such as wear-out for the flash, resource usage for
controller, the AFE task queue details, and Garbage Collec-
tion status. The AFEs are configured to periodically update
a local status object, which can then be retrieved by the stor-
age server as needed. Thus, the storage server can check the
status of the device by sending a get_attribute com-
mand on the status object using its object id.

Lineage Container. Lineage information of tasks and data
objects are maintained in an AFE’s internal database. The
lineage container helps answer provenance queries (more
details in Section 3.4).

Lightweight Database Infrastructure. We use a lightweight
database infrastructure (Fig. 3), using SQLite [53], to imple-
ment analysis-aware semantics into the storage system. One
approach is to have the storage server maintain all of the
analysis workflow, data, and analysis-semantics. However,
such a centralized approach is not resilient in the face of
storage server crashes. Instead, we implement a decentral-
ized approach (refer to Fig. 2a), wherein the storage server
(the FUSE layer) and the AFEs (the AFE-OSD Target) main-
tain relevant information and linkages to collectively
achieve the analysis abstraction.

The storage server database table (anFS_wf) maintains
high-level information about the analysis workflow, e.g.,
mini DAGs (job ID), the associated tasks (task collection ID),
and the AFE ID on which to run the task. For example, in
Fig. 3 user Alice runs a job (id = 1) and executes an analysis
task, kmeans (CID = 0x10), on AFE (id = 0). The local AFE
database tables store detailed metadata on all objects,
namely mini DAGs, task collections, input and output data-
sets, their attributes and associations.

Each AFE manages three tables. The Object table is used
to identify the type of an object, e.g., whether it is a task col-
lection, or a data object. For each object, it maintains object
identifiers, and object types. The Dataset TaskCollection Mem-
bership table, tcid_oid, manages the membership of data
objects to task collections. Multiple data objects can belong
to a task collection (e.g., multiple inputs to a task) or a data
object can be a member of multiple task collections (e.g., a
given dataset is input to multiple tasks). The Attribute table
manages all the attributes of data objects and task collec-
tions (e.g., those represented in the Task Collection Attri-
bute Page). Each attribute (or record) in the attribute table is
defined using a data object or task collection id, page num-
ber, and attribute number inside the Attribute Page. Given
this metadata, the storage server can query information on
the tasks and their associated datasets. For example, given a
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task collection of 0x10 and an index into the attribute page, 1
(to refer to input datasets), the attribute table points to a
value of 0x15, which can be reconciled with the tcid_oid table
to obtain the input datasets 0x1002 and 0x1003.

3.2 Workflow Engine

We have built a workflow engine within AnalyzeThis, to
orchestrate both the placement of data objects as well as the
scheduling of analysis tasks across the AFEs. The scheduler
is implemented in the FUSE file system (anFS). Once a user
submits the analysis workflow script via anFS, it distin-
guishes this request from a normal I/O request. This is
accomplished by treating the “write” request coming
through the special file (.submit) as a job submission instead
of normal write operation by anFS. The script is delivered to
the scheduler which parses it to build a directed acyclic
graph, schedules the tasks, and sends the execution requests
to the AFEs via the AFE-OSD protocol. The vertices in the
DAG represent the analysis kernels, and inputs and outputs
represent incoming and outgoing edges. The scheduler
decides which branches (mini DAGs) will run on which
AFEs based on several heuristics. While the mapping of a
mini DAG to AFE is determined apriori by the scheduler,
the tasks are not dispatched until the analysis job’s inputs
are written to AnalyzeThis. This is akin to the smart folder
concept discussed in Section 1. The analysis sequence is first
registered with AnalyzeThis, and once the input data is
available the tasks are executed.

Workflow Description and DAG. In our implementation,
we have chosen to represent a job script using Libconfig [25],
a widely used library for processing structured configura-
tion files. Listing 1 shows an example of a job that finds the
maximum value in each input file. Each tasklet is repre-
sented by the input and output object lists, and a kernel
object that operates on the input objects. Any data depen-
dencies among the tasklets are detected by the scheduler
via a two-pass process. In the first pass, the scheduler exam-
ines each task in the script and inserts the task record (key:
output file, value: task) into a hash table. In the second pass,
the scheduler examines the input files of each task in the job
script. When an input file is found in the hash table, the
examined task is dependent on the output of the task in
the hash table. If the input file is not found in the hash table,
the scheduler checks if the input file already exists in the file
system. If the file does not exist, the job script is considered
to be invalid. In this way, the dependencies among the tasks
can be resolved. The dependency information is used to
build a DAG. In the following example, getmax.reduce
cannot be launched until getmax.1 and getmax.2 pro-
duce their output objects. Therefore, the overall perfor-
mance of AnalyzeThis depends on the efficient scheduling
of the analysis kernels on the AFE array.

Scheduling Heuristics. The design of the workflow sched-
uler is driven by two objectives: (1) minimizing the overall
execution time, and (2) reducing the data movement across
the AFEs. We point out that minimizing data movement is
critical as uncontrolled data movement may cause early
wear-out of the SSDs and increase in the energy consump-
tion [12]. We have designed and implemented several
scheduling strategies that attempt to strike a balance
between these two competing objectives.

Round-Robin (RR). A simple round-robin approach
schedules tasks as soon as their dependency requirements
are met, and ensures a homogeneous load-distribution
across all AFEs in a best-effort manner since the tasks are
scheduled without a priori information about their execu-
tion time. It picks the next available AFE in a round-robin
fashion to balance the computational load. The round-robin
strategy schedules the task on an available idle AFE control-
ler, causing data movement, potentially in favor of a shorter
execution time and load balance across the AFE controllers.
Consequently, the technique may suffer from excessive data
movement because it does not account for the amount of
data to be moved.

Listing 1. An Example Job Script

name = “getmax”;
workdir = “/scratch/getmax/”;
tasks = (
{ name = “getmax.1”; kernel = “getmax.so”;
input =[ “1.dat” ]; output = [ “1.max” ]; },
{ name = “getmax.2”; kernel = “getmax.so”;
input = [ “2.dat” |; output = [ "2.max” |; },
{ name = “getmax.reduce”; kernel = “mean.so”;
input = [ “l.max”, “2.max” |;
output = [ “max.dat” ]; }

);

Input Locality (IL). To minimize the data movement
across the AFEs, this heuristic schedules tasks based on
input locality. Tasks are scheduled on an AFE where maxi-
mum amount of input data is present. The scheduler main-
tains this information in memory during a job run,
including the size and location of all involved files. Input-
locality favors a reduction in data movement to perfor-
mance (execution time). In our experiments with real work-
flows, we observed that this scheduling policy is effective in
reducing the data movement. However, it can potentially
increase the overall execution time considerably because it
will execute the analysis on the AFE that stores larger input,
even if other AFEs are idle.

Minimum Wait (MW). To reconcile execution time and
data movement, we propose to explicitly account for the
data transfer time and queuing delays on the AFE control-
lers. The heuristic takes two inputs including a list of all
available AFEs and the tasks to be scheduled next. The
scheduler maintains information about the jobs currently
queued on each AFE, their expected finish time and the size
of the input file(s) for the task to be scheduled next. The
scheduler iterates over each AFE to estimate the minimum
wait time for the task to be scheduled. For each AFE, it cal-
culates the queue wait time (due to other jobs) and data
transfer time to that particular AFE. It chooses the AFE for
which the sum of these two components is minimum. The
minwait scheduler maintains and updates the “expected
free time” of each AFE using the runtime history of jobs.
When a task is ready to be executed, the scheduler calcu-
lates the expected wait time of the task for every AFE. Since
the precise estimation of the expected wait time can be com-
plex, we adopt a heuristic-based approach based on the
data transfer time [48]. The expected wait time at an AFE is
calculated as: “expected free time” at the AFE plus the
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expected data transfer time (estimated using the input file
size and AFE location). The scheduler assigns the task to an
AFE that is expected to have the minimum wait time.

Hybrid (HY). In the hybrid strategy, we exploit the storage
server within the AnalyzeThis appliance (storage server in
Fig. 2a), in addition to the AFEs, to exploit additional oppor-
tunities. The storage server can run certain tasks in addition
to anFS services. Running computation on the servers to
which the disks are attached is a well-known practice
adopted by several commercial vendors. However, hybrid
processing offers more benefits by further exploiting the
internal, aggregate bandwidth of the multi-channel flash
device that exceeds the PCle bandwidth between the storage
server and the flash device by a factor of 2-4x [9]. Analyze-
This does not blindly place all tasks on the AFEs or on the
host storage server. The challenge is in carefully determining
what to offload where (storage server versus AFE) and
when. Traditional solutions that simply perform server-side
processing do not address this optimization. Reduce tasks in
workflows involve high data movement cost because they
gather multiple intermediate inputs on the AFEs, and can be
moved to the storage server. This approach has the advan-
tage of minimizing the overhead of data movement between
the AFEs, beyond what Input Locality alone can achieve,
without sacrificing the parallelism. Also, tasks that cause an
uneven distribution on the AFEs cause stragglers, and can be
moved to the storage server (unaligned tasks). Such tasks
can be identified based on profiling of the workflows. The
hybrid approach can work in conjunction with any of the
aforementioned scheduling techniques.

3.3 anFS File System Interface

The functionalities of AnalyzeThis are exposed to the clients
via a specialized file system interface, “anFS.” Since the
analysis workflows operate on but do not modify the origi-
nal data from scientific experiments and simulations, anFS
is designed as a write-once-read-many file system. As dis-
cussed earlier (Section 3), anFS is exported to clients via
NFS. Thus, operations on shared files follow the NFS consis-
tency semantics. anFS provides standard APIs such as open
(), read(), and write(), as well as support special virtual files
(SVFs), serving as an interaction point, e.g., to submit and
track jobs, between users and AnalyzeThis.

Fig. 2b shows the overall architecture of anFS. It is imple-
mented using the FUSE user-space file system, and can be
mounted on the standard file system, e.g., /mnt/anFS/.
FUSE provides an elegant way to develop user-level file sys-
tems. anFS provides several custom features, such as work-
flow execution and provenance management, which are
more appropriate to be implemented in the user-space than
the kernel-level. Also, a FUSE-based, user-level implemen-
tation offers better portability than a kernel-based solution.
anFS is composed of the following components. The Narme-
space Manager consolidates the array of available AFEs, and
provides a uniform namespace across all the elements. The
Workflow Manager implements the workflow engine of Ana-
lyzeThis (Section 3.2). The Device Manager provides the con-
trol path to the AFEs, implementing AFE-OSD (Section 3.1.1)
to allow interactions with the AFEs. Finally, the exoFS
(Extended Object File System) layer [13] provides the data path
to the AFEs.

Namespace. anFS exposes a consolidated standard hierar-
chical UNIX namespace view of the files and SVFs on the
AFEs. To this end, the storage server metadata table
(Section 3.1.1) includes additional information associated
with every stored object and information to track the AFEs
on which the objects are stored (Fig. 3). For example, there
is an AFE identifier and an object identifier associated with
every inode of a file stored by anFS. All file system opera-
tions are first sent to the Namespace Manager that consults
the metadata to route the operation to an appropriate AFE.
To manage the large amount of metadata that increases
with increasing number of files, provide easy and fast
access, and support persistence across failures we employ
the SQLite RDBMS [53] to store the metadata. We note that
anFS implements features such as directories, special files,
and symbolic links, entirely in the metadata database; the
AFEs merely store and operate on the stored data objects.
Instead of striping, anFS stores an entire file on a single AFE
to facilitate on-element analysis and reduce data movement.
The placement of a file on an AFE is either specified by the
workflow manager, or a default AFE (i.e., inode modular
number-of-AFEs) is used.

Data and Control Path. To provide a data path to the AFEs,
anFS uses exoFS, an ext2-based file system for object stores.
anFS stores regular data files via the exoFS mount points,
which are created one for each AFE. For reads and writes to
a file, anFS first uses the most significant bit of the 64-bit
inode number to distinguish between a regular file (MSB is
0) and a SVF (MSB is 1). For regular files, the Namespace
Manager locates the associated AFE and uses exoFS to route
the operation to the AFEs as shown in Fig. 2b. Upon com-
pletion, the return value is returned to the user similarly as
in the standard file system. To provide a control path for
active operations, anFS intercepts the files and routes it to
the Workflow Manager, which uses the Device Manager to
route the operations to the AFEs using the AFE-OSD library
for further analysis and actions.

Active File Operations—Job Submission. anFS supports SVFs
to allow interaction between users and AnalyzeThis opera-
tions, e.g., running an analysis job, checking the status of the
job, etc. Specifically, we create a special mount point
(.analyzethis) under the root directory for anFS (e.g., /mnt/
anFS/), which offers similar functionality as that of /procbut
for workflow submission and management (Fig. 2b). To sub-
mit a job, e.g., JobA, the user first creates a submission script
(/home/alice/joba-submission) that contains information
about how the job should be executed and the data that it
requires and produces. Next, the job is submitted by writing
the full path of the submission script to the submission SVF,
e.g., by using echo /home/alice/joba-submission > /mnt/
anFS/ .analyzethis/alice/submit. This SVF write is handed
to the Workflow Manager for processing, which parses the
script, assigns a unique opaque 64-bit job handle to the script,
and takes appropriate actions such as creating a task sched-
ule, and using the appropriate Device Manager thread to
send the tasks to the AFEs. The Workflow Manager also
updates a per-user active job list, e.g.,, SVF /mnt/anFS/.
analyzethis/alice/joblistfor user alice, to include the job han-
dle for the newly submitted job. Each line in the joblist file
contains the full path of the submission script and the job
handle. Moreover, the Workflow Manager also monitors the
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Fig. 4. AnalyzeThis testbed.

task progress, and the user can retrieve this information by
reading from the job handle SVF /mnt/anFS/.analyzethis/
alice/joba-status. When the user accesses the job handle, the
request is directed to the Device Manager thread for the AFE
via the Workflow Manager. The Device Manager thread
sends the get_attributecommand via the AFE-OSD protocol
to the Task Tracker in the Mini Workflow Engine on the AFE
to retrieve the status of the jobs.

Supporting Internal Data Movement. Ideally, AnalyzeThis
will schedule a task to an AFE that also stores the (most)
data needed by the task. While we attempt to minimize data
movement through smart heuristics, there is still the need
to move data between AFEs as a perfect assignment is not
feasible. To this end, anFS may need to replicate (or move)
data from one AFE to another by involving the storage
server. However, this incurs added overhead on the storage
server. In the future, direct PCI to PCI communication can
help expedite these transfers.

Data and Workflow Security. anFS ensures data security for
multiple users via the OSD2 standards. To protect the stored
data, OSD maintains the ownership of objects as object attrib-
utes. When a data item is stored, it also provides the kernel-
level user-id of the data owner, which is then stored in the
OSD-level object ownership metadata automatically by the
device. When the data is accessed, the user-id information is
provided along with the request, and the OSD2 protocol
ensures that only the allowed user(s) are given access to the
data. Similarly, when a task is scheduled on the AFE, it is
associated with the user-id information, and must present
these credentials to access data. The access control for the
SVFs are set such that the submit SVF (.anFS/submit) is
world writable, but the resulting joblist and status files are
user specific. The sub-directories are named on a per-user
basis, e.g., Alice’s jobs are under .anFS/alice/, and the asso-
ciated POSIX ACLs protect user files.

3.4 Provenance

AnalyzeThis tracks the lineage of the data produced as a
result of a workflow execution at very minimal cost. This
allows the user to utilize the intermediate data for future
analysis. We have implemented provenance support on top
of the distributed database infrastructure (Fig. 3) between
the storage server (workflow table, anFS_wf) and AFEs
(Dataset task collection membership table, tcid_oid). Recall
that anFS_wf stores information about the task and the AFE
on which the task is executed; tcid_oid stores the task collec-
tion to data object mapping and will also need to be main-
tained on the storage server. Upon receiving a provenance
query regarding a dataset, AnalyzeThis searches the

TABLE 1
Workflow Input, Output and Intermediate Data Size
Input Intermediate = Output Total Object

(MB) #)
Montage 51 222 153 426 113
Brain 70 155 20 245 35
Sipros 84 87 1 172 45
Grep 463 363 1 827 13

anFS_dirent table to get the anFS_inode of the file, which is
used to get the object id. The object id is then used to
retrieve the task collection id from the tcid _oid table. The
task collection id is used to obtain the AFE id from the
anFS_wf table. Alternatively, if tcid_oid is not maintained on
the storage server as well, we can broadcast to the AFEs to
determine the task collection id for a data object id. Further
analysis of the lineage is performed on that AFE. Using the
task collection id and the attribute page we get the task col-
lection attribute page number. Using the predefined attri-
bute offset all the information regarding the task is fetched.
The task provenance from multiple AFEs is merged with
similar job-level information that is maintained at the stor-
age server in the anFS_wf table.

4 EXPERIMENTAL SETUP

Testbed. Our emulation testbed (Fig. 4) is composed of the
following: (1) client desktop computer that submits analysis
workflows, (2) storage server within the AnalyzeThis appli-
ance, and (3) the networked machines that emulate the
AFEs (four AFEs are connected to the storage server). For
the desktop computer and the storage server, we used a 1.8
GHz Intel Xeon E5-2603 processor. We emulated the AFEs
using Atom machines with RAM disks, to mimic the flash
controller and the internal flash chips with high I/O band-
width to the controller. The Atom-based AFEs use a single
1.8 GHz Atom processor as the controller, a 3 GB RAM disk
as the flash chip, and a 1 Gbps Ethernet connection to the
storage server within the AnalyzeThis appliance. All servers
run the Linux kernel 2.6.32-279. anFS offers a read and write
bandwidth of 120 MB/s and 80 MB/s, respectively.

Software. AnalyzeThis has been implemented using 10 K
lines of C code. We extended the OSD iSCSI target emulator
from the open-osd project [36], for the AFE target. The task
executions in an AFE are serialized by spawning a dedi-
cated thread, which mimics dedicating a device controller
for active processing. For the AFE-OSD driver in the storage
server, we extended the OSD initiator driver in the Linux
kernel. We also extended exoFS [13] to synchronize the OSD
object id space with the userspace anFS. anFS has been
implemented using FUSE [14], and it keeps track of meta-
data using SQLite [53].

Scientific Workflows. We used several real-world complex
workflows. We used Montage [30], Brain Atlas [31],
Sipros [60], and Grep [15] workflows. The DAG representa-
tions and the details of the workflows are shown in Fig. 6
and Table 1. The Montage workflow [30] creates a mosaic
with 10 astronomy images. It uses 8 analysis kernels, and is
composed of 36 tasks, several of which can be parallelized
to run on the AFEs. The Brain workflow [31] creates
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Fig. 5. Comparison of AnalyzeThis round-robin, hybrid, and offline-anFS. Multiple runs for each case, without much variance.

population-based brain atlases from the fMRI Data Center’s
archive of high resolution anatomical data, and is part of
the first provenance challenge [31] used in our provenance
evaluation. The Sipros workflow runs DNA search algo-
rithms with database files to identify and quantify proteins
and their variants from various community proteomics
studies. It consists of 12 analysis tasks, and uses three analy-
sis kernels. The Grep workflow counts the occurrences of
ANSI C keywords in the Linux source files.

5 [EVALUATING ANALYZETHIS

5.1 AnalyzeThis Performance

We compare offline-anFS and AnalyzeThis. In offline-anFS,
data analyses are performed on desktops or clusters by pull-
ing data from the anFS, whereas in AnalyzeThis, they are
performed on the AFE cores. In Fig. 5, we show the total
runtime in terms of computation and I/O time. We further
break down the I/O time into anFS I/O and anFS-internal
1/0 times (i.e., data movement between the AFEs). There-
fore, a break-down of the workflow run time comprises of
the following: (i) time to read the data from anFS (only
offline-anFS incurs this cost), (ii) compute time of the work-
flow on either the desktop or the AFEs, (iii) I/O time to
write the intermediate output to anFS during analysis (only
for offline-anFS), (iv) data shuffling time among the AFEs
(only for AnalyzeThis), and (v) time to write the final
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Fig. 6. The DAGs representing the workflows.

analysis output to anFS. We specifically compared the fol-
lowing scenarios: (i) offline analysis using one client node
and anFS (offline-anFS), (ii) AnalyzeThis using four Atom-
based AFEs and round-robin scheduling across the AFEs,
and (iii) AnalyzeThis-hybrid using the storage server, four
AFEs and round-robin across the AFEs.

In the Montage, Brain and Grep experiments for offline-
anFS, the time to write the analysis outputs to anFS notice-
ably increases the run time (i.e., more than 20 percent of the
run time is consumed by I/O operations.) while, for Ana-
lyzeThis, the I/O time, anFS-internal 1/0, is much smaller
compared to the overall run time. The run time for offline-
anFS for Montage and Brain is slightly lower than Analyze-
This due to relatively less computing power on the AFEs.
This demonstrates that the benefit from introducing the
active computation can vary depending on the application
characteristics and behavior. In addition, as AFEs begin to
have multicores in the future, this small difference is likely to
be overcome. In contrast, for Sipros and Grep, AnalyzeThis
performs better than offline-anFS. The results indicate that
offline’s performance is heavily affected by the data move-
ment costs, whereas AnalyzeThis is less impacted. Further,
AnalyzeThis can free up compute resources of desktops or
clusters, enabling “true” out-of-core data analysis.

Next, we evaluate (AnalyzeThis-Hybrid). For Montage,
AnalyzeThis-Hybrid significantly reduced the total run
time over AnalyzeThis and offline-anFS. Unaligned mPro-
jectPP tasks (Fig. 6a) are executed on the storage server,
which removed task stragglers. Also, more than 50 percent
of data copies between AFEs are reduced by executing
reduce tasks on the storage server. Similarly, for Brain, exe-
cuting a single reduce task (softmean in Fig. 6b) on the
storage server eliminated more than 75 percent of data cop-
ies, which results in a 37 percent runtime reduction com-
pared to AnalyzeThis. Similarly, for Sipros, AnalyzeThis-
hybrid is better than both AnalyzeThis and offline-anFS as
it ran unaligned tasks on the storage server.

5.2 Scheduling Performance
Here, we discuss the performance of scheduling techniques.
Impact of Scheduling Heuristics. Fig. 7 compares the perfor-
mance of round robin (RR), input locality (IL), minimum
wait (MW), and hybrid (HY) based on AFE utilization and
data movement. Fig. 7a compares the sum (first bar) of the
computation time of the workflow and the data shuffling
time among the AFEs against the AFE utilization time (other
two bars). AFE utilization is denoted by the slowest (second
bar) and the fastest (third bar) AFEs, and the disparity
between them indicates a load imbalance across the AFEs.
The smaller the difference, the better the utilization. Fig. 7b
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Fig. 7. Performance of scheduling heuristics.

shows the amount of data shuffled between the AFEs. An
optimal technique strikes a balance between runtime, data
movement, and AFE utilization.

HY and RR show a balanced load distribution across the
AFEs with the least variability in utilization. However, RR
incurs the most data movement. IL can improve runtime by
significantly reducing data movement, however it may
degrade the overall performance due to inefficient load dis-
tribution. IL shows higher runtimes than RR in all work-
flows. In fact for IL, we observed in Montage that the
slowest AFE was assigned 21 tasks among 36 tasks; in Brain,
only two AFEs out of four executed all of the tasks; and in
Sipros, only one AFE was used during analysis. HY and
MW perform best in reconciling AFE utilization and data
movement cost. For Montage, MW shows a 10 percent lower
runtime than IL by incurring a 6 percent increase in data
movement. For Brain, RR and MW show very close run-
times, but MW further reduces the data movement cost of
RR by 16 percent, with less core utilization, suggesting that
it is likely to be more energy-efficient. For Sipros, MW
shows a 2.4 percent lower runtime than RR while reducing
the data movement cost by 3 percent. By executing reduce
tasks on the storage server, HY significantly reduces the
runtimes over other scheduling algorithms for all work-
flows. In Montage and Brain, this also reduces data move-
ment cost by 52 and 76 percent over RR, respectively.

Scaling Experiments. We performed scalability experi-
ments for AnalyzeThis by increasing the number of AFEs.
We observe that the overall performance scales only up to a
certain number of AFEs, since the maximum task parallel-
ism in the workflow can limit the performance gain. For
instance, in the Brain Atlas workflow, using more than four
AFEs does not improve the performance further [47].

Utilizing Host Cores for Analysis. We have evaluated the
impact of the host processor utilization in AnalyzeThis, in a
Hybrid workflow run. We run the reduce tasks of the work-
flow on the host processor. The reduce task collects multiple
intermediate inputs from the AFEs, which can result in high
data movement costs between AFEs. And wunaligned

operations often create stragglers. Running these unaligned
operations on the host processor can eliminate the runtime
effects from these stragglers.

In Fig. 7, shows the results of our evaluation for RR and
Hybrid scheduling algorithms with Montage, BrainAtlas,
and Sipros workloads. We observe that both runtime and
data copy overhead are significantly reduced by Hybrid
compared with RR. In Montage, unalgined mProjectPP
tasks were executed on the host processor, which does
away with the extra parallel wave of 10 seconds. Similar
improvements were observed in the Sipros results, where
the extra wave is more than 300 seconds. Also, in Montage,
more than 50 percent of the data copies are reduced by exe-
cuting reduce tasks on the host processor. In BrainAtlas,
executing a single reduce task (softmean) on the host elim-
inates more than 75 percent of the data movement cost,
which results in 37 percent runtime improvement.

Provenance Performance. We have conducted the experi-
ments of AnalyzeThis for the provenance queries using the
BrainAtlas workflow, and our evaluation results are shown
in our prior work [47].

6 EVALUATING ANALYZETHIS WITH MULTI-CORE
ACTIVE FLASH ELEMENTS

Recent SSDs are configured with multicore CPUs. However,
in the current emulation-based approach, each single core
AFE is emulated as a server. Therefore, single core AFE
arrays can only be tested, and scalable experiments require
expensive hardware server resources. Therefore, in this sec-
tion, we describe a simulation-based study of AnalyzeThis
to evaluate scalable multicore AFE arrays. We have devel-
oped an event-driven simulator, AnalyzeThisSim, which
simulates workflow processing in the AnalyzeThis emula-
tion framework (in Section 3). We assume that a set of AFEs
are exclusively allocated to a single job, similarly to other
resource allocation policies in the scientific computing.

6.1 AnalyzeThis Simulator

The AnalyzeThisSim takes workflow script as its input and
reports timing information of each step during the work-
flow process. Specifically, the AnalyzeThisSim runs as fol-
lows: First, it parses an input workflow script and places all
the initial input files of the workflow across the array of
AFEs. AnalyzeThisSim supports two initial data placement
policies of random and round-robin. Once the initial files
are deployed, AnalyzeThisSim starts the execution of the
workflow. AnalyzeThis parases all the tasks and files in the
workflow and triggers internal events accordingly. For
instance, a task event is generated based on the availability
of the input files. If all the input files are available, Analyze-
ThisSim schedules the task to the target core of the AFE.
The event-driven design of the simulator allows calculate
the time taken to send the input file, the execution time of
the task, and the time to write the output file to the local
AFE. All these times are calculated based on task in the
workflow and hardware characteristics of the emulated tar-
get system by the simulator. By iterating over the workflow,
all the tasks are progressively executed. AnalyzeThisSim
collects, stores, and updates all the metrics related to job
execution, including implicit data movement.
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Fig. 8. Multi-level scheduling architecture in AnalyzeThis with multi-core
AFEs.

AnalyzeThisSim was implemented considering the fol-
lowing: (i) an AFE is characterized by the number of cores,
read bandwidth, write bandwidth, read latency and write
latency, and (ii) all AFEs are the same in terms of number of
cores, bandwidth and latencies (for both read and write). A
key aspect of the AnalyzeThisSim is the capability of simu-
lating various configurations of the array of AFEs. The sim-
ulator uses INI file to describe the AFE array as shown in
Fig. 9.

Validation. AnalyzeThisSim has been implemented to
accurately simulate the architecture and behavior of the
emulator. Moreover, we have validated the validated simu-
lation and emulation results with Montage and BrainAtlas
workloads. We recorded the timing information at impor-
tant tracing points. For example, when a task is scheduled
or executed in the simulation and emulation run, we have
designed the simulator to exhibit less than 10 percent of
errors from the tracing points in the emulation.

6.2 Multi-Level Scheduling Framework

The scheduling strategy studied in the emulator-based
approach was implemented at the host-level, to manage
task execution and data movement across AFEs. On the
other hand, each AFE can implement its own scheduling
strategy, as it is since it is composed of multiple cores capa-
ble of task execution. As shown in Fig. 8, we implement
two-level schedulers, at host level and at the AFE level,
which attempts AFE level, to study the efficiency of differ-
ent levels of scheduling in the multicore AFE environment.

e  Host-scheduler: The host scheduler is a host-level
scheduler, in charge of executing a set of tasks on the
local AFE or the array of AFEs. Since the host sched-
uler deals with input files for the kernels that need to
be executed, it is in charge of copying and moving
files to and from other AFEs, as well as starting the
execution of the task on a specific AFE when all the
required files are locally available.

e Fabric Scheduler: The fabric-scheduler is a device-
level scheduler within each AFE, placing a task on
the various cores of the AFE and receiving/sending
information from/to the host-scheduler for schedul-
ing purposes. In addition, we define a set of internal
status records, each of which is represented as a
key/value pair, i.e., the key being a unique identifier
for the identification of a specific characteristic of
any SSD. For instance, the write amplification (WA)
ratio could be represented via the (WA, X) key/value
pair where X denotes the write amplification ratio of
the SSDs. Such status records are used as metrics for
the scheduling policy.

[AFE]
cores_per_afe =4
read_bandwidth = 550 # in MB/s
write_bandwidth = 450 # in MB/s
read_latency = 15 # in ms
write_latency = 15 # in ms
[SERVER]
number_afes =4 # AFEs in array

Fig. 9. Example: simulation platform description INI File.

6.3 Performance Impact of Using Multi-Core AFEs
To study the performance impact of using multi-core AFEs,
we have used used the same set of workflows from the pre-
vious emulation-based experiments. Specifically, we ran a
series of simulations and collected runtime statistics of
Montage, BrainAtlas and Grep workflows. For each run, we
configure a specific number of AFEs and cores per a single
AFE. We vary the number of AFEs from 1 to 8, while
increasing the number of cores per each AFE from 1 to 12.
We have also also implemented three scheduling policies in
the simulator: Round-Robin (RR), Write Amplification
(WA) and Random.

The RR policy schedules tasks across AFEs. When the
AFE is selected, the scheduler still schedules the tasks on
the local cores based on a round-robin algorithm. A task to
an AFE, the The WA policy calculates the write amplifica-
tion ratio of all AFEs before assigning the task to the AFE
and then it selects the AFE with the lowest ratio. To calcu-
late the ratio, the WA algorithm implements the following
model:

>~ Size(File_Trans fers)

>~ Size(Input_Fles) W

Z Size(Input_Files) +

where )" Size(Input_Files) is the total size of the input files
required by the task, and ) Size(File_Trans fers) is the sizes
of the files that would need to be transferred to the AFE, that
are not locally present. Task scheduling of cores in the AFE
follows a round-robin algorithm. The Random policy ran-
domly selects the target AFE when scheduling a task and
schedules the task on the cores according to a round-robin
algorithm (reusing the code in the RR policy). All files are
placed on the AFEs according to the round-robin policy.

Fig. 10 shows the results of the Montage, BrainAtlas and
Grep workflows using RR and WA policies. From the figure,
we can observe that the overall execution of various work-
flows can be greatly improved by adding more AFEs or
adding hardware parallelism using multi-cores on the AFE.
However, due to the limited parallelism available in the
workflow, it can be seen that adding more computational
resources (more AFEs or more cores to the AFE) will not
improve the performance. This can be explained by the fact
that overall performance is limited by the number of data
transfers between AFEs or the amount of data transferred.
In particular, WA policy results show high performance
using AFE with a large number of cores, over using a large
number of AFEs with a small number of cores. The use of a
multi-core AFE minimizes the data transfer overhead
between AFEs.

Especially, we can see there is a slight difference in per-
formance when comparing simulated and emulated results
(Figs. 10 and 5 respectively) using four single-core AFEs
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Fig. 10. Simulation results of workflow execution with Round-Robin (RR) and Write-Amplification (WA) policies.

o o o
[0 (o] [0
) ) )
(0] Q (0]
= E =
< < IS
> p=l >
o o o
0
1234567 8 9101112 123456 7 8 9101112 1234567 8 9101112

Number of AFEs

(a) Montage-Random

Number of AFEs
(b) Brain—-Random

Number of AFEs

(c) Grep-Random

Fig. 11. Simulation results with Random policy. The 99 percent confidence intervals are shown in error bars. The number N in CN of the label repre-

sents the number of cores in the AFE.

with the RR scheduling policy. This is due to the difference
in the initial file placement, i.e., in the emulator initial input
files were copied to the distributed file system without con-
trol over their placement, while the simulator places files on
the AFE according to the round-robin policy. We observe
that the performance impact of the initial data placement
varies depending on workloads. For instance, Grep
workload only exhibits 3 percent performance difference
(33.97 seconds in emulation and 38.48 seconds in simula-
tion), while Montage and BrainAtlas workload shows
11 and 16 percent variation from the initial data placement.

Fig. 11, a two-dimensional graph shows the results for a
random policy. We run 50 iterations per experiment and the
figure show the results with an average and 99 percentile
error bar graph. We can see that using a larger number of
AFEs with more cores will dramatically improve the execu-
tion of various workflows. A slight variance of performance
is observed in each experiment, which is not significant. In
particular, in experiments with less than 4 AFEs, fewer
AFEs with small number of cores can have higher workflow
processing performance than many AFE approaches with
fewer cores. However, due to workflow parallelism limita-
tion, there is little difference in performance improvement
in four or more AFE experiments, regardless the number of
AFEs and the number of cores.

7 RELATED WORK

Migrating tasks to disks has been explored before [20], [40].
There is a renewed interest in active processing given the
recent advances in SSD technology [42]. Recent efforts, such
as iSSD [9], SmartSSD [19], and Active Flash [56] have dem-
onstrated the feasibility and the potential of processing on
the SSD. In addition, recently, several studies have been
introduced to build SSDs using key-value interfaces [18],
[21]. These early studies lay the foundation for AnalyzeThis.
However, we take significant strides further by building a
complete workflow-aware storage system, and positioning
it as an in-situ processing storage appliance. The active stor-
age community has leveraged the object storage device pro-
tocol to enable computation within a storage device. The
OSD T10 standard [41], [61], [62] defines a communication
protocol between the host and the OSD. Recent efforts lever-
age the protocol for different purposes, including executing
remote kernels [41], security, and QoS [39], [62]. In contrast,
we extend the OSD implementation to support entire work-
flows, and to integrally tie together the data with both the
analysis sequence and its lineage.

Table 2 provides a comparison between other closely
related efforts and AnalyzeThis along different dimensions,
e.g., active storage processing, workflow and provenance-
awareness, OSD model, file system interface and, in-situ
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TABLE 2
Comparison with Related Active Storage Systems and Worklflow-Aware Systems

Systems Active Device

Workflow

OSD Model Provenance FSInterface In-Situ

Provenance-awareness
PASS [32], LinFS [43]
VDT [58]

Workflow-awareness
BadFs [5]
WOSS [2]
Kepler [3]

X
X -

Active Storage
Active Disks [1], Active Flash [56], iSSD [9]
SmartSSD [19] X

X

Data Analytics Appliance
IBM Netezza [49]

Active Computation in PFS
PVEFS [52], Lustre [38]

I/0O Middleware
ADIOS [26]

X o - . X

AnalyzeThis X

X X X X X

‘x” means that a system implements the listed feature, whereas *-" implies that the system does not provide the feature.

data analysis. While there are approaches that provide solu-
tions targeting a few dimensions, none of them provide a
complete solution, satisfying all of the dimensions.

Some extensions to parallel file systems, e.g., PVFS [52]
and Lustre [38], provide support for analysis on the 1/O
node’s computing core. However, they are not workflow-
aware, a key trait for efficient analysis execution, and neither
is the analysis conducted on the storage device. The
ADIOS [26] I/0O middleware uses a subset of staging nodes
alongside a running simulation on a cluster to reduce the sim-
ulation output on-the-fly; while workflow-aware, it also only
uses the computing elements of the staging nodes. Instead,
AnalyzeThis uses the AFEs on the storage themselves, obviat-
ing the need for a separate set of staging nodes for analysis.
Enterprise solutions such as IBM Netezza [49] enable prove-
nance tracking and in-situ analysis, but lack an easy-to-use
file system interface and workflow-awareness. Workflow-
and provenance-aware systems, such as PASS [32], LinFS [43],
BadFS [5], WOSS [2], and Kepler [3], are not meant for in-situ
analysis. The batch-aware distributed file system (BadFS)
attempts to orchestrate IO-intensive batch workloads and
data movement on remote systems, by layering a scheduler
atop storage and compute systems in a grid network. In con-
trast, AnalyzeThis operates on AFEs, scheduling and colocat-
ing data and computation therein. Compared to dedicated
provenance systems like PASS and LinFS, lineage tracking in
AnalyzeThis is a natural byproduct of executing workflows
in the storage. Distributed execution engines, such as
Dryad [63], Nephele [4], Hyracks [7], and MapReduce [10],
can execute data-intensive DAG-based workflows on distrib-
uted computing resources. AnalyzeThis fundamentally dif-
fers from these systems as it exploits the SSDs as the primary
computing resources.

8 CONCLUSION

The need to facilitate efficient data analysis is crucial to
derive insights from mountains of data. However, extant

techniques incur excessive data movement on the storage
system. We have shown how analysis-awareness can be built
into each and every layer of a storage system. The concepts of
building an analysis object abstraction atop an Active Flash
array, integrating a workflow scheduler with the storage,
and exposing them via a /proc-like file system bring a fresh
perspective to purpose-built storage systems. We have
developed the AnalyzeThis storage system on top of an emu-
lation platform of the Active Flash array. In addition, We
have developed an event-driven AnalyzeThis simulator to
evaluate the highly scalable AnalyzeThis environment with
multicore AFEs. Our evaluation of AnalyzeThis shows that
is viable, and can be used to capture complex workflows. In
future, we plan to investigate a distributed appliance model,
with multiple servers, each with its own AFE arrays, thereby
introducing analysis-awareness semantics into a distributed
file system.
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