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ABSTRACT
Finding visualizations with desired patterns is a common goal dur-
ing data exploration. However, due to the limited expressiveness
and flexibility of existing visual analytics systems, pattern-based
querying of visualizations has largely been a manual process. We
demonstrate ShapeSearch, a system that enables users to express
their desired patterns in trend lines using multiple flexible mecha-
nisms — including natural language and visual regular expressions,
and automates the search via an optimized execution engine. In-
ternally, the system leverages an expressive shape query algebra
that supports a range of operators and primitives for representing
ShapeSearch queries. In our demonstration, conference attendees
will learn how the various components of ShapeSearch help accel-
erate scientific discovery by automating the search for meaningful
patterns in trend lines in domains such as genomics and material
science.
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1. INTRODUCTION
While visual analytics systems such as Tableau [1] and Spot-

fire provide intuitive mechanisms to specify and generate visualiza-
tions, they do not provide ways to automate the search for desired
visual patterns or trends. Due to this, analysts often spend hours ex-
amining many visualizations, all to find those that satisfy some de-
sired visual pattern, e.g., a product whose sales is decreasing over
time. Recent work, such as our tool Zenvisage [13] and Google
Correlate [3], as well as older tools such as TimeSearcher [2] and
Query-by-Sketch [14] aim to alleviate this burden by providing a
“canvas” for users to sketch a visual pattern (or to drag-and-drop an
existing visualization), with the system automating the search for
visualizations that match that pattern, using an appropriate distance
metric. We characterize such tools as visual query systems [6].
While these tools are a useful starting point in supporting the au-
tomated search for visualizations that match desired patterns, they
offer limited flexibility in the pattern specification mechanism. In
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particular, if, instead of finding a product whose sales is decreas-
ing over time, the analyst wanted to find a product whose sales is
decreasing over some 3 month window (without specifying when),
or if the analyst wanted to find a product whose sales has many
increasing and decreasing portions (without specifying when these
portions occur, their magnitude or their width), a precise “sketch”
on a canvas can prove to be too rigid of a specification of the desired
pattern. In such cases, the analyst may want more flexible mech-
anisms to specify the pattern of interest. Consider the following
real-world example:

Example. Biomedical researchers often study changes in gene ex-
pression while investigating the impact of drugs on disease treat-
ment. To do so, they often explore a large collection of trend line
visualizations, one corresponding to each gene, with the x-axis as
the time-stamps, and the y-axis as the expression values ( depicted
in Figure 1, explained subsequently), and search for desired pat-
terns. For example, when influenced by an external factor, a gene
can get induced (up-regulated), or repressed (down-regulated), or
can have both induced or repressed pattern within a certain time
window. Moreover, there can be further variations in the scale, rep-
etitions, or the rate of change of these patterns depending on the
type and influence of external factors. Based on their domain un-
derstanding and past experience, researchers first hypothesize the
expected change in expression that an affected gene should depict.
Lacking advanced programming skills, they then generate thou-
sands of visualizations, one for each gene, using a domain-specific
visualization tool, and manually inspect them for the hypothesized
patterns, a cumbersome, time-consuming, and error-prone process.
Visual query systems [2, 13, 14] partially mitigate the manually in-
tensive search, by accepting a sketch of the desired gene expres-
sion profile as input, and automating the search for matching vi-
sualizations. Unfortunately, these systems tend to perform “exact”
matching with the values of the drawn trend, ignoring what the re-
searcher may instead be interested in—semantic features such as
slope, smoothness, rate of change, and peaks in expression values.

To address these challenges, we developed ShapeSearch, a flex-
ible pattern querying system that supports multiple mechanisms for
helping users express and search for desired patterns, with the fol-
lowing contributions:
ShapeQuery Algebra. We developed a ShapeQuery algebra that
abstracts key shape-based primitives and operators, encapsulating
a variety of typical patterns that are often of interest in trend line
visualizations. For developing this algebra, we used a corpus of
real-world pattern queries, collected via Mechanical Turk.
Natural Language Interface. Since our typical end-users, such
as our biomedical researchers, are often not proficient in program-
ming, we built a natural language interface within ShapeSearch for
the flexible specification of ShapeQueries, coupled with a sophis-
ticated parser and translator for converting these queries to Shape-
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Figure 1: The ShapeSearch Interface, consisting of six components. 1) Data upload and attribute selection, 2) Query specification: 2a)
Sketching canvas, 2b) Natural language query interface, 2c) Regular expression interface, and 3) Correction panel, and 4) Top K results

Query algebra. Unlike structured query languages, end-users do
not need to know the syntax and semantics of the internal repre-
sentation. One downside is that natural language queries can often
be incomplete, and have subjective and/or ambiguous interpreta-
tion. ShapeSearch leverages a mix of automated and user-driven
ambiguity resolution mechanisms to tackle these issues.
Regular Expression and Sketching. In addition to natural lan-
guage, ShapeSearch supports a regular-expression-based interface
for expert users, as well as a sketching interface (similar to typical
visual query systems). These three interfaces can be used simulta-
neously, based on the complexity of the desired pattern, and users
can switch between them as needed. All three interfaces ultimately
compile down to ShapeQueries.
Scalable Evaluation. Naively matching a ShapeQuery to each vi-
sualization in a large collection of visualizations, wherein each vi-
sualization can be composed of thousands of datapoints, can take
a really long time. ShapeSearch employs a scalable evaluation
engine that facilitates efficient but approximate and perceptually-
aware matching of visualizations to ShapeQueries, leveraging op-
timizations such as pruning and reuse of intermediate results.
Related Work. Our work draws on prior work on search and re-
trieval of temporal data, and natural language interfaces for data ex-
ploration. Most existing tools, including visual query systems [2,
3, 13] leverage distance measures such as Euclidean distance that
perform “exact” matching between the query and target trend lines,
or Discrete Time Warping [11] and cross-correlation-based met-
rics [9] that admit more “tolerant” matching by transforming the
query trend line to the target trend line. None of these metrics al-
low users to explicitly control the local and global features of the
trend lines being identified, such as the slope of the trend, number
of peaks, and their combinations. The Shape Definition Language
(SDL) [10] lets users search for basic shapes in trend lines using
a more structured keyword-based language but offers users lim-
ited flexibility in terms of shape primitives and operators. More-
over, trend lines in SDL are preprocessed and indexed in advance,
whereas ShapeSearch enables ad-hoc pattern matching, and uses
adaptive pattern-specific query optimizations at runtime for im-
proving performance. A number of keyword and natural language
interfaces for querying databases [5, 7] and generating visualiza-
tions [4, 12] have been developed recently. However, since the un-
derlying ShapeQuery algebra in ShapeSearch is different from re-
lational algebra, existing parsing and translation strategies from the
database-specific work cannot be easily adapted; the natural lan-
guage interfaces for visualizations in prior work do not make use

of visual patterns or features to facilitate search, instead opting to
be an interface to a typical visual analytics system such as Tableau.

2. SYSTEM OVERVIEW
We now briefly describe the usage scenario of ShapeSearch for

our genomics application, along with the systems architecture.

2.1 Usage Scenario
Figure 1 depicts the ShapeSearch interface, with an example

query from genomics where a biomedical researcher wants to search
for genes whose expression values follow a specific pattern: first
rising, then going down, and finally rising again. Only genes that
are influenced during a treatment depict such changes in their ex-
pression values. In order to search for the desired pattern, the re-
searcher first loads the dataset (mouse gene data) via form-based
options on the left (Box 1), and then selects the space of visualiza-
tions to explore by setting category as gene, X axis as time, and Y
axis as expression values. Next, the researcher enters their intended
pattern search query using natural language (Box 2b). When the
researcher types in their query, ShapeSearch also recommends po-
tential phrases based on historical queries via auto-complete. Al-
ternatively, if the query consists of a simple trend, they can draw
the corresponding sketch (Box 2a), and if it is too complex to be
expressed via either natural language or a sketch, they can issue
a visual regular expression query (Box 2c). On submitting, the
query is parsed and translated to a structured representation con-
sisting of ShapeQuery operators and primitives. The structured
representation is shown to user as part of correction panel (Box 3).
Simultaneously, the system executes the current best guess for the
ShapeQuery and visualizes the top-k matching results in the results
panel (Box 4). In case of ambiguity or incorrect translation, the re-
searcher can make corrections with the help of correction panel, or
rephrase their query.

2.2 System Architecture
Figure 2 depicts the architecture of ShapeSearch. The system is

designed as a web application, with a front-end as described in the
previous subsection. All front-end queries are issued to the back-
end using a REST protocol, which then parses and translates it into
an intermediate ShapeQuery algebra representation. The back-end
supports an ambiguity resolver that uses a set of rules to resolve
syntactic and semantic ambiguities, for making corrections, and for
adding missing values to the user queries. The corrected queries
are also displayed on the front-end for user-driven validation and
additional corrections. The validated query is finally optimized and
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executed by the execution engine. The top visualizations that best
match the ShapeQuery are finally returned to the front-end in the
the JSON format.
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Figure 2: System Architecture

3. SHAPE-QUERY ALGEBRA
We now describe the syntax and semantics of a ShapeQuery, an

internal structured representation of flexible user queries issued via
any one of the three querying mechanisms. The execution engine
optimizes and executes each ShapeQuery for finding visualizations
that best match the query.

At a high-level, a ShapeQuery consists of one or more subcom-
ponents, called ShapeSegments, interconnected via operators. A
ShapeSegment defines a pattern over a sub-region of the visualiza-
tion, and can have three primitives—Location, Pattern, and Modi-
fier. Operators interconnect one or more ShapeSegments and help
combine multiple ShapeSegments to define a complex pattern. As
an example, consider a simple query to find genes whose expres-
sion patterns first rise and then go down. Here, the query consists
of two ShapeSegments, first for the rising pattern, and second for
the decreasing, interconnected with an operator that indicates that
the two ShapeSegments are to be concatenated. To help express
a variety of patterns, the system currently supports six operators,
developed after analyzing a large corpus of pattern queries we col-
lected via Mechanical Turk. We describe the basic primitives and
operators supported by ShapeQuery algebra in Table 1.

Regular expressions can be built on top of primitives and opera-
tors from ShapeQuery algebra to express a wide variety of Shape-
Queries. A regular expression for ShapeQuery has the following
format: [S] OP [S] OP . . .OP [S]. Here [S] denotes a ShapeSeg-
ment, and OP denotes an operation that combines two ShapeSeg-
ments. Without going into the formal specification, we now pro-
vide a few examples to illustrate the syntax and semantics of regular
expression.

Example 1: [p{up},xr{1,3}] [xr{4,8},yr{7,5}]
The expression represents a ShapeQuery consisting of two Shape-

Segments, the first one depicting an upward trend between the x
range 1 to 3, and the second one a downward trend (not mentioned
in the query, but implicit from the specified x and y ranges) with y
range 7 to 5 and x range 4 to 8. Between two ShapeSegments, the
CONCAT operator (,) is assumed to be the default operator.

Example 2: [p{peak},q{2,4},xr{1,12}]
This query searches for 2 to 4 peaks between x range 1 to 12.

Instead of specifying both minimum and maximum number of de-
sired peaks, via q : {2,4}, one can specify the exact number of
matches, or use symbols such as ∗ ,? or + for any, zero or one, or
at least one matches respectively.

Example 3: [p{up},xr{1,10}] · [p{peak},xr{3,5}]
Here, we are looking for an overall upward trend between x val-

ues 1 to 10 with a peak between 3 to 5. The AND operation (.)
between the two ShapeSegments denotes that both the patterns
should be matched simultaneously.

4. NATURAL LANGUAGE TRANSLATION
There are multiple steps involved in the translation of natural

language queries to their intermediate ShapeQuery representation.
Shape Primitives and Operators Recognition. A natural lan-
guage query consists of a sequence of words, where each word
either maps to one of the entities (ShapeQuery primitives or oper-
ators), or is a noise word. We follow a three-step process in tagging
words to their corresponding entities. In the first step, we use a
standard Parser [8] for POS tagging and parsing dependencies be-
tween the words. Next, using a set of rules, we annotate each word
to be either noise or non-noise. For non-noise words, if they match
with high confidence (e.g., low edit distance) to a frequently-used
word for any entity (expanded via WordNet synsets), we add an-
other annotation called “predicted primitive”. In the final step, we
extract a set of predefined features (in addition to annotations) for
each of the non-noise words, and use a conditional-random field
(CRF) model to predict their corresponding entities. For training
the CRF, we collected and tagged 250 natural language queries via
a Mechanical Turk study, where users were asked to describe pat-
terns in trend line visualizations. On cross-validation, the model
had an F1 score of 81% in accuracy.
ShapeQuery Tree Generation. We use a context-free grammar
to represent structural relationships between entities. Using the
grammar, ShapeQuery tree generator groups related entities into
a ShapeSegment, and combines multiple ShapeSegments using
operators. ShapeSegments correspond to the leaves in the query
tree, whereas operators correspond to the intermediate nodes. If no
valid ShapeQuery tree is identified, the ambiguity resolver module
tries to predict the nearest possible valid ShapeQuery tree.
Ambiguity Resolution. Ambiguity can occur at various levels in
the query, both in the structure (syntax) as well as the meaning (se-
mantics). Common causes of structural inconsistencies are gram-
matical errors, and missing connector words, all of which can lead
to incorrect tagging of entities. For example, there could be two
patterns within the same ShapeSegment, or multiple missing enti-
ties in the same segment. Similarly, semantic inconsistencies occur
when there are multiple conflicting meanings of the same phrase.
For instance, a parsed ShapeSegment might represent an increas-
ing pattern from y=10 to y=2, where the pattern type conflicts with
y values. In case of such ambiguities, the system tries to predict the
best possible intermediate representation, using rules (constructed
based on our analysis of training corpus and past queries), and
then displays the parsed ShapeQuery in the correction panel (as
depicted in Figure 1 Box 4) for edits from the user.

5. SHAPEQUERY EXECUTION
The query executor takes the validated ShapeQuery as input,

and scores each visualization, returning the top-k ones. Conceptu-
ally, to score a visualization given an ShapeQuery tree, we need to
proceed in a bottom-up fashion, starting from scoring the Shape-
Segments (leaves), and combining the scores as we move up the
tree based on the operators in the intermediate nodes. Since Shape-
Segments can be aligned in multiple ways, especially when the
location primitives are missing, the nodes in the tree will record
multiple scores, one for each possible alignment. The maximum
score at the root node is the score for the visualization.
Scoring. Each visualization is assigned a score between−1.0 (poor
match) and 1.0 (perfect match). A score for the ShapeSegment is
a simple-weighted sum of two sub-scores. The first sub-score mea-
sures how well the portion of the visualization matches the speci-
fied pattern semantically. Patterns (e.g., up, down, flat) are scored
using a function that depends on slope and residual sum of squares,
both derived from fitting a linear regression model to the portion
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Table 1: ShapeQuery Algebra basic primitives and operators
Name Type Description

LOCATION Primitive Defines the boundaries of the ShapeSegment between which the pattern is matched, consisting of four sub fields: X start position (xs), X end
position (xe), Y start position (ys), and Y end position (ye).

PATTERN Primitive Defines a characteristic pattern that the user is looking for in the ShapeSegment. The system supports basic patterns that are commonly used
for characterizing trend lines such as up, down, flat, noise, as well as complex patterns such as peak that are made out of the basic patterns.

MODIFIER Primitive Defines the way a pattern is matched. A modifier can be subjective specifying how the pattern should change over time (e.g., sharply, gradually),
or can be quantitative enumerating the number of times a pattern should occur in a ShapeSegment (e.g., at least, at most, between).

CONCAT Operator Concatenates two ShapeSegments, the second one appended after the first one.

AND Operator Simultaneously matches two ShapeSegments. Unlike in concat, the two ShapeSegment can share the same sub-region of the visualization
(e.g., genes that are going up overall and also have a small peak at some point, or ones that are both flat and noisy.

OR Operator Indicates a choice between two ShapeSegments. The systems picks the ShapeSegment that matches better (e.g., genes whose expressions
are either up-regulated or down-regulated.

NEGATE Operator Matches the opposite of the pattern expressed in the ShapeSegments (e.g., instead of rising or falling patterns, one can say not flat pattern.
GROUP Operator Scopes and assigns precedence between two or more ShapeSegments.

of visualization. The second sub-score measures how close the x
and y values are to the one in the ShapeSegment, using L1-norm
distance.
Naive Approach. One naive way of aligning a ShapeQuery to a
visualization is to try all possible partitions of the visualization, and
for each partition candidate, calculate the score. Not surprisingly,
the time complexity of this approach is prohibitively large, i.e,
O(nk) where n is number of possible partitions, and k is the num-
ber of ShapeSegments in the ShapeQuery. A comparatively faster
solution is to use dynamic programming that reuses intermediate
computations. Still, the time complexity is quadratic (O(n2k)), and
does not scale when n is large.
Divide and Conquer. We note that for a large number of patterns
such as up, down, and flat, the score of the parent node can be
computed from the statistics of the children nodes (and thus we
can avoid calculating the scores for the intermediate nodes from
scratch), and secondly, patterns in the ShapeQuery follow a strict
order, that can be leveraged for pruning intermediate computations.
Based on these observations, we first calculate scores for all pos-
sible ShapeSegment subsequences from the ShapeQuery for each
of the leaf nodes, and then for intermediate nodes we merge subse-
quences from children nodes, pruning out subsequences which are
absent in the ShapeQuery. Moreover, after merging we only need
to retain the maximum score for a subsequence. Overall, there are
as many merges as there are nodes in the tree (2n), and therefore we
can calculate the score for each visualization in linear time (O(nk4),
k is typically small).
Optimizations across visualizations. Even though the above ap-
proach is linear in the number of the candidate partitions, the exe-
cution time can still be non-interactive, especially when the num-
ber of visualizations is large. In order to improve the performance,
we further apply a pruning-based optimization based on the fol-
lowing observation. The score of a subsequence at a given node
is bounded between the maximum and the minimum scores of the
subsequences from the children nodes, with the scores decreasing
montonically as we move up the tree. Thus, we prune the search
space of visualizations by maintaining upper and lower bounds of
scores for nodes in the ShapeQuery tree, using which the visual-
izations whose scores can never be in the top-k are pruned.

6. DEMONSTRATION WALKTHROUGH
As part of the demonstration, attendees will be able to (1) see

the limitations of existing visual querying systems [2, 3, 13] in the
flexible search for patterns, (2) understand the features and capa-
bilities of ShapeSearch using hands-on examples on multiple real
world datasets from different scientific domains. In particular, we
will demonstrate how natural language queries and visual regu-
lar expressions can help in issuing more expressive pattern search
queries, and how ShapeSearch can effectively match a variety of
patterns; and finally (3) learn about the internals of ShapeSearch,
especially the natural language parser, and query optimizations.

In order to achieve the above objectives, we will be using three
real world datasets. 1) Genomics dataset. This dataset consists of
gene-gene and protein interactions used by biomedical researchers
at the NIH sponsored genomics center at Illinois for understand-
ing relationships and interactions among genes, and changes in
gene expression patterns before and after a clinical trial. We will
demonstrate how our system can help accelerate pattern discov-
ery by quickly and effectively finding genes with different shapes
and number of peaks. 2) Battery dataset. This dataset consists
of properties of different chemicals explored by battery scientists
at Carnegie Mellon University for understanding and correlating
properties of chemicals for designing more efficient Lithium-Ion
batteries. ShapeSearch can help scientists find chemicals that fol-
low a specific behavior or pattern on change in physical properties
such as temperature, pressure, or when associated with other chem-
icals. 3) Real Estate dataset: This dataset consist of housing prices
for different cities in the US from 2004 to 2014. Attendees will use
ShapeSearch on this dataset for finding cities and states showing
opposite trends in their housing prices, especially during the period
of economic downturn.
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