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Abstract—NAND flash-based Solid State Devices (SSDs) offer
the desirable features of high performance, energy efficiency,
and fast growing capacity. Thus, the use of SSDs is increasing in
distributed storage systems. A key obstacle in this context is that
the natural unbalance in distributed I/0 workloads can result in
wear imbalance across the SSDs in a distributed setting. This, in
turn can have significant impact on the reliability, performance,
and lifetime of the storage deployment. Extant load balancers
for storage systems do not consider SSD wear imbalance when
placing data, as the main design goal of such balancers is to
extract higher performance. Consequently, data migration is
the only common technique for tackling wear imbalance, where
existing data is moved from highly loaded servers to the least
loaded ones.

In this paper, we explore an innovative holistic approach,
Chameleon, that employs data redundancy techniques such as
replication and erasure-coding, coupled with endurance-aware
write offloading, to mitigate wear level imbalance in distributed
SSD-based storage. Chameleon aims to balance the wear among
different flash servers while meeting desirable objectives of:
extending life of flash servers; improving I/O performance; and
avoiding bottlenecks. Evaluation with a 50 node SSD cluster
shows that Chameleon reduces the wear distribution deviation
by 81% while improving the write performance by up to 33%.

I. INTRODUCTION

Flash memory has emerged as a viable storage alternative
for mobile computing devices due to its high throughput,
persistence, and lower power consumption. The development
of commodity flash devices such as solid state drives (SSDs)
has also expanded flash memory’s role in enterprise storage
servers. All-flash or disk-free server storage systems (e.g.,
FlashStore [1] and Analyzethis [2]) are being developed.
Flash-based storage servers that can play a significant role
in accelerating application performance are clustered together
and managed as a single entity for high reliability and
availability in many distributed storage platforms such as
FAWN [3], BlueDBM [4], QuickSAN [5] and CORFU [6].

Unlike magnetic disk drives, flash devices read and write
data at the granularity of pages but erase data in units of a
block.SSDs typically provide a flash translation layer (FTL)
within the device to manage garbage collection (GC). If some
valid pages are physically located in a block (called victim
block) that has some invalid pages that need recycling, GC
will first copy the valid data to a free page and then erase
the victim block to make the block available for new writes.
Consequently, a write operation can lead to multiple writes,
resulting in write amplification. In this case, GC is time
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(a) Erasure distribution under REP. (b) Erasure distribution under EC.

Fig. 1: Wear imbalance in a 50-server flash cluster. X-axis
shows flash servers sorted by total erasure count.

consuming (relative to read/write speeds) and also affects
device endurance, as the number of sustainable erasures (P/E
cycles) of a given block is limited.

To improve flash endurance and lifetime, FTL uses wear
leveling (WL) to evenly wear all the flash blocks within a flash
device so that no block will be worn out faster than others
(detailed in Section II). However, the I/O workloads served
by the flash based storage servers are imbalanced, which incur
wear imbalance among flash servers. For example, Facebook’s
distributed key-value (KV) store workload analysis [7] reports
high access skew and time varying workload patterns. The
flash devices associated with heavily loaded servers serve more
writes and perform more GCs, and thus wear out faster than
others in a deployment. The maintenance of SSD devices
raises many concerns. For instance, any maintenance required
by the storage devices may require taking the entire flash
server offline. This not only incurs administrative cost but also
performance degradation, especially when SSDs are crucial,
e.g., for burst buffer I/O nodes performance [8]. Non-uniform
I/0 workload, coupled with wear imbalance, also impact write
performance because frequent GCs in flash servers with high
utilization cause overall system slow down.

Moreover, wear imbalance worsens when fault tolerant or
data redundancy schemes such as replication (REP) or erasure
coding [9], [10], [11] (EC) are applied in a flash cluster. This
is mainly because storing extra redundant data generates more
writes, which in turn severely impact flash endurance.

Motivational Study. To quantify the impact of non-uniform
write intensity on the SSD erasure count, we built a distributed



flash-based KV store that maps data to a 50-node cluster
using consistent hashing [12]. Each node stores data locally
in an SSD device that is simulated using FlashSim [13]. We
applied two kinds of redundancy policies separately: REP with
replication level » = 3, and EC with RS (6,4) encoding [14].
We measure total erasure count under YCSB workload [15]
with Zipf-like access pattern (Y CSB — zipf), and two block-
level traces from MSR-Cambridge data center servers [16],
namely, prn_0 and proj_0.

Figures 1(a) and 1(b) show the sorted erasure count distri-
bution under REP and EC, respectively. The largest erasure
count is 4x more than the smallest erasure count for proj_0,
and 3x for both prn_0 and YCSB — zipf under REP. Under
EC, the largest erasure count is 12x more than the smallest
erasure count for YCSB — zipf, and 3x for the other two
workloads. These results show that the erasure counts are
highly skewed among flash servers both under REP and EC
schemes. Moreover, REP experiences almost 2x more erasure
counts than EC.

To address the challenge of balancing wear across flash
servers, many researchers take inspiration from data migra-
tion [17], [18], [19]. For example, EDM [19] is a data
migration-based wear balancing algorithm. It moves data from
the flash servers with higher erasure count to the ones with
lower erasure count for balancing the wear speeds. However,
the extra writes generated by data migration create additional
overhead, which incurs a considerable write amplification
overhead and consequently causes more GCs and significant
extra erasure count to the flash cluster. Moreover, the redun-
dancy policies are completely ignored during wear balancing.
However, we observed that the redundancy policies can pro-
vide useful information that can be leveraged to improve wear
balance and flash lifetime, as well as performance.

Contributions. To solve the problems of multi-server wear
imbalance, we propose a practical and efficient global wear
balancing technique, Chameleon. Chameleon quickly detects
the presence of erasure imbalance in a flash cluster. The goal
is to balance the erasure count and improve both lifetime and
performance of the flash cluster.

Specifically, this paper makes the following contributions:

o« We exploit two redundancy policies—-REP and EC—to
help improve wear balance and flash lifetime, while also
improving performance.

« We take advantages of the out-of-place update feature of
flash memory by directly offloading the writes/updates
across flash servers instead of moving data across flash
servers to mitigate extra-wear cost, which includes late
replicating (Late REP), late encoding (Late EC), and
endurance aware write offloading (EWO).

o We provide two adaptive wear-balancing algorithms, re-
dundancy policy transition (ARPT) and Hot/Cold data
swapping (HCDS), coupled with write offloading and
redundancy policies to balance the erasure count and
improve both lifetime and performance of a flash cluster.

o We integrate our Chameleon emulator with a distributed

flash-based KV store application. Emulation results on
real-world workloads show that Chameleon outperforms
the state-of-the-art data migration based wear balancing
technique, reducing up to 81% wear variance while
improving the write performance by up to 33%.

II. RELATED WORK
Flash endurance A large body of work has examined flash
endurance [20], [21], [22], [23]. Techniques such as log-
structured caching [23], inclusion of combining multiple bad
blocks into virtual healthy blocks [22] have been explored
to improve the lifetime of flash devices. These works are
orthogonal and complementary to Chameleon.
Intradisk wear leveling Dynamic [24], [25] techniques aim
to achieve a good wear evenness while keeping the overhead
low. Similarly, static wear leveling techniques [26], [27], [22],
[28] move cold data to the blocks with higher erasure counts,
thereby improving the even spread of wear. Chameleon lever-
ages such approaches for extending the lifetime of individual
SSDs in its target distributed setting.
Interdisk wear leveling Application of SSD arrays in enter-
prise data-intensive applications is growing. In such an envi-
ronment, we have observed significant variance in number of
writes and merge operations that are sent to individual SSDs.
Recent work [29] manages EC stripes to increase reliability
and operational lifetime of such flash memory-based storage
systems, and uses a log-structured approach that does not need
explicit wear balancing as data is appended and not updated in
place. In contrast, EDM [30] also targets SSD arrays but use
data migration to achieve wear balance across the SSDs in the
array. SWANS [31] dynamically monitors the variance of write
intensity across the array and redistributes writes based only on
the number of writes that an SSD has received to prolong the
SSD arrays’ service life. These methods share with Chameleon
the goal of wear leveling across an SSD array, however unlike
them Chameleon considers the role of redundant policies at
various storage hierarchy and their impact on overall wear
balancing.
Distributed flash storage systems FAWN [3] uses small
amounts of local flash storage across a number of low-
power resource-constrained nodes to enable a consistent and
replicated key-value storage system. CORFU [6] extends the
local log-structured design by organizing the entire cluster of
SSDs as a global shared log. Both of these systems utilize
homogeneous nodes and replication for high availability. Other
works [32], [33], [34], [35] focuses on tiered storage to
reduce the load on flash devices. Similarly, [36], [37] use data
partitioning to evenly distribute load. In contrast, Chameleon
focuses on EC storage solutions, which offer higher storage
efficiency and exploits the interactions between the storage
hierarchy to improve overall flash lifetime in flash-based
clusters.

ITI. DESIGN OF CHAMELEON
Chameleon is aimed to addresses challenges arising from
modern I/O workloads that exhibit high skewness across
distributed flash servers. If a flash cluster does not implement
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(a) System architecture.

(b) Adaptive wear balancing algorithms: ARPT and HCDS.

Fig. 2: Chameleon system.

server-level wear balancing, a flash server with high write
intensity can have huge erasure counts and be worn out, while
other flash servers are underutilized. This uneven use will
trigger degraded performance, and eventual maintenance and
downtime that would affect overall system performance and
availability.

Chameleon is designed to balance the wear among different
flash servers with the goal of: (1) reducing the unnecessary ad-
ministration cost of replacing worn-out or failed flash devices;
(2) improving the average lifespan of all flash devices; and
(3) improving performance especially for write operations.

We first describe the framework of Chameleon in Sec-
tion III-A followed by two adaptive wear-balancing algorithms
detailed in Section III-B. The mapping table is discussed in
Section III-C.

A. Overview of Chameleon architecture

Figure 2(a) shows an overview of Chameleon architecture
comprising four modules: flash monitor, wear balancer, map-
ping table, and client library. Instances of Flash monitor and
wear balancer are distributed across the flash-based storage
servers (called flash servers). These components monitor and
balance the wear of the whole cluster. Chameleon keeps track
of objects related metadata (e.g., location and popularity)
and stores the metadata in a distributed database as a dis-
tributed mapping table. The use of distributed database helps
Chameleon scale as needed. The Client library provides a basic
interface for users to read and write data to flash servers.
Read or write requests are sent to Chameleon instances that
determine the location of the flash devices for serving the
requests.

Flash monitor monitors the statistics (i.e. , erasure count and
flash space utilization) of flash devices, and sends them to
the wear balancer. In our current implementation, Chameleon
assumes the host has full control over garbage collection (GC)
as provided by open-channel SSDs [38]. The argument behind
moving GC management from the flash to the host is that the
host has better overall knowledge (e.g., total erasure count)
that offers both better performance and more optimization
opportunities, compared to the individual device FTL [39]. We
focus on open-channel SSDs, as more and more of such de-
vices are being introduced to the market, e.g., LightNVM [40].
Thus, by focusing on open-channel SSDs we can optimize

both the current available components, as well as a growing
number of components that will become available in the near
future.

Wear balancer is responsible for balancing the wear of the
whole cluster. Balancer has two major components as shown
in Figure 2(b): (1) An adaptive redundancy policy transition
(ARPT) module that dynamically converts data redundancy
and adapts to workload changes for balancing the wear while
ensuring good performance and low erasure overhead. (2) A
data swapping module that swaps data between the servers
with higher erasure counts and servers with lower erasure
counts to further improve wear balance.

Mapping table keeps track of the updates made to the
metadata when data object’s addresses and redundancy policies
are changed during the balancing process. The table stores
objects’ metadata, such as object’s state, popularity, and lo-
cation. It also keeps track of the object access history (i.e. ,
popularity) to facilitate wear balancing. Mapping table is kept
in a distributed database to avoid memory overhead.

B. Adaptive wear balancing algorithms

In this section, we describe two wear balancing algorithms
used by Chameleon: (1) Adaptive redundancy policy transition
(ARPT) algorithm, and (2) Hot/cold data swapping (HCDS)
algorithm.

ARPT adopts a hot/cold data segregation approach by
leveraging: (1) REP to store a small fraction of mostly
frequently updated data (write hot data) to provide overall
low I/O latency for the system; and (2) EC to encode all
the remaining relatively cold data to realize a low erasure
overhead. Moreover, ARPT dynamically adapts to workload
changes by using late-REP or late-EC (§III-B1) to switch
data state between two redundancy schemes and remap data
for balancing the wear of whole cluster with low overhead.
Furthermore, HCDS is used to swap hot and cold data between
servers with higher erasure counts with the ones with lower
erasure counts to further improve the wear balance.

1) Adaptive redundancy policy transition (ARPT):
Chameleon tracks erasure counts to decide when the wear
balancing process should be triggered. We define the wear
variance o as the standard deviation of erasure counts. If the
system develops significant wear imbalance—indicated by o
> oArpT, Where o arpr 1s a preset wear variance threshold



Algorithm 1: Adaptive redundancy policy transition.

TABLE I: Terminology & List of Acronyms.

Input: o: cluster wear variance, o 4 g p: Wear variance threshold, £5,,+: object
popularity threshold

Require: o0 > carpT

Ensure: o0 <= o T

1: // Step 1, Screen candidates from each server

2: for each object obj; that is in flash cluster do

3: if obj_ popularity(obj;) >= £hror && 0bj; is neither in REP nor late-REP
state then

4: //Convert its’redundancy scheme to late-REP

5: Convert_ object _ state(obj;, late-REP)

6:  end if

7. if obj_ popularity(obj;) < €not && obj; is neither in EC nor late-EC state
then

8: //Convert its’redundancy scheme to late-EC

9: Convert _object_ state(oby;, late-EC)

10: end if

11: end for

12: // Step 2, Rearrange candidates among nodes

13: while 0 > carpT do

14: X (x1, 22, x3) > extract servers with MIN erasure counts

15: Y (y1,y2, Y3, y4, y5, y6) > extract servers with MAX erasure counts
16: obj; 1> Get_ hottest_ candidate (from step 1)

17: obj; > Get_coldes _ candidate (from step 1)

18: Map _ object _to(obj;, X)

19: Map _ object _to(obj;, Y)

o > Estimate wear variance

21: end while

(Table I)—the balancing process is triggered periodically until
the wear variance drops below the threshold.

Moreover, Chameleon also records the object write heat
changes. Each object is classified as either hot or cold based
on their write heat changes and the object’s state switches
between REP and EC.

Chameleon performs a periodic scan through all the repli-

cated data for “cooled down” data and convert such data’s
redundancy policy from REP to EC, a process denoted as
downgrade. Similarly, encoded data is also scanned for new
hot data and these new hot data’s redundancy policy is
switched from EC to REP, denoted as upgrade.
Late-EC & Late-REP The additional erasure count caused
during downgrade/upgrade operations is nontrivial. The down-
grade operation requires network transfers of the replicated
objects from different locations to encode them into RS code,
along with invalidation of the old replicated objects. Upgrade
operation needs to retrieve the data stripes from different
locations to k-way replicate them and invalidate the old stripes.
Both downgrade and upgrade operations will incur network
overhead and extra erasure cycles. To mitigate this, Chameleon
implements two additional optimizations, late-REP or late-EC,
to support downgrade/upgrade with low overhead. Here, the
conversion due to upgrade and downgrade are delayed until
the next update, which not only reduces conversion overhead
but also avoids unnecessary conversions, such as, a downgrade
followed by an upgrade for the same data.

Downgrade/upgrade operations are delayed as long as the
wear variance remains tolerable. The late policies trades-
off the probability of wear imbalance with network traffic
overhead. To do this, we exploit the out-of-place update feature
of flash memory by delaying the redundancy policy transition
until clients issue the write/update requests to the objects
whose redundancy policies need to be converted. Then, we

Acronym Description

REP Replication

EC Erasure coding

ARPT Adaptive redundancy policy transition
HCDS Hot cold data swapping

EWO Endurance aware write offloading
Downgrade | Conversion from REP to EC
Upgrade Conversion from EC to REP
Late-REP Late replicating

Late-EC Late erasure coding

o Standard deviation of erasure counts

OCARPT Wear variance threshold that triggers ARPT
Lhot Popularity threshold

w; Number of writes to the object during epoch j.
Pk Write heat of the object at the end of epoch k

o Utilization of a victim block that needs to be cleaned

By, Number of pages per block

W, Number of page writes during a certain epoch .
E: Block erasure counts during epoch ¢

OCHCDS Wear variance threshold that triggers HCDS

directly convert the requested data into the desired redundancy
policy state (replicas or EC stripes) and re-distributes them
to their respective destinations. Thus, the network traffic
overhead can be reduced and the number of extra writes during
redundancy transition process are mitigated.

As shown in Figure 2(b), we define two kinds of states
for objects: redundancy states which contain REP and EC,
and intermediate states that contain late REP, late EC, REP-
EWO, and EC-EWO (detailed in III-B2). Figure 2(b) shows
the redundancy policy transition of an object. As the write
heat of an object increases, the object either stays in REP
state or is converted from EC to late REP state by ARPT. The
object stays in the late REP state until the next write/update
is received and the state is changed to REP. Similarly, if the
write heat of an object decreases, its state either stays in EC or
is converted to late EC state if the current state is not EC. The
state will be eventually converted to an encoded state upon
next write/update.

Specifically, if object obj;’s popularity is greater than a
predefined threshold (/) denoted as hot object, and its state
is neither REP nor late-REP, obj;’s state will be converted to
late-REP. In contrast, if object obj;’s popularity is smaller than
Lror denoted as cold object, and its state is neither EC nor
late-EC, the state will be converted to late-EC. Here, object
popularity can be calculated by using Equation 1.

We use an exponential decay function [19] to record the
write heat of an object. For a given object i, the time duration
from the time when the object i is created to the present time
is split into k + I epochs, epoch 0, ..., epochk. We define the
popularity of each object as follows:

Xk:

Jj=0

W
p

Pk = (D

where w; denotes the number of writes that access the
object during an epoch j. pi denotes the write heat of the
object at the end of epoch k.

Remapping A key challenge is to determine where to store
the converted replicas or EC stripes after redundancy transition



to ensure a good wear balance across different flash servers.
The wear balancing process uses an effective endurance-aware
greedy algorithm. As shown in lines 1 to 11 of Algorithm 1,
Chameleon first screens candidates whose popularity state
changes from hot to cold by sorting objects based on their
popularly.

During upgrade, Chameleon’s greedy algorithm iteratively
re-distributes the £ (where k = 3) replicas of hottest candidate
object to the flash servers with the lowest erasure count as
shown in lines 11 to 21, the replicas of obj; are mapped to
server array X (x1,%2,x3). While during downgrade, the n
(where n = 6) stripes of coldest candidate object are remapped
to the flash servers with the highest erasure count as shown in
lines 11 to 21, the stripes of obj; are mapped to server array
Y (1,92, Y3, Y, Y5 Ye)-

To estimate the erasure count caused by a specific number
of writes, we first define the erasure cost for flash memory as
1 — p according to [41], [42], where p is the utilization of a
victim block that needs to be cleaned during the GC process.
That is, the erasure cost is the amount of valid pages p that
need to be rewritten per victim block of new space claimed
(1-p). Let B, be the number of pages per block and W, be the
number of page writes during a certain epoch z. Then, after
GC starts, the approximation for block erasure counts caused
by W, page writes during epoch ¢ is:

Wi

B =t
' By x (1= p)

2)

At the end of each iteration, we estimate the new cluster
wear variance o. If ¢ <= oarpr, ARPT will stop the
iteration. To estimate the new o, we first estimate the new
erasure count of each server x in array X after re-mapping
obji, as E: B, = E, + E(obj;), where E(obj;) can be
calculated by using Equation 2. While the new erasure count
of each server y in array Y after re-mapping obj; can be
estimated as E,: E, = E, + E(obj;), where E(obj;) can
be calculated by using Equation 2.

Algorithm 2: Hot/cold data swapping.

Require: 0 > opgcps
Ensure: 0 <= ogcps

1: while o > Oegeps 40

2: X [> extract server with max erase cycles
3 y D> extract server with min erase cycles
4 obj; > Get_hottest_ candidate from x
5: obj; > Get_ coldest_ candidate from y
6: Map_ object_to(obj;, y)
7.

8
9:

Map _ object _to(obj j, x)
: o > Estimate wear variance
end while

2) Hot/cold data swapping (HCDS): To further improve
wear balance, Chameleon uses data swapping to exchange the
storage location of hot replicas and cold EC stripes. As shown
in Algorithm 2, Chameleon first selects two servers, server x
with highest erasure cycles and server y with lowest erasure
cycles. Then, the coldest object obj; from x and the hottest
objects obj; from server y are exchanged until their erasure

Wear Info &
Wear Imbalance

Remapped
R/W Regqs
Remapping Table

Remapped
Objs

Regular
R/W Reqs

Regular
Mapping Table

Oobjo Obj 1

Fig. 3: Chameleon’s mapping table.

count difference (o) is less than a preset threshold opcps
(Table I).

After we map obj; to server y, we estimate its new erasure

count as E,: E, = E, + E(obj;), where E(obj;) can be
calculated by using Equation 2. Similarly, the new erasure
count of server z is given by E,: E, = E,+E(obj;). The data
swapping process stops when the predefined erasure variance
threshold 0 <= ogcpgs is met.
Endurance-aware write offloading (EWQO): To minimize
the network traffic and wear balancing overhead, Chameleon
offloads the writes/updates to the replicas or stripes to their
destination servers instead of migrating data via bulk data
transfer through the network. Incoming writes/updates trigger
the data mapping change eventually.

As shown in Figure 2(b), the hot/cold data swapping module
swaps the hot and cold data from the highly loaded (in terms of
erasures) server to lightly loaded server using endurance-aware
write offloading. There are two intermediate states: REP-EWO
and EC-EWO. As seen in the figure, a replica is selected to
be exchanged with a EC-stripe. It will first be converted to
the intermediate state REP-EWO until the next write/update
is received and the state is changed to REP. Similarly, if an
encoded stripe is chosen to swap with a replica, its state
is converted to EC-EWO state. The state will be eventually
converted to the EC state upon next write/update.

Ideally, EWO can offload all the candidate replicas or stripes
to their destination servers. However, there is rarely accessed
cold data that has not been accessed for a long period. For
such data, we trade off network traffic overhead with better
wear balancing by migrating the cold stripes to the destination
servers.

C. Mapping table

The data mapping relationship from client to flash servers
is changed dynamically. Different versions of the same data
can be stored on multiple different locations because of redun-
dancy scheme conversion and data swapping. Chameleon must



ensure that reads always go to the location holding the latest
version of the data. To ensure read correctness, Chameleon
uses a mapping table to efficiently manage the objects whose
redundancy scheme and addresses have been changed during
wear balancing process as shown in Figure 3.

Source/Destination server array: Chameleon provides two
levels of indirection for locating servers so as to reduce meta-
data overhead while maintaining read and write correctness.
For a given Obj;, the first level indirection indicates the former
data host, i.e., the source server array for intermediate states,
e.g. late-EC, late-REP, EC-EWO, or REP-EWO state. The
second level indirection represents the object’s destination
server array for intermediate sates or its current host for
redundancy states, e.g. REP or EC state.

Assume Chameleon monitors the cluster wear variance
in a fixed time interval, denoted as epoch. As shown in
figure 3, during epoch 0, Objy is selected for redundancy
policy transition from EC to REP. Objj’s state is late-REP,
which means that Chameleon will wait until an update/write
request accesses Objy. When a write request accesses Obj,
Chameleon directly replicates the request data and distributes
its R replicas on the associated destination servers denoted as
array D_node_arr and then changes Objy’s redundancy state
to REP.

For a read request, if the requested object’s state is an
intermediate state, e.g. late-EC, late-REP, EC-EWO, or REP-
EWO state, Chameleon sends the request to the object’s source
server. The source server is denoted as the array S_Node_arr.
and holds the latest version of the data as shown in Figure 3.
Otherwise, read requests will be sent to the object’s destination
servers.

Compaction As mentioned before, to reduce network traffic
during the wear balancing process, Chameleon uses late-
EC/REP, and EWO techniques to make a compromise between
network traffic and the risk of temporary wear imbalance
by waiting for an update request to the state change object.
However, this wait can be for a very long time especially for
cold data. Moreover, even for a hot object, there may not be an
update request to such an object during an epoch as workloads
are unpredictable.

As shown in Figure 3, a hot Objy is selected to convert
its redundancy scheme from EC to REP during epoch 0, but
until epoch 3, there is still no updates to Objy. So in the
epoch 4, Chameleon classifies the object as cold data and
converts its redundancy policy from REP to EC. Chameleon
creates a metadata object with version 4 for Objy, and appends
the metadata to Obj’s epoch log. In this case, Chameleon can
keep track of each converted objects’ state/location changes for
failure recovery. However, epoch log would incur considerable
memory overhead since epoch log increases with number of
wear balancing process and the amount of involved objects.

Chameleon uses compaction to combine epoch log for each
remapped object to reduce memory overhead. As shown in
Figure 3, the metadata object associated with Obj is updated
from epoch version 0 to epoch version 4. The object’s state

TABLE II: SSD parameters.

Page size 4KB
Block size 256KB

Read latency 25us
Write latency 200us
Erase latency 1.5ms
Over-provisioned space 15%

is marked as EC since till epoch 3, there is no update to
convert the state from late EC to REP. This means that Obj
is still encoded as stripes stored on its source destination
array S_Node_arr.. Thus, in epoch 4, the object’s source
destination array S_Node_arr. becomes its destination array
as shown in Figure 3.

Consequently, Chameleon only maintains a single updated
metadata object for the current epoch version, which not only
ensures the correctness of R/W requests but also can mitigate
matadata overhead.

IV. EVALUATION
A. Implementation

We have implemented a prototype emulator of Chameleon
using 16k lines of C++ code. We built a KV-store from
scratch as a test application. We map data to servers by using
a consistent hash-based data distribution algorithm that dis-
tributes data evenly across participating servers [12]. The hash
function used in our experiments is FVN-al [43]. Each trace
record maps to a logical object, which corresponds to a unique
object ID calculated by using the consistent hash function.
The logical object is then stored in the appropriate server by
consulting the consistent hash table. We use ISA-L [14] for
encoding and decoding operations. The Intel ISA-L library
provides a highly optimized implementation of Reed-Solomon
codes that significantly decreases the time taken for encoding
and decoding operations. Specifically, we implemented our
Chameleon as follows:

Flash server and flash cluster We emulate a large flash
cluster by running multiple instances of our SSD simulator
as flash server nodes. We use Flashsim [13] to simulate the
SSD behavior as Flashsim can accurately show the block erase
cycles. For all of our tests, we use an evaluation testbed with
50 flash server nodes. Each flash server node is equipped
with one SSD that is simulated by FlashSim. To improve the
performance especially write performance, we built a local log
on top of SSD simulator. All the writes are appended to tail of
the log. Table II summarizes the parameters that are commonly
used to simulate SSD.

Flash monitor runs on each flash server, monitors the statistics
of SSDs, and sends them to the wear balancer. We modified
Flashsim by adding a flash statistics collector to the code. For
connectivity between flash server nodes, we integrate Google
Protocol Buffer [44] in Flashsim to facilitate communication,
such as protocol parsing and messaging.

Wear balancer and mapping table are also implemented
along with flash monitor on each flash server. We integrated
ZooKeeper [45] in our KV-store as a distributed coordination



TABLE III: Trace characteristics.

Parameters ycsb-zipf | mds-0 | web-1 usr-0 hm-0

Regs. cnt 1.2M 1.3M 1.3M 2.2M 4.0M

Dataset(GB) 10.4 3.1 3.8 2.5 1.9

Regs. Data(GB) | 55 44 18 194 135

Write ratio 81.1% 932% | 76.9% | 83.6% | 86.6%

TABLE IV: Test schemes.

Schemes Technique details
Chameleon Implement two wear balancing techniques: ARPT and HCDS
EDM Implement a data migration based wear balancing technique
REP-baseline Apply only REP without any wear balancing technique
EC-baseline Apply only EC without any wear balancing technique
REP+EC-baseline | Apply Hybrid REP/EC without any wear balancing technique

service. One flash server is chosen as a coordinator. The wear
balancer running on the coordinator node gathers statistics
of each flash server, such as the flash space utilization and
erasure count by exchanging the heartbeat messages with
the flash monitor running on each flash server. We installed
MySQL on the flash cluster as a metadata service for storing
the mapping table. Before performing wear balancing, the
balancer running on the coordinator node first requests object
popularity statistics from the mapping table. After wear bal-
ancing, the coordinator updates the metadata changes related
to the remapped objects to the mapping table.

Client library provides a basic API to read/write the data
to flash cluster and to choose between REP or EC as initial
redundancy policy. For EC, the data is split into several data
stripes and encoded with few parity stripes. Throughout our
evaluation, we use RS (6,4) for EC (4 data stripes and 2 parity
stripes) and 3-way replication for REP.

B. Experimental Methodology

1) Traces: We use two kinds of workloads for our tests:
YCSB workload with Zipf-like access pattern [15] and
four block-level traces from MSR-Cambridge data center
servers [16]: YCSB_zipf, mds_0, web_1, usr_0, and hm_0.
YCSB trace is generated by YCSB benchmark which is often
used to evaluate the performance of different key-value stores
and cloud serving stores [15]; MSR traces are collected at the
block device level from Microsoft Cambridge.Table III shows
the details of trace characteristics, such as, total request count
(Regs. cnt), total dataset size (Dataset (GB)), total R/W request
data (Regs. Data(GB)), and write ratio.

2) Evaluated Schemes: We evaluated Chameleon by com-
paring it with multiple different schemes as shown in Table I'V.
To compare the state-of-art redundancy techniques, we imple-
mented a hybrid REP/EC baseline scheme named REP+EC-
baseline without using any wear balancing technique, similar
to HDFS-RAID [46]. REP+EC-baseline replicates recently
created data, and converts cold date from REP to EC. We also
tested other two baselines schemes that applies only REP and
only EC separately without using any wear leveling, denoted
as REP-baseline and EC-baseline.

To compare the state-of-art wear balancing technique, we
implemented and evaluated a data migration based wear bal-
ancing technique called EDM [19](detailed in II). Note that

(b) Wear variance under Chameleon and EDM

Fig. 4: Wear variance.

EDM does not consider the impact of redundancy schemes
on wear balancing, so we only applied a single redundancy
scheme to EDM scheme, either REP or EC.

C. Experimental Results

1) Wear Balance: To evaluate the wear variance of flash
cluster, we calculate the standard deviation of the total erasure
counts along with the average erasure count across 50 flash
servers. Figure 4 shows the results of using three baseline
redundancy schemes and two wear balancing schemes. The Y-
axis shows the average erasure counts across 50 flash servers.
Error bars represent one standard deviation.

First consider the results of three baseline schemes without
using wear balancing algorithm as shown in Figure 4(a).
Among these three baseline schemes, EC-baseline’s standard
deviation error bars were much smaller than that of the two
baseline schemes. This is mainly because EC naturally reduces
the storage overhead by eliminating redundant copies and EC
can distribute data more evenly than replication since we use
RS(6, 4) for EC while 3-way replication for REP. REP+EC-
baseline’s standard deviation errors were almost similar to that
of REP-baseline. This is because REP+EC-baseline replicates
all the newly created data and converts replicas to stripes only
after they are cool down.

To compare Chameleon with EDM in terms of balancing the
erasure count across 50 servers, we applied EC for the request
data and evaluated EDM scheme and Chameleon scheme
respectively. The reason we chose EC is that EC can achieve a
smaller wear variance than both REP and REP+EC-baseline as
shown in Figure 4(a). As shown in Figure 4(b), although EDM
did improve the deviation of erasure counts, Chameleon signif-
icantly outperformed EDM under all workloads. For example,
the standard deviation for the Chameleon scheme was at most
~1,000 under workload Hm_0 while the standard deviations
were 1,880 and 2,316 for EDM and EC-baseline respectively
as shown in Figure 4(b). For the two workloads, Web_1I and



(b) flash endurance under EDM and Chameleon

Fig. 5: Flash endurance.

YCSB_zipf, which exhibit relatively smaller standard deviation
error bars compared to others, Chameleon also delivered a
better wear balance compared with EDM. In particular, its
standard deviations were 162 and 704 under workloads Web_1
and YCSB_zipf respectively while that of the EDM were 190
and 876, respectively.

Overall, Chameleon can reduce wear variance by 52%
on average and at-most 81%, compared to EC-baseline.
Chameleon can reduce the wear variance by 43% on average
and at-most 70%, compared to EDM.

2) Flash endurance: To evaluate flash endurance, we cal-
culate the aggregate erase cycles for all flash servers. The
results are shown in Figure 5. The Y-axis shows cluster-wise
total erasure counts. As shown, the total erase cycles when
replaying the workload web_I is relatively lower than that
when replaying others. This is because that workload web_1I
has lower amount of write request data than other workloads
as shown in Table III.

As shown in Figure 5(a), we observe that among three
redundancy policies, REP (shown as REP-baseline) has more
erasure count than other two redundancy policies because
REP writes almost 3x more data to the whole cluster and
entails more erasure count. While EC-baseline has the lowest
erasure count since it consumes less storage than REP. The
total erasure count of REP-baseline is "2 higher than that of
EC-baseline.

To compare Chameleon with EDM about their compact
on flash endurance across 50 servers, we applied EC for
the request data and evaluated EDM scheme and Chameleon
scheme, respectively, since EC can achieve a smaller total
erasure count than other two redundancy policies, REP and
REP+EC-baseline. Comparing Chameleon with EC-baseline
scheme, we observe that Chameleon has a similar amount
of cluster-wise aggregate block erase cycles with EC-baseline
scheme while EDM has a significant higher total erasure count

(b) SSD write latency under EDM and Chameleon
(normalized to that of Chameleon).

Fig. 6: Write latency.

than both Chameleon and EC-baseline as shown in Figure 5(b).
This is because Chameleon introduces less writes to the
destination servers compared with EDM by using late EC/REP
and EWO techniques. For EDM, the data migration process
introduces significant wear overhead to the flash cluster due
to extra write overhead. As we can see in Figure 5(b), the
block erasure count of EDM is increased by up to "20% under
workload Usr_0, Mds_0, and Hm_0 due to data migration.

3) Impact on SSD write latency: We measured the average
write response time in each SSD simulator to see the impact of
wear balancing on write performance as GC has a significant
influence on write performance as shown in Figure 6. Note
that the write latency is measured as the time interval between
SSD simulator receiving a write request and finishing the write
request. Y-axis shows normalized write latency.

The write latency normalized to REP-baseline are shown in
Figure 6(a). As shown, the average write response time when
replaying the workload Web_1 is relatively lower than that
when replaying others. This is because that workload Web_I
have lower amount of write request data than others as shown
in Table III. Moreover, EC-Baseline’s average write response
time is the highest among three redundancy schemes. The
write latency of EC-baseline is 1.12 on average and at-most
1.35 higher than that of REP-baseline. This is because, under
EC, the writes are scattered across multiple servers (e.g., 6 in
RS-(6,4)) at a smaller stripe granularity, while REP performs
writes at a bigger object-level and therefore has a higher
sequentiality of writes. With increasing sequentiality of writes
(Figure 6(a)), the write performance of SSDs is observed to
be improved.

To compare Chameleon with EDM with respect to impact
on write performance, we applied REP for the request data
and evaluated EDM scheme and Chameleon scheme since
REP can achieve a better write performance than both EC
and REP+EC-baseline. Compared to EDM, Chameleon has



(b) Write amplification under EDM and Chameleon.

Fig. 7: Write amplification.

a better write performance. Chameleon can reduce the write
latency by 25% on average and at-most 33%, compared to
REP-baseline. In contrast, EDM can only reduce the write
latency by 7% on average and at-most 20%, compared to
REP-baseline. This is because Chameleon can achieve a good
wear balance with minimum extra overhead. In contrast, EDM
introduces considerable extra overhead during wear balancing
process.

4) Impact on write amplification: We measured the write
amplification (WA) after GC starts in each SSD simulator
to see the impact of wear balancing on write amplification.
The results are shown in Figure 7. Y-axis shows the write
amplification.

EC-Baseline’s WA is the highest among three redundancy
schemes as shown in Figure 7(a). We compare the WAs of
EC-baseline and REP-baseline. The WA of EC-baseline is
2.11 on average and at-most 2.8, while that of REP-baseline
is 1.4 on average and 1.7 at-most. The reason is the same
as that of write latency: under REP, the writes have higher
sequentiality because REP performs writes at a bigger object-
level while the writes are scattered across multiple servers
(e.g., 6 in RS-(6,4)) at a smaller stripe granularity under EC.
With increasing sequentiality of writes (Figure 7(a)), the WA
of SSDs improved.

Theoretically, write amplification can be defined as 1/(1 —
1), where p is the utilization of victim block that needs to
be cleaned during GC. That is, to make room for (1-x) new
writes, p valid pages need to be rewritten so the total number
of writes is (1 — ) + p = 1. Thus, write amplification is
directly affected by the victim block utilization. Redundancy
policy impacts victim blocks utilization by changing the size
and destination of write requests. Moreover, the relationship
between redundancy policy and write amplification is not a
simple linear relationship as shown in Figure 7(a).

To compare Chameleon with EDM about the compact on
WA, we applied REP for the request data and evaluated EDM
scheme and Chameleon scheme since REP can achieve a lower

Fig. 8: Data state changes over 85 hours under Chameleon by
replaying YCSB-zipf workload.

WA than both EC and REP+EC-baseline. Compared with
EDM, Chameleon has a lower WA. Chameleon can reduce
the WA by 12% on average and at-most 20%, compared
to REP-baseline. While EDM can only reduce the WA by
6% on average and at-most 13%, compared to REP-baseline.
There are several reasons for this behavior. First, Chameleon
achieves a better wear balance distribution, which mitigates
the overall write amplification due to garbage collection. For
one hand, the utilization of hot flash servers is reduced. For the
other hand, Chameleon introduces less writes to the destination
servers compared with EDM.

5) Data state changes over time: As discussed in Sec-
tion III, Chameleon achieves better wear balance by using two
adaptive wear balancing techniques, ARPT and HCDS. ARPT
converts data redundancy polices while HCDS off-loads data
via EWO. Consequently, data has two redundancy states, REP
and EC, and four intermediate states, Late REP, Late EC, REP-
EWO, and EC-EWO.

To see how the data state changes over time, we calculated
the aggregate amount of data in different states individually
for each hour. Figure 8 shows data state changes over 85
hours by replaying workload Y C'SB — zipf. Y-axis shows the
percentage of data in different states. As shown, We combine
the REP-EWO and EC-EWO together as EWO state since the
amount of data in REP-EWO state is roughly similar to that
of data in EC-EWO.

First, all the data started with EC state since we applied
EC for all newly created data and after three hours, ARPT
started to convert a small mount of hot data from EC to late
REP and later cover to REP when their update requests come.
During the 5th hour, Chameleon detected that wear imbalance
happened and started HCDS to swap hot data with cold data
for wear balancing. After that we see the data in EWO state
increased up to 20% during the 20th hour and then fluctuated
during the period of the 25th-65th hour. During this period, up
to 20% of data was involved in HCDS for wear balancing. The
slight decrease during this period means that a certain amount
of data was offloaded and covered to a redundancy state.

After the 65th hour, we see a decrease for the amount of
data in EWO state, implying that not only the wear but also the
workload were almost balanced. Moreover, the data involved
in HCDS was almost converted from a intermediate EWO state
to a finial redundancy state.

Overall, we can see the data involved in HCDS was less



than 20% for each hour, while the data involved in ARPT was
less than 5% for each hour. We conclude that only a relative
small amount of data’s popularity changes and HCDS plays a
major role in wear balancing.

V. CONCLUSION

We have presented the design and implementation of
Chameleon, a wear balancer for distributed flash-based storage
cluster. Chameleon aims to improve both the flash endurance
and runtime performance. First, Chameleon takes advantages
of the out-of-place update feature of flash memory by directly
offloading the writes/updates across flash servers instead of
moving data across flash servers to mitigate extra-wear cost.
We implemented several optimizations to this end: late repli-
cating (Late REP), late encoding (Late EC), and endurance
aware write offloading (EWO). Second, Chameleon provides
two adaptive wear balancing algorithms, namely, redundancy
policy transition (ARPT) and Hot/Cold data swapping (HCDS)
to balance the wear distribution across the flash servers,
coupled with write offloading and redundancy policies to
balance the erasure count and improve both lifetime and
performance. Evaluation shows that Chameleon reduces the
wear distribution deviation by up to 81%, while improving
the write performance by up to 33%. In the future, we aim
to realize Chameleon in real flash hardware such as Open-
channel SSD [38] and integrate Chameleon to other distributed
storage types such as distributed file systems.

Acknowledgments This work is sponsored by the NSF under the
grants: CNS-1565314, CNS-1405697, and CNS-1615411. The work
performed at Temple is partially sponsored by NSF grants CCF-
1547804, CNS-1702474, and CCF-1717660. The work at HUST is
sponsored by National Natural Science Foundation of China under
grant number 61472152, and 6143200.

REFERENCES

[1] B. Debnath, S. Sengupta, and J. Li, “Flashstore: high throughput
persistent key-value store,” VLDB ’10.

[2] H. Sim, Y. Kim, S. S. Vazhkudai, D. Tiwari, A. Anwar, A. R. Butt,
and L. Ramakrishnan, “Analyzethis: an analysis workflow-aware storage
system,” in ACM/IEEE SC ’15.

[3] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan, “Fawn: A fast array of wimpy nodes,” in SOSP ’09.

[4] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu et al.,
“Bluedbm: Distributed flash storage for big data analytics,” TOCS ’'16.

[5] A. M. Caulfield and S. Swanson, “Quicksan: a storage area network
for fast, distributed, solid state disks,” in ACM SIGARCH Computer
Architecture News '13.

[6] M. Balakrishnan, D. Malkhi, J. D. Davis, V. Prabhakaran, M. Wei, and
T. Wobber, “Corfu: A distributed shared log,” ACM TOCS ’13.

[71 B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” SIGMETRICS
Perform. Eval. Rev.

[8] “Summit (ornl),” https://www.olcf.ornl.gov/summit.

[9] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A tale of two erasure

codes in hdfs,” in USENIX FAST ’15.

H. Ohtsuji and O. Tatebe, “Server-side efficient parity generation for

cluster-wide raid system,” in IEEE CloudCom ’15.

P. Cao, S. B. Lin, S. Venkataraman, and J. Wilkes, “The tickertaip

parallel raid architecture,” ACM Trans. Comput. Syst.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and

D. Lewin, “Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the world wide web,” in ACM STOC

'97.

[10]
(11]

(12]

[13]
[14]
[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]

Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “Flashsim: A sim-
ulator for nand flash-based solid-state drives,” in Advances in System
Simulation *09.

“Intel ISA-L,” https://github.com/01org/isa-1.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in ACM SOCC ’10.
D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” Trans. Storage '08.
Y. Cheng, A. Gupta, A. Povzner, and A. R. Butt, “High performance in-
memory caching through flexible fine-grained services,” in ACM SOCC
'13.

Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory object caching
framework with adaptive load balancing,” in ACM EuroSys ’15.

J. Ou, J. Shu, Y. Lu, L. Yi, and W. Wang, “Edm: An endurance-aware
data migration scheme for load balancing in ssd storage clusters,” in
IEEE IPDPS ’14.

S. Boboila and P. Desnoyers, “Write endurance in flash drives: Mea-
surements and analysis.” in USENIX FAST ’10.

Y. Cheng, F. Douglis, P. Shilane, G. Wallace, P. Desnoyers, and K. Li,
“Brasing belady’s limitations: In search of flash cache offline optimality,”
in USENIX ATC ’16.

X. Jimenez, D. Novo, and P. Ienne, “Wear unleveling: improving nand
flash lifetime by balancing page endurance,” in USENIX FAST ’14.

G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,
“Extending ssd lifetimes with disk-based write caches.” in USENIX FAST
’10.

D. Ma, J. Feng, and G. Li, “Lazyftl: a page-level flash translation layer
optimized for nand flash memory,” in ACM SIGMOD ’11.

D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee, “A group-based wear-
leveling algorithm for large-capacity flash memory storage systems,” in
ACM CASES ’07.

L.-P. Chang, “On efficient wear leveling for large-scale flash-memory
storage systems,” in ACM SAC ’07.

M. Murugan and D. H. Du, “Rejuvenator: A static wear leveling
algorithm for nand flash memory with minimized overhead,” in IEEE
MSST ’11.

X. Jimenez and D. Novo, “Phoenix: reviving mlc blocks as slc to extend
nand flash devices lifetime.” in ACM DATE ’13.

K. M. Greenan, D. D. Long, E. L. Miller, T. Schwarz, and
A. Wildani, “Building flexible, fault-tolerant flash-based storage sys-
tems,” in USENIX HotDep ’09.

J. Ou, J. Shu, Y. Lu, L. Yi, and W. Wang, “Edm: An endurance-aware
data migration scheme for load balancing in ssd storage clusters,” in
IEEE IPDPS ’14.

W. Wang, T. Xie, and A. Sharma, “Swans: An interdisk wear-leveling
strategy for raid-0 structured ssd arrays,” ACM TOS ’16.

A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt, “Mos: Workload-aware
elasticity for cloud object stores,” in ACM HPDC ’16.

K. Krish, A. Anwar, and A. R. Butt, “hats: A heterogeneity-aware tiered
storage for hadoop,” in JEEE CCGrid ’'14.

Y. Cheng, M. S. Igbal, A. Gupta, and A. R. Butt, “Cast: Tiering storage
for data analytics in the cloud,” in ACM HPDC ’15.

——, “Pricing games for hybrid object stores in the cloud: Provider vs.
tenant,” in USENIX HotCloud ’15.

A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt, “Taming the cloud object
storage with mos,” in ACM PDSW ’I5.

A. Anwar, Y. Cheng, H. Huang, and A. R. Butt, “Clusteron: Building
highly configurable and reusable clustered data services using simple
data nodes.” in USENIX HotStorage '16.

“Open-channel ssd,” https://openchannelssd.readthedocs.io/en/latest/.

S. Lee, M. Liu, S. W. Jun, S. Xu, J. Kim, and A. Arvind, “Application-
managed flash.” in USENIX FAST ’16.

M. Bjgrling, J. Gonzalez, and P. Bonnet, “Lightnvm: The linux open-
channel SSD subsystem,” in USENIX FAST ’'17.

H.-j. Kim and S.-g. Lee, “A new flash memory management for flash
storage system,” in JEEE COMPSAC ’'99.

L.-P. Chang and T.-W. Kuo, “An efficient management scheme for large-
scale flash-memory storage systems,” in ACM SAC '04.

“FVN-al Hash,” http://isthe.com/chongo/tech/comp/fnv.

“Protocol Buffers,” https://github.com/google/protobuf.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems,” in USENIX ATC ’10.

D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling, “Hdfs raid,”
in Hadoop User Group Meeting, 2010.



