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Abstract

The impact of structural parameters of agricultural crops on the retrieval of chlorophyll content
presents a real challenge for the remote sensing community. Canopy reflectance can differ
between crops of different canopy structure even when they have the same canopy chlorophyll
content. Thus, structural properties should be incorporated in chlorophyll mapping to reduce
modeling errors. The empirical relationships between vegetation indices and chlorophyll content
are well established and commonly used in precision agriculture. Recent advances in using
unmanned aerial vehicle (UAV/drone) technology offer successful retrieval of crop structural
and biochemical parameters. However, transfer of empirical algorithms derived from satellite to
UAV based analyses introduces new challenges mainly due to fine spatial resolution and details
such as crop rows and between- and within- canopy gaps that are more pronounced in UAV
images. There are two components of the analysis in this study. The first part is related to
heterogeneity of leaf area index (LAI) and chlorophyll content of corn under four agricultural
treatments (conventional ploughed, conventional with no tilling, biological with reduced
chemical inputs, and certified organic) at the Kellogg Biological Station Long-Term Ecological
Research (KBS LTER) site in Michigan, USA. The second part examines the necessity and
importance of LAI in chlorophyll mapping using UAV images collected over the heterogeneous
KBS LTER parcels at peak growing season. The UAV-derived Normalized Difference Red Edge
Index (NDRE) is found to be highly correlated with canopy chlorophyll, calculated as a product
of leaf chlorophyll content and LAI. The coefficient of determination changes from R? = 0.177 to
R?> = 0.774 when LAI is added to the empirical model. NDRE is also found to be highly
correlated with LAI (R? = 0.620). The findings suggest that the conventional corn treatment with



no-tilled soil exhibits the highest crop vigor during the peak growing season. The herbicide
management applied earlier in the season may have a strong effect on weeds, reducing the crop-

weeds competition for nutrients.
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1. Introduction

The biochemical composition of vegetation canopies is an important indicator of ecosystem
health and sustainability (Carter 1994; Lichtenthaler 1998). Leaf chlorophyll and nitrogen
contents are principal parameters for quantifying the foliage photosynthesis rate and primary
productivity (Ripullone et al. 2003; Gitelson et al. 2006). Retrieval of biochemical information
using remote sensing commonly relies on empirical relationships between biochemical contents
and spectral reflectance obtained by satellite imagery (Zarco-Tejada et al. 2001; le Maire,
Francois, and Dufrene 2004; Gitelson et al. 2005; le Maire et al. 2008). While pigment content
controls the spectral signature of leaves and canopy, other factors such as canopy architecture,
which encompasses both the angular and spatial distributions of vegetation components, leaf area
index (LAI) and background reflectance also contribute to the signal (Chen et al. 2002; Gitelson
et al. 2005; Verrelst, Schaepman, and Clevers 2008; Pisek et al. 2010; Simic, Chen, and Noland
2011; Simic et al. 2014).

There are two ways of monitoring chlorophyll content: (1) Leaf chlorophyll (chlorophyll content
per unit leaf area) and (2) Canopy chlorophyll (total chlorophyll content per ground area) where
leaf chlorophyll is commonly multiplied by LAI to better respond to the radiometric signal of
satellite observations (Gitelson et al. 2005; Baret, Houles, and Guerif 2007; Simic et al. 2010;
Simic, Chen, and Noland 2011; Peng et al. 2017). The empirical modeling for chlorophyll
content retrieval is based on multispectral or hyperspectral vegetation indices (Curran 1989;
Elvidge and Chen 1995; Jacquemond et al. 1996; Dawson and Curran 1998; Broge and Leblanc
2001; Zarco-Tejada et al. 2001; Clevers et al. 2002; Smith et al. 2003; le Maire, Francois, and
Dufrene 2004; Ustin et al. 2004; Gitelson et al. 2005; le Maire et al. 2008). As summarized by



Liang et al. (2016), fifty hyperspectral vegetation indices used to estimate chlorophyll content
are proposed in the literature. While most of them are used separately, to map either leaf or
canopy chlorophyll content, some of them are found to be suitable for both leaf and canopy
chlorophyll mapping. They include the visible and near-infrared spectral ranges and they are
used as simple ratio indices, normalized difference ratios, triangular vegetation indices, modified
versions of these three types, derivative spectral indices, and red-edge based indices (Liang et al.
2016). A fine spectral resolution at the red-edge is particularly useful for mapping chlorophyll
content (Gitelson and Merlyak 1994; Gitelson and Merlyak 1998) as well as for mapping canopy

architecture to a lesser extent.

Structural characteristics influence canopy near-infrared and visible reflectance and, thus, affect
the shape of the reflected spectral curve within the red-edge region (Demarez and Gastellu-
Etchegorry 2000, Delegido et al. 2008). Canopy reflectance can differ between the plants of
different canopy structure even when they have the same canopy chlorophyll content (Gitelson et
al. 2005). Thus, proper estimation of structural characteristics is necessary to reduce modeling
errors in chlorophyll content retrieval (Simic, Chen, and Noland 2011). Rapid developments in
remote sensing technologies over the last two decades inspired scientists to probe into the
relationships between structural parameters of a vegetation canopy and multi-angular remote
sensing data. In particular, the combination of multi-angular and hyperspectral data is very useful
for retrieving canopy structure (Lewis, Barnsley, and Cutter 2001; Urso et al. 2004; Bach et al.
2005; Begiebing et al. 2005; Schlerf and Hill 2005; Rautiainen et al. 2008; Simic and Chen 2008;
Vuolo, Dini, and D’Urso 2008; Zhang et al. 2008). The improved multiangle-based LAI was
found to have a significant impact on chlorophyll content retrieval in the studies of Simic et al.
(2008) and Simic, Chen, and Noland (2011). Similarly, Duan et al. (2014) reported that the
Unmanned Aerial Vehicle (UAV/drone)-derived LAI using data from two different angles

resulted in increased accuracy of LAI estimates.

Recent developments in remote sensing using the UAV technology represents a true paradigm
shift (Salami, Barrado, and Pastor 2014). Having spatial resolution as small as a few centimeters,
a sudden expansion of drone-related applications is particularly observed in precision agriculture

where farmers and researchers have found a common goal ‘to improve crop status and yield’.



Used for monitoring biochemical crops properties as surrogates for crop status, information is
generally retrieved based on the existing algorithms that are already widely used for satellite and
airborne data (Elarab et al. 2015). However, transfer of empirical algorithms from satellite
images to UAV images introduces new challenges mainly due to fine spatial resolution and
details, such as crop rows and between- and within-canopy gaps that are more pronounced in

UAYV images, affecting the importance of structural parameters in chlorophyll content retrieval.

As summarized by Krishna (2016), many studies are conducted where drone is seen as low-cost
operation compared to traditional manned aircraft or ground data collections. UAV cameras that
operates at visual and NIR bands were found to be useful for monitoring crop status such as
detecting crop diseases or crop infestation (Costa et al. 2012; Garcia-Ruiz and Sankaran 2013).
UAVs help farmers to monitor low productivity of crops allowing them to correct the amount of
fertilizers and pesticides. Different types and amounts of agricultural chemicals applied at
different growing stages affect the crop vigor and ultimately crop yield. For instance, early
applications of nitrate-based fertilizers and no-tilled soils together with the proper herbicide
applications significantly increase corn yield and cause early corn maturity when observed with
Landsat (Simic Milas and Vincent 2016). At some crop farms, canopy cover and water usage
pattern were also used as indicators for forecasting crop yield (Trout and DeJonge 2017).
Constant monitoring of crop vigor through LAI and chlorophyll content retrieval using drones is

becoming universal nowadays.

This study aims to explore the importance of LAI in chlorophyll mapping of heterogeneous corn
fields using UAV images. There are two components of the analysis in this study. The first part
is related to heterogeneity of vigor status and LAI of corn grown under four agricultural
treatments (conventional ploughed, conventional with no tilling, biological with reduced
chemical inputs, and certified organic) based on field and UAV measurements of the Normalized
Difference Red Edge Index (NDRE), LAI, and chlorophyll content collected at the Kellogg
Biological Station in Michigan, Ohio, USA. The second part examines the necessity and
importance of LAI in chlorophyll mapping using UAV images over the parcels at peak growing
season by incorporating LAI in the chlorophyll retrieval algorithm. The relationships between

NDRE and leaf and canopy chlorophyll content are investigated and validated. NDRE is widely



used by farmers and it consists of the red edge band, which is important in chlorophyll mapping.
Both drone and field-derived NDRE using a field spectroradiometer are explored in the empirical
relationships to predicting LAI and chlorophyll content. Spatial heterogeneity of vegetation
cover introduces major uncertainties in large-scale analyses when sensors with fairly coarse
spatial resolution are used (Ehleringer and Field 1993, Simic et al. 2004). The fine resolution
analyses (e.g. UAV) closely represent reality and the relationship between field and remote
sensing data (e.g. leaf and canopy chlorophyll) is believed to be differently impacted by

structural parameters such as LAIL

2. Data and Method

2.1. Study Site and Field Data Collection

The study site is located within the Kellogg Biological Station (KBS) in Michigan, USA

(42°24'N, 85°22'W) (Figure 1(a)). The KBS is a research area that includes different
experimental treatments related to ecological interactions and agronomic performance. The KBS
farmland is managed under a national network of the Long-Term Ecological Research (LTER)
sites established by the National Science Foundation (Robertson et al. 2012; Robertson and
Hamilton 2015). The 1-ha plots that undergo different treatments are mixed and randomly spread
over the study area (Robertson et al. 2012). The annual cropping systems are corn—soybean—
winter wheat rotations ranging in management intensity from conventional to biologically based

(Robertson et al. 2012; Gage, Doll, and Safir 2014; Simic Milas and Vincent 2016).

[Figure 1]

In this study, 24 parcels of corn were considered (Figure 1(b)). Six parcels (replicates) with the
same management were assigned to each treatment (Michigan State University (MSU) 2017).
There were four agricultural practices: (1) genetically modified (GM) corn treated in three
different ways: (a) T1 — conventional ploughed; () T2 — conventional with no tilling; and (¢) T3
— biological with reduced chemical inputs, and (2) T4 — certified organic, non-genetically

modified (non-GM) corn with no chemical treatments. Information about different type and



quantity of fertilizers and herbicides were provided by Michigan State University (MSU 2017)
(Table 1).

[Table 1]

A field campaign over 24 corn parcels were conducted concurrently with the UAV flight on 11
August 2017. Field measurements of leaf chlorophyll content (Chlreaf) and hyperspectral
reflectance were collected at two or three randomly chosen locations at each parcel. In addition,
digital hemispherical photographs (DHPs) were taken at each location and used to derive LAI.
The sampling locations were approximately 10-15 m apart and positioned as a triangle around
the center of each parcel. This allowed us to avoid any negative impact from the edge effect and
mini-plots placed at the corners of parcels, and to compare the results with our previous Landsat-
based study by Simic Milas and Vincent (2016). At each location, three measurements were
collected within a radius of 3-5 m. ChlLear measurements for validation were collected from an
additional location at each parcel. The field measurements were compared between the
treatments (T1-T4) to explore the heterogeneity of LAI and chlorophyll content / corn vigor
during the peak growing season and possible impact of different treatments, including different

types and application timing of fertilizers and herbicides, on crop status (Table 1).

Plant chlorophyll was measured using the Konica Minolta Chlorophyll Meter SPAD-502Plus.
SPAD units are linearly related to chlorophyll content. The meter has an accuracy of +/- 1 SPAD
unit (Spectrum Technologies 2017). The measurements were taken from top and middle part of

plant as expected to be seen on the UAV image.

DHPs were taken using a Canon EOS Rebel T5 digital SLR 18.7-megapixel camera with a
Sigma 8 mm F3.5 EX DG Circular Fisheye lens at each location. The photographs were taken
vertically pointing up through the canopy (upward look), and pointing down through the canopy
(downward look) for T4 parcels where open soil was observed (INRA 2017). The photographs
were processed using the Can-Eye software package (INRA 2017), which classifies images using

a binary classification technique and measures gap fraction from which LAI was calculated.



Hyperspectral reflectance measurements of corn leaves were collected in situ using the Spectral
Evolution RS-3500 portable spectroradiometer. The meter collects 1024 discrete measurements
of reflected ER from 346.2 nm to 2505.4 nm (~2 nm average spectral resolution). Calibration
accuracy is +/- 5% at 400 nm, +/- 4% at 700 nm, and +/- 7% at 2200 nm (Spectral Evolution
2017). Pre-processing of the in situ hyperspectral reflectance data was automatically done using

the DARWin SP data acquisition software installed in the hand-held data logger.

The field hyperspectral reflectance measurements were spectrally aggregated to form NDRE
(NDREField) to simulate the Sequoia camera for easier comparison of field and UAV derived
parameters. Using ANOV A—Tukey-Kramer approach at the 0.05 level of significance, the mean
values for NDREField, ChlLear and LAI were compared for each treatment to explore the impact

of each treatment on corn status.

2.2. UAV Data Collection

To collect UAV spectral information over KBS we used eBee AG Sensefly UAV and the
Sequoia camera. The eBee is a fixed-wing drone with a very light weight of just 700 g. eBee AG
is easy to use as it allows for pre-launching flight preparation and simulations, and the flight plan
can be altered during the flights. The planning and control computer system eMotion was used to
plan and fly the system (Sensefly 2017). The flight area ceiling was set up for 400 m /ATO and
the working radius was 2700 m. Lateral and longitudinal overlap was set up to 75% and spatial
resolution was ~13 cm pixel™. Data were collected in a single flight. During the flight, the wind
was low and the weather was clear. The UAV data were processed with Pix4Dmapper Pro, a
drone mapping software (Pix4D 2017). The images were mosaicked and reflectance images were
created for each green (530-570 nm), red (640-680 nm), red edge (RE) (730-740 nm) and near-
infrared (NIR) (770-810 nm) band (Figure 2(a)). The image was registered to a corrected UAV
image acquired the same day over the study area with the red-green-NIR Cannon camera that
had a spatial resolution of 3.2 cm pixel™! where corn plants, marked sampling locations, and fixed

poles with known coordinates located in the field were clearly visible on the image. In addition,



Digital Terrain Model (DTM) and Digital Surface Model (DSM) images were generated (Figure
2(b) and 2(c), respectively).

[Figure 2]

NDRE calculated from UAV data (NDREuav) was used in the empirical approach to explore the
capability of this index to map crop status, chlorophyll content and LAI. The presence of NIR
and RE bands, in particular, enables chlorophyll content retrieval. NDRE (Barnes et al. 2000) is

calculated as

NDRE — NIR — RE "
" NIR + RE @)

Simple linear regression models were generated and NDREuav was compared to: (1) structural
corn properties, LAI; (2) leaf chlorophyll measurements, Chlreaf; and (3) canopy chlorophyll

estimates (Chlcanopy) (expressed as Chlieaf X LAI) for each parcel. Using the prediction
algorithm, LAI and chlorophyll maps were generated. Validation of the estimated leaf
chlorophyll values (Chlyeaf-estimated) Were conducted using Chlrear measurements collected over
the validation locations. Region-of-interest areas of approximately 5 x 5 m were chosen on the
image around each field sample location to compare the results. The timing of the agricultural
chemical applications as well as the possible impact of DTM on the results are also considered in

the analysis to better understand the results.

3. Results

During data collection, the corn was at the peak of productive growth stage and kernel
development. While the canopies for T1-T3 treatments looked relatively closed and similar in
their appearance, T4 organic parcels had shorter corn plants, open canopies and more exposed

soil than any other treatments (Figures 2(c) and 3).



[Figure 3]

Summary statistics show the highest mean values for T2 treatment for all three corn parameters:
NDREField, ChlLeaf and LAI The values are closely followed by T3 treatment with the exception

of T4 treatment having slightly higher chlorophyll content than T3 treatment. T1 treatment has

lower values than T2 and T3 conventional treatments, while T4 treatment has considerably lower

values for NDREField and LAI than any other treatment (Table 2).

[Table 2]

The ANOVA-Tukey-Kramer analysis in Table 3 shows that parcels with T4 treatment have
significantly lower NDREFicla and LAI than other treatments; however, Chlrear is not

significantly different from T3 treatment. Parcels with T2 treatment have the highest values for

all three parameters although the parameters are not significantly different from T3 treatment for

NDREFicld and LAI

[Table 3]

The field and UAV measured NDRE (NDREField and NDREuav, respectively) are moderately
associated (R*> = 0.614) suggesting that more than 61% of NDREuav can be explained by
NDREField (Figure 4(a)). The NDREField measurements multiplied by LAI explains almost 80%
of the NDREuav (R* = 0.793) (Figure 4(b)). This difference of almost 20% suggests that LAl is a

critical parameter for the information retrieval using NDREuav measurements.

High variability of LAI between and within different treatments (T1-T4) is shown in Figure 4(c).
The within-treatment variability is more pronounced for T1 and T3 treatments on the graph.

However, much higher variability of LAI than the graph suggests was observed for T4 treatment



in the field suggesting some possible bias in choosing the sample locations at T4 parcels. This
can also be confirmed by negative values of NDRE on the UAV image where the red edge
values become higher than the NIR values in some areas of T4 parcels where the terrain
elevation/DTM is higher. Generally, higher LAI values are observed for lower DTM values
where most likely soil moisture and/or higher concentration of nutrients accumulated from
surrounding areas increased corn productivity (Figure 2(b)). The within-parcel variability of LAI
most likely affects the relationship between NDREuav and LAI, which is moderately strong in
this study (R* = 0.620).

[Figure 4]

NDREField and Chlpeaf are not highly correlated (R? = 0.363). Although we attempted to measure

leaf chlorophyll content at the same location of a leaf from which we measured the reflectance
using the hand-held spectroradiometer, either high within-leaf variability of chlorophyll content,
or some minor effects of the outside light during the reflectance measurements caused
uncertainties. We surmise that high variability of chlorophyll content observed within T4 parcels

is the reason for the results (Figure 5(a)). However, the difference in the regression relationship
between NDREuav and chlorophyll is considerably improved when Chlieaf is multiplied by LAIL

The coefficient of determination changes from R* = 0.177 to R*> = 0.774.

The canopy chlorophyll map, Chlcanopy (expressed as Chlreaf X LAI) is then derived by using

empirical algorithm:
NDREuvav = a (Chlrear x LAI) - b (2)
where a = 0.002 and b = 0.062 in this study;

NDREuav, LAI and Chlcanopy and Chlrear maps using the proposed algorithm (eq. 2) are
demonstrated in Figures 6(a-d), respectively. The validation process shows reasonably high

correlation between the measured Chlieaf and Chlieafestimated With the Pearson correlation

coefficient » = 0.712 (Figure 5(d)).



[Figure 5]

[Figure 6]

4. Discussion

The results related to vigor status of the four treatments in this study are very similar to those of
Simic Milas and Vincent (2016) where Landsat data were used to monitor corn crop status at the
same site and under similar conditions in 2014. In summary, the results suggest that T2 treatment
shows the highest crop vigor among all treatments. Closely followed by T3, there is no
significant difference between T2 and T3 treatments for NDREFieid and LAIL. T1 treatment
exhibits the lowest crop vigor when compared with other conventional treatments. T4 treatment
has significantly lower NDREField and LAI than other treatments; however, its chlorophyll
content is not significantly different from T3 treatment. We state that the intense early herbicide
applications of Roundup and ammonium sulfate in combination with no-till soil management
produce the highest crop vigor for T2 treatment during the peak growing season. There are
several possible explanations for this trend. The herbicide management used for treatment T2
(Table 1) may have an earlier and a stronger effect on weeds, reducing the crop-weeds
competition for nutrients (Green 2014). It is also possible that nutrients and water are leached
less in no-till soils having better interactions with the roots at initial contact, which further may
increase green leaf productivity (Bender and van der Heijden 2015; Yu, Hui et al. 2016). For
opposite reasons, the soil tillage management as well as later and less intense herbicide
application (Roundup, in particular) most likely inhibit the early nitrogen uptake for treatment T1
(Simic Milas and Vincent 2016). The insignificant difference between LAI and NDREField values
for T2 and T3 treatments in this study occurs most likely due to the additional early herbicide
application to T3 treatments in 2016, which was not done in 2014. However, that early herbicide

application invested in LAI at the expense of chlorophyll content for T3 treatment (Table 1).

When compared with the study of Simic Milas and Vincent (2016), the UAV image

demonstrates more variability within- the treatments than Landsat images. Also, T4 treatment



has somewhat lower vegetation index values relative to other treatments. Although, this
difference for T4 treatments could be due to a slightly different soil status and/or differences in
the weather between 2014 and 2016, the difference is most likely the result of different spatial
resolutions between UAV and Landsat data. Drone pixels are considerably finer and have higher
purity than Landsat pixels, serving more as the ground truth. Open canopies are more
pronounced and better captured by UAV. While drone images are more valuable for farmers in
precision agriculture, and while they capture within-treatments variability accurately, it is likely
that coarser pixel size of satellite imagery such as Landsat data better capture the between-

treatment variability and differences between parcels at the ecosystem level.

While physically-based canopy reflectance models, based on radiative transfer principles, show a
real potential in employing structural canopy characteristics in the retrieval of leaf chlorophyll
content (Simic, Chen, and Noland 2011; Liang et al. 2016), the main limitations of the empirical
models are the use of site- and sensor- specific relationships that do not fully account for the
influence of the complexity of canopy structure. The empirical models lack robustness and
portability from one study area to another (Demarez and Gastellu-Etchegorry 2000). It should be
noted that this study incorporates corn grown under different agricultural treatments, which
results in high heterogeneity of canopy coverage between the treatments. Most likely, this high
heterogeneity causes somewhat lower R? values (R*> ~ 0.774) between NDRE and chlorophyll
content than in some other studies where red-edge based indices were also used but over more
homogenous areas. Back in 1994, Gitelson and Merzlyak found a strong correlation between the
RE band at 700 nm and chlorophyll concentration in higher plant leaves (Gitelson and Merzlyak
1994; Gitelson and Merzlyak 1998). In 2008, Delegido et al. claimed that the combination of the
674 nm and 712 nm wavebands, that corresponded to the maximum chlorophyll absorption and
the RE position, respectively, was more sensitive to LAI than NDVI, reaching R* = 0.820 over
several agroecosystems. In the study of Peng et al. (2017), Sentinel-2 data were used to explore
the advantages of RE in chlorophyll mapping of corn. While the RE-based chlorophyll index
showed a high correlation in their study (R* = 0.890), the maximum coefficient of determination
(R* = 0.920) was reached using the Normalized Difference Vegetation Index (NDVI), which
consists of Red and NIR bands. Although the goal of this study has not been to explore the



performance of different vegetation indices, the RE position is praised as a critical spectral

region for both LAI and chlorophyll content.

Although the idea of incorporating LAI in the empirical algorithm is not new, this study explores
the impact of the fine spatial resolution of UAV images on chlorophyll mapping challenging the
hypothesis that LAl may have a less critical role in the canopy chlorophyll mapping using UAV
than using satellite imagery. While structural and biochemical vegetation characteristics, such as
clumping and chlorophyll content, may vary considerably even within the same species under the
same conditions (Houborg and Boegh 2008), in precision agriculture, the coupling between
structural and biochemical parameters is essential in spatio-temporal modeling of crop status and
yield using UAVs due to rapid phenological changes and high spatial heterogeneity intensified

by different treatments and sporadic chemical applications.

Conclusion

This study considered the impact of LAI on the retrieval of chlorophyll content for corn grown
under four agricultural treatments: full conventional, full conventional with no-tilled soil,
biological with reduced quantities of chemicals and organic treatment. A field campaign was
conducted at the Kellogg Biological Station (Michigan, USA) concurrently with the UAV/drone
data acquisitions on 11 August 2017. The field campaign included measurements of
hyperspectral reflectance using the field spectroradiometer, LAI using the Digital Hemispherical
Photography and leaf chlorophyll content acquired with SPAD chlorophyll meter. The empirical
model showed that NDRE was a sensitive vegetation index for both chlorophyll and LAI
mapping. NDRE was found to be moderately correlated with LAI (R*> = 0.620). Chlorophyll
mapping was significantly improved when LAI was incorporated as an input parameter in the
predictive algorithm for canopy chlorophyll content retrieval. The coefficient of determination
changed from R* = 0.177 to R*> = 0.774 when LAI was added to the empirical model. While
predictive algorithms based on the linear relationship between chlorophyll content and indices
may be more reliable for closed canopies, our study showed that LAI considerably enhanced the
retrieval of chlorophyll content using UAV for agricultural fields where variability of canopy
coverage was high. The conventional corn treatment T2, with no-tilled soil and early herbicide

applications exhibited the highest crop vigor during the peak growing season. Organic treatment



had the lowest NDRE and LAI but its chlorophyll content was not significantly different from T3
treatment. The herbicide management applied earlier in the season may have a strong effect on

weeds, reducing the crop-weeds competition for nutrients.

Acknowledgements

Support for this research was provided by the NSF Long Term Ecological Research Program
(DEB 1027253) at the Kellogg Biological Station and by Michigan State University
AgBioResearch.

Disclosure Statement

No potential conflict of interest was reported by the authors.

References

Bach, H., S. Begiebing, D. Waldmann, and B. Rowotzki. 2005. “Analysis of hyperspectral and
directional data for agricultural monitoring using the canopy reflectance model SLC; Progress in
the Upper Rhine valley and Baasdorf test-sites.” In Proceedings of the 3¢ CHRIS/Proba
Workshop, ESRIN, Frascati, Italy. ESA SP-593 (21-23 March 2005).

Baret, F., V. Houles, and M. Guerif. 2007. “Quantification of plant stress using remote sensing

observations and crop models: the case of nitrogen management.” Journal of Experimental

Botany 58: 869-880.

Barnes, E. M., T. R. Clarke, S. E. Richards, P. D. Colaizzi, J. Haberland, M. Kostrzewski, P.
Waller, C. Choi, E. Riley, T. Thompson, R. J. Lascano, H. Li, and M.S Moran. 2000.
“Coincident detection of crop water stress, nitrogen status and canopy density using ground
based multispectral data.” In Proceedings of the Fifth International Conference on Precision

Agriculture, Bloomington, MN, USA (16 — 19 July 2000).



Begiebing, S., H. Bach, D. Waldmann, and W. Mauser. 2005. “Analysis of spaceborne
hyperspectral and directional CHRIS data to deliver crop status for precision agriculture.” In

Proceedings of the 5" European Conference on Precision Agriculture, J. Stafford, A. Werner

(Ed.), Wageningen Academic Publishers, The Netherlands (9-12 June 2005).

Bender, S. F., and M. G. A. van der Heijden. 2015. "Soil biota enhance agricultural
sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching

losses." Journal of Applied Ecology 52 (1): 228-239.

Broge, N. M., and E. Leblanc. 2001. “Comparing predictive power and stability of broadband
and hyperspectral vegetation indices for estimation of green leaf, area index, and canopy

chlorophyll density.” Remote Sensing of Environment 76: 165-172.

Carter, G.A. 1994. “Ratios of leaf reflectances in narrow wavebands as indicators of plant

stress.” International Journal of Remote Sensing 15 (3): 697-703.

Chen, J. M., G. Pavlic, L. Brown, J. Cihlar, S. G. Leblanc, H. P. White, R. J. Hall, D. R. Peddle,
D. J. King, J. A. Trofymow, E. Swift, J. Van der Sanden, P. K. E. Pellikka. 2002. “Derivation
and validation of Canada-wide coarse-resolution leaf area index maps using high resolution

satellite imagery and ground measurements.” Remote Sensing of Environment 80: 165-184.

Clevers, J. G. P. W., S. M. De Jong, G. F. Epema, F. D. Van Der Meer, W. H. Bakker, A. K.
Skidmore, and K. H. Scholte. 2002. “Derivation of the red edge index using the MERIS standard
band setting.” International Journal of Remote Sensing 23: 3169-3184.

Costa, F. G., J. Ueyama, T, Braun, G. Pessin, F. S. Osorio, P. A. Vargas. 2012. “The use of
unmanned aerial vehicles and wireless sensor network in agricultural applications.” In:
Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, Munich,
Germany (22-27 July 2012). http://dx.doi.org/10.1109/ IGARSS.2012.6352477.



Curran, P.J. 1989. “Remote sensing of foliar chemistry.” Remote Sensing of Environment 30: pp.

271-278.

Dawson, T.P., and P. J. Curran. 1998. “A new technique for interpolating the reflectance red

edge position.” International Journal of Remote Sensing 19: 2133-2139.

Delegido, J., G. Fernandez, S. Gandia, and J. Modeno. 2008. “Retrieval of chlorophyll content
and LAI of crops using hyperspectraql techniques: application to PROBA/CHRIS data.”
International Journal of Remote Sensing 29 (24): 7107-7127.

Demarez, V., and J. P. Gastellu-Etchegorry. 2000. “A modeling approach for studying forest
chlorophyll content.” Remote Sensing of Environment 71: 226-238.

Duan, S.-B., Z.-L. Li, H. Wu, B.-H. Tang, L. Ma, E. Zhao, and C. Li. 2014. “Inversion of the
PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from

unmanned aerial vehicle hyperspectral data.” International Journal of Applied Earth

Observation and Geoinformation 26(0): 12 — 20.

Ehleringer, J. R., and C. B. Field. 1993. “Scaling physiological processes: Leaf to globe.” In
Physiological Ecology, edited by Roy J. Academic Press, Boston.

Elarab, M., A. M. Ticlavilca, A. F. Torres-Rua, 1. Maslova, M. McKee. 2015. “Estimating
chlorophyll with thermal and broadband multispectral high resolution imagery from an
unmanned aerial system using relevance vector machines for precision agriculture.”

International Journal of Applied Earth Observation and Geoinformation 43: 32-42.

Elvidge, C.D., and Z. Chen. 1995. “Comparison of broad-band and narrow-band red and near-

infrared vegetation indices.” Remote Sensing of Environment 54: 38-48.

Gage, S. H., J. E. Doll, and G. R. Safir. 2014. "A crop stress index to predict climatic
effects on row-crop agriculture in the U.S. North Central Region," In The ecology of



agricultural ecosystems: long-term research on the path to sustainability, edited by
Hamilton, S. K., J. E. Doll, and G. P. Robertson, 235-248. Oxford University Press, New
York.

Garcia-Ruiz F., S. Sankaran, J. M. Maja, W. S. Lee, J. Rasmussen, R. Ehsani.
2013. “Comparison of two aerial imaging platforms for identification of Huanglongbing-infected

citrus trees.” Computers and Electronics in Agriculture 91, 106-115.

10.1016/j.compag.2012.12.002

Gitelson A., and M. N. Merzlyak. 1994. “Quantitative estimation of chlorophyll-a using
reflectance spectra: experiments with autumn chestnut and maple leaves.” Journal of

Photochemistry and Photobiology B: Biology 22: 247-252.

Gitelson A. A., and M. N. Merzlyak. 1998. “Remote sensing of chlorophyll concentration in
higher plant leaves.” Advances In Space Research 22(5): 689-692.

Gitelson, A. A., A. Vina, V. Ciganda, D. C. Rundquist, and T. J. Arkebauer. 2005. “Remote
estimation of canopy chlorophyll in crops.” Geophysical Research Letters 32: 108403, doi:
10.1029/2005GL022688.

Gitelson, A. A., A. Vina, S. B. Verma, D. C. Rundquist, T. J. Arkebauer, G. Keydan, B. Leavitt,
V. Ciganda, G. G. Burba, and A. E. Suyker. 2006. “Relation between gross primary production
and chlorophyll content in crops: implications for the synoptic monitoring of vegetation
productivity.” Journal of Geophysical Research, Atmospheres 111(8), [DO8SI11],
doi: 10.1029/2005JD006017

Green, J. M. 2014. "Current state of herbicides in herbicide-resistant crops. Review."
Wiley Online Library. http://onlinelibrary.wiley.com/doi/10.1002/ps.3727/abstract.
Accessed July 27 2016. doi: 10.1002/ps.3727.



Houborg, R., and E. Boegh. 2008. “Mapping leaf chlorophyll and leaf area index using inverse
and forward canopy reflectance modeling and SPOT reflectance data.” Remote Sensing of

Environment 112: 186-202.

INRA, CAN-EYE software. Url: https://www6.paca.inra.fr/can-eye/. Accessed 20 Nov 2017.

Jacquemoud, S., S. L. Ustin, J. Verdebout, G. Scmuck, G. Andreoli, and B. Hosgood. 1996.
“Estimating leaf biochemistry using the PROSPECT leaf optical properties model.” Remote
Sensing of Environment 56: 194-202.

Krishna Kowligi, R. 2016. “Push Button Agriculture: Robotics, Drones, Satellite-Guided Soil
and Crop Management,” by Apple Academic Press, Inc. Oakville, ON Canada and Waretown,
NJ, USA., ISBN 978-1-77188-304-7.

Lewis P., M. J. Barnsley, and M. Cutter. 2001. “CHRIS-PROBA: Mission status and prospects
for mapping surface biophysical parameters.” In Proceedings of the International Geoscience

and Remote Sensing Symposium (IGARSS), Sydney, Australia (9-13 July 2001).

Liang, L., Z. Qin, S. Zhao, L. Di, C. Zhang, M. Deng, H. Lin, L. Zhang, L. Wang, and Z. Liu.
2016. “Estimating crop chlorophyll content with hyperspectral vegetation Indices and the hybrid
inversion method.” International Journal of Remote Sensing 37(13): 2923-2949.

Lichtenthaler, H. K. 1998. “The stress concept in plans: As introduction.” Annals of the New
York Academy of Science 851: 187-198.

Le Maire, G., C. Francois, and E. Dufrene. 2004. “Towards universal broad leaf chlorophyll
indices using PROSPECT simulated database and hyperspectral reflectance measurements.”

Remote Sensing of Environment 89: 1-28.

Le Maire, G., C. Francois, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Breda, H. Genet, H.
Davi, and E. Dufrene. 2008. “Calibration and validation of hyperspectral indices for the



estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and

leaf canopy biomass.” Remote Sensing of Environment 112: 3846-3864.

Michigan State University, Kellog Biological Station, Long-Term Ecological Research
(LTER). 2016. http://Iter.kbs.msu.edu/. Accessed 20 November 2017.

Peng Y., A. Nguy-Robertson, T. Arkebauer, and A. A. Gitelson. 2017. “Assessment of
canopy chlorophyll content retrieval in maize and soybean: Implications of Hysteresis on
the Development of Generic Algorithms.” Remote Sensing, 9 (226), doi:
10.3390/rs9030226.

Pisek, J., J. M. Chen, J. R., Miller, J. R. Freemantle, J. 1. Peltoniemi, and A. Simic. 2010.
“Mapping forest background reflectance in a boreal region using multi-angle Compact Airborne

Spectrographic Imager (CASI) data.” IEEE Transactions on Geosciences and Remote Sensing,

48 (1, 2): 499-510.

Pix4D. Url: https://pix4d.com/. Accessed 20 November 2017.

Rautiainen, M., M. Lang, M. Mottus, A. Kuusk, T. Nilson, J. Kuusk, and T. Lukk. 2008. “Multi-
angular reflectance properties of a hemiboreal forest: An analysis using CHRIS PROBA data.”
Remote Sensing of Environment 112: 2627-2642.

Ripullone, F., G. Grassi, M. Lauteri, and M. Borghetti. 2003. “Photosynthesis — nitrogen
relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus x

euroamericana in mini-stand experiment.” Three Physiology 23: 137-144.

Robertson, G. P., S. L. Collins, D. R. Foster, N. Brokaw, H. W. Ducklow, T. L. Gragson,
C. Gries, S. K. Hamilton, A. D. McGuire, J. C. Moore, E. H. Stanley, R. B. Waide, and M.
W. Williams. 2012. "Long-term ecological research in a human-dominated world."

BioScience 62: 342-353.



Robertson, G. P., and S. K. Hamilton. 2015. "Long-term ecological research at the Kellogg
Biological Station LTER Site: Conceptual and experimental framework," In The ecology
of agricultural landscapes: long-term research on the path to sustainability, edited by
Hamilton, S. K., J. E. Doll, and G. P. Robertson, 134-152. Oxford University Press, New
York.

Salami E., C. Barrado, and E. Pastor. 2014. “UAYV flight experiments applied to the remote
sensing of vegetated areas.” Remote Sensing 6: 11051-11081.

Schlerf, M., and J. Hill. 2005. “Estimation of forest biophysical characteristics through coupled
atmosphere-reflectance model inversion using hyperspectral multi-directional remote sensing
data — A contribution to future forest inventory strategies.” In Proceedings of the 3¢

CHRIS/Proba Workshop, ESRIN, Frascati, Italy. ESA SP-593 (21-23 March 2005).

Sensefly 2017. https://www.sensefly.com/drones/ebee.html. Accessed 20 October 2017.

Simic, A., J. M. Chen, J. Liu, and F. Csillag. 2004. “Spatial scaling of net primary productivity

using subpixel information.” Remote Sensing of Environment 93:246-258.

Simic, A., and J. M. Chen. 2008. “Refining a hyperspectral and multi-angle measurement
concept for vegetation structure assessment.” Canadian Journal of Remote Sensing 34 (3): 174-

191.

Simic A., J. M. Chen, J. Freemantle, J. R. Miller, and J. Pisek. 2010. “Improving clumping and
LAI algorithms based on multi-angle airborne and ground measurements.” /EEE Transactions on

Geosciences and Remote Sensing, 48 (4, 1):1742-1759.

Simic, A., J. M. Chen, and T. L. Noland. 2011. "Retrieval of forest chlorophyll content
using canopy structure parameters derived from multi-angle data: The measurement
concept of combining nadir hyperspectral and off-nadir multispectral data." International

Journal of Remote Sensing 32 (20): 5621-5644.



Simic, A., J. M. Chen, S. G. Leblanc, A. Dyk, H. Croft, and T. Han. 2014. "Testing the
top-down model inversion method of estimating leaf reflectance used to retrieve vegetation

biochemical content within empirical approaches." IEEE JSTARS 7 (1): 92-104.

Simic Milas A., R. K. Vincent 2016. “Monitoring Landsat vegetation indices for different
crop treatments and soil chemistry.” International Journal of Remote Sensing 38(1): 141-

160. doi: 10.1080/01431161.2016.1259680.

Smith, M. L., M. E. Martin, L. Plourde, and S. V. Ollinger. 2003. “Analysis of hyperspectral data
for estimation of temperate forest canopy nitrogen concentration: Comparison between and

airborne (AVIRIS) and a Spaceborne (Hyperion) Sensor.” IEEE Transactions on Geoscience and

Remote Sensing, 41 (6), pp. 1332 — 1337.

Spectral Evolution. Url: http://www.spectralevolution.com/. Accessed 20 November 2017.

Spectrum Technology. Url: https://www.specmeters.com/. Accessed 20 November 2017.

Trout T. J., and K. C. DeJonge. 2017. “Water productivity of maize in the US high plains.”
Irrigation Science, doi: 10.1007/s00271-017-0540-1.

Urso, G. D., L. Dini, F. Vuolo, L. Alonso, and L. Guanter. 2004. “Retrieval of leaf area index by
inverting hyperspectral multi-angular CHRIS/PROBA data from SPARC 2003.” In Proceedings
of the 2 CHRIS/Proba Workshop, ESRIN, Frascati, Italy. ESA SP-578 (28-30 April 2004).

Ustin, S. L., D. A. Roberts, J. A. Gamon, G. P. Asner, and R. O. Green. 2004. “Using imaging
spectrometry to study ecosystem processes and properties.” BioScience 54 (6): 523-534.

Verrelst, J., M. E. Schaepman, and J. G. P. W. Clevers. 2008. “A modeling approach for

2

studying forest chlorophyll content in relation to canopy composition.” The International



Archives of the Photogrammetry, Remote Sensing, and Spatial Information sciences XXXVII
(B7), Beijing, 2008.

Vuolo, F., L. Dini, and G. D’Urso. 2008. “Retrieval of leaf area index from CHRIS/PROBA
data: an analysis of the directional and spectral information content.” International Journal of

Remote Sensing 29 (17-18): 5063-5072.

Yu, C-L., D. Hui, Q. Deng, J. Wang, K. Chandra Reddy, and S. Dennis. 2016. “Response
of corn physiology and yield to six agricultural practices over six agricultural practices
over three years in middle Tennessee.”  Scientific  Reports.  Url:
https://www.openaire.eu/search/publication?articleld=dedup wf 001::695285092da699d0f
Odedc4f68fde614

Zarco-Tejada, P. J., J. R. Miller, G. H. Mohammed, T. L. Noland, and P. H. Sampson. 2001.
“Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll

content estimation in closed forest canopies with hyperspectral data.” IEEE Transactions on

Geoscience and Remote Sensing, 39 (7): 1491-1507.

Zhang, Y., J. M. Chen, J. R. Miller, and T. L. Noland. 2008. “Leaf chlorophyll content retrieval

from airborne hyperspectral remote imagery.” Remote Sensing of Environment 112: 3234-3247.



Tables:

Table 1. A summary of the four treatments. Note: 0-0-60 potash at 0.0087 kg m™ (70 lbs acre™)
equals 0.0047 kg m™ (42 lbs acre™') K20; 19-17-0 liquid fertilizer at 0.01 1 m? (14 gallons acre™)
equals 0.003 kg N m? (29.22 Ibs N acre™) and 0.003 kg P205 m™ (26.14 lbs P205 acre™"); 28-0-0

liquid fertilizer (Urea-Ammonium-Nitrate) at 0.041 1 m? (41gallons acre™') equals 0.0133 kg N m™

(122 Ibs N acre™).
Corn and treatment Fertilizer Pesticide application Tilling
type application
T1 Conventional (CT)
Dekalb DKC52-59 8 May 2017: 0-0-60 potash at 9 June 2017: Lexar at 0.0007 1 m™ Conventiona
Corn Hybrid- 0.009 kg m? (80 lbs acre™!) (3 quart acre™') & Roundup Power 1 tillage:
GM Max at 0.00016 kg m (22 oz acre”  spring chisel
(planted 16 May 1) & ammonium sulfate at 0.00034  ploughing
2017, harvested 18 16 May 2017: 19-17-0 liquid kg m? (3.4 1bs acre’!) [T1r4 followed by
October 2017) fertilizer at 0.01 1 m™ (14 gallons Roundup Power Max at 0.0002 kg secondary
acre™) m2 (32 oz acre™")] tillage
21 June 2017: 28-0-0 liquid fertilizer
(Urea-Ammonium-Nitrate) at 0.041 1
m2 (41 gallons acre™)
T2 Conventional (CT)
Dekalb DKC52-59 8 May 2017: 0-0-60 potash at 24 April 2017: Roundup PowerMax  No till
Corn Hybrid- 0.009 kg m? (80 lbs acre™!) at 0.00023 1 m™ (1 quart acre’!) &
GM ammonium sulfate at 20.37 kg m™
(planted 15 May 15 May 2017: 19-17-0 liquid (17 lbs per 100 gal) & 2,4-D Ester
2017, harvested 18 fertilizer at 0.01 1 m? (14 gallons at 0.0009 1 m? (1 pint acre™) &
October 2017) acre’!) anti-foaming agent at 1.273 kg m™ (
1 oz per 100 gal)
21 June 2017: 28-0-0 liquid fertilizer
(Urea-Ammonium-Nitrate) at 0.0411 9 June 2017: Lexar at 0.0007 1 m
m2 (41 gallons acre™) (3 quart acre!) & Roundup Power
Max at 0.00016 kg m™ (22 oz acre”
1) & ammonium sulfate at 0.00034
kg m? (3.4 Ibs acre™)
T3 Biological with
reduced input of 8 May 2017: 0-0-60 potash at 8 June 2017: Roundup Power Max ~ Weed
chemicals (BT) 0.009 kg m (80 lbs acre™!) at 0.00016 kg m? (22 oz acre’') &  control
Dekalb DKC52-59 ammonium sulfate at 0.00034 kg m~ provided by
Corn Hybrid- 24 May 2017: 19-17-0 liquid 2 (3.4 Ibs acre™!) & Dual Il Magnum tillage and
GM fertilizer at 0.01 1 m™ (14 gallons at a rate of 0.00012 1 m? (1.33 pint by rotary
(planted 24 May acre’™!) acre’™!) hoeing and
2017, harvested 18 cultivation
October 2017) after

planting




T4 Biological organic

treatment (BT) None (no manure and no compost None Weed

Blue River added) control
Hybrids Corn provided by
Hybrid 25M75 tillage and
Organic Corn- by rotary
non-GM hoeing and
(planted 3 June cultivation
2017, harvested 18 after
October 2017) planting

Table 2. Summary statistics of field measurement for T1-T4 treatments: field NDRE (NDREField),

leaf chlorophyll content (Chleaf) in SPAD units and leaf area index (LAI).

Mean (standard deviation)

Treatments NDREFicld ChlLeaf (SPAD) LAI
T1 0.101 (0.040) 35.705 (8.890) 1.360 (0.429)
T2 0.154 (0.030) 46.727 (3.576) 1.623 (0.219)
T3 0.144 (0.035) 38.828 (8.063) 1.558 (0.456)
T4 0.086 (0.021) 39.672(6.547) 0.752 (0.338)

Table 3. A summary of testing differences between treatment means for field NDRE (NDREField),

leaf chlorophyll content (Chlieaf) and leaf area index (LAI) collected on 11 August 2017 using
ANOVA-Tukey-Kramer approach at the 0.05 level of significance. The p values show upper limits

of all significant results for a given parameter (SD: Significant Difference; n-SD: non-Significant

Difference).

NDREField  ChlLeaf (SPAD) LAI
p for SDs <0.001 <0.002 <0.000
T1 to T2 SD SD SD
Tl to T3 SD SD SD
T1 to T4 SD SD SD
T2 to T3 n-SD SD n-SD
T2 to T4 SD SD SD
T3 to T4 SD n-SD SD




Figures:

{i) b

Figure 1. (@) Landsat image of the study area: W. K. Kellogg Biological Station, Michigan
(42°24'N, 85°22'W); (b) distribution of 24 parcels used in the study. Source: USGS and Google
Earth (Simic Milas and Vincent 2016).
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Figure 2. () UAV composite image (NIR band in red color; RE band in green color; red band in
blue color); (b) Digital Terrain Model (DTM); (c¢) Digital Surface Model (DSM) generated over
KBS on 11 August 2017.



Figure 3. Representative Digital Hemispherical Photographs used in Can-Eye to generate gap
fraction and LAI for each treatment (T1-T4).
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Figure 4. (a) Relationships between NDRE calculated from the spectroradiometer measurements
(NDREField) and UAV (NDREuav); (b) Relationships between NDREFieid multiplied by Leaf
Area Index (LAI) and NDREuvav; (c¢) LAI calculated using Digital Hemispherical Photography

(DHP) averaged for each parcel (error bars represent +/- 1 standard deviation of uncertainty); (d)

Relationship between NDREuav and LAI generated using DHP.
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Figure 5. Relationship between (@) NDREFicid and leaf chlorophyll content measurements
(ChlLeaf); (b) NDREuav and Chlreaf; (¢) NDREuav and Chlcanopy; and (d) validation of estimated

leaf chlorophyll content (ChlLeaf-estimated) With ChlLeaf.
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Figure 6. Maps for the KBS site (¢) NDREuav; (b) LAI based on the NDREuav and LAI

algorithm (see Figure 4(d)); (c) Canopy chlorophyll map Chlcanopy (see eq. 2) (d) Leaf

chlorophyll map Chlreaf generated from the Chlcanopy and LAI maps.



