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Abstract 

The impact of structural parameters of agricultural crops on the retrieval of chlorophyll content 

presents a real challenge for the remote sensing community. Canopy reflectance can differ 

between crops of different canopy structure even when they have the same canopy chlorophyll 

content. Thus, structural properties should be incorporated in chlorophyll mapping to reduce 

modeling errors. The empirical relationships between vegetation indices and chlorophyll content 

are well established and commonly used in precision agriculture. Recent advances in using 

unmanned aerial vehicle (UAV/drone) technology offer successful retrieval of crop structural 

and biochemical parameters. However, transfer of empirical algorithms derived from satellite to 

UAV based analyses introduces new challenges mainly due to fine spatial resolution and details 

such as crop rows and between- and within- canopy gaps that are more pronounced in UAV 

images. There are two components of the analysis in this study. The first part is related to 

heterogeneity of leaf area index (LAI) and chlorophyll content of corn under four agricultural 

treatments (conventional ploughed, conventional with no tilling, biological with reduced 

chemical inputs, and certified organic) at the Kellogg Biological Station Long-Term Ecological 

Research (KBS LTER) site in Michigan, USA. The second part examines the necessity and 

importance of LAI in chlorophyll mapping using UAV images collected over the heterogeneous 

KBS LTER parcels at peak growing season. The UAV-derived Normalized Difference Red Edge 

Index (NDRE) is found to be highly correlated with canopy chlorophyll, calculated as a product 

of leaf chlorophyll content and LAI. The coefficient of determination changes from R2 = 0.177 to 

R2 = 0.774 when LAI is added to the empirical model. NDRE is also found to be highly 

correlated with LAI (R2 = 0.620). The findings suggest that the conventional corn treatment with 



 
 

 

no-tilled soil exhibits the highest crop vigor during the peak growing season. The herbicide 

management applied earlier in the season may have a strong effect on weeds, reducing the crop-

weeds competition for nutrients.  
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1. Introduction 

 

The biochemical composition of vegetation canopies is an important indicator of ecosystem 

health and sustainability (Carter 1994; Lichtenthaler 1998). Leaf chlorophyll and nitrogen 

contents are principal parameters for quantifying the foliage photosynthesis rate and primary 

productivity (Ripullone et al. 2003; Gitelson et al. 2006). Retrieval of biochemical information 

using remote sensing commonly relies on empirical relationships between biochemical contents 

and spectral reflectance obtained by satellite imagery (Zarco-Tejada et al. 2001; le Maire, 

Francois, and Dufrene 2004; Gitelson et al. 2005; le Maire et al. 2008). While pigment content 

controls the spectral signature of leaves and canopy, other factors such as canopy architecture, 

which encompasses both the angular and spatial distributions of vegetation components, leaf area 

index (LAI) and background reflectance also contribute to the signal (Chen et al. 2002; Gitelson 

et al. 2005; Verrelst, Schaepman, and Clevers 2008; Pisek et al. 2010; Simic, Chen, and Noland 

2011; Simic et al. 2014). 

 

There are two ways of monitoring chlorophyll content: (1) Leaf chlorophyll (chlorophyll content 

per unit leaf area) and (2) Canopy chlorophyll (total chlorophyll content per ground area) where 

leaf chlorophyll is commonly multiplied by LAI to better respond to the radiometric signal of 

satellite observations (Gitelson et al. 2005; Baret, Houles, and Guerif 2007; Simic et al. 2010; 

Simic, Chen, and Noland 2011; Peng et al. 2017). The empirical modeling for chlorophyll 

content retrieval is based on multispectral or hyperspectral vegetation indices (Curran 1989; 

Elvidge and Chen 1995; Jacquemond et al. 1996; Dawson and Curran 1998; Broge and Leblanc 

2001; Zarco-Tejada et al. 2001; Clevers et al. 2002; Smith et al. 2003; le Maire, Francois, and 

Dufrene 2004; Ustin et al. 2004; Gitelson et al. 2005; le Maire et al. 2008). As summarized by 



 
 

 

Liang et al. (2016), fifty hyperspectral vegetation indices used to estimate chlorophyll content 

are proposed in the literature. While most of them are used separately, to map either leaf or 

canopy chlorophyll content, some of them are found to be suitable for both leaf and canopy 

chlorophyll mapping. They include the visible and near-infrared spectral ranges and they are 

used as simple ratio indices, normalized difference ratios, triangular vegetation indices, modified 

versions of these three types, derivative spectral indices, and red-edge based indices (Liang et al. 

2016). A fine spectral resolution at the red-edge is particularly useful for mapping chlorophyll 

content (Gitelson and Merlyak 1994; Gitelson and Merlyak 1998) as well as for mapping canopy 

architecture to a lesser extent.   

 

Structural characteristics influence canopy near-infrared and visible reflectance and, thus, affect 

the shape of the reflected spectral curve within the red-edge region (Demarez and Gastellu-

Etchegorry 2000, Delegido et al. 2008). Canopy reflectance can differ between the plants of 

different canopy structure even when they have the same canopy chlorophyll content (Gitelson et 

al. 2005). Thus, proper estimation of structural characteristics is necessary to reduce modeling 

errors in chlorophyll content retrieval (Simic, Chen, and Noland 2011). Rapid developments in 

remote sensing technologies over the last two decades inspired scientists to probe into the 

relationships between structural parameters of a vegetation canopy and multi-angular remote 

sensing data. In particular, the combination of multi-angular and hyperspectral data is very useful 

for retrieving canopy structure (Lewis, Barnsley, and Cutter 2001; Urso et al. 2004; Bach et al. 

2005; Begiebing et al. 2005; Schlerf and Hill 2005; Rautiainen et al. 2008; Simic and Chen 2008; 

Vuolo, Dini, and D’Urso 2008; Zhang et al. 2008). The improved multiangle-based LAI was 

found to have a significant impact on chlorophyll content retrieval in the studies of Simic et al. 

(2008) and Simic, Chen, and Noland (2011). Similarly, Duan et al. (2014) reported that the 

Unmanned Aerial Vehicle (UAV/drone)-derived LAI using data from two different angles 

resulted in increased accuracy of LAI estimates.  

 

Recent developments in remote sensing using the UAV technology represents a true paradigm 

shift (Salami, Barrado, and Pastor 2014). Having spatial resolution as small as a few centimeters, 

a sudden expansion of drone-related applications is particularly observed in precision agriculture 

where farmers and researchers have found a common goal ‘to improve crop status and yield’. 



 
 

 

Used for monitoring biochemical crops properties as surrogates for crop status, information is 

generally retrieved based on the existing algorithms that are already widely used for satellite and 

airborne data (Elarab et al. 2015). However, transfer of empirical algorithms from satellite 

images to UAV images introduces new challenges mainly due to fine spatial resolution and 

details, such as crop rows and between- and within-canopy gaps that are more pronounced in 

UAV images, affecting the importance of structural parameters in chlorophyll content retrieval. 

 

As summarized by Krishna (2016), many studies are conducted where drone is seen as low-cost 

operation compared to traditional manned aircraft or ground data collections. UAV cameras that 

operates at visual and NIR bands were found to be useful for monitoring crop status such as 

detecting crop diseases or crop infestation (Costa et al. 2012; Garcia-Ruiz and Sankaran 2013). 

UAVs help farmers to monitor low productivity of crops allowing them to correct the amount of 

fertilizers and pesticides. Different types and amounts of agricultural chemicals applied at 

different growing stages affect the crop vigor and ultimately crop yield. For instance, early 

applications of nitrate-based fertilizers and no-tilled soils together with the proper herbicide 

applications significantly increase corn yield and cause early corn maturity when observed with 

Landsat (Simic Milas and Vincent 2016). At some crop farms, canopy cover and water usage 

pattern were also used as indicators for forecasting crop yield (Trout and DeJonge 2017). 

Constant monitoring of crop vigor through LAI and chlorophyll content retrieval using drones is 

becoming universal nowadays.  

 

This study aims to explore the importance of LAI in chlorophyll mapping of heterogeneous corn 

fields using UAV images. There are two components of the analysis in this study. The first part 

is related to heterogeneity of vigor status and LAI of corn grown under four agricultural 

treatments (conventional ploughed, conventional with no tilling, biological with reduced 

chemical inputs, and certified organic) based on field and UAV measurements of the Normalized 

Difference Red Edge Index (NDRE), LAI, and chlorophyll content collected at the Kellogg 

Biological Station in Michigan, Ohio, USA. The second part examines the necessity and 

importance of LAI in chlorophyll mapping using UAV images over the parcels at peak growing 

season by incorporating LAI in the chlorophyll retrieval algorithm. The relationships between 

NDRE and leaf and canopy chlorophyll content are investigated and validated. NDRE is widely 



 
 

 

used by farmers and it consists of the red edge band, which is important in chlorophyll mapping. 

Both drone and field-derived NDRE using a field spectroradiometer are explored in the empirical 

relationships to predicting LAI and chlorophyll content. Spatial heterogeneity of vegetation 

cover introduces major uncertainties in large-scale analyses when sensors with fairly coarse 

spatial resolution are used (Ehleringer and Field 1993, Simic et al. 2004). The fine resolution 

analyses (e.g. UAV) closely represent reality and the relationship between field and remote 

sensing data (e.g. leaf and canopy chlorophyll) is believed to be differently impacted by 

structural parameters such as LAI. 

 

2. Data and Method 

 

2.1. Study Site and Field Data Collection 

 The study site is located within the Kellogg Biological Station (KBS) in Michigan, USA 

(42°24'N, 85°22ʹW) (Figure 1(a)). The KBS is a research area that includes different 

experimental treatments related to ecological interactions and agronomic performance. The KBS 

farmland is managed under a national network of the Long-Term Ecological Research (LTER) 

sites established by the National Science Foundation (Robertson et al. 2012; Robertson and 

Hamilton 2015). The 1-ha plots that undergo different treatments are mixed and randomly spread 

over the study area (Robertson et al. 2012). The annual cropping systems are corn–soybean–

winter wheat rotations ranging in management intensity from conventional to biologically based 

(Robertson et al. 2012; Gage, Doll, and Safir 2014; Simic Milas and Vincent 2016).  

 

[Figure 1]  

 

In this study, 24 parcels of corn were considered (Figure 1(b)). Six parcels (replicates) with the 

same management were assigned to each treatment (Michigan State University (MSU) 2017). 

There were four agricultural practices: (1) genetically modified (GM) corn treated in three 

different ways: (a) T1 – conventional ploughed; (b) T2 – conventional with no tilling; and (c) T3 

– biological with reduced chemical inputs, and (2) T4 – certified organic, non-genetically 

modified (non-GM) corn with no chemical treatments. Information about different type and 



 
 

 

quantity of fertilizers and herbicides were provided by Michigan State University (MSU 2017) 

(Table 1). 

 

[Table 1] 

 

 

A field campaign over 24 corn parcels were conducted concurrently with the UAV flight on 11 

August 2017. Field measurements of leaf chlorophyll content (ChlLeaf) and hyperspectral 

reflectance were collected at two or three randomly chosen locations at each parcel. In addition, 

digital hemispherical photographs (DHPs) were taken at each location and used to derive LAI.  

The sampling locations were approximately 10-15 m apart and positioned as a triangle around 

the center of each parcel. This allowed us to avoid any negative impact from the edge effect and 

mini-plots placed at the corners of parcels, and to compare the results with our previous Landsat-

based study by Simic Milas and Vincent (2016). At each location, three measurements were 

collected within a radius of 3-5 m. ChlLeaf measurements for validation were collected from an 

additional location at each parcel. The field measurements were compared between the 

treatments (T1-T4) to explore the heterogeneity of LAI and chlorophyll content / corn vigor 

during the peak growing season and possible impact of different treatments, including different 

types and application timing of fertilizers and herbicides, on crop status (Table 1).  

 

Plant chlorophyll was measured using the Konica Minolta Chlorophyll Meter SPAD-502Plus. 

SPAD units are linearly related to chlorophyll content. The meter has an accuracy of +/- 1 SPAD 

unit (Spectrum Technologies 2017). The measurements were taken from top and middle part of 

plant as expected to be seen on the UAV image.  

 

DHPs were taken using a Canon EOS Rebel T5 digital SLR 18.7-megapixel camera with a 

Sigma 8 mm F3.5 EX DG Circular Fisheye lens at each location. The photographs were taken 

vertically pointing up through the canopy (upward look), and pointing down through the canopy 

(downward look) for T4 parcels where open soil was observed (INRA 2017). The photographs 

were processed using the Can-Eye software package (INRA 2017), which classifies images using 

a binary classification technique and measures gap fraction from which LAI was calculated. 



 
 

 

 

Hyperspectral reflectance measurements of corn leaves were collected in situ using the Spectral 

Evolution RS-3500 portable spectroradiometer. The meter collects 1024 discrete measurements 

of reflected ER from 346.2 nm to 2505.4 nm (~2 nm average spectral resolution). Calibration 

accuracy is +/- 5% at 400 nm, +/- 4% at 700 nm, and +/- 7% at 2200 nm (Spectral Evolution 

2017). Pre-processing of the in situ hyperspectral reflectance data was automatically done using 

the DARWin SP data acquisition software installed in the hand-held data logger.  

The field hyperspectral reflectance measurements were spectrally aggregated to form NDRE 

(NDREField) to simulate the Sequoia camera for easier comparison of field and UAV derived 

parameters. Using ANOVA–Tukey-Kramer approach at the 0.05 level of significance, the mean 

values for NDREField, ChlLeaf and LAI were compared for each treatment to explore the impact 

of each treatment on corn status.  

 

2.2. UAV Data Collection 

 

To collect UAV spectral information over KBS we used eBee AG Sensefly UAV and the 

Sequoia camera. The eBee is a fixed-wing drone with a very light weight of just 700 g. eBee AG 

is easy to use as it allows for pre-launching flight preparation and simulations, and the flight plan 

can be altered during the flights. The planning and control computer system eMotion was used to 

plan and fly the system (Sensefly 2017). The flight area ceiling was set up for 400 m /ATO and 

the working radius was 2700 m. Lateral and longitudinal overlap was set up to 75% and spatial 

resolution was ~13 cm pixel-1. Data were collected in a single flight. During the flight, the wind 

was low and the weather was clear. The UAV data were processed with Pix4Dmapper Pro, a 

drone mapping software (Pix4D 2017). The images were mosaicked and reflectance images were 

created for each green (530-570 nm), red (640-680 nm), red edge (RE) (730-740 nm) and near-

infrared (NIR) (770-810 nm) band (Figure 2(a)). The image was registered to a corrected UAV 

image acquired the same day over the study area with the red-green-NIR Cannon camera that 

had a spatial resolution of 3.2 cm pixel-1 where corn plants, marked sampling locations, and fixed 

poles with known coordinates located in the field were clearly visible on the image. In addition, 



 
 

 

Digital Terrain Model (DTM) and Digital Surface Model (DSM) images were generated (Figure 

2(b) and 2(c), respectively).   

 

 

[Figure 2]   

 

NDRE calculated from UAV data (NDREUAV) was used in the empirical approach to explore the 

capability of this index to map crop status, chlorophyll content and LAI. The presence of NIR 

and RE bands, in particular, enables chlorophyll content retrieval. NDRE (Barnes et al. 2000) is 

calculated as  

																																																																					NDRE ൌ 	
NIR െ 	RE
NIR ൅ RE

																																																												ሺ1ሻ 

   

Simple linear regression models were generated and NDREUAV was compared to: (1) structural 

corn properties, LAI; (2) leaf chlorophyll measurements, ChlLeaf; and (3) canopy chlorophyll 

estimates (ChlCanopy) (expressed as ChlLeaf x LAI) for each parcel. Using the prediction 

algorithm, LAI and chlorophyll maps were generated. Validation of the estimated leaf 

chlorophyll values (ChlLeaf-estimated) were conducted using ChlLeaf measurements collected over 

the validation locations. Region-of-interest areas of approximately 5 x 5 m were chosen on the 

image around each field sample location to compare the results. The timing of the agricultural 

chemical applications as well as the possible impact of DTM on the results are also considered in 

the analysis to better understand the results.   

 

3. Results 

During data collection, the corn was at the peak of productive growth stage and kernel 

development. While the canopies for T1-T3 treatments looked relatively closed and similar in 

their appearance, T4 organic parcels had shorter corn plants, open canopies and more exposed 

soil than any other treatments (Figures 2(c) and 3). 

 



 
 

 

[Figure 3] 

 

Summary statistics show the highest mean values for T2 treatment for all three corn parameters: 

NDREField, ChlLeaf and LAI. The values are closely followed by T3 treatment with the exception 

of T4 treatment having slightly higher chlorophyll content than T3 treatment. T1 treatment has 

lower values than T2 and T3 conventional treatments, while T4 treatment has considerably lower 

values for NDREField and LAI than any other treatment (Table 2). 

 

[Table 2] 

 

The ANOVA–Tukey-Kramer analysis in Table 3 shows that parcels with T4 treatment have 

significantly lower NDREField and LAI than other treatments; however, ChlLeaf is not 

significantly different from T3 treatment. Parcels with T2 treatment have the highest values for 

all three parameters although the parameters are not significantly different from T3 treatment for 

NDREField and LAI. 

 

[Table 3] 

 

The field and UAV measured NDRE (NDREField and NDREUAV, respectively) are moderately 

associated (R2 = 0.614) suggesting that more than 61% of NDREUAV can be explained by 

NDREField (Figure 4(a)). The NDREField measurements multiplied by LAI explains almost 80% 

of the NDREUAV (R2 = 0.793) (Figure 4(b)). This difference of almost 20% suggests that LAI is a 

critical parameter for the information retrieval using NDREUAV measurements.  

High variability of LAI between and within different treatments (T1-T4) is shown in Figure 4(c). 

The within-treatment variability is more pronounced for T1 and T3 treatments on the graph. 

However, much higher variability of LAI than the graph suggests was observed for T4 treatment 



 
 

 

in the field suggesting some possible bias in choosing the sample locations at T4 parcels. This 

can also be confirmed by negative values of NDRE on the UAV image where the red edge 

values become higher than the NIR values in some areas of T4 parcels where the terrain 

elevation/DTM is higher. Generally, higher LAI values are observed for lower DTM values 

where most likely soil moisture and/or higher concentration of nutrients accumulated from 

surrounding areas increased corn productivity (Figure 2(b)). The within-parcel variability of LAI 

most likely affects the relationship between NDREUAV and LAI, which is moderately strong in 

this study (R2 = 0.620).   

 

[Figure 4] 

 

NDREField and ChlLeaf are not highly correlated (R2 = 0.363). Although we attempted to measure 

leaf chlorophyll content at the same location of a leaf from which we measured the reflectance 

using the hand-held spectroradiometer, either high within-leaf variability of chlorophyll content, 

or some minor effects of the outside light during the reflectance measurements caused 

uncertainties. We surmise that high variability of chlorophyll content observed within T4 parcels 

is the reason for the results (Figure 5(a)). However, the difference in the regression relationship 

between NDREUAV and chlorophyll is considerably improved when ChlLeaf is multiplied by LAI. 

The coefficient of determination changes from R2 = 0.177 to R2 = 0.774.  

The canopy chlorophyll map, ChlCanopy (expressed as ChlLeaf x LAI) is then derived by using 

empirical algorithm: 

NDREUAV = a (ChlLeaf x LAI) – b             (2)  

where a = 0.002 and b = 0.062 in this study; 

NDREUAV, LAI and ChlCanopy and ChlLeaf maps using the proposed algorithm (eq. 2) are 

demonstrated in Figures 6(a-d), respectively. The validation process shows reasonably high 

correlation between the measured ChlLeaf and ChlLeaf-estimated with the Pearson correlation 

coefficient r = 0.712 (Figure 5(d)).  



 
 

 

 

[Figure 5] 

 

[Figure 6] 

 

4. Discussion 

The results related to vigor status of the four treatments in this study are very similar to those of 

Simic Milas and Vincent (2016) where Landsat data were used to monitor corn crop status at the 

same site and under similar conditions in 2014. In summary, the results suggest that T2 treatment 

shows the highest crop vigor among all treatments. Closely followed by T3, there is no 

significant difference between T2 and T3 treatments for NDREField and LAI. T1 treatment 

exhibits the lowest crop vigor when compared with other conventional treatments.  T4 treatment 

has significantly lower NDREField and LAI than other treatments; however, its chlorophyll 

content is not significantly different from T3 treatment. We state that the intense early herbicide 

applications of Roundup and ammonium sulfate in combination with no-till soil management 

produce the highest crop vigor for T2 treatment during the peak growing season. There are 

several possible explanations for this trend. The herbicide management used for treatment T2 

(Table 1) may have an earlier and a stronger effect on weeds, reducing the crop-weeds 

competition for nutrients (Green 2014). It is also possible that nutrients and water are leached 

less in no-till soils having better interactions with the roots at initial contact, which further may 

increase green leaf productivity (Bender and van der Heijden 2015; Yu, Hui et al. 2016). For 

opposite reasons, the soil tillage management as well as later and less intense herbicide 

application (Roundup, in particular) most likely inhibit the early nitrogen uptake for treatment T1 

(Simic Milas and Vincent 2016). The insignificant difference between LAI and NDREField values 

for T2 and T3 treatments in this study occurs most likely due to the additional early herbicide 

application to T3 treatments in 2016, which was not done in 2014. However, that early herbicide 

application invested in LAI at the expense of chlorophyll content for T3 treatment (Table 1).  

When compared with the study of Simic Milas and Vincent (2016), the UAV image 

demonstrates more variability within- the treatments than Landsat images. Also, T4 treatment 



 
 

 

has somewhat lower vegetation index values relative to other treatments. Although, this 

difference for T4 treatments could be due to a slightly different soil status and/or differences in 

the weather between 2014 and 2016, the difference is most likely the result of different spatial 

resolutions between UAV and Landsat data. Drone pixels are considerably finer and have higher 

purity than Landsat pixels, serving more as the ground truth. Open canopies are more 

pronounced and better captured by UAV. While drone images are more valuable for farmers in 

precision agriculture, and while they capture within-treatments variability accurately, it is likely 

that coarser pixel size of satellite imagery such as Landsat data better capture the between-

treatment variability and differences between parcels at the ecosystem level.  

 

While physically-based canopy reflectance models, based on radiative transfer principles, show a 

real potential in employing structural canopy characteristics in the retrieval of leaf chlorophyll 

content (Simic, Chen, and Noland 2011; Liang et al. 2016), the main limitations of the empirical 

models are the use of site- and sensor- specific relationships that do not fully account for the 

influence of the complexity of canopy structure. The empirical models lack robustness and 

portability from one study area to another (Demarez and Gastellu-Etchegorry 2000). It should be 

noted that this study incorporates corn grown under different agricultural treatments, which 

results in high heterogeneity of canopy coverage between the treatments. Most likely, this high 

heterogeneity causes somewhat lower R2 values (R2 = 0.774) between NDRE and chlorophyll 

content than in some other studies where red-edge based indices were also used but over more 

homogenous areas. Back in 1994, Gitelson and Merzlyak found a strong correlation between the 

RE band at 700 nm and chlorophyll concentration in higher plant leaves (Gitelson and Merzlyak 

1994; Gitelson and Merzlyak 1998). In 2008, Delegido et al. claimed that the combination of the 

674 nm and 712 nm wavebands, that corresponded to the maximum chlorophyll absorption and 

the RE position, respectively, was more sensitive to LAI than NDVI, reaching R2 = 0.820 over 

several agroecosystems. In the study of Peng et al. (2017), Sentinel-2 data were used to explore 

the advantages of RE in chlorophyll mapping of corn. While the RE-based chlorophyll index 

showed a high correlation in their study (R2 = 0.890), the maximum coefficient of determination 

(R2 = 0.920) was reached using the Normalized Difference Vegetation Index (NDVI), which 

consists of Red and NIR bands. Although the goal of this study has not been to explore the 



 
 

 

performance of different vegetation indices, the RE position is praised as a critical spectral 

region for both LAI and chlorophyll content. 

Although the idea of incorporating LAI in the empirical algorithm is not new, this study explores 

the impact of the fine spatial resolution of UAV images on chlorophyll mapping challenging the 

hypothesis that LAI may have a less critical role in the canopy chlorophyll mapping using UAV 

than using satellite imagery. While structural and biochemical vegetation characteristics, such as 

clumping and chlorophyll content, may vary considerably even within the same species under the 

same conditions (Houborg and Boegh 2008), in precision agriculture, the coupling between 

structural and biochemical parameters is essential in spatio-temporal modeling of crop status and 

yield using UAVs due to rapid phenological changes and high spatial heterogeneity intensified 

by different treatments and sporadic chemical applications.  

 

Conclusion 

This study considered the impact of LAI on the retrieval of chlorophyll content for corn grown 

under four agricultural treatments: full conventional, full conventional with no-tilled soil, 

biological with reduced quantities of chemicals and organic treatment. A field campaign was 

conducted at the Kellogg Biological Station (Michigan, USA) concurrently with the UAV/drone 

data acquisitions on 11 August 2017. The field campaign included measurements of 

hyperspectral reflectance using the field spectroradiometer, LAI using the Digital Hemispherical 

Photography and leaf chlorophyll content acquired with SPAD chlorophyll meter. The empirical 

model showed that NDRE was a sensitive vegetation index for both chlorophyll and LAI 

mapping. NDRE was found to be moderately correlated with LAI (R2 = 0.620). Chlorophyll 

mapping was significantly improved when LAI was incorporated as an input parameter in the 

predictive algorithm for canopy chlorophyll content retrieval. The coefficient of determination 

changed from R2 = 0.177 to R2 = 0.774 when LAI was added to the empirical model. While 

predictive algorithms based on the linear relationship between chlorophyll content and indices 

may be more reliable for closed canopies, our study showed that LAI considerably enhanced the 

retrieval of chlorophyll content using UAV for agricultural fields where variability of canopy 

coverage was high. The conventional corn treatment T2, with no-tilled soil and early herbicide 

applications exhibited the highest crop vigor during the peak growing season. Organic treatment 



 
 

 

had the lowest NDRE and LAI but its chlorophyll content was not significantly different from T3 

treatment. The herbicide management applied earlier in the season may have a strong effect on 

weeds, reducing the crop-weeds competition for nutrients.  
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Tables: 

 

Table 1. A summary of the four treatments.  Note: 0-0-60 potash at 0.0087 kg m-2 (70 lbs acre-1) 

equals 0.0047 kg m-2 (42 lbs acre-1) K2O; 19-17-0 liquid fertilizer at 0.01 l m-2 (14 gallons acre-1) 

equals 0.003 kg N m-2 (29.22 lbs N acre-1) and 0.003 kg P2O5 m-2 (26.14 lbs P2O5 acre-1); 28-0-0 

liquid fertilizer (Urea-Ammonium-Nitrate) at 0.041 l m-2 (41gallons acre-1) equals 0.0133 kg N m-2 

(122 lbs N acre-1). 

 
 Corn and treatment 

type 
Fertilizer 

application 
 

Pesticide application Tilling 

T1 Conventional (CT) 
Dekalb DKC52-59 
Corn Hybrid-  
GM 
(planted 16 May 
2017, harvested 18 
October 2017) 

 
8 May 2017: 0-0-60 potash at  
0.009 kg m-2 (80 lbs acre-1)  
 
 
16 May 2017: 19-17-0 liquid 
fertilizer at 0.01 l m-2 (14 gallons 
acre-1) 
 
21 June 2017: 28-0-0 liquid fertilizer 
(Urea-Ammonium-Nitrate) at 0.041 l 
m-2 (41 gallons acre-1) 

 
9 June 2017: Lexar at 0.0007 l m-2 
(3 quart acre-1) & Roundup Power 
Max at 0.00016 kg m-2 (22 oz acre-

1) & ammonium sulfate at 0.00034 
kg m-2 (3.4 lbs acre-1) [T1r4 
Roundup Power Max at 0.0002 kg 
m-2 (32 oz acre-1)] 

 
Conventiona
l tillage: 
spring chisel 
ploughing 
followed by 
secondary 
tillage 

T2 Conventional (CT)  
Dekalb DKC52-59 
Corn Hybrid- 
GM 
(planted 15 May 
2017, harvested 18 
October 2017) 

 
8 May 2017: 0-0-60 potash at  
0.009 kg m-2 (80 lbs acre-1)  
 
15 May 2017: 19-17-0 liquid 
fertilizer at 0.01 l m-2 (14 gallons 
acre-1)  
 
21 June 2017: 28-0-0 liquid fertilizer 
(Urea-Ammonium-Nitrate) at 0.041 l 
m-2 (41 gallons acre-1)  

 
24 April 2017: Roundup PowerMax 
at 0.00023 l m-2 (1 quart acre-1) & 
ammonium sulfate at 20.37 kg m-2 

(17 lbs per 100 gal) & 2,4-D Ester 
at 0.0009 l m-2  (1 pint acre-1) & 
anti-foaming agent at 1.273 kg m-3 ( 
1 oz per 100 gal) 
 
9 June 2017: Lexar at 0.0007 l m-2 
(3 quart acre-1) & Roundup Power 
Max at 0.00016 kg m-2 (22 oz acre-

1) & ammonium sulfate at 0.00034 
kg m-2 (3.4 lbs acre-1) 

 
No till 

T3 Biological with 
reduced input of 
chemicals (BT)  
Dekalb DKC52-59 
Corn Hybrid- 
GM 
(planted 24 May 
2017, harvested 18 
October 2017) 

 
8 May 2017: 0-0-60 potash at  
0.009 kg m-2 (80 lbs acre-1)  
 
24 May 2017: 19-17-0 liquid 
fertilizer at 0.01 l m-2 (14 gallons 
acre-1) 
 
 

 
8 June 2017: Roundup Power Max 
at 0.00016 kg m-2 (22 oz acre-1) & 
ammonium sulfate at 0.00034 kg m-

2 (3.4 lbs acre-1) & Dual II Magnum 
at a rate of 0.00012 l m-2 (1.33 pint 
acre-1) 

 
Weed 
control 
provided by 
tillage and 
by rotary 
hoeing and 
cultivation 
after 
planting 
 
 



 
 

 

T4 Biological organic 
treatment (BT)  
Blue River 
Hybrids Corn 
Hybrid 25M75 
Organic Corn- 
non-GM 
(planted 3 June 
2017, harvested 18 
October 2017) 

 
None (no manure and no compost 
added) 

 
None 

 
Weed 
control 
provided by 
tillage and 
by rotary 
hoeing and 
cultivation 
after 
planting 

 

 

Table 2. Summary statistics of field measurement for T1-T4 treatments: field NDRE (NDREField), 

leaf chlorophyll content (ChlLeaf) in SPAD units and leaf area index (LAI).  

Mean (standard deviation) 

Treatments NDREField ChlLeaf (SPAD) LAI 

T1 0.101 (0.040) 35.705 (8.890) 1.360 (0.429) 

T2 0.154 (0.030) 46.727 (3.576) 1.623 (0.219) 

T3 0.144 (0.035) 38.828 (8.063) 1.558 (0.456) 

T4 0.086 (0.021) 39.672(6.547) 0.752 (0.338) 

 

 

Table 3. A summary of testing differences between treatment means for field NDRE (NDREField), 

leaf chlorophyll content (ChlLeaf) and leaf area index (LAI) collected on 11 August 2017 using 

ANOVA–Tukey-Kramer approach at the 0.05 level of significance. The p values show upper limits 

of all significant results for a given parameter (SD: Significant Difference; n-SD: non-Significant 

Difference). 

 NDREField ChlLeaf (SPAD) LAI  

p for SDs  <0.001 <0.002 <0.000  
T1 to T2 SD SD SD  
T1 to T3 SD SD SD  
T1 to T4 SD SD SD  
T2 to T3 n-SD SD n-SD  
T2 to T4 SD SD SD  
T3 to T4 SD n-SD SD  

 



 
 

 

 

Figures: 

 

Figure 1. (a) Landsat image of the study area: W. K. Kellogg Biological Station, Michigan 

(42°24ʹN, 85°22ʹW); (b) distribution of 24 parcels used in the study. Source: USGS and Google 

Earth (Simic Milas and Vincent 2016). 

 

Figure 2. (a) UAV composite image (NIR band in red color; RE band in green color; red band in 

blue color); (b) Digital Terrain Model (DTM); (c) Digital Surface Model (DSM) generated over 

KBS on 11 August 2017. 

 



 
 

 

 

Figure 3. Representative Digital Hemispherical Photographs used in Can-Eye to generate gap 

fraction and LAI for each treatment (T1-T4). 

 

 

 

 

Figure 4. (a) Relationships between NDRE calculated from the spectroradiometer measurements 

(NDREField) and UAV (NDREUAV); (b) Relationships between NDREField multiplied by Leaf 

Area Index (LAI) and NDREUAV; (c) LAI calculated using Digital Hemispherical Photography 

(DHP) averaged for each parcel (error bars represent +/- 1 standard deviation of uncertainty); (d) 

Relationship between NDREUAV and LAI generated using DHP. 

 



 
 

 

 

 

Figure 5. Relationship between (a) NDREField and leaf chlorophyll content measurements 

(ChlLeaf); (b) NDREUAV and ChlLeaf; (c) NDREUAV and ChlCanopy; and (d) validation of estimated 

leaf chlorophyll content (ChlLeaf-estimated) with ChlLeaf.  

 



 
 

 

 

Figure 6. Maps for the KBS site (a) NDREUAV; (b) LAI based on the NDREUAV and LAI 

algorithm (see Figure 4(d)); (c) Canopy chlorophyll map ChlCanopy (see eq. 2) (d) Leaf 

chlorophyll map ChlLeaf generated from the ChlCanopy and LAI maps.   

  

 

 

 


