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We study the spin excitation spectrum (dynamic structure factor) of the spin-1/2 square-lattice
Heisenberg antiferromagnet and an extended model (the J-Q model) including four-spin interac-
tions () in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic
continuation of imaginary-time correlation functions computed with quantum Monte Carlo simula-
tions, we can treat the sharp (§-function) contribution to the structure factor expected from spinwave
(magnon) excitations, in addition to resolving a continuum above the magnon energy. Spectra for
the Heisenberg model are in excellent agreement with recent neutron scattering experiments on
Cu(DCOO);2-4D20, where a broad spectral-weight continuum at wavevector ¢ = (m,0) was inter-
preted as deconfined spinons, i.e., fractional excitations carrying half of the spin of a magnon. Our
results at (m,0) show a similar reduction of the magnon weight and a large continuum, while the
continuum is much smaller at ¢ = (7/2,7/2) (as also seen experimentally). We further investigate
the reasons for the small magnon weight at (7,0) and the nature of the corresponding excitation by
studying the evolution of the spectral functions in the J-Q model. Upon turning on the @ interac-
tion, we observe a rapid reduction of the magnon weight to zero, well before the system undergoes
a deconfined quantum phase transition into a non-magnetic spontaneously dimerized state. Based
on these results, we re-interpret the picture of deconfined spinons at (m,0) in the experiments as
nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the
picture of a fragile (7, 0)-magnon pole in the Heisenberg model and its depletion in the J-Q model,
we introduce an effective model of the excitations in which a magnon can split into two spinons
which do not separate but fluctuate in and out of the magnon space (in analogy with the resonance
between a photon and a particle-hole pair in the exciton-polariton problem). The model can re-
produce the reduction of magnon weight and lowered excitation energy at (,0) in the Heisenberg
model, as well as the energy maximum and smaller continuum at (7/2,7/2). It can also account
for the rapid loss of the (m,0) magnon with increasing @@ and a remarkable persistence of a large
magnon pole at ¢ = (7/2,7/2) even at the deconfined critical point. The fragility of the magnons
close to (7, 0) in the Heisenberg model suggests that various interactions that likely are important in
many materials, e.g., longer-range pair exchange, ring exchange, and spin-phonon interactions, may
also destroy these magnons and lead to even stronger spinon signatures than in Cu(DCOO),-4D20.

I. INTRODUCTION

The spin S = 1/2 antiferromagnetic (AFM) Heisen-
berg model is the natural starting point for describ-
ing the magnetic properties of many electronic insula-
tors with localized spins [1]. The two-dimensional (2D)
square-lattice variant of the model came to particular
prominence due to its relevance to the undoped parent
compounds of the cuprate high-temperature supercon-
ductors [2, 3], e.g., LaaCuOy, and it has also remained
a fruitful testing grounds for quantum magnetism more
broadly. Though there is no rigorous proof of the exis-
tence of AFM long-range order at temperature T' = 0
in the case of S = 1/2 spins (while for S > 1 there
is such a proof [4]), series-expansion [5] and quantum
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Monte Carlo (QMC) calculations [6-10] have convinc-
ingly demonstrated a sublattice magnetization in close
agreement with the simple linear spinwave theory. Ther-
modynamic properties and the spin correlations at 7' > 0
[11-13] also conform very nicely with the expectations
[14, 15] for a “renormalized classical” system with ex-
ponentially divergent correlation length when 7" — 0.
Thus, at first sight it may appear that the case is set-
tled and the system lacks ’exotic’ quantum-mechanical
features. However, it has been known for some time that
the dynamical properties of the model at short wave-
lengths cannot be fully described by spinwave theory.
Along the line q = (7,0) to (7/2,7/2) in the Brillouin
zone (BZ) of the square lattice (with lattice spacing one),
the magnon energy is maximal and constant within lin-
ear spinwave theory. However, various numerical calcu-
lations have pointed to a significant suppression of the
magnon energy and an anomalously large continuum of
excitations in the dynamic spin structure factor S(q,w)
around q = (7,0) [16-20]. At q = (7/2,7/2) the en-



ergy is instead elevated and the continuum is smaller.
Conventional spinwave theory can only capture a small
fraction of the (,0) anomaly, even when pushed to high
orders in the 1/ expansion [21-24].

A large continuum at high energies for q close to (7, 0)
was also observed in neutron scattering experiments on
LayCuQy, but an opposite trend in the energy shifts is
apparent there; a reduction at q = (7/2,7/2) and in-
crease at (m,0) [25, 26]. It was realized that this is due to
the fact that the exchange constant J is large in this case
(J ~ 100meV), and, when considering its origin from an
electronic Hubbard model, higher-order exchange pro-
cesses play an important role [27-30]. Interestingly, in
Cu(DCOO), - 4D>0O (CFTD), which is considered the
best realization of the square-lattice Heisenberg model to
date, anomalous features in close agreement with those in
the Heisenberg model have been observed [31-33]. In this
case the exchange constant is much smaller, J ~ 6meV,
and the higher-order interactions are expected to be rel-
atively much smaller than in LasCuQy.

The existence of a large continuum in the excitation
spectrum close to q = (m,0) has for some time prompted
speculations of physics beyond magnons in materials such
as LagCuO4 and CFTD. In particular, in recent low-
temperature polarized neutron scattering experiments on
CFTD [33], the broad and spin-isotropic continuum in
S(q,w) at q = (w,0) was interpreted as a sign of de-
confinement of spinons, i.e., that the S = 1 degrees of
freedom excited by a neutron at this wavevector would
fractionalize into two independently propagating S = 1/2
objects. In contrast, the (7/2,7/2) scattering remained
more magnon-like, with a small spin-anisotropic contin-
uum. Calculation within a class of variational resonating-
valence-bond (RVB) wave functions gave some support to
this picture [33], showing that a pair of spinons originat-
ing from a “broken” valence bond [34] at q = (m, 0) could
deconfine and account for both the energy suppression
and the broad continuum.

A potential problem with the spinon interpretation is
that there is still also a magnon pole at q = (m,0), even
though its amplitude is suppressed, and this would in-
dicate that the lowest-energy excitations there are still
magnons. Lacking AFM long-range order, the RVB
wave-function does not contain any magnon pole, and
the interplay between the magnon and putative spinon
continuum was not considered in Ref. 33. Many different
calculations have indicated a magnon pole in the entire
BZ in 2D Heisenberg model [16-20]. The prominent con-
tinuum at and close to q = (7,0) has been ascribed to
multi-magnon processes, and systematic expansions [19]
in the number of magnons indeed converge rapidly and
give results for the relative weight of the single-magnon
pole in close agreement [35] with series-expansion and
QMC calculations [16, 17]. Since the results also agree
very well with the neutron data for CFTD, the spinon
interpretation of the experiments can be questioned.

Despite the apparent success of the multi-magnon sce-
nario in accounting for the observations, one may still

wonder whether spinons could have some relevance in
the Heisenberg model and materials such as CFTD and
LasCuO4—this question is the topic of the present paper.
Our main motivation for revisiting the spinon scenario is
the direct connection between the Heisenberg model and
deconfined quantum criticality: If a certain four-spin in-
teraction () is added to the Heisenberg exchange J on
the square lattice (the J-Q model [36]), the system can
be driven into a spontaneously dimerized ground state;
a valence-bond solid (VBS). At the dimerization point,
Q./J = 22, the AFM order also vanishes, in what ap-
pears to be a continuous quantum phase transition [37—
39], in accord with the scenario of deconfined quantum
critical points [40, 41]. At the critical point, linearly dis-
persing gapless triplets emerge at q = (7,0) and (0, )
[42, 43] in addition to the gapless points (0,0) and (7, )
in the long-range ordered AFM, and all the low-energy
S = 1 excitations around these points should comprise
spinon pairs. Thus, it is possible that the reduction in
(7, 0) excitation energy observed in the Heisenberg model
and CFTD is a precursor to deconfined quantum critical-
ity. If that is the case, then it may indeed be possible to
also describe the continuum in S(g,w) around ¢ = (7, 0)
in terms of spinons, as already proposed in Ref. 19. How-
ever, the persistence of the magnon pole remains unex-
plained in this scenario.

Here we will revise and complete the picture of de-
confined spinon states in the continuum by also investi-
gating the nature of the sharp magnon-like state in the
Heisenberg model and its fate as the deconfined criti-
cal point is approached. Using QMC calculations and
an improved numerical analytic continuation technique
(also presented in this paper) to obtain the dynamic
structure factor from imaginary-time dependent spin cor-
relations, we will show that the (7,0) magnon pole in
the Heisenberg model is fragile—it is destroyed in the
presence of even a very small ) interaction, well be-
fore the critical point where the AFM order vanishes.
In contrast, the (7/2,7/2) magnon is robust and sur-
vives even at the critical point. We will explain these be-
haviors within an effective magnon-spinon mixing model,
where a bare magnon in the Heisenberg model becomes
dressed by fluctuating in and out of a two-spinon con-
tinuum at higher energy. The mixing is the strongest
at q = (m,0); the point of minimum gap between the
magnon and spinon. Our results indicate that there al-
ready exist spinons close above the magnon band in the
Heisenberg model, and a small perturbation, here the
@ interaction, can cause their bare energy to dip below
the magnon, thus destabilizing this part of the magnon
band and changing the nature of the excitation from a
well-defined magnon-spinon resonance to a broad contin-
uum of spinon states. In contrast, the (7/2,7/2) spinons,
which are at their dispersion maximum, never fall below
the magnon energy, thus explaining the robust magnon
in this case.

The proximity of the square-lattice Heisenberg AFM to
a so-called AF* phase has been proposed as the reason for



the (m,0) anomaly [33]. The AF* phase has topological
Z5 order but still also has AFM long-range order, and
it hosts gapped spinon excitations in addition to low-
energy magnons [44, 45]. In our scenario it is instead
the proximity to a VBS and the intervening deconfined
quantum critical point that is responsible for the pres-
ence of high-energy spinons and the excitation anomaly
in the Heisenberg model. Our results for the J-@) model
show that the q = (w,0) magnon pole is very fragile
in the Heisenberg model and the magnon picture should
fail completely around this wavevector even with a rather
weak deformation of the model, likely also with other per-
turbations than the @Q-term considered here (e.g., frus-
trated further-neighbor couplings, ring exchange, or per-
haps even spin-phonon couplings). Thus, although the
almost ideal Heisenberg magnet CFTD should only host
nearly deconfined spinons, other materials may possibly
have sufficient additional quantum fluctuations to cause
full deconfinement close to q = (m,0).

Our numerical results for S(g,w) rely heavily on an
improved stochastic method for analytic continuation of
QMC-computed imaginary-time correlation functions. It
allows us to test for the presence of a J-function in the
spectral function and determine its weight. In Sec. II we
will summarize the features of the method that are of crit-
ical importance to the present work (leaving more exten-
sive discussions of a broader range of applications of sim-
ilar ideas for a future publication [46]). We also present
tests using synthetic data, which show that the kind of
spectral function expected in the Heisenberg model in-
deed can be reproduced with QMC data of typical qual-
ity. Readers who are not interested in technical details
can skip this section and go directly to Sec. III, where
we present a brief recapitulation of the key aspects of
the method before discussing the dynamic structure fac-
tor of the Heisenberg model. In addition to the QMC
results, we also compare with Lanczos exact diagonaliza-
tion (ED) results for small systems and study finite-size
behaviors with both methods. We compare our results
with the recent experimental data for CFTD. In Sec. IV
we discuss results for the J-Q model, focusing on the
points q = (7,0) and q = (7/2,7/2), where the excita-
tion spectrum evolves in completely different ways as the
Q@-interactions are increased and the deconfined critical
point is approached. In Sec. V we present the effective
magnon-spinon mixing model for the excitations and dis-
cuss numerical solutions of it. We summarize and further
discuss our main conclusions in Sec. VI.

II. STOCHASTIC ANALYTIC CONTINUATION

We will consider a spectral function—the dynamic spin
structure factor—at temperature 7' = 0. A general spec-
tral function of any bosonic operator O can be written
in the basis of eigenstates |n) and eigenvalues E,, of the

Hamiltonian as
S(w) = = 3 IO ~ By~ B (1)

For the dynamic spin structure factor S(q,w) at momen-
tum transfer q and energy transfer w, the corresponding
operator is the Fourier transform of a spin operator, e.g.,
the z component

N
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where r; is the coordinate of site i; here on the square
lattice with the lattice spacing set to unity. In this section
we will keep the discussion general and do not need to
consider the form of the operator.

A. Preliminaries

In QMC simulations we calculate the corresponding
correlation function in imaginary time,

G(r) = (O(1)0(0)), 3)

where O(7) = e™0Oe " and its relationship to the
real-frequency spectral function is

G(r) = /000 dwS(w)e™ ™. (4)

Some QMC methods, such as the SSE method [47] ap-
plied here to the Heisenberg model, can provide an unbi-
ased stochastic approximation G; = G(7;) to the true cor-
relation function G; = G(7;) for a set of imaginary times
Ti, i =1,..., N, [48, 49]. These data points have statisti-
cal errors o; (one standard deviation of the mean value).
Since the statistical errors are correlated, their full char-
acterization requires the covariance matrix, which can
be evaluated with the QMC data divided up into a large
number of bins. Denoting the QMC bin averages by G?
for bins b = 1,2,..., Np, we have G; = Y, GY/Np and
the covariance matrix is given by

Co = g =1y 2O ~ GEI =), )

where we also assume that the bins are based on suffi-
ciently long simulations to be statistically independent.
The diagonal elements of C' are the squares of the stan-
dard statistical errors; o7 = Cj;.

In a numerical analytic continuation procedure, the
spectral function is parametrized in some way, e.g., with a
large number of d-functions on a dense grid of frequencies
or with adjustable positions in the frequency continuum.
The parameters (e.g., the amplitudes of the J-functions)
are adjusted for compatibility with the QMC data us-
ing the relationship Eq. (4). Given a proposal for S(w),



there is then a set of numbers {G;} whose closeness to
the corresponding QMC-computed function is quantified
in the standard way in a data-fitting procedure by the
“goodness of the fit”

N, N, - -
> =YY (Gi—Gi)CH G, - G)). (6)

i=1 j=1

In practice, we compute the eigenvalues ¢; and eigenvec-
tors of C and transform the kernel e~ of Eq. (4) to this
basis. With A; = G; — G, transformed to the same basis,
the goodness of the fit is diagonal;

oy (A) (7)

i=1

and can be more rapidly evaluated.

A reliable diagonalization of the covariance matrix re-
quires more than N, bins and we here typically use at
least 10 X N, bins, with N, in the range 50 — 100 and the
T points chosen on a uniform or quadratic grid. We eval-
uate the covariance matrix (5) by bootstrapping, with
the total number of bootstrap samples (each consisting
of Np random selections out of the Np bins) even larger
than the number of bins. In Appendix A we show some
examples of covariance eigenvalues and eigenvectors.

Minimizing x2 does not produce useful results. If
positive-definiteness of the spectrum is imposed, the
“best” solution consists of a typically small number of
sharp peaks [50, 51], and there are many other very dif-
ferent solutions with almost the same x2-value, reflecting
the ill-posed nature of the inverse of the Laplace trans-
form in Eq. (4). Without positive-definiteness the prob-
lem is even more ill-posed. Some regularization mecha-
nism therefore has to be applied.

In the standard Maximum-Entropy (ME) method [52—
54|, an entropy E,

Jop /OOo dwS(w)In (%) 7 (8)

of the spectrum with respect to a “default model” D(w)
is defined (i.e., F is maximized when S = D), and the
data is taken into account by maximizing the function

Q=aE—x*. 9)

This produces the most likely spectrum, given the data
and the entropic prior. Different variants of the method
prescribe different ways of determining the parameter «,
or, in some variants, results are averaged over «.

Here we will use stochastic analytic continuation [51,
55-57] (SAC), where the entropy is not imposed explicitly
as a prior but is generated implicitly by a Monte Carlo
sampling procedure of a suitably parametrized spectrum.
We will introduce a parametrization that enables us to
study a spectrum containing a sharp d-function, which is
impossible to resolve with the standard ME approaches
(and also with standard SAC) because of the low entropy
of such spectra.

S(w)

A O ™

S(w) (b)

‘IIIIIIII [N R (1N
@

FIG. 1. Parametrizations of the spectral function used in this
work. In (a) a large number of d-functions with the same am-
plitude occupy frequencies w; in the continuum (or, in prac-
tice, on a very fine frequency grid). The locations are sampled
in the SAC procedure. In (b), the §-function at the lowest fre-
quency wo has a larger amplitude, ap > a; for ¢ > 0, and this
amplitude is optimized in the way described in the text. The
frequencies of all the J-functions, including wo, are sampled
as in (a), but with the constraint wo < w; ¥ ¢ > 0.

B. Sampling Procedures

Following one of the main lines of the SAC approach
[51, 55-57], we sample the spectrum with a probability
distribution resembling the Boltzmann distribution of a
statistical-mechanics problem, with x?/2 playing the role
of the energy of a system at a fictitious temperature ©;

P(S) x exp (-5‘2) . (10)

Lowering © leads to less fluctuations and a smaller mean
value (x2), and this parameter therefore plays a regular-
ization role similar to « in the ME function, Eq. (9) [55].
Several proposals for how to choose the value of © have
been put forward [51, 55-57]. There is also another line of
SAC methods in which good spectra (in the sense of low
x? values) are generated not by sampling at a fictitious
temperature, but according to some other distribution
with other regularizing parameters [58]. Using Eq. (10)
allows us to construct direct analogues with statistical
mechanics, e.g., as concerns configurational entropy [59].
Before describing our scheme of fixing ©, we discuss a
parametrization of the spectrum specifically adapted to
the dynamic spin structure factor of interest in this work.
We parametrize the spectrum by a number N, of J-
functions in the continuum, as illustrated in Fig. 1;

No—1

Sw)= > aid(w—w), (11)

i=0
working with a normalized spectrum, so that

N,—1

> ai=1, (12)

1=0

which corresponds to G(0) = 1 in Eq. (4). The pre-
normalized value of G(0) is used as a factor in the final
result. In sampling the spectrum, we never change the



normalization, and G(0) therefore is not included in the
data set defining x? in Eq. (7). The covariance matrix,
Eq. (5), is also computed with normalization to G(0) = 1
for each bootstrap sample, which has a consequence that
the individual statistical errors o; — 0 for 7, — 0, as
discussed further in Appendix A.

In Fig. 1(a) the d-functions all have the same weight,
a; = N1, with N,, typically ranging from 500 to 2000 in
the calculations presented in this paper. The sampling
corresponds to changing the locations (frequencies) w; of
the d-functions, with the standard Metropolis probability
used to accept or reject a change w; — w; +d, with d cho-
sen at random within a window centered at d = 0. The
width of the window is adjusted to give an acceptance
rate close to 1/2. We collect the spectral weight in a his-
togram, averaging over sufficiently many updating cycles
of the frequencies to obtain smooth results. In practice,
in order to be able to use a precomputed kernel e™“77 in
Eq. (4) for all times 7; and frequencies w;, we use a very
fine grid of allowed frequencies (much finer than the his-
togram used for collecting the spectrum), e.g., with spac-
ing A,, = 1072 in typical cases where the dominant spec-
tral weight is roughly within the range 0—5. We then also
need to impose a maximum frequency, e.g., Wmax = 20
under the above conditions. With ~ 100 7-values the
amount of memory needed to store the kernel is then
still reasonable, and in practice the fine grid produces
results indistinguishable from ones obtained in the con-
tinuum (strictly speaking double-precision floating-point
numbers) without limitation, i.e., without even an upper
bound imposed on the frequencies.

We have found that not changing the amplitudes of
the d-functions is an advantage in terms of the sampling
time required to obtain good results, and there are other
advantages as well, as will be discussed further in a forth-
coming technical article [46]. One can also initialize the
amplitudes with a range of different weights (e.g., of the
form a; x i, with a > 0), while maintaining the nor-
malization Eq. (12). This modification of the scheme
can help if the spectrum has a gap separating regions of
significant spectral weight, since an additional amplitude-
swap update, a; <+ a;, can easily transfer weight between
two separate regions when the weights are all different,
thus speeding up the sampling (but we typically do not
find significant differences in the final results as compared
with all-equal a;). This method was already applied to
spectral functions of a 3D quantum critical antiferromag-
net in Ref. 60. Here we do not have any indications of
mid-spectrum gaps and use the constant-weight ensem-
ble, however, with a crucial modification.

As illustrated in Fig. 1(b), in order to reproduce the
kind of spectral function expected in the 2D Heisenberg
model—a magnon pole followed by a continuum—we
have developed a modified parametrization where we give
special treatment to the §-function with lowest frequency
wo. We adjust its amplitude a¢ in a manner described
further below but keep it fixed in the sampling of frequen-
cies. The common amplitude for the other é-functions is

then a; = (1 —ag)/(N, — 1). The determination of the
best ag value also relies on how the sampling temperature
O is chosen, which we discuss next.

Consider first the case of all é-functions having equal
amplitude; Fig. 1(a). As an initial step, we carry out a
simulated annealing procedure with slowly decreasing ©
to find the lowest, or very close to the lowest, possible
value of x? (which will never be exactly 0, no matter
how many J-functions are used, because of the positive-
definiteness imposed on the spectrum). We then raise
© to a value where the sampled mean value (x2) of
the goodness of fit is higher than the minimum value
X2, by an amount of the order of the standard devi-
ation of the x? distribution, i.e, going away from the
overfitting region where the process becomes sensitive
to the detrimental effects of the statistical errors (i.e.,
producing a nonphysical spectrum with a small number
of sharp peaks). Considering the statistical expectation
that the best fit should have X?nin ~ Naot = N7 — Npara,
where Npara is the (unknown) effective number of param-
eters of the spectrum and the minimum x? value can be
taken as an estimate of the effective number of degrees
of freedom; x2. =~ Ngof. Hence, the standard devia-
tion 0,2 = (2Ngof)/? can be replaced by the statistically
valid approximation

Ox? ~ \/ 2Xl?nin' (13)

Thus, we adjust © such that

<X2> ~ anin +a \/ 2X?nin7 (14)

with the constant a of order one. For spectral functions
with no sharp features, we find that this method with
the parametrization in Fig. 1(a) produces good, stable
results, with very little dependence of the average spec-
trum on a as long as it is of order one. For a — 0 the
data become overfitted, leading eventually to a spectrum
consisting of a small number of sharp peaks with little
resemblance to the true spectrum.

Using the unrestricted sampling with the parametriza-
tion in Fig. 1(a), with QMC data of typical quality one
cannot expect to resolve a very sharp peak—in the ex-
treme case a d-function—because it will be washed out by
entropy. Therefore, in most of the calculations reported
in this paper we proceed in a different way in order to
incorporate the expected d-function. After determining
X2, We switch to the parametrization in Fig. 1(b), and
the next step is to find an optimal value of the amplitude
ag. To this end we rely on the insight from Ref. 59 that
the optimal value of a parameter affecting the amount
of configurational entropy in the spectrum can be de-
termined by monitoring (x?) as a function of that pa-
rameter at fixed sampling temperature ©. In the case
of ag, increasing its value will remove entropy from the
spectrum. Since entropy is what tends to spread out
the spectral weight excessively into regions where there
should be little weight or no weight at all, a reduced en-
tropy can be reflected in a smaller value of (x2). Thus, in



cases where the spectrum is gapped, a sampling with the
parametrization in Fig. 1(a) will lead to spectral weight
in the gap and an overall distorted spectrum. However,
upon switching to the parametrization in Fig. 1(b) and
gradually increasing ag, no weight can appear below wy
and (wp) will gradually increase (and note again that wy
is not fixed but is sampled along with the other frequen-
cies w;) because a good match with the QMC data {G}
cannot be obtained if there is too much weight in the
gap. In this process (x?) will decrease. Upon increas-
ing ag further, (wp) will eventually be pushed too far
above the gap, and then (x?) clearly must start to in-
crease. Thus, if there is a é-function at the lower edge of
the spectrum pursued, one can in general expect a min-
imum in (x?) versus ag, and, if the QMC data are good
enough, this minimum should be close to the true value
of ag. When fixing ag to its optimal value at the (x?)-
minimum, the frequency wy should fluctuate around its
correct value (with normally very small fluctuations so
that the final result is a very sharp peak). If there is
no such d-function in the true spectrum, one would ex-
pect the (x?) minimum very close to ag = 0. Extensive
testing, to be reported elsewhere [46], has confirmed this
picture. We here show test results relevant to the type of
spectral function expected for the 2D Heisenberg model.

One might think that we could also sample the weight
ao instead of optimizing its fixed value. The reason
why this does not work is at the heart of our approach:
Including Monte Carlo updates changing the value of
ap (and thus also of all other weights a;~0 to main-
tain normalization), entropic pressures will favor val-
ues close to the other amplitudes and the results (which
we have confirmed) are indistinguishable from those ob-
tained without special treatment of the lower edge, i.e.,
the parametrization in Fig. 1(a). The entropy associated
with different parametrizations will be further discussed
in a separate article [46].

C. Tests on synthetic data

To test whether the method can resolve the kind of
spectral features that are expected in the 2D Heisenberg
model, we construct a synthetic spectral function with
a d-function of weight a¢ and frequency wy, followed by
a continuum with total weight 1 — ag. The relationship
in Eq. (4) is used to obtain G(7) for a set of T-points
and normal-distributed noise is added to the G values,
with standard deviation typical in QMC results. To pro-
vide an even closer approximation to real QMC data, we
construct correlated noise. Here one can adjust the au-
tocorrelation time of the correlated noise to be close to
what is observed in QMC data. The way we do this is
discussed in more detail in Appendix A.

As we will discuss in Sec. III, for the 2D Heisenberg
model we find that the smallest relative weight of the
magnon pole is &~ 0.4 at g = (7,0). We therefore here
test with ag = 0.4, set wyg = 1 and take for the con-

FIG. 2. The goodness of the fit versus the amplitude ag of the
lowest d-function in three runs with different noise realizations
for a synthetic spectrum with a d-function of weight ap = 0.4
at wgp = 1. The continuum is a Gaussian of width 1 centered
at the same wo, with the weight below wp excluded. The noise
level is o; ~ 10~° and the errors are correlated with autocor-
relation time 1 according to the description in Appendix A.
The inset shows the data close to the (x?) minimum on a
different scale.

tinuum a truncated Gaussian (with no weight below wy)
of width ¢ = 1. This situation of no gap between the
d-function and the continuum should be expected to be
very challenging for any analytic continuation method.
Extracting agp and wy by simply fitting an exponential
ape” 7 to the QMC data for large 7 is difficult because
there will never be any purely exponential decay (unlike
the case where there is a gap between the §-function and
the continuum) and the best one could hope for is to ex-
trapolate the parameters based on different ranges of 7
included in the fit, or with some more sophisticated anal-
ysis [43]. As we will see below, with noise levels in the
synthetic data similar to our real QMC data, the SAC
procedure outlined above not only produces good results
for ag and wy but also reproduces the continuum well.

When looking for the minimum value of (x?) versus ao,
it is better to start with a somewhat higher © than what
is obtained with the x? criterion in Eq. (14), so that the
minimum can be more pronounced. Staying in the regime
where the fit can still be considered good and the effects
on S(w) of a slightly elevated © are very minor, we aim
for (x?) ~ x2,;, +bN, with b =1 or 2 at the initial stage
of fixing ©® without the special treatment of the lowest
O-function. With the so obtained © we scan over ag with
some step size Aag. The scan is terminated when (x?2)
has increased well past its minimum. The (x?) curve can
be analyzed later to locate the optimal ag value. If all
the spectra generated in the scan have been saved one
can simply use the best one. Since (x?) normally will
be significantly smaller at the optimal value of ag than
at the starting point with ag = 0, there is typically no
need for further adjustments of © later, though one can
also do a final run at the optimal ag with the criterion in
Eq. (14).
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FIG. 3. Mean value of wp in SAC runs with four different
noise realizations (shown in different colors) graphed vs the
amplitude parameter ag. The noise level is 107° and 107% in
(a) and (b), respectively, and the number of §-functions was
N,, = 1000 and N, = 2000. In both cases G(7) values were
generated on a uniform grid with A, = 0.1 for 7 up to the
point where the relative error exceeds 10%.

Fig. 2 shows typical (x?) behaviors in tests with spec-
trum consisting of a J-function and a continuum of rela-
tive size and width similar to what we will report for the
Heisenberg model in the next section. Here we used 80
T-points on a uniform grid with spacing A, = 0.1 and
noise level o; ~ 107> for 7 points sufficiently away from
7 = 0. We built in covariance similar to what is observed
in the QMC data (also discussed in Appendix A). We can
indeed observe a clear minimum in the (x?) curve close
to the expected value ag = 0.4. The deviations from
this point reflect the effects of the statistical errors. In
several runs at much smaller noise level, o; ~ 107%, the
minimum was always at 0.40 in scans with Aag = 0.01.

The effects of the noise are smaller in the mean location
(wo) of the lowest d-function. Fig. 3 shows results versus
ao from several different runs. At the correct value ag =
0.4, the error in the frequency is typically less than 1073
at noise level 107° and smaller still at 1076, Considering
the uncertainty in the location of the minimum in Fig. 2,
the total error on wy of course becomes higher, but still
the precision is typically better than 1072 for noise level
10~° and much better at 1076,

The full SAC spectral functions at both noise levels
are shown in Fig. 4, for two noise realizations in each
case (with the spectra taken at their respective optimal
ap values). When constructing the histogram for averag-
ing the spectrum, here with a bin with Aw = 0.005, we
also include the main §-peak. If the fluctuations in wgy
are large, a broadened peak will result. Here the fluctua-
tions are very small and no significant broadening is seen
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FIG. 4. Two typical SAC-computed spectral functions
(red and blue curves, obtained with different noise realiza-
tions) compared with the underlying true synthetic spectrum
(thicker black curve, with the half-Gaussian containing 60%
of the weight). The parameters of the spectrum are the same
as in Fig. 6. The noise level is 107> and 107% in (a) and (b),
respectively.

beyond that due to the histogram binning. As discussed
above, the location of the main peak is very well repro-
duced. The continuum typically shows the strongest de-
viations from the correct curve close to the edge. The
improvements when going from noise level 1072 to 107
are obvious in the figure.

Statistical errors of order 107° in the correlation func-
tion G(7) normalized to 1 at 7 = 0 are relatively easy to
achieve in QMC calculations, and in many cases it is pos-
sible to go to 1078 or even better. The tests here show
that quite detailed information can be obtained with such
data for spectral functions with a prominent §-function
at the lower edge followed by a broad continuum. Impor-
tantly, the approach also involves the estimation of the
statistical error on the weight of the d-function through
a bootstrapping procedure, and based on tests such as
those above, as well as additional cases, we do not see
any signs of further systematical errors in the weight and
location of the d-function, i.e., the method is unbiased in
this regard. It is still of course not easy to discriminate
between a spectrum with an extremely narrow peak and
one with a true d-function, but a broad peak will mani-
fest itself in the loss of amplitude ag, accumulation of the
“background” J-functions as a leading maximum at the
edge, and in large fluctuations in the lower edge wy. We
therefore have good reasons to believe that the approach
is suitable in general both for reproducing spectra with
an extremely narrow peak and for detecting when such a
peak is absent.



III. HEISENBERG MODEL

In quantum magnetism the most important spectral
function is the dynamic spin structure factor S%(q,w),
corresponding to the correlations of the spin operator
Sq (a = z,y, z), the Fourier transform of the real-space
spin operator S as in Eq. (2). This spectral function is
directly proportional to the inelastic neutron-scattering
cross-section at wavevector transfer q and energy trans-
fer w [61]. In this paper we focus on isotropic spin sys-
tems and do not break the symmetry in the finite-size
calculations; thus all components « are the same, cor-
responding to the total cross-section averaged over the
longitudinal and transverse channels (i.e., as obtained in
experiments with unpolarized neutrons). We consider
the z-component in the SSE-QMC calculations and here-
after use the notation S(q,w) without any « superscript.
With sufficiently large inverse temperature, here g = 4L
in most QMC simulations, we obtain ground-state prop-
erties for all practical purposes for q at which the gap
wq is sufficiently large. More precisely, we have well-
converged data for all q except for q = (7, 7), where the
finite-size gap closes as 1/L? (this being the lowest exci-
tation in the Anderson tower of quantum-rotor states),
much faster than the lowest magnon excitation which has
a gap «x 1/L. Therefore, in the following we do not ana-
lyze the not fully-converged q = (7, 7) data. In addition
to the QMC calculations, where we go up to linear sys-
tem sizes L = 48, we also report exact T = 0 Lanczos
ED results for lattices with up to NV = 40 spins.

For the square-lattice Heisenberg antiferromagnet, the
spectral function in calculations such as conventional
spinwave expansions [21-24] and continuous unitary
transformations (an approach which also starts from
spinwave theory, formulated with the Dyson-Maleev rep-
resentation of the spin operators) [18, 19] contains a dom-
inant J-function at the lowest frequency wq and a con-
tinuum above this frequency,

S(a,w) = So(q)d(w — wq) + Se(q,w),  (15)

where wgq is also the single-magnon dispersion and Sy(q)
is the spectral weight in the magnon pole. We define the
relative weight of the single-magnon contribution as

_ So(q)
[ dwS(q,w)’

in the same way as the generic ag in Sec. II.

In principle the single-magnon pole may be broadened,
but the damping processes causing this are of very high
order in the spinwave interaction terms and we are not
aware of any calculations estimating these effects quan-
titatively. In general it is expected that the broadening
of the magnon pole itself should be very small in bipar-
tite (collinear AFM-ordered) Heisenberg systems [62, 63].
Accordingly, we can here make the simplifying assump-
tion that there is no broadening at 7' = 0 of the single-
magnon pole itself, i.e., that interaction effects are mani-
fested as spectral weight transferred from the d-function

ao(q) (16)

to the continuum above it. In contrast, in non-bipartite
(frustrated) antiferromagnets with non-collinear order,
there are other lower-order magnon damping mecha-
nisms present that cause significant broadening of the
d-function [62, 63].

In a previous QMC calculation where the analytic con-
tinuation was carried out by function fitting including a
d-function edge [17], the continuum S.(q,w) was mod-
eled with a specific functional form with a number of
parameters (adjusted to fit the QMC data). Here we
do not make any prior assumptions on the shape of the
continuum, instead applying the SAC procedure with the
parametrization illustrated in Fig. 1(b). If the §-function
is actually substantially broadened, such that the sepa-
ration of the spectrum into two distinct parts in Eq. (15)
becomes inappropriate, we expect our SAC approach to
simply give a very small amplitude Syp(q) when this is
the case. We will see examples of this kind of full de-
pletion of the magnon pole later in Sec. IV, where other
interactions are added to the Heisenberg model (the J-
@ model). Later in this section we will also show some
results for the Heisenberg model obtained without as-
suming a J-function in Eq. (15).

To briefly recapitulate the version of SAC we developed
in Sec. II, after fixing a proper sampling temperature us-
ing the spectrum without special treatment of the lead-
ing A-function, i.e., the parametrization of the dynamic
structure factor illustrated in in Fig. 1(a), in the final
stage of the sampling process we use the parametriza-
tion ofFig. 1(b). The amplitude of the leading §-function
is optimized based on the entropic signal-—a minimum
in the mean goodness of the fit, (x?). The location of
this special §-function is sampled along with all the other
“small” ones representing the continuum, and the spec-
tral weight as a function of the frequency is collected in
a histogram (here typically with bin size Aw = 0.005).
Thus, in the final averaged spectrum the magnon pole
may be broadened by fluctuations in its location, but, as
we will see below, the width is typically very narrow and
for all practical purposes it remains a J-function contri-
bution. Here the level of the statistical QMC errors, with
the definitions discussed in Sec. IL, is 1075 or better (some
raw data are shown in Appendix A). Extensive testing,
exemplified in Fig. 4, demonstrates that the method is
well capable of reproducing the type of spectral function
of interest here to a good degree with this data quality.
The number N, of §-functions required in the contin-
uum in order to obtain well converged results depends
on the quality of the QMC data. We have carried out
tests with different N, and find good convergence of the
results when N, =~ 500 — 1000. The results presented
below were obtained with N,, = 2000.

A. Spectral functions at different wavevectors

For an overview, we first show the spectral function for
the L = 48 system with a color plot in Fig. 5, where the x-
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FIG. 5. The dynamic structure factor of the 2D Heisenberg
model computed on an L = 48 lattice along the path in the
BZ indicated on the z-axis. The y-axis is the energy transfer
w in units of the coupling J. The magnon peak (d-function) at
the lower edge of the spectrum is marked in white irrespective
of its weight, while the continuum is shown with color coding
on an arbitrary scale where the highest value is 1. The upper
white curve corresponds to the location where, for given q,
5% of the spectral weight remains above it.

axis corresponds to the wavevector along a standard path
in the BZ and the y-axis is the frequency w. The location
of the magnon pole (the dispersion relation) is indicated,
and for the continuum a color coding is used. We also
show an upper spectral bound defined such that 95% of
the weight for each q falls between the two curves. Due
to matrix-elements effects related to conservation of the
magnetization (S7_,) of the Heisenberg model, the total
spectral weight vanishes as ¢ — 0 and it is seen in Fig. 5
to be small in a wide region around this point. Both the
total weight and the low-energy scattering is maximized
as q — (m, 7). As mentioned above, exactly at (m, 7) our
calculations are not 7' — 0 converged, and we therefore
do not show any results for this case. The width in w
of the region in which 95% of the weight is concentrated
is seen to be almost independent on q. However, since
the total spectral weight for q close to (m, ) is very large
there is significant weight extending up to w =~ 6, while in
other q regions the weight extends roughly up to 4.5 — 5
[except close to (0,0), where no significant weight can be
discerned in the density plot with the color coding used].

More detailed frequency profiles at four different
wavevectors are shown in Fig. 6. In addition to the
points (m,0) and (7/2,7/2), on which many prior works
have focused, results for the points closest to the gapless
points (0,0) and (w,7) are also shown. The results at
(m,0) and (w/2,7/2) are in general in good agreement
with the previous QMC calculations [17] in which the
d-function contributions were also explicitly included in
the parametrization of the spectrum. The relative weight
in the J-function, indicated in each panel in Fig. 6, is
also in reasonably good agreement with series expansions
around the Ising limit [20]. The relative spectral weight
of the continuum, 1 — ag(q), can be taken as a measure
of the effect of spinwave interactions, which leads to the
multi-magnon contributions often assumed to be respon-
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FIG. 6. Dynamic structure factor for L = 48 system at four
different momenta. The smallest momentum increment 27w /L
is denoted by k in (a) and (d). The relative amplitude of the
magnon pole is indicated in each panel.

sible for the continuum. We will argue later that the
particularly large continuum at (7, 0) is actually due to
nearly deconfined spinons.

It is not clear whether the small maximum to the right
of the d-function, which we see consistently through the
BZ, are real spectral features or whether they reflect the
statistical errors of the QMC data in a way similar to the
most common distortion resulting from noisy synthetic
data, as seen in the tests presented in Fig. 4. The error
level of the QMC data in all cases is a bit below 1072,
i.e., similar to Fig. 4(a). The behavior does not suggest
any gap between the §-functions and the continuum.

B. Finite-size effects

It is important to investigate the size dependence of
the spectral functions. For very small lattices at T = 0,
S(q,w) computed according to Eq. (1) for each q con-
tains only a rather small number of §-functions and it
is not possible to draw a curve approximating a smooth
continuum following a leading d-functions. Therefore,
the SAC procedure does not reproduce exact Lanczos
results very well—we obtain a single broad continuum
following the leading é-function, instead of several small
peaks. Because the continuum also has weight close to
the leading J-function, between it and the second peak
of the actual spectrum, the SAC method also slightly
underestimates the weight in the first d-function. If the
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FIG. 7. Size dependence of the single-magnon energy (a) and
weight in the magnon pole (b) at wavevectors q = (m,0),
(r/2,7/2), and (m, 7). Lanczos ED results for small systems
(L x L lattices with L = 4 and L = 6 as well as tilted lat-
tices with N = 20,32, and 40 sites) are shown as open cir-
cles and QMC-SAC data are presented as solid circles with
error bars. The error bars were estimated by bootstrap anal-
ysis (i.e., carrying out the SAC procedure multiple times with
random samples of the QMC data bins).

continuum emerging as the system size increases indeed
is, as expected, broad and does not exhibit any unresolv-
able fine-structure, the tests in Sec. II suggest that our
methods should be able to reproduce it.

For the 6 x 6 lattice at q = (7,0), our SAC result
underestimates the weight in the magnon pole by about
5%, while the energy deviates by less than 1%. We ex-
pect these systematic errors to decrease with increasing
system size, for the reasons explained above. Fig. 7 shows
the size dependence of the single-magnon weight and en-
ergy at wavevectors q = (m,0), (7/2,7/2), and (m, 7).
At (m,7) we only have Lanczos results, but even with
the small systems accessible with this method it can be
seen that indeed the energy decays toward zero. The
magnon weight is large, converging rapidly toward about
97%, which is similar to the series-expansion result [20].
The energies at q = (7,0) and (7/2,7/2) also converge
rapidly, with no detectable differences between L = 32
and L = 48, and a smooth transition between the ED re-
sults for small systems and QMC results for larger sizes.
The magnon weight at these wavevectors show more sub-
stantial size dependence, though again the results for
the two largest sizes agree within error bars. Here the
connection between the ED and QMC results does not
appear completely smooth at (,0), due to the difficul-
ties for the SAC method to deal with a spectrum with a
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small number of d-functions. Nevertheless, even the ED
results indicate a drop in the amplitude for the larger
system sizes. The trends in 1/L for the QMC results
suggest that the weight converges to slightly below 40%
at q = (m,0) and slightly below 70% at q = (7/2,7/2),
both in very good agreement with the series-expansion
results [20]. This agreement with a completely different
method provides strong support to the accuracy of the
QMC-SAC procedures. The energies also agree very well
with the previous QMC results where particular func-
tional forms were used to model the continuum, and the
magnon amplitudes agree within 5—10% (with the values
indicated in the insets of Fig. 3 in Ref. 17).

C. Comparisons with experiments

In the discussion of the recent neutron-scattering ex-
periments on CFTD [33], it was argued that the large
continuum in the (7,0) spectrum is due to fully decon-
fined spinons, and a variational RVB wavefunction was
used to support this interpretation. We will discuss our
different picture of nearly deconfined spinons further in
Sec. V. Here we first compare the (7,0) and (7/2,7/2)
results with the experimental data without invoking any
interpretation. The experimental scattering cross sec-
tion in Ref. 33 was shown versus the frequency w/J nor-
malized by the estimated value of the coupling constant
(J ~ 6.11 meV). Keeping the same scale, we should only
convolute our spectral functions with an experimental
Gaussian broadening. We optimize this broadening to
match the data and find that a half-width ¢ = 0.12J of
the Gaussian works well for both wavevectors—which is
the same as the instrumental broadening reported for
the experiment [33]. Since the neutron data are pre-
sented with an arbitrary scale for the scattering inten-
sity we also have to multiply our S(q,w) for each q by
a common factor. The agreement with the data at both
(m,0) and (w/2,7/2) is very good, and can be further
improved by dividing w/J in the experimental data by
1.02, which corresponds to J ~ 6.23 meV, which should
still be within the errors of the experimentally estimated
value. As shown in Fig. 8, the agreement with the exper-
iments is not perfect but probably as good as could pos-
sibly be expected, considering small effects of the weakly
g-dependent form factor [61] and some influence of weak
interactions beyond J (longer-range exchange, ring ex-
change, spin-phonon couplings, disorder, etc.).

The single-magnon dispersion, the energy wq in
Eq. (15), is compared with the corresponding experi-
mental peak position in Fig. 9. The linear spinwave
dispersion is shown as a reference, using the best avail-
able value of the renormalized velocity ¢ = 1.65847 [64].
Our results agree very well with the spinwave dispersion
at low energies, and with the experimental CDFT data
[33] also in the high-energy regions where the spinwave
results are not applicable. The only statistically signifi-
cant deviation, though rather small, is at q ~ (7/2, 7/2),
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FIG. 8. Comparison of the CFTD experimental data [33] (the
full scattering cross section corresponding to unpolarized neu-
trons) and our QMC-SAC spectral functions at wavevectors
q = (m,0) and q = (7/2,7/2). To account for experimen-
tal resolution, we have convoluted the QMC-SAC spectral
functions in Figs. 6(b,c) with a common Gaussian broaden-
ing (half-width ¢ = 0.12J). We have renormalized the ex-
change constant by a factor 1.02 relative to the original value
in Ref. 33, and to match the arbitrary factor in the experi-
mental data we have further multiplied both of our spectra
by a factor ~ 50.
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FIG. 9. Single-magnon dispersion wq along a representative
path of the magnetic BZ. The CFTD experimental data from
Ref. 33 are shown as blue squares and the QMC-SAC data
(the location of the magnon pole) are shown with red cir-
cles. We also show the linear SWT dispersion (black curve)
adjusted by a common factor corresponding to the exact spin-
wave velocity ¢ = 1.65847 [64].

where the experimental energy is lower (as seen also in
the peak location in Fig. 8). Still, overall, one must con-
clude that CFTD is an excellent realization of the square-
lattice Heisenberg model at the level of current state-of-
the-art experiments. It would certainly be interesting to
improve the frequency resolution further and try to an-
alyze higher-order effects, which should become possible
in future neutron scattering experiments.

D. Wavevector dependence of the single-magnon
amplitude

We next look at the variation of the relative magnon
weight ag(q) along the representative path of the BZ for
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FIG. 10. Relative spectral weight of the single-magnon pole
along the representative path in the BZ for the L = 48 Heisen-
berg system. Error bars were estimated by bootstrapping.

L = 48, shown in Fig. 10. For q — (0,0) and (m,7) the
weight ag increases and appears to tend close to 1. From
the results exactly at (7, 7) in Fig. 7 we know that in this
case the remaining weight in the continuum should be
about 3%, which is also in good agreement with the series
results in Ref. 20, where a similar non-zero multi-magnon
weight was also found as ¢ — 0. At q = (7/2,7/2), as
also shown in Fig. 7, the magnon pole contains about 70%
of the weight, while at g = (7, 0) this weight is reduced
to about 40%. Both of these are also in good agreement
with Ref. 20, and in fact throughout the BZ path we find
no significant deviations from the series results. This
again reaffirms the ability of the SAC procedure to cor-
rectly optimize the amplitude of the leading d-function.
It should be noted that the series expansion around the
Ising model does not produce the full spectral functions,
only the single-magnon dispersion and weight.

The depletion seen in Fig. 10 of the single-magnon
weight in a neighborhood of q = (7,0) can also be re-
lated to the experimental data for CFTD. In Fig. 1(a) of
Ref. 33, a color coding is used for the scattering intensity
such that even a modest reduction in the coherent single-
magnon weight has a large visual impact. The region in
which the spectral function is smeared out with no sharp
feature in this representation corresponds closely to the
region where the single-magnon weight drops from about
60% to 40% in our Fig. 10.

E. Alternative ways of analytic continuation

One could of course argue that the existence of the
magnon pole at (m,0) is not proven by our calculations
since it has been built into our parametrization of the
spectral function. While it is clear that our approach
cannot distinguish between a very narrow peak and a -
function, if the broadening is significant for some q, so
that the main peak essentially becomes part of the con-
tinuum, we would expect the optimal amplitude ap(q)
to be very small or vanish. Nevertheless, to explore the
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FIG. 11. Spectral functions at q = (,0) and (7/2,7/2) ob-
tained using unconstrained SAC with the parametrization in
Fig. 1(a). The insets show comparisons with the experimental
data [33], where we have only adjusted a common amplitude
to match the areas under the peaks.

possibility of spectra without magnon pole, we also have
carried out the analytic continuation in two alternative
ways, using the parametrization in Fig. 1(a) without spe-
cial treatment of the lowest frequency, or by imposing a
lower frequency bound.

Sampling without any constraints with N, = 1000 6-
functions gives the results at ¢ = (7,0) and (7/2,7/2)
shown in Fig. 11. Here one can distinguish a peak in each
case in the general neighborhood of where the é-function
is located in Figs. 6(b,c), with the the maximum shifted
slightly to higher frequencies and weight extending sig-
nificantly to lower frequencies. At q = (7/2,7/2) there is
now a shallow minimum before a low broad distribution
at higher energies. This kind of behavior is typical for
analytic continuation methods when there is too much
broadening at low frequency, which leads to a compen-
sating (in order to match the QMC data) depletion of
weight above the main peak. Similarly, the up-shift of
the location of the peak frequency at both q relative to
Fig. 6 is due to there being weight also at w < wq where
there should be none or much less weight. In the insets of
Fig. 11 we show comparisons with the CFTD experimen-
tal data. Here the SAC spectral functions are broader
than the experimental profiles and we have not applied
any additional broadening. It is clear that the SAC re-
sults here do not match the experiments as well as in
Fig. 8, most likely because the QMC data are no suffi-
ciently precise to reproduce a narrow magnon pole, thus
also leading to other distortions at higher energy.

In order to reduce the broadening and other distortions
arising as a consequence of spectral weight spreading out
in the SAC sampling procedure due to entropic pressure
[59] into regions where there should be no weight, we
also carried out SAC runs with the constraint that no
d-function can go below the lowest energy determined
with the dominant J-function present. These energies,
wg = 2.13 and 2.40 for q = (7,0) and (7/2,7/2), re-
spectively, are in excellent agreement with the series ex-
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FIG. 12. Spectral functions obtained using sampling with
the parametrization in Fig. 1(a) under the constraint that
no weight falls below the lower bounds determined with a -
function at the lower edge (Fig. 6); wy = 2.13 and 2.40 for
q = (m,0) and (7/2,7/2), respectively. The inset shows the
results on a different scale to make the continua better visible.
The insets of the inset show comparisons with the experimen-
tal data, where we have broadened the numerical results by
Gaussian convolution and adjusted a common amplitude.

pansions around the Ising limit [20] and, in the case of
(m/2,m/2), also with the well-converged high-order spin-
wave expansion [21-24]. There is therefore good reason
to trust these as being close to the actual energies. As
seen in Fig. 12, there is a dramatic effect of imposing
the lower bound—the main peak is much higher and
narrower than in Fig. 11 and an edge is formed at w.
Most likely the peaks are still broadened on the right
side, and again this broadening has as a consequence a
local minimum in spectral weight before a broad second
peak, which is now seen for both q points. In this case
the comparisons with the experiments (insets of Fig. 12)
is overall somewhat better than with the completely un-
constrained sampling in Fig. 11, but still we see signs of
a depletion of spectral weight to the right of the main
peak that is not present in the experimental data. We
take the wp-constrained spectra as upper limits in terms
of the widths of the main magnon peaks, and most likely
the true spectra are much closer to those obtained with
the optimized §-functions in Fig. 6.

In summary, the results of these alternative ways of
carrying out the SAC process reaffirm that there indeed
should be a leading very narrow magnon pole, close to a
d-function, at both q = (7,0) and (7/2,7/2). While the
pole strictly speaking may have some damping, our good
fits with a pure d-function in Fig. 8 indicates that such
damping should be extremely weak, as also expected on
theoretical grounds [62, 63].

IV. J-Q MODEL

The AFM order parameter in the ground state of the
Heisenberg model is significantly reduced by zero-point
quantum fluctuations from its classical value ms = 1/2 to
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FIG. 13. Results for the J-Q model at q = (w,0) and
(m/2,7/2), calculated on the L = 32 lattice. The lowest ex-
citation energy w, (a) and the relative weight of the single-
magnon contribution (b) are shown as functions of the cou-
pling ratio Q/J from the Heisenberg limit (Q/J = 0) to the
deconfined quantum critical point (Q./J & 22).

about 0.307 [6, 9]. It can be further reduced when frus-
trated interactions are included, eventually leading to a
quantum-phase transition into a non-magnetic state, e.g.,
in the frustrated Ji-Jo Heisenberg model [65-70]. In the
J—@Q model [36], the quantum phase transition driven by
the four-spin coupling @) appears to be a realization of the
deconfined quantum critical point [39], which separates
the AFM state and a spontaneously dimerized ground
state; a columnar VBS. The model is amenable to large-
scale QMC simulations and we consider it here in order
to investigate the evolution of the dynamic structure fac-
tor upon reduction of the AFM order and approaching
spinon deconfinement.
The J-@Q Hamiltonian can be written as [36],

H=-JY P;j—-Q> PijPu, (17)
(i4)

(ijkl)
where P;; is a singlet projector on sites 77,
P =1/4-8,-8;, (18)

here on the nearest-neighbor sites. In the four-spin in-
teraction @) the site pairs 75 and kl form horizontal and
vertical edges of 2 x 2 plaquettes. All translations and 90°
rotation of the operators are included in Eq. (17) so that
all the symmetries of the square lattice are preserved.
In addition to strong numerical evidence of a contin-
uous AFM-VBS transition in the J-@Q model (most re-
cently in Ref. 39), there are also results pointing directly
to spinon excitations at the critical point, in accord with
the scenario of deconfined quantum criticality [40, 41]
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FIG. 14. Size dependence of the excitation energy wq (a) and
the relative weight of the magnon pole ao(q) (b) at q = (,0)
close to the Heisenberg limit of the J-Q model.

(where, strictly speaking, there may be weak residual
spinon-spinon interactions, though those may only be im-
portant in practice only at very low energies [34]). More-
over, the set of gapless points is expanded from just the
points g = (0,0) and (w,m) in the Néel state to also
q = (m,0) and (0,7) [42, 43] at the critical point. Re-
cent results point to linearly dispersing spinons with a
common velocity around all the gapless points [43].

Here our primary aim is to study how the magnon poles
and continua in S(q,w) at q = (7,0) and (7/2,7/2)
evolve as the coupling ratio @)/J is increased. We use
the same SAC parametrization as in the previous section,
with a leading d-function whose amplitude is optimized
by finding the minimum in (x?) versus ag(q). We first
consider the L = 32 lattice and show our results for the
energy and the relative amplitude in Fig. 13 as functions
of the coupling ratio Q/J all the way from the Heisen-
berg limit to the deconfined quantum critical point. Here
the most notable aspect is the rapid drop in the magnon
weight at q = (7, 0), even for small values of Q)/.J, while
at q = (7/2,7/2) the weight stays large, 70 — 80%, over
the entire range. The energies depend on the normal-
ization and here we have chosen J + @ as the unit. We
know from past work that the q = (7, 0) energy at Q./J
vanishes in the thermodynamic limit but the reduction
in the finite-size gap with the system size is rather slow
[43], and for the L = 32 lattice considered here we are
still far from the gapless behavior.

We focus on the effects on small @), where reliable ex-
trapolations to infinite size are possible, and show the
size dependence of the lowest excitation energy and the
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FIG. 15. The q = (w,0) dynamic structure factor of the
J-Q model at QQ/J = 4 obtained using SAC with the two
parametrizations of the the spectrum in Figs. 1(a,b). The
relative weight of the leading §-function in (b) is 1.4%.

magnon amplitude at q = (m,0) for several cases in
Fig. 14. We again show Lanczos ED results for small
systems and QMC-SAC results for larger sizes. For the
only common system size, L = 6, the energies agree very
well, as in the pure Heisenberg case discussed in the pre-
vious section, while the QMC-SAC calculations underes-
timate the magnon weight by a few percent due to the
inability to resolve the details of a spectrum consisting of
just a small number of d-functions. The most interesting
feature is the dramatic reduction in the magnon weight
even for very small ratios Q/J. For Q/J = 0.25 and 0.5,
the size dependence indicates small remaining magnon
poles, while at Q/J = 1 it appears that the J-function
completely vanishes in the thermodynamic limit.

In Fig. 15 we show the full q = (7,0) dynamic
structure factor at Q/J = 4, obtained with both the
parametrizations in Fig. 1. The optimal weight of the
leading o0-function is only 1.4% for this L = 32 lattice,
and the finite-size behavior indicates that no magnon
pole at all should be present in the thermodynamic limit
in this case. When no leading J-function is included in
the SAC treatment, i.e., with unrestricted SAC sampling
with the parametrization in Fig. 1(a), there is a little
shoulder close to where the d-function is located with
the other parametrization. The differences at higher fre-
quencies are very minor. This is very different from the
large change in the entire spectrum when unrestricted
sampling is used for the same wavevector in the pure
Heisenberg model, Fig. 11, which is clearly because of the
much larger magnon pole in the latter case. This com-
parison also reinforces the ability of our SAC method to
extract the correct weight of the leading d-function.

These results for the J-@Q model show that the magnon
picture at ¢ = (,0) fails even with a rather weak defor-
mation of the Heisenberg model. Thus, it seems likely
that the reduced excitation energy and coherent single-
magnon weight at ¢ = (,0), observed in the Heisenberg
model as well as experimentally in CF'TD, is a precursor
to deconfined quantum criticality. If that is indeed the
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case, then it may be possible not only to describe the con-
tinuum in S(q,w) around q = (7, 0) in terms of spinons
[33], but also to characterize the influence of spinons on
the remaining sharp magnon pole. We next consider a
simple effective Hamiltonian to address this possibility.

V. NATURE OF THE EXCITATIONS

Motivated by the numerical results presented in
Secs. IIT and IV, we here propose a mechanism of the
excitations in the square-lattice Heisenberg model where
the magnons have an internal structure corresponding to
a mixing with spinons at higher energy. Our physical pic-
ture is that the magnon resonates in and out of the spinon
space, which, in the absence of spinon-magnon couplings,
exists above the bare magnon energy. We will construct
a simple effective coupled magnon-spinon model describ-
ing such a mechanism. The model resembles the simplest
model for the exciton-polariton problem, where the mix-
ing is between light and a bound electron-hole pair (exci-
ton). Here a bare photon can be absorbed by generating
an exciton, and subsequently the electron and hole can re-
combine and emit a photon. This resulting collective res-
onating electron-hole-photon state is called an exciton-
polariton [71, 72]. The spinon-magnon model introduced
here is more complex, because the magnon interacts not
just with a single bound state but with a whole con-
tinuum of spinon states with or without (depending on
model parameters) spinon-spinon interactions.

We start below by discussing the dispersion relations
of the bare magnon and spinons, and then present de-
tails of the mixing process and the effective Hamiltonian.
We will show that the model can reproduce the salient
spectral features found for the Heisenberg and J-Q) mod-
els in the preceding section, in particular the differences
between wavevectors (w,0) and (7/2,7/2) and the evo-
lution of the spectral features when the @ interaction is
turned on, which in the effective model corresponds to
lowering the bare spinon energy.

A. Effective Hamiltonian

In spinwave theory, the excitations of the square-lattice
Heisenberg antiferromagnet are described as magnons,
which to order 1/S disperse according to

() = o2 - L feos(an) + costa), (19

where ¢™ is the spin wave velocity (the value of which is
™ = 1.637412 when calculated to this order). We will
take this form of w™(q) as the bare magnon energy in
our model but treat the velocity as an adjustable bare
parameter.

Spinons are well understood in the S = 1/2 AFM



Heisenberg chain, where the dispersion relation is [73, 74]

w(k) = % sin(k), (20)
and an S = 1 excitation with wavenumber ¢ can exist
at all energies w(ky) + w(ke) with k1 + ko = ¢. In 2D,
we use as input results of a recent QMC study of the
excitation spectrum at the deconfined quantum critical
point of the J-Q model [43], where four gapless points
at g = (0,0), (7,0),(0,7), and (m,7) were found in the
S = 1 excitation spectrum (confirming a general expec-
tation of a system at a continuous AFM—VBS transition
[42]). This dispersion relation is interpreted as the lower
bound of a two-spinon continuum, which should also be
the dispersion relation for a single spinon. In the effective
model we will use the simplest spinon dispersion relation
with the above four gapless points and shape in general
agreement with the findings in Ref. 43,

wi(q) = cs\/l — cos?(gy) cos?(gy), (21)

which can also be regarded as a 2D generalization of the
1D spinon dispersion, Eq. (20). The common velocity ¢®
at the gapless points was determined for the critical J-Q
model [43] but here we will regard it as a free parameter.

One of our basic assumptions will be that spinons ex-
ist in the system also in the AFM phase, but they are
no longer gapless and interact with the magnon excita-
tions. We will add a constant A to the spinon energy
Eq. (21) to model the evolution of the bare spinon dis-
persion from completely above the magnon energy w™(q)
at all q deep in the AFM phase to gradually approach-
ing w™(q) and eventually dipping below the magnon in
parts of the BZ—which happens first at q = (7,0)—as
the AFM order is reduced. For two spinons, with one of
them at wavevector p and the total wavevector being q,
the bare energy of the spinon pair is then,

@*(q,p) =2A +¢° \/1 — cos?(py) cos?(py) (22)

+ cs\/l — c0s%(qz — px) cos?(qy — py)-

Here it should be noted that, in the simple picture of
spinons in the basis of bipartite valence bonds, an S =1
excitation corresponds to breaking a valence bond (sin-
glet), thereby creating a triplet of two spins, one in each
of the sublattice A and B [34]. The unpaired spins are al-
ways confined to their respective sublattices. There are
also two species of magnons, and creating one of them
corresponds to a change in magnetization by AS* =1
or AS? = —1, depending on the sublattice. Since S*
must be conserved, we only need to consider one species
of the magnons (e.g, AS? = 1, which we associate with
sublattice A) and that dictates the magnetization of the
spinon pair that it can resonate with.

Instead of adding twice the gap as we do in Eq. (22),
we could include A2 under each of the square-roots. This
would cause some rounding of the V-shapes of the spinon
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FIG. 16. (a) Dispersions of the bare excitations of the effective
model along a path through the BZ. The lower branch is for
the magnon, and the upper branch is for a single spinon. The
latter is also the lower edge of the two-spinon continuum. In
this example, the spinons in the circled region close to q =
(m,0) almost touch the magnon band, leading to significant
spinon-magnon mixing. (b) The black curve shows the lowest
energy of the mixed spinon-magnon system obtained with the
dispersions in (a) and strength g = 5.1 of the mixing term.
The red circles show the results of the QMC-SAC calculations
for the Heisenberg model on the L = 48 lattice from Sec. III.

dispersion. We have confirmed that there are no signifi-
cant differences between the two ways of lifting the spinon
energies in the coupled spinon-magnon system.

Using second-quantized notation, the non-interacting
effective Hamiltonian in the space spanning single-
magnon and spinon pair excitations can be written as

HYT0 =) w™(@)dly gdag
a

+ Z @*(q, p)Ckpng,q_pCA,pCB,q—p (23)
q,p

where ¢! (c) and d' (d) are the spinon and magnon cre-
ation (annihilation) operators, respectively, and there is
also an implicit constraint on the Hilbert space to states
with either a single magnon (here on the A sublattice)
or two spinons (one on each sublattice). Note that both
kinds of particles are bosons based on the broken-valence-
bond picture of the spinons [34]. For brevity of the no-
tation we will hereafter drop the sublattice index, but
in the calculations we always treat the two spinons as
distinguishable particles.

Fig. 16(a) shows an example of the spinon and magnon
dispersions corresponding to the situation we posit for
the Heisenberg model. Here the spinon offset A is suffi-
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FIG. 17. [Illustration of the mixing process between the
magnon (black circle) and the spinon pair (red circles). With
mixing strength g, a magnon on a given sublattice splits
up into a spinon pair occupying nearest-neighbor sites. The
spinon pair can recombine and form a magnon on the original
sublattice.

ciently large to push the entire two-spinon continuum (of
which we only show the lower edge) up above the magnon
energy, but at (7, 0) the spinons almost touch the magnon
band. It is clear that any resonance process between the
magnon and spinon Hilbert spaces will be most effective
at this point, thus reducing the energy and accounting
for the dip in the dispersion found in the QMC study of
the Heisenberg model. In Fig. 16(b) we show how well
the dispersion relation can be reproduced by the effective
model, using a simple spinon-magnon mixing term that
we will specify next.

Our basic premise is that the magnon and spinon sub-
spaces mix, through processes where a magnon is split
into two spinons and vice versa. We use the simplest
form of this mechanism, where the two spinons are cre-
ated on neighboring sites, one of those sites being the
one on which the magnon is destroyed. The interaction
Hamiltonian in real space is

H' =g (ch cclde + dicecrie), (24)

r.e

where e denotes the four unit lattice vectors as illustrated
in Fig. 17. In motivating this interaction, we have in
mind how an S = 1 excitation is created locally, e.g.,
in a neutron scattering experiment, by flipping a sin-
gle spin. Spinwave theory describes the eigenstates of
such excitations in momentum space and this leads to
the bare magnon dispersion. A spinon in one dimension
can be regarded as a point-like domain wall, and as such
is associated with a lattice link instead of a site. How-
ever, in the valence bond basis, the spinons arise from
broken bonds and are associated with sites (in any num-
ber of dimensions) [34]. In this basis, the initial creation
of the magnon also corresponds to creating two unpared
spins, and the distinction between a magnon and two de-
confined spinons only becomes clear when examining the
nature of the eigenstates (where the spinons may or may
not be well-defined particles, and they can be confined
or deconfined). In the actual spin system, the magnon
and spinons in the sense proposed here would never exist
as independent particles (not even in any known limit),
but the simplified coupled system can still provide a good
description of the true excitations at the phenomenolog-
ical level, as was also pointed out in the proposal of the
AF* state (which also hosts topological order that is not
present within our proposal) [44]. Our way of coupling
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the two idealized bare systems according to Eq. (24) is
intended as a simplest, local description of the mixing of
the two posited parts of the Hilbert space. In the end,
beyond its compelling physical picture with key ingredi-
ents taken from deconfined quantum criticality and the
AF* state, the justification of the effective model will
come from its ability to reproduce the key properties of
the excitations of the Heisenberg model.
The magnon-spinon coupling in reciprocal space is

H' = Z I(p)(c;()cl;fpdq + h.c.), (25)
a.p

where q again is the conserved total momentum and p

is the momentum of the A spinon (more precisely, the

above spinon pair creation operator is cg pcg qu)’ and

the form factor corresponding to the mixing strength g
in real space is

1) = gy 2 leostp) 4 con(,)] . (26)

If this interaction is used directly in a Hamiltonian with
the bare magnon and spinon dispersions, we encounter
the problem that the ground state is unstable—the mix-
ing term will push the energy of the lowest excitations
below that of the vacuum because the magnon mixes
with the spinon and reduces its energy also at the gapless
points. This behavior is analogous to what would hap-
pen to the exciton-polariton spectrum by including the
light-matter interaction without the diamagnetic term.
In reality, since p> — (p — ¢gA)?, the minimal exciton-
photon coupling is also responsible for a modification of
the photon Hamiltonian, in a way which preserves the
gapless spectrum [71, 72]. Following the analogy be-
tween magnons/spinon-pairs and photons/excitons, we
consider the coupling to arise from a modified spinon-
pair operators by the following substitution in Eq. (23):

c

i Tl (|
bCa—p ~ ChCy—p T G(a, P)d]; (27)

where the mixing function is given by:

I(p)

G(q, p) = m

(28)

This substitution generates the following effective
magnon-spinon Hamiltonian:

H =2, (“m(q) +>_&°(q,p)G3(q, p)) didg (29)

q

+ Z [QS(% p)c;f)c:rlipcpcq,p + I(p)c;r)cirpdq + h.c.} ,
p.q

Here we see explicitly how the interaction also affects the
magnon dispersion (similar to the effect of the diamag-
netic term on the exciton-polariton problem), so that the
dressed magnons acquire a slightly renormalized velocity.
This procedure guarantees that the ground state is stable



and that the full spectrum of the coupled system is still
gapless.

Some aspects of the observed behaviors in the Heisen-
berg and J-@ models can be better reproduced if we also
introduce a spinon-spinon interaction term V', to be spec-
ified later. Defining the modified magnon dispersion

&™(q) =w™(@) + Y _@*(a,p)G*(q,p),  (30)

the Hamiltonian in the sector of given total momentum
q can be written as

H(q) = (Z)m(q)dgdq + Z V(k, p)chch_kcq_p

k,p

+ Z [&S(q, p)chL_pcpcq_p + I(p)c;f)cj;_pdq +he|.
P

Here it should be noted that, if spinon-spinon interac-
tions are present, V' # 0, the definition of the function
G changes from Eq. (28) in the following simple way:
the non-interacting two-spinon energies @°(q, p) should
be replaced by the eigenenergies of the interacting 2-
spinon subsystem, and the momentum label p accord-
ingly changes to a different index labeling the eigenstates.
The mixing term is also transformed accordingly by using
the proper basis in Eq. (27).

We study the effective Hamiltonian by numerical ED
on L x L lattices with L up to 64. Our effective model is
clearly very simplified and one should of course not ex-
pect it to provide a fully quantitative description of the
excitations of the many-body spin Hamiltonians. Nev-
ertheless, it is interesting that the parameters ¢™,c®, A,
and g can be chosen such that an almost perfect agree-
ment with the Heisenberg magnon dispersion obtained in
Sec. I1T is reproduced, as shown in Fig. 16(b) (where no
spinon-spinon interactions are included). In the following
we will not attempt to make any further detailed fits to
the results for the spin systems, but focus on the general
behaviors of the model and how they can be related to
the salient features of the Heisenberg and J-Q spectral
functions.

B. Mixing states and spectral functions

For a given total momentum q, the eigenstates |n,q)
of the effective Hamiltonian in Eq. (31) have overlaps
(n, q|q) with the bare magnon state |q). Without spinon-
spinon interactions (V' = 0), with the bare spinons above
the magnon band for all q, and when the mixing parame-
ter g is suitable for describing the Heisenberg model [i.e.,
giving good agreement with the QMC dispersion relation,
as in Fig. 16(b)], we find that all but the first and the last
of these overlaps become very small when the lattice size
L increases. Thus, the two particular states are magnon-
spinon resonances and the rest are essentially free states
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FIG. 18. Energy levels versus the total wavevector of two
spinons interacting through a potential V(r) = —6.2¢7"/2.
The bare dispersion relation of the single spinon is given by
Eq. (21) with ¢® = 3.1. We only show a few of the levels
between the lower and higher energy bound.

of the two-spinons. When attractive spinon-spinon inter-
actions are included, the picture changes qualitatively,
with the magnon also mixing in strongly with all spinon
bound states. An example of spinon levels in the pres-
ence of spin-spin interactions are shown in Fig. 18, where
a number of bound states separated by gaps can be dis-
tinguished. The stronger mixing with the bound states
is simply a reflection of the fact that two bound spinons
have a finite probability to occupy nearest-neighbor sites,
so that the mixing process with the magnon (Fig. 17) can
take place, while the probability of this vanishes when
L — oo for free spinons. Note that the total overlap
(n,q|q) summed over all free-spinon states can still be
non-zero, due to the increasing number of these states.

The fact that the dispersion relation resulting from
He® can be made to match the QMC-SAC results for
the Heisenberg model (Fig. 16) is a tantalizing hint that
the dispersion anomaly at q = (7,0) may be a precur-
sor of spinon deconfinement as some interaction brings
the system further toward the AFM—-VBS transition. In
the weak magnon-spinon mixing limit, the lowest-energy
spinons will, in the absence of attractive spinon-spinon
interactions V', deconfine close to q = (7, 0) if the spinon
continuum falls below the magnon band at this wave vec-
tor, while the magnon-spinon resonance remains lowest
excitation in parts of the BZ where the bare spinons stay
above the magnon. The resonance state should still be
considered as a magnon, as the spinons are spatially con-
fined and constitute an internal structure to the magnon.

This simple behavior, which essentially follows from
the postulated bare dispersion relations, is very intrigu-
ing because it is precisely what we observed in Sec IV for
the J-Q model when @ is turned on but is still far away
from the deconfined critical point. We found (Figs. 13
and 14), that the low-energy magnon pole vanishes at
(m,0), while it remains prominent at (w/2,7/2). Thus,
we propose that increasing )/J corresponds to a reduc-
tion of the energy shift A in the bare spinon energy in
Eq. (22), reaching A = 0 at the deconfined quantum-



critical point. At the same time the bare magnon and
spinon velocities should also evolve in some way. The
observation that the (7/2,7/2) magnon survives even at
the critical point would suggest that the magnon band
remains below the spinon continuum at this wave vector.
Let us now investigate the spectral function of the ef-
fective model. Within the model, the spectral function
corresponding to the dynamic spin structure factor of the
spin models is that of the magnon creation operator dg

S(a,w) =Y [(n|dflvac)*6(w — E,.), (32)

where |vac) is the vacuum representing the ground state
of the spin system and F, is the energy of the eigenstate
|n). The matrix element is nothing but the absolute-
squared of the magnon overlap (n, q|q) discussed above.
Thus, with non-interacting spinons the spectral func-
tion consists of two d-functions, corresponding to the two
spinon-magnon resonance states, and a weak continuum
arising from a large number of deconfined 2-spinon states.
The situation changes if we include spinon-spinon inter-
actions. Then, as mentioned above, the spinon bound
states mix more significantly with the magnon and gives
rise to more spectral weight in Eq. (32) away from the
edges of the spectrum, and the J-function at the up-
per edge essentially vanishes. To attempt to model the
spinon-spinon interactions quantitatively would be be-
yond the scope of the simplified effective model, but by
considering a reasonable case of short-range interactions
we will observe interesting features that match to a sur-
prisingly high degree with what was observed in the spin
systems.

The q dependence of the total spectral weight of the
spin system cannot be modeled with our approach here,
because the effective model completely neglects the struc-
ture of the ground state, replacing it by trivial vacuum,
and the magnon creation operator is also an oversimpli-
fication of the spin operator. Because of these simplifica-
tions the total spectral weight is unity for all q. A main
focus in Secs. IIT and IV was on the relative weight a(q)
of the leading magnon pole, and this quantity does have
its counterpart in Eq. (32);

ao(q) = |(n = 0[d}lvac)|* = [(0]q)|?, (33)

where |n = 0)) is the lowest-energy eigenstate and ag(q)
can be compared with the QMC/SAC results in Fig. 10.
Given that the Hilbert space of the effective model con-
tains only a single magnon, the spectral function should
correspond to the transverse component in situations
where the transverse and longitudinal contributions are
separated (e.g., polarized neutron scattering).

We now include attractive spinon-spinon interactions
such that bare (before mixing with the magnon) bound
states are produced, as in Fig. 18. The other model pa-
rameters are again adjusted such that the dispersion re-
lation resembles that in the Heisenberg model, with the
anomaly at q = (m,0). The resulting dispersion (loca-
tion of the dominant d-function, which constitutes the
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FIG. 19. Dispersion relation (a) and wavevector depen-
dence of the relative weight of the magnon pole (b) cal-
culated with the effective Hamiltonian with the parameters
c™ =3.1,¢° =3.1,A =1.94, g = 1.86, and the spinon-spinon
potential V (r) = —6.2¢77/2.

lower edge of the spectral function) as well as the relative
magnon amplitude are graphed in Fig. 19. The dispersion
relation is very similar to that obtained without spinon-
spinon interactions in Fig. 16. Comparing the amplitude
ap(q) in Fig. 19(b) with the Heisenberg results in Fig. 10,
we can see very similar features, with minima and max-
ima at the same wavevectors, though the variations in
the amplitude are larger in the Heisenberg model.

The full spectral functions at q = (7, 0) and (7/2,7/2)
are displayed in Fig. 20. Here we have broadened all
d-functions to obtain continuous spectral functions. As
already discussed, the prominent d-function correspond-
ing to the magnon is similar to what is observed in the
Heisenberg model, though clearly the shapes of the con-
tinua above the main d-function are different from those
in Fig. 6. Upon reducing the spinon energy offset A so
that the bare energy falls below the magnon energy close
to q = (m,0), we observe a very interesting behavior in
Fig. 21. We see that the main magnon peak is washed
out, due to decay into the lower spinon states. This
is very similar to what we found for the J-Q model in
Sec. IV, where already a relatively small value of Q/J led
to a broad spectrum without magnon pole at q = (7, 0).
At (w/2,7/2) the magnon pole remained strong, how-
ever, and this is also what we see for the effective model
in Fig. 21. Without spinon-spinon interactions, when
the bare magnon is inside the spinon continuum a sharp
(single d-function) spinon-magnon resonance remains in
inside the continuum of free spinon states. Thus, for the
magnon pole to completely decay, spinon-spinon interac-
tions are essential in the effective model.
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FIG. 20. Spectral functions of the effective model at (a)
q = (m,0) and (b) q = (7/2,7/2), using model parame-
ters corresponding to the Heisenberg model; ¢™ = 3.1,¢° =
3.1,A = 194,9g = 1.86 and the spinon-spinon potential
V(r) = —6.2¢7"/2 (same as used in Fig. 18 and 19). The
d-functions in the exact spectral function (computed here us-
ing an L = 64 lattice) have been broadened for visualization.
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FIG. 21. Spectral functions as in Fig. 20, but with the param-
eters of the effective model chosen to give behaviors similar to
the J-Q model with Q ~ J; ¢™ =3.1,¢° =6.2,A =0.39,9g =
1.86 and the spinon-spinon potential V (r) = —6.2¢77/2,

These results for a simple effective model provide com-
pelling evidence for the mechanism of magnon-spinon
mixing outlined above. The results also suggest that the
absence of magnon pole at and close to q = (,0) does
not necessarily imply complete spinon deconfinement, as
we have to include explicitly attractive interactions in
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the effective model in order to reproduce the behavior
in the full spin systems. Weak attractive spinon-spinon
interactions have previously been detected explicitly in
the J-Q model at the deconfined critical point [34], and
they are also expected based on the field-theory descrip-
tion, where the spinons are never completely deconfined
due to their coupling to an emergent gauge field [40].
The loss of the magnon pole observed here then signi-
fies that the magnon changes character, from a single
spatially well-resolved small resonance particle to a more
extended particle (with more spinon characteristics) as
a weak () interaction is turned on, and finally the parti-
cle completely disintegrating into a continuum of weakly
bound spinon pairs and deconfined spinons.

VI. CONCLUSIONS

We have investigated the long-standing problem of the
excitation anomaly at wavevectors q =~ (,0) in the spin-
1/2 square lattice Heisenberg antiferromagnet, and es-
tablished its relationship to deconfined quantum critical-
ity by also studying the J-Q model. Using an improved
stochastic (sampling) method for analytic continuation of
QMC correlation functions, we have been able to quantify
the evolution of the magnon pole in the dynamic struc-
ture factor S(q,w) as the AFM order is weakened with in-
creasing ratio )/ J, all the way from the Heisenberg limit
(Q = 0) to the deconfined critical point at Q/J ~ 22.
For the Heisenberg model, our results agree with other
numerical approaches (series expansions [20] and contin-
uous similarity transformations within the Dyson-Maleev
formalism [18]) and also with recent inelastic neutron
scattering experiments of the quasi-2D antiferromagnet
CFTD [33]. Upon increasing @/J, we found a rapid
loss of single-magnon weight at q =~ (,0), but not at
q ~ (7/2,7/2), where the magnon pole remains robust
even at the critical point. At first sight these behaviors
appear surprising, but we can consistently explain them
through the proposed connection to deconfined quantum
criticality.

Motivated by the numerical results, we have con-
structed an effective model of magnon-spinon mixing
that can phenomenologically explain not only the frag-
ile, almost fractionalized (7, 0) magnon of the Heisenberg
model and its decay into spinon pairs with increasing
Q/J, but also establishes the reason of the stability of
the (7/2,7/2) magnon in the J-Q model for large @ (as
discovered with the QMC-SAC calculations). The essen-
tial ingredient is a gapped spinon band with a dispersion
minimum at (7,0), for which we find motivation in the
fact that this point becomes gapless at the deconfined
quantum critical point. If the continuum of bare spinon
excitations remains above the magnon band throughout
the BZ (as in Fig. 16), then the lowest excitations are
always magnons. However, since the two bands are cou-
pled in the effective model, via a term that destroys a
magnon and creates two spinons (as well as its conju-



gate destroying the spinons and creating a magnon), the
magnons fluctuate in and out of the spinon space, and
this effect is the largest at the point in the BZ where
the gap between the two bare branches is the smallest,
ie., at g = (7,0). We find that this effect can account
quantitatively for the dip in the magnon dispersion rela-
tion, and qualitatively the wavevector dependence of the
relative weight of the §-function at the lower edge of the
spectrum is also captured.

Within this effective model, the deconfinement mech-
anism in the J-@Q model is explained as the bare spinon
dispersion dipping below the magnon at q = (,0). This
can happen already for small Q/J, far away from the
AFM-VBS transition, because the bare magnon-spinon
gap is already small for @ = 0. As Q/J increases, an
increasing fraction of the BZ becomes deconfined, un-
til finally the gapless spinons deconfine at the critical
point. Our QMC-SAC results indicate that the excita-
tions at higher energy remain confined, as exemplified
by q = (7/2,7/2). Within the effective model this fol-
lows from the bare spinon dispersion staying above the
magnon band in this region of wavevectors.

Clearly the effective model should not be taken as
a quantitative description of the Heisenberg and J-Q
systems; motivated by aspects of deconfined quantum-
criticality and the AF* state, we have introduced it
mainly as a phenomenological tool for elucidating the
behaviors observed in the QMC studies of the model
Hamiltonians. Nevertheless, it is remarkable how well
the essential observed features are captured and how oth-
erwise non-intuitive aspects of the deconfinement mech-
anism follow naturally from the magnon-spinon mixing
under mild assumptions on the bare parameters of the
effective model. Thus, even in the absence of a strict mi-
croscopic derivation, the effective model can be justified
by its many non-trivial confirmed predictions.

Considering the mechanism leading to the loss of
magnon pole with increasing @), it is interesting to note
that it does not appear to involve significant broadening
of the J-function, but instead the spectral weight of this
peak is distributed out into the continuum by the spinon
mixing process. This is in accord with the general be-
lief that quantum antiferromagnets with collinear order
lack the damping processes that cause the broadening
of the magnon pole in frustrated, non-collinear magnets
[62, 75, 76]. Our proposed mechanism of spinon mixing
is, thus, very different from standard magnon damping.

The scenario of a nearly fractionalized magnon in the
Heisenberg model does not necessarily stand in conflict
with the expansion in multi-magnon processes [18, 19],
which can account for the dynamic structure factor with-
out invoking any spinon mixing effects. We have only dis-
cussed the effective model of the excitations at the level
of a single magnon and its mixing with the spinon contin-
uum, and our results for the Heisenberg model show that
the magnon is significantly dressed by spinons around
q = (m,0) but is not yet fractionalized. The magnon-
spinon mixing then represents a description of the inter-
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nal structure of the magnon, and we have not considered
the further effects of multi-magnon processes. It is re-
markable that the results of Ref. 19 match the experi-
mental data (and also numerical data for the Heisenberg
model) so well without taking into account the internal
spinon structure of the magnons, if indeed this structure
is present. Here we can draw a loose analogy with nuclear
physics, where the inter-nucleon force has an effective de-
scription in terms of exchange of mesons (pions) between
nucleons. Yukawa proposed mesons as the carriers of the
force without knowledge of the quark structure of the
nucleons and mesons that is ultimately involved in the
interaction (residual strong force) process, and quantita-
tively satisfactory results in nuclear physics are obtained
with the effective interaction (and calculations with the
full strong force between quars mediated by gluons are
in practice too complicated to work with quantitatively).
The significant attractive interaction between magnons
in the Heisenberg model [18, 19] might perhaps similar-
ily be regarded as mediated by spinon pairs (which them-
selves constitute magnons), and, by the pion analogy, the
magnons and their residual attractive interactions could
also provide an accurate description of the excitations
without invocing the internal spinon structure. To inves-
tigate the relationship between the two pictures further,
it would be interesting to treat the J-QQ model with the
method of Ref. 19. Based on our scenario we predict that
the multi-magnon expansion should break down rapidly
close to g = (7, 0)as the @ interaction is turned on but
remain convergent at low energies until the system comes
close to the deconfined quantum-critical point.

The fragility of the magnons at and close to q = (,0)
suggests that these excitations may become completely
fractionalized also by other interactions than the Q-terms
considered here, e.g., ring exchange or longer-range pair
exchange. These interactions have recently also been in-
vestigated in the context of possible topological order
and spinon excitations in the cuprates [77]. Earlier the
so-called AF* state had been proposed, largely on phe-
nomenological grounds, where topological order coexists
with AFM order and there is a spinon continuum sim-
ilar to the one in our effective model [44, 45]. Though
in our scenario the reason for the spinon continuum is
different—the proximity to a deconfined quantum criti-
cal point—a generic conclusion valid in either case is that
spinon deconfinement can set in at q = (7,0) well be-
fore any ground state transition at which the low-energy
spinons deconfine.

In this context the quasi-2D square-lattice antiferro-
magnet Cu(pz)2(ClOy)s is very interesting. It has a weak
frustrated next-nearest-neighbor coupling and has been
modeled within the J;-J; Heisenberg model [78]. Neu-
tron scattering experiments on the material and series-
expansion calculations for the model show an even larger
suppression of the (m,0) energy than in the pure Heisen-
berg model, similar to what we have observed in the pres-
ence of a weak () interaction. The experimental (m,0)
line shape also seems to have a smaller magnon pole than



CFTD, in accord with our scenario of a fragile magnon
pole, although we are not aware of any quantitative anal-
ysis of the weight of the magnon pole and no line-shape
calculations were reported in Ref. 78. It would clearly
be intersting to carry out neutron experiments at higher
resolution and to make detailed comparisons with calcu-
lations beyond the dispersion relation.

Ultimately the J;-J2 system should be different from
the J-@Q model, because the deconfined quantum critical
point of the latter most likely is replaced by an extended
gapless spin liquid phase of the former [67-70]. However,
since this phase should also be associated with deconfined
spinons, the evolution of the excitations as this phase is
approached may be very similar to what we have dis-
cussed within the J-Q model on its approach to the de-
confined quantum critical point. A state with topological
order and spinon excitations may instead be approached
when strong ring-exchange interactions are added [77],
but given that J is weak in Cu(pz)2(ClO4)2 these in-
teractions may not play a significant role in this case.
Ring exchange should be more important in SroCuQ2Cly,
where excitation anomalies have also been observed [79].

The magnetic-field (h) dependence of the excitation
spectrum of Cu(pz)2(ClO4)s was also studied in Ref. 78.
Since the energy scale of the Heisenberg exchange is even
smaller than in CFTD, it was possible to study field
strengths of order J and observe significant changes in
the dispersion relation and the (,0) line shape. The
methods we have developed here can also be applied to
systems in an external magnetic field and it would be
interesting to study the dynamics of the J-Q-h model.
Some results indicating destabilization of magnons due
to the field in the Heisenberg model are already available
[80], and our improved analytic continuation technique
could potentially improve on the frequency resolution.
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Appendix A: Covariance in QMC and synthetic data

As discussed in Sec. ITA the QMC-computed imagi-
nary time data G(r;) for different i are correlated, and
it is well known [54] that this has to be taken into ac-
count in any statistically proper analytic continuation
procedure (though in practice good results can still be
obtained with just the diagonal elements o;, if they are
sufficiently small). While the covariance may seem like a
nuisance, there is actually a silver lining, in that correla-
tions between different 7-points typically imply that the
data are actually better than the individual statistical
errors ¢; might indicate.

As an extreme example of the above, imagine a situa-
tion in which all data points are perfectly correlated in
the sense that the computed G; (over a bin or the whole
simulation) is of the form

G = G (1 + o) (A1)
for all i, where o is the common noise source. Then,
upon normalization, G; — G;/Gy, one obtains the exact
value G&*2¢t /GE¥a<t (where the subscript 0 corresponds to
7 =0). In reality the noises for different 7-points are not
perfectly correlated, but have an autocorrelation func-
tion that decays with 7, but nevertheless the presence
of covariance corresponds to additional information con-
tent in the data set, and this information can improve
the frequency resolution when compared to the case of
no off-diagonal elements of C' and the same values of all
o; = Cy. Here we show some examples of covariance-
effects in QMC data, and also explain how we build in
correlated noise in synthetic data.

1. Real QMC data

In Fig. 22 we show an example of data underlying
the SAC calculations in Sec. III; at the most interest-
ing wavevector, q = (m,0), for a system with L = 48.
We have here used a quadratic 7-grid, in order to take
advantage of the reduced error bars close to 7 = 0 after
normalizing to G(0) = 1, while not including an exces-
sively large number of points (in which case there is a lot
of redundancy in the correlated data and it also becomes
difficult to diagonalize the covariance matrix). We only
include data points for which the relative errors o;/ G;
are less than 10%.
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FIG. 22. (a) Imaginary-time correlation function at ¢ = (m, 0)
for 2D Heisenberg lattice with L = 48, computed in SSE QMC
simulations at 8 = 192 (giving 7" = 0 results for all practical
purposes). The two straight lines correspond to the contribu-
tion for the leading é-function obtained in the SAC procedure,
with amplitude ap = 0.405 + 0.025. (b) The statistical errors
(diagonal elements of the covariance matrix) o(r) and the
eigenvalues of the covariance matrix (ordered from smallest
to largest).

Fig. 22(a) shows the G(7) data on a lin-log scale, so
that a pure exponential decay (arising from a spectrum
with a single d-function) corresponds to a straight line.
From the analysis in Sec. III we have that the amplitude
of the magnon J-function is ag = 0.405 £ 0.025 and its
frequency is wg ~ 2.13. The two straight lines in the
figure correspond to the contribution from this -function
when the amplitude is the mean value plus or minus one
error bar, i.e.; 0.38 and 0.43, respectively. These lines
are still significantly below the data points and it is also
clear that the data have not quite converged to a pure
straight line at the largest 7 available. Therefore, it is not
easy to extract ag and wq from a simple exponential fit to
the large-7 data, and the SAC procedure with the special
treatment of the magnon pole should be an optimal way
to take into account the effects of the continuum.

It is also interesting to examine the eigenvectors of the
covariance, i.e., the linear combinations,

Vp = Z v ()G (73),

)

(A2)

of the imaginary-time data points that fluctuate indepen-
dently of each other in the QMC simulations. Figure 23
shows three of the normalized eigenvectors corresponding
to the eigenvalues in Fig. 22. Note that the normalization
of G(7;) has already removed a significant component of
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FIG. 23. The eigenvectors corresponding to the smallest (n =
1) and largest (n = 40) eigenvalues of the covariance matrix
in Fig. 22, as well as one from the middle of the eigenvalue
spectrum (n = 20).

the covariance—the uniformly fluctuating component—
and without the normalization the largest eigenvector has
the most weight for small 7;, instead of being shifted to
higher 7; with the normalized data set (seen for n =1 in
the figure). The vector corresponding to smallest eigen-
value has alternating positive and negative values and
decays rapidly with 7;.

2. Synthetic data

In order to be able to test all aspects of the SAC pro-
cedures used with real QMC data, we generate a number
Ng of bins of noisy data starting from the exact G(7)
computed from Eq. (4) with the given synthetic spectrum
S(w). These bins are used to compute the mean values G;
and the covariance matrix with the same program used
to process the QMC data. To construct correlated noise
similar to that present in QMC data, for each bin we first
generate a set of normal-distributed random numbers o?,
with a given standard deviation (the same for all 4, which
is not necessarily exactly the case with QMC data but
should be good enough for testing purposes). We then
run these data through a correlation procedure where a
new noise set is generated according to

0p—ITi—T7;l/éx
_ >.j05e

1/2:], e2|mi—7;l/é+

with a given autocorrelation time &,. These noise values
are then added to G;. The autocorrelation time and the
original noise level ¥ can be adjusted so that the eigen-
values of the covariance matrix are similar to those of
typical QMC data, though the QMC correlations can of
course not be expected to exactly follow what is produced
by Eq. (A3). An example is shown in Fig. 24, where we
have adjusted the parameters of Eq. (A3) to match the
real QMC data in Fig. 22 closely (apart from an overall
factor & 2 in the 7-scale). As is apparent, we can indeed

(A3)

g;
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FIG. 24. The same kind of data as in Fig. 22 but obtained
using a synthetic spectrum with a d-function of weight ag =
0.4 at wo = 1 and a continuum consisting of a half-Gaussian
above the d-function, of width 1. The straight line in (a)
corresponds to the contribution from just the §-function.

obtain very similar forms of the standard errors and the
eigenvalues of the covariance matrix.
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