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ABSTRACT

Concurrent systems may fail in the field due to various elusive
faults such as race conditions. Reproducing such failures is hard
because (1) concurrency failures at the system level often involve
multiple processes or event handlers (e.g., software signals), which
cannot be handled by existing tools for reproducing intra-process
(thread-level) failures; (2) detailed field data, such as user input,
file content and interleaving schedule, may not be available to de-
velopers; and (3) the debugging environment may differ from the
deployed environment, which further complicates failure repro-
duction. To address these problems, we present DESCRY, the first
fully automated tool for reproducing system-level concurrency fail-
ures based only on default log messages collected from the field.
DESCRY uses a combination of static and dynamic analysis tech-
niques, together with symbolic execution, to synthesize both the
failure-inducing data input and the interleaving schedule, and lever-
ages them to deterministically replay the failed execution using
existing virtual platforms. We have evaluated DESCRY on 22 real-
world multi-process Linux applications with a total of 236,875 lines
of code to demonstrate both its effectiveness and its efficiency in
reproducing failures that no other tool can reproduce.
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1 INTRODUCTION

The ever increasing parallelism in computer systems has made
software more prone to concurrency failures, causing problems
not only during the development but also after deployment. When
concurrency failures occur in a deployed system, developers often
have to diagnose them in a different (debugging) environment to
identify the root causes. Toward this end, an important step is to
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reproduce the failure in a timely manner. However, this is challeng-
ing due to the limited data generated by production runs. Typically,
field data are transferred from customers to developers. However,
if they belong to different organizations, customers may not be
willing to share their inputs and file contents involved in the failed
execution [11]. There are pre-deployment debugging techniques,
which leverage fine-grained logging for deterministic record-and-
replay [2, 6,7, 14, 17, 21, 26, 27, 30, 42]: although effective in testing,
they are ill-suited for deployment because of the often unbearable
performance overhead. Thus, for the purpose of reproducing fail-
ures in production runs, we have to assume that the only available
field data are default log messages generated by the unmodified
application.

Under this assumption, we propose DESCRY (Debugging System-
level Concurrency Failures), the first fully automated tool for re-
producing failures using only default logs collected from the field.
This is a challenging task because, in practice, log messages are
often sparsely printed such that there may be thousands of program
paths leading to the same message. DESCRY focuses on inter-process
bugs where multiple operating-system components (e.g., processes,
software signals, and interrupts) incorrectly shared resources. They
differ from intra-process (thread-level) bugs, which are the focus of
many prior work on reproducing concurrency failures. The differ-
ence is that an intra-process (thread-level) concurrency bug often
corrupts only volatile memory within a process, whereas an inter-
process (system-level) concurrency bug is more dangerous, since it
corrupts the persistent storage and other system-wide resources,
thus potentially crashing the entire system. As Laadan et al. [21]
noted, more than 73% of the race conditions reported in popular
Linux distributions were process-level races, which could not be
reproduced by existing (thread-level) debugging tools [21, 38].

Ideally, reproducing a system-level concurrency failure requires
the availability of all input data, the entire interleaved execution,
and the same execution environment as in the deployed system.
However, as we have mentioned earlier, they do not exist in practice.
Therefore, DESCRY only assumes the existence of the source code
of processes under debugging (PuDs) and default logs generated
by the failed execution. Internally, DESCRY leverages a combina-
tion of static and dynamic program analysis techniques as well as
symbolic execution to compute the failure-inducing data input and
interleaving schedule. As such, it shifts the operational cost from
the customer side to the developer side, thus avoiding the overhead
of fine-grained logging and heavy-weight code instrumentation
in production runs - this is the differentiating feature of DESCRY
compared to existing techniques.

Figure 1 provides an overview of DESCRY. First, it leverages the
logs to identify processes that are relevant to the observed failure
(i.e., PuDs). Next, it uses static program analysis to connect the
log messages with statements in the source code of the PuDs (i.e.,
logging points) that print these messages. In the third step, DESCRY
uses symbolic execution to generate failure-inducing data inputs of
the PuDs, which steer the execution through these logging points.
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Figure 1: The overview of our DESCRY framework.

To improve scalability, it limits the program state space using sum-
maries of logging points and skipping irrelevant code. DESCRY also
constructs a prediction model based on the partial order of observed
inter-process operations to compute a failure-inducing interleav-
ing schedule. Finally, with the new data inputs and interleaving
schedule, DESCRY controls the PuDs to deterministically replay
the failure.

DESCRY has been implemented as a software tool using the
LLVM compiler front-end [1], the KLEE symbolic virtual machine [5],
and the Simics Virtual Platform [8, 38] for deterministic replay.
The tool can directly handle multi-process applications written
in C/C++. To evaluate DESCRY, we conducted experiments on 22
popular Linux applications with a total of 236,875 lines of code and
known concurrency failures. The logs used for our evaluation are
real and generated by running the applications with their default
(production) settings. Our experimental results show that DESCRY
can successfully reproduce 22 of the 24 known failures, which is
significant because no other tool can reproduce this many failures.
Furthermore, the two remaining failures could have been success-
fully reproduced by DESCRY if limitations in the implementation
of the underlying KLEE [5] were to be removed. Finally, the time
taken by DESCRY to compute the failure-inducing data inputs and
interleaving schedule is typically a few minutes, indicating that the
proposed method is efficient for practical use.

In summary, this paper makes the following contributions:

e We propose DESCRY, the first fully automated method for
deterministic reproducing failures of multi-process applica-
tions using only default logs generated by these applications.

e We implement DESCRY and conduct an empirical study to
demonstrate its effectiveness and efficiency on real-world
applications.

The remainder of this paper is organized as follows. First, we
use examples to illustrate the main technical challenges and our
corresponding solutions in Section 2. Then, we present our detailed
algorithms in Sections 3, 4, 5, and 6. Next, we present our experi-
mental evaluation in Section 7. Finally, we review related work in
Section 8, and give our conclusions in Section 9.

2 MOTIVATION AND BACKGROUND

In this section, we use examples to illustrate the challenges in
reproducing concurrency failures and then formally define our
problem.

2.1 Motivating Example

Figure 2 shows a real race condition between two Linux applications
updatedb and tail. updatedb is a script that spawns multiple
application processes, e.g., by executing “mv A.txt.backup A.txt”
to recover a file. The race (Bugzilla-438076) occurs when updatedb

modifies the file name in the database and tail displays the file
content to standard output. For example, while the command “tail
-F A.txt”is monitoring the file A. txt to output its last 100 lines, a
user may execute updatedb to spawn “mv A.txt.backup A.txt”.
As aresult, the tail program finds that A. txt is missing.

The reason is that updatedb fails to ensure that “mv A.txt.backup
A.txt” is executed atomically. By atomically, we mean that there
should be no point in time when “A.txt” does not exist. How-
ever, in the actual implementation, mv first unlinks the target file
(Line 16) if it has multiple hard links (e.g., created by 1n). If tail
runs concurrently with mv, and accesses the target file (Line 42)
after unlink (Line 16) but before rename (Line 25), it will find the
target file missing, thereby triggering the error “tail: No such
file or directory.”.

This bug can be fixed by removing the condition check that
triggers the unlink (Line 14 of Figure 2). However, in practice, when
reporting the bug to developers, the customer only submitted the
default log messages produced by the application, as shown in the
second column of Figure 3. Such log messages are fairly common in
practice, but not really helpful to developers who try to reproduce
the failure in the debugging environment. First, this bug involves a
total of 11 processes (e.g., updatedb, mv, frcode) spawned by the
updatedb, together with the tail, despite the fact that only mv and
tail need to be analyzed for diagnosing the failure. Second, there
are a total of 141 messages displayed in the default log file, of which
99 messages are from tail alone — manually sifting through all
these log messages would be time-consuming. More importantly,
no information of the failure-inducing data inputs or interleaving
schedule is provided.

The first challenge in reproducing such failure is to identify the
processes that are responsible for the failure. For instance, among
the 11 processes involved in the erroneous execution, only the mv
and tail processes are actually relevant. Therefore, we need a
method to quickly weed out the irrelevant processes. Moreover, the
failing process might not be the process that contains the bug. For
example, although tail triggers the failure that contains the bug,
the buggy code is actually in mv. To decide whether a process is
buggy, we need to match the output messages back to the source
code that print these messages. However, since many log messages
are irrelevant, processing all log messages would be inefficient.

The second challenge is that, most of the time, concurrency
failures are triggered by specific combinations of data inputs. Since
the total number of possible combinations can be astronomically
large, it is extremely difficult for random/stress testing to trigger
these failures using randomly generating inputs. For the mv and
tail example in Figure 3, even if the file name A. txt is known
from the log messages, it may not be part of the failure-inducing
inputs unless the file also has hard links to other files.
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1. main(arc, argv){
2. if (dest_is_dir) //C1
3. free (new_dest);
4. else
5. ok = movefile (source, dest, x);
6. return ok;
7.}
8. movefile (char xsrc_name, char *dst_name, ...){
9. if (x->backup_type != no_backups && ...){ //C2
10. if (rename (dst_name, dst_backup) != 0){ //C3
11. error (@, errno, _("cannot backup %s"),
dst_name); //1p1
12. return false;
)
13. }
14. else if (! S_ISDIR (dst_sb.st_mode) && (... // C4
II’_F 71'I/ 28 1 Afilr\_ri‘l'lz\
15. printf (_("hard links: %s\n"), dst_name); //lp2:msgl
16. if (unlink (dst_name) != @){ //C5
17. error (@, errno, _("cannot remove %s"),
dst_name); //1p3
18. return false;
19. 3
20. )
21. if (!S_ISDIR (src_mode)){ // C6
22. emit (src_name, dst_name, ...);
23. 3}
24.if (x->move_mode) //C7
25. rename (src_name, dst_name)
26. emit (char *src, char xdst, ...){
27. printf ("%s -> %s", quote_n (@, src),

quote_n (1, dst)); //lp4:msg2
28. if (backup_dst_name) //C8
29. printf (_(" (backup: %s)"), backup_dst_name);//1p5
30. }

31. int main (O){
32. if(forever) /* -F option %/ //C9

33. tail_forever_inotify(wd, f,...)

34. 3

35. void tail_forever_inotify(int wd, struct File xf, ...){
36. while(1) {

37. if (follow_mode == Follow_name) // Cl0

38. recheck (&(f[il), false);

39. }

40.%

41.void recheck (f, ...){

42. int fd = open (f->name, O_RDONLY);

43. if (fd == -1) //c1

44. error (0, errno, "%s") //lp6: msg99

45. else

46. printf ("output:%s", f->msg);//lp7:msgl, msg2,...
47.3

Figure 2: Code snippet showing the race condition caused by inter-

leaved execution of mv (top) and TAIL (bottom).

The third challenge in reproducing system-level concurrency
failures is the need to analyze the interleaving schedule across mul-
tiple processes. In Figure 2, for example, an inter-process operation
is the system call open made by tail, which must occur after the
system call unlink but before the system call rename made by mv.
Enforcing such execution order requires modeling of the system-
level happens-before relations and controlling the kernel scheduler,
which cannot be accomplished by existing methods focused only
on intra-process (thread-level) race conditions.

2.2 Problem Statement

We define the failure production problem as follows. Given the
source code of a set of processes under debugging (PuDs) and
default logs generated by these PuDs in a failed execution, compute
the data inputs for these PuDs and their interleaving schedule such
that the failure can be deterministically reproduced.

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

Log Goal List Path Condition pata Input

updatedb | frcodei—fmsgl} list1: IC1 ANIC2AIC3AC4 /mvA.txt.backup

(frcode, - <lp2, Ip4> ANIC5NC6NCT7 NIC8 jA.txt
mv: hard links: A.txt [msg1]
mv) mv: 'Atxt.backup' -> 'A.txt' [msg2]

tail tail: output: Hello 1 [msg1] list1: 1* iteration: /tail =F A.txt
tail: output: Hello 2 [msg2] <Ip7, Ip6>  [COA C10A IC11 A C11
tail:... 2" jteration:
tail: No such file or directory [msg99] C9A C10A IC11

Figure 3: Logs, path conditions, and inputs for mv and TAIL.

We assume that a concurrent system consists of a set of processes
{P1...Py} and a set of software signals {S1...S,}. Each process may
create multiple threads, but for ease of presentation, we focus only
on the process-level concurrency in this work while assuming each
process has one thread. A failing process Pr is a process that behaves
erroneously, manifested by the failure messages it prints. A failure
point is a program statement that prints a failure message.

Logs are sequences of normal or error messages that the appli-
cation prints to files and consoles. In this context, each entry in the
log is a log message. To be realistic, we assume log messages are
uninterpreted plaintext strings. Each program statement capable
of printing a log message is called a logging point (LP). There are
two types of logging points with respect to the failure: relevant
logging points (RLPs) and irrelevant logging points (ILPs). RLPs
are the ones that may print log messages relevant to the failure;
ILPs are the ones that can never print log messages relevant to the
failure. Therefore, only RLPs need be used to synthesize the failure-
inducing data input. For example, in the mv program of Figure 2, Ip2
and [p4 are RLPs, since they may print log messages for the failed
execution, whereas Ip1, Ip3, and Ip5 are ILPs, since they can never
print log messages relevant to the failed execution.

We assume that logs are generated by applications during produc-
tion runs, and when a failure occurs, they are transferred from the
customer to the developer. This is a realistic assumption, because
logging for critical events is a common and important software engi-
neering practice [39-41]. There are quantitative evidence [40] that
logging is pervasive during software development and is actively
maintained by developers.

A system-level concurrency fault occurs when multiple pro-
cesses, signals, or interrupts access a system-wide resource (e.g.,
file, device) without proper synchronization [21]. Such resources
are often accessed through system calls. Thus, handling system-
level concurrency fault requires the modeling of read/write effects
and synchronization operations involving system calls. For exam-
ple, the 1stat system call on file f reads the metadata of f. The
clone system call creates a new process inode under the /proc
directory (write). Synchronization operations control process inter-
actions through kernel process scheduler. Common process-level
synchronization primitives include fork, wait, exit, pipe, and
signal.

The second column of Figure 4 shows an example interleaving
schedule for running the mv and tail processes. Each event in the
schedule is either a shared resource access (“R" denotes read and
“W" denotes write) or a synchronization operation. Details of shared
resource and event modeling can be found in prior work [21, 38].
However, note that system call modeling in DESCRY is different
from that in symbolic execution tools (e.g., KLEE [5]). For example,
KLEE models the system calls to generate the required program
constraints for achieving high coverage, whereas in DESCRY, the
systems calls are modeled as concurrency events.



ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

Arbitrary schedule Events Permutated schedule

1. mv: stat ("A.txt") R(A.txt) 1. mv: stat ("A.txt")

2. mv: Istat ("A.txt.backup") R(A.txt.backup) 2. mv: Istat ("A.txt.backup")

3. mv: Istat ("A.txt") R(A.txt) 3. mv: Istat ("A.txt")
4. mv: stat ("A.txt") R(A.txt) 4. mv: stat ("A.txt")
5. mv: access ("A.txt") R(A.txt) 5. mv: access ("A.txt")
6. mv: unlink ("A.txt") W(A.txt) 6. mv: unlink ("A.txt")

7. mv: rename ("A.txt.backup”, "A.txt")  W(A.txt.backup), W(A.txt) 8. tail:open ("A.txt", R_ONLY)

8. tail: open ("A.txt", R_ONLY) R(A.txt) 9. mv: rename ("A.txt.backup", "A.txt")

Figure 4: Example execution trace for mv and TAIL

DESCRY Algorithm
1: Inputs: P,j;, logs
2: Outputs: (T, S)
3: begin
4:  PuDs < IdentifyPuD (Pg;;)
5: for each P; € PuDs
6: LP; « GetLPoints (logs, P;)
7 G; « ComputeGoals (LP;, P;)
8: endfor

9:  while time < TIME ;4
10: for each P; € PuDs

11: if ExecuteConcrete(T, P;) doesnotleadto gl € G;
12: T[i] « GuidedSymbolicExecution (G;, P;)
13: endif

14: E « GetExecutionTrace (T)

15: S « ScheduleGeneration (E)

16: if Replay (T, S) is successful

17: return (T, S)

18: endif

19: endfor

20. endwhile

2L:end

Figure 5: The Overall Algorithm of DESCRY.

3 THE DESCRY APPROACH

The overall algorithm of DESCRY is shown in Figure 5. The input of
this algorithm includes the set of running processes P,;; when the
failure occurs, as well as the logs. The output is a tuple (T, S), where
T is the failure-inducing data input and S is the failure-inducing
interleaving schedule. In the remainder of this section, we explain
each step of the algorithm using the example of Figure 2. Details of
the algorithm are described in Sections 4-6.

Given P,j; and the logs, we first identify the failing process P €
P,;; and the subset L C P,j; of processes potentially interacting
with Pr (Line 4). Processes in L U {Pp} are called the processes under
debugging (PuDs). For example, in Figure 2, among all 11 processes
spawned by updatedb and tail, only mv and tail are the PuDs.

Next, we invoke GetLPoints to obtain the logging points (Line 6).
To handle large data and improve the scalability of subsequent
procedures for input and schedule generations, we first remove
the repeated log messages and then map the remaining messages
to logging points in the program. Next, we use the subroutine
ComputeGoals (Line 7) to connect logging points of each PuD to
form a set of logging sequences, denoted by G;, which subsequently
will be explored during symbolic execution.

In the example of Figure 3, DESCRY would map all messages
to their logging points: msg; of mv is mapped to Ip2, msgy of mv
is mapped to Ip4, msg; to msgog of tail are mapped to Ip7, and
msgog of tail is mapped to Ip6, which is the failure point. All other
logging points in the program are considered to be irrelevant. In the
end, mv and tail each has a goal list: (Ip2, [p4) for mv and (Ip7, Ip6)
for tail, as shown in Column 2 of Figure 3.

Next, DESCRY computes the failure-inducing data input (T[i])
for each individual PuD to exercise at least one of its goal lists in G;
(Line 12). This is accomplished by a customized symbolic execution
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procedure on each PuD that uses the logging sequences in G; as
guidance. To reduce the computational overhead, we propose three
optimization techniques: the seeding of concrete inputs, the pruning
of irrelevant states, and the prioritization of program paths. These
optimizations are made possible by leveraging results of our static
log analysis (see Section 4).

Column 3 of Figure 3 shows the path conditions computed by our
symbolic execution procedure. They are used to compute the data
input of mv (A.txt and A.txt.backup, where A.txt has a hard
symbolic link). However, symbolic execution fails to compute the
data input of tail because the first path connecting Ip7 to Ipé6 is
infeasible. Therefore, DESCRY relaxes the goals in tail by replac-
ing the failure point Ip6 with a failure predicate at Line 43, to allow
the exploration of more paths. The rationale is that the diverged
goal may still be reached through a different path, if the control
flow of the PuD is changed under a different event interleaving
schedule. When the goal list is changed to (Ip6, 43), for example,
our symbolic execution procedure is able to compute the desired
input -F A.txt.

Finally, we compute the failure-inducing interleaving schedule
S (Lines 14-15). Toward this end, DESCRY first executes all PuDs
concretely under their new inputs while following an arbitrary
interleaving schedule. If the resulting trace, denoted by E, triggers
the failure, we are done. Otherwise, we systematically explore al-
ternative interleavings of the inter-process operations in E in order
to trigger the failure. If no such interleaving exists, DESCRY back-
tracks, and uses symbolic execution to compute a set of new data
inputs, until the failure-inducing schedule is successfully repro-
duced (Lines 10-19).

For example, assume the trace in Figure 4 (the first column) was
generated by mv and tail in Figure 3 following an arbitrary sched-
ule. Since it does not trigger the failure, DESCRY systematically
permutes events of the trace to generate a failure-inducing schedule.
After swapping the two events (mv : rename, tail : open), we have
found the failure-inducing event interleaving schedule.

Note that the data inputs generated from different PuDs may
have different names but need to point to the same shared resources.
For example, tail may generate an input file called B. txt, whose
name is different from A. txt generated from mv. In this case, the
two file names must be unified to reproduce the failure. DESCRY
records a list of system calls that access the data input for each PuD.
If both lists in the pair of PuDs are non-empty, the data input is
a shared resource between the PuDs and thus the file names are
unified.

4 STATIC ANALYSIS OF LOG MESSAGES

The first step is to identify relevant processes (PuDs) from Py,
since there can be tens or hundreds of active processes when the
failure occurs in Pg, not all of which are PuDs. We consider a
process P as a PuD only in one of the following scenarios:

(1) P accepts input with the same type as the failed process P
(e.g., mv and tail both accept files as input);

(2) Pr and P are different instances of the same program (e.g.,
multiple bash processes running concurrently);

(3) Pr and P are different processes spawned by an application
(e.g., a Mutt mail client process tries to open an MS Word
attachment process);

(4) P is a software signal within the process Pr.
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The last three scenarios are automatically identified by DESCRY.
We assume active processes are captured by system built-in tools
such as the Linux Auditd Daemon [3, 16]. The first scenario may
require user intervention, e.g., to specify the type of input of a
process, if it has not yet been specified before. This is the only
manual step potentially needed by DESCRY. In practice, there is
no technical difficulty in doing this because developers who use
DESCRY should know what type of input (files, strings, or numbers)
that a process accepts.

For the example in Figure 2, DESCRY would examine the system
log directory /var/log that contains process names to identify
active processes, shown in Column 1 of Figure 3, where tail is the
failed process. Since the type of input accepted by mv is the same
as that of tail (i.e, file), they are selected as the PuDs. Note that
under the default system environment, /var/log record system
logs that do not involve program inputs from the user space. As
such, DESCRY does not assume these inputs are available.

4.1 Identifying the Logging Points

The next step is to identify the logging points (both RLPs and ILPs)
that print normal and error messages. This is extremely challenging
for real applications because they often use customized logging
facilities as opposed to simple printf statements. For example, in
Figure 2, the error call at Line 44 does not contain the string “No
such file or directory” observed in the error message, but calls an
error handling function named strerrno to construct and then
print the string. Because of this reason, mapping log messages to
logging points alone is a challenging problem, and has been studied
by the systems community extensively (e.g., Sherlog [39]).

However, unlike Sherlog [39], which relies on the user to specify
log patterns before it can identify the logging points, DESCRY does
it automatically by performing an inter-procedural static analysis
of each PuD and its libraries (e.g., strerror.c) to match log mes-
sages against the source code. It first identifies the set of program
statements (inside PuDs and libraries) involving the printing APIs
(denoted by Fp) such as printf and sprintf, and records the set
Str of format strings passed as parameters to functions in Fp. A
format string is determined by extracting the string within the
quotes of the AP, while excluding the the format specifiers (e.g.,
%s) and escape characters. For instance, “hard links" at Line 15 of
Figure 2 is a format string passed to printf. For each log message
in the logs, if its substring is identical to a string str € Str, the
corresponding function in Fj is identified as a logging point. If
the failure point f; € Fj exists in a library file, DESCRY traces
fp back to the PuD source code through the data and control flow
edges of the inter-procedural CFG; the source code location is then
identified as a logging point (e.g., Line 44 of Figure 2).

It is possible that the logging points are over-approximate, al-
though it does not occur often. If a log message comes from a
dynamically assembled string as opposed to a string constant, it
will not be identified statically. The subsequent symbolic execution
will have to be an un-guided search.

4.2 Constructing the Goal Lists

We construct the goal lists by connecting relevant logging points
of the PuD in a log hierarchy graph (LHG), which describes the
partial order of the logging points. A LHG is a directed acyclic
graph where nodes correspond to logging points and the hierarchy
levels correspond to the order in which they appear in the log: the
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entry entry
Lm,1 Lm,2 .. L, n Lm,1 LeX2 .. Lm.n
Lnﬁm{z Lmz-‘l Lm;,z

Post dominated
by an irrelevant
point

Figure 6: Examples for illustrating the log hierarchy graph (LHG).

first log message is at the top level. For each message ID m, the
set of logging points associated with m is {I,5,, ; }, where Iy, ; is the
logging point for m at the i-th program statement.

Each logging point I, ; indicates an unique program statement.
However, a logging point may associate with multiple log messages
having different IDs but the same format strings due to loop itera-
tions. In the example of Figure 2, there are 98 messages mapped to
Ip7. DESCRY considers such messages to be the same and thus uni-
fies their message IDs. Specifically, these 98 messages are renamed
to msg, because they have the same format strings. In other words,
we mitigate the cost of goal list construction by ignoring loops.
Although in theory, it may lead to unsuccessful failure reproduc-
tion, e.g., when a failure can only be triggered after going through
a loop a fixed number of times, such cases are rare in practice, as
shown in our experimental evaluation. Furthermore, we mitigate
the problem during our subsequent symbolic execution step by
iteratively increasing the number of loop iterations to eliminate
unsuccessful failure reproduction should it appear.

A goal list, denoted by Pp, = [lmhiml’ lmZ,imZ’ o lmk,imk ], con-
nects the logging points in the LHG. Figure 6 (left) shows an exam-
ple LHG, where each vertical path corresponds to a goal list. Since
enumerating all goal lists takes O(S¥), where S is the number of
logging points associated with each log message and k is the length,
it can become too expensive in practice. Fortunately, not all goal
lists correspond to a feasible execution. In DESCRY, we use a light-
weight static program analysis to prune away the infeasible goal
lists. Toward this end, we decompose the problem of searching for
a complete LHG path into subproblems of searching for segments
of the path.

More specifically, DESCRY iterates through all LHG nodes at two
neighboring LHG levels i and j, and for each edge (Im;,i = Im;, ),
checks if (1) I, ; is reachable from Ip, ; and (2) their pre- and
post-dominators do not contain irrelevant logging points. If the
first condition is not met, we remove (Ip,;,; — lmj, j) because paths
traversing this edge are infeasible. If the second condition is not
met, we remove the node I, ; and all its associated incoming and
outgoing edges, and we do not involve Iy, , ; in the next iteration.
This is because paths traversing I, j contain irrelevant points and
thus must not have been exercised for triggering the failure. Only
when both conditions are met, I, ; is considered as a new goal
after I, ;.

Applying our new method to the example of Figure 6 (right)
will remove the edge (I;n,,1 = Im,,2) because I, 7 is not reachable
from I, 1 ( the first condition). It will also remove I, 2 and the
edge (entry — Iiy,,2) because I, 2 dominates an irrelevant log
message (the second condition). Thus, the final goal lists will be
[lml,la lmz, 1]5 and [lml,n]-
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5 GUIDED SYMBOLIC EXECUTION

We propose a new symbolic execution procedure to compute failure-
inducing data inputs of all PuDs in a multi-process application. This
step differs from prior work on testing concurrent software using
symbolic execution [12, 13, 24] in that our method is designed for
multi-process applications whereas prior works all focus on a single
process. Internally, we leverage KLEE [5] to conduct a goal-directed
exploration of the PuDs, to traverse program statements specified
in the goal list.

As shown in Line 12 of Figure 5, our algorithm takes each PuD
P; and the set of goal lists G; as input and returns T[i] as output.
Here, T[i] is the data input that forces P; to go through a goal list
in gl € G;. Let goal € gl be the current goal, and stateset be the set
of program states of P;. At each step of the symbolic execution of
P;, we select a state s; € stateset that is more likely to reach goal.
If no state in stateset can reach goal, we check if goal is a program
statement in a loop. If goal is in a loop, we increase the number of
loop iterations by a fixed number (N=10 in our experiments) and
try again until reaching the loop bound L, 4. This will increase
our chance of reaching the goal.

If goal cannot be reached in this way, we backtrack to the previ-
ous goal in g/, and search for a path to the new goal. If backtracking
is repeated many times, eventually, it may move back to the first
goal, indicating that the current goal list cannot be exercised. In
this case, we choose another gl € G; and try again.

Upon reaching the final goal in gl, we traverse the corresponding
program path in P; to compute the path condition (PC), which is
a symbolic expression of the input condition under which this
program path will be executed. We compute the data input T[i] by
solving the path condition using an SMT solver.

The main problem in this log-guided symbolic execution is to
make the computation efficient by exploring the more “promising”
program paths. Toward this end, we propose several techniques.
First, we statically analyze the source code of each PuD to prune
away basic blocks that do not lead to the goals — they correspond
to not only the irrelevant logging points (Section 4.2) but also the
related non-logging program statements. Second, we skip com-
putationally expensive constraint solver calls unless the program
path traverses some previously unexplored system calls. In addition
to these optimizations, we prioritize the path exploration based
on the estimated distance between current program state and the
next goal to increase the likelihood of reaching it sooner. Finally,
for efficiency reasons, if the program path does not traverse any
previously unexplored system call, DESCRY heuristically avoids
generating the data input because it will be less useful for failure
reproduction.

We next explain how the next state is selected at each step, how
concrete configuration options are leveraged to avoid generating
a large number of invalid inputs, and how concrete data inputs
are computed for other PuDs to further avoid expensive constraint
solving.

5.1 Selecting the Next State

At each step of the symbolic execution of process P;, we need to
prioritize the exploration by selecting the most promising next
state. Internally, DESCRY estimates the distance between each state
s; and goal before selecting the most promising one. The distance
is defined as the number of instructions to be executed from s;
to goal and is computed by statically traversing the control flow
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graph of the PuD. If multiple states have the same distance to goal,
DESCRY would favor the one through which some previously un-
explored system calls can be invoked. As such , the search strategy
significantly differs from prior state prioritization techniques [5, 20]
which do not attempt to maximize the exploration of logging points
or previously unexplored system calls.

Furthermore, to avoid computing the distance more than once,
we cache the result into a map so it can be queried in subsequent
symbolic execution steps. This is relevant because the distance
between two nodes was often queried multiple times (e.g., due to
backtracking) and without caching, there would be re-computations.
Our search strategy does not require the distance computation to
be precise: a less accurate estimation will not affect the correctness
of the algorithm. For example, we use approximation to handle
external libraries with missing source code. The potential impreci-
sion caused by such approximation will be eliminated during the
subsequent dynamic analysis step, which concretely executes the
PuDs for interleaving schedule generation and replay.

5.2 Seeding Concrete Configurations and
Inputs

During symbolic execution, the symbolic variables of each P; can
be either user inputs or configuration options. For many Linux ap-
plications, configuration options (or configuration parameters) are
treated as a special type of inputs. These options are often specified
in a configuration file read by the program. Treating configura-
tion options (or configuration files) as symbolic inputs, which is
the standard approach in symbolic execution, can be inefficient
because it may take a large amount of time and memory to explore
all possible configuration options, most of which are invalid (e.g.,
modules.server = “?#$”) [37]. Using concrete options can simplify
the constraint solving and thus improve the scalability of symbolic
execution. Therefore, we propose a heuristic method for identifying
configuration options that are more relevant to the logging points.

Specifically, we employ a technique called static program chop-
ping, which computes the intersection of forward and backward
slicing. In program chopping, two points of interest — source (s) and
target () — are chosen, and the chop [36] is defined as all statements
that could transmit effect of executing s to t. As such, chopping
reveals the ways in which one program point may affect another
program point.

DESCRY takes the process P and the goal list gl as input. It consid-
ers the read points of each configuration option ¢ € C as chopping
sources (S¢) and logging points in the goal list (gl € gl) are chop-
ping targets (T,;;). For each ¢ and g/, it applies the static chopping
algorithm to compute the chop set CS; with respect to ¢ and gl. If
CS. is not empty, the configuration option c is potentially relevant
to gl, in which case DESCRY adds c to the relevant configuration
option set Cy;. When exploring a goal list, GuidedsymbolicExecution
directly takes the concrete configuration options in Cy; as input,
as opposed to treating them as symbolic values.

Given N PuDs, where N > 1, DESCRY in general may need to
invoke the GuidedSymbolicExecution routine N times. To reduce the
computational cost, it heuristically seeds the concrete input data
generated by symbolic execution from one PuD P to another PuD
P’, if P’ accepts the same type of input data. In this case, rather
than invoking GuidedSymbolicExecution on P/, we check if we can use
the input data D from P as the concrete input to P’. If D allows P’ to
reach its goal list, then no expensive constraint solving is needed.
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6 INTERLEAVING SCHEDULE GENERATION

We propose a predictive dynamic analysis method to generate the
failure-inducing interleaving schedule when given a set of PuDs and
their corresponding data inputs. At the high level, we first execute
the application (consisting of all PuDs) under an arbitrary schedule
to generate the initial execution. Since the schedule is defined by
the order of inter-process events (system calls), it is represented by
the sequence of these events. If the initial execution does not trigger
the failure, we systematically generate alternative interleavings of
these events. Our method for generating alternative interleavings
relies on a predictive (constraint) model constructed from the initial
execution trace.

6.1 Constraint Model

The constraint model captures the partial order relation of the
system call events appeared in the initial execution. For any two
events e; and ej, we say that e; — e; if e; must happen before e;.
If two events do not follow any must-happen-before order, they
can be flipped to create a new schedule. Specifically, we employ the
following order relations:

e Program order: e; — ej when e; occurs before e; in the
same process/thread.

e Fork-return order: ¢; — ej when e; is the fork that starts
the child process Pj, and e; is the return of P;.

¢ Wait-exit order: e; — e; when e; is the wait that blocks a
parent process, and e; is the exit that terminates the child
process.

e Pipe-read order: e; — e; when e; is a stream write to a
pipe, and e; is the corresponding stream read.

e Signal order: e; — ¢; when ¢; is an event of the process
before it enables a software signal S, and ej is in S.

We represent the constraint model as a partial order graph (POG)
denoted by (V, E), where V is the set of nodes corresponding to the
inter-process events and E is the set of edges between the nodes.
Each edge (e;, ej) € E represents a must-happen-before relation
between e; and e;.

To generate the failure-inducing schedule, we systematically
permute events in the initial execution, by flipping the order of
system calls involving shared resource accesses while respecting
the order relations. Specifically, each time, we pick an event pair
and flip their order to generate a new interleaving schedule offline,
and then check if the schedule is feasible by replaying the PuDs
under the new schedule.

6.2 Generating New Schedules

Our new schedule generation algorithm takes the partial-order
graph as input and returns a set of interleaving schedules as output.
Internally, DESCRY analyzes two PuDs at a time, e.g., the failing pro-
cess Pr and a PuD P; chosen by DESCRY to pair with Pr. This is an
approximation that is sufficient for handling all bugs encountered
in our experiments (where all the bugs involve only two processes).
It is consistent with a prior study [23], which found most real-world
bugs involve two threads or processes. There are two challenging
problems in generating new schedules: (1) which event pair to pick
and flip, as there can be many event pairs; and (2) how to ensure
the new schedule is not only feasible but also more likely to trigger
the failure.

To solve the first problem, DESCRY prioritizes event pairs where
at least one of the two events is a write system call and is closer
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failure

Figure 7: An example of schedule generation.

to the failure point, based on our observation that events closer
to the failure point are more likely to be relevant. DESCRY starts
from events in Pr and selects the event ef closest to the failure
point. Next, it selects an event e; that is close to but does not have
order relations with ef. The event pair (e;, er) is called a suspicious
event pair. For each suspicious event pair, DESCRY generates a
new interleaving schedule by flipping the order of the two events.
To avoid obviously-infeasible schedules, which is the second prob-
lem mentioned above, DESCRY ensures that the new schedule is
consistent with the order relations captured by the POG.

Figure 7 shows an example trace, where (e4, eg) and (es, e4) are
two event pairs in the two processes P1 and P2, respectively. The
solid edges represent the order relations. Here, DESCRY would
consider flipping (e, eg) first because it has a higher priority (eg is
closer to the failure point). However, the two events have a must-
happen-before relation because of fork-return, and therefore cannot
be flipped. In contrast, the suspicious event pair (es, e4) can be
flipped and thus DESCRY would try to schedule e3 after e4.

However, there are multiple ways of executing es after e4. If
we simply execute ez immediately after e4, it would violate the
partial order relation of e3 and es. Therefore, during the reordering,
our algorithm moves not only the candidate event but also events
depending on the candidate event. In Figure 7, this corresponds to
moving both e3 and e5 after e4, which leads to the new interleaving
schedule (ey, e, eq, €3, es, e, €7, eg).

In the replay phase, DESCRY executes the PuDs with the newly
generated data inputs while controlling the system call events to
follow the newly generated interleaving schedule. If the execution
does not match the permuted events, which means the execution
has taken a different branch from what is expected, DESCRY skips
the execution (since it is an infeasible schedule) and proceeds to
generate another interleaving schedule; this amounts to identify-
ing and flipping another suspicious event pair. If DESCRY cannot
find any failure-inducing interleaving schedule after permuting all
suspicious event pairs, it will backtrack and invoke the symbolic
execution procedure again to generate another set of data inputs.

7 EXPERIMENTS

We have implemented DESCRY in a software tool built upon a
number of open-source platforms. Specifically, our static program
analysis for mapping log messages to program statements was im-
plemented in LLVM [1], our log-guided symbolic execution was
implemented using KLEE [5], and our interleaving schedule gener-
ator was implemented using the Simics Virtual Platform [8].

To evaluate DESCRY, we consider two research questions:
RQ1: How effective is DESCRY in reproducing real-world con-
currency failures in multi-process applications based only on the
default logs generated by these applications?

RQ2: How efficient is DESCRY in computing the failure-inducing
data inputs as well as the event interleaving schedules?
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Table 1: Benchmarks and Descriptions of the Failures

Prog. LoC[ Bug ID # Proc| Observed Failure

mv 7,002[Bugzilla-438076 | 19 |another process terminates (“file is missing”)
rm 5,525|Bugzilla-1211300] 12 |rm terminates ("directory not empty”)

pxz 370[Bugzilla-1182024] 21 [file permission mode is modified

chmod 3,983|GNU-11108 13 [file permission mode is modified

In 3,890|Debian-357140 18 |In terminates ("file doesn’t exist”)

mkdir 4,213|Debian-304556 10 _|[file permission mode is modified

mknod 3,840|Debian-304556 21 _|file permission mode is modified

mkfifo 3,959|Debian-304556 12_|file permission mode is modified

taill 4,492|Changelog 22_|output not updated after attached process exits
tail2 4,317|Changelog 22_|incorrect output lines after a delivery of signal
cpl 4,010|Changelog 18 [file permission mode is modified

cp2 4,132|Changelog 18 [directory create fails ("directory exists”)

sort (sig) 3,862]|Changelog 21 [program terminates (“unlink failed”)

ps 4,695[Bugzilla-55057 25 [error message (print “grep -n aaa” itself)
stracel 25,192|Bugzilla-558471 | 17 |[the process been tracked is not detatched
strace2 (sig)| 25,192|Bugzilla-548363 | 17 |hang

Togrotate 2,393|Debian-400198 28 _|file access permission denied

bash 39,102|Debian-283702 31 |[corrupted history file

tesh 47,167|Debian-632892 31 |corrupted history file

bzip2 9,263|Debian-303300 [ 22 [file permission mode is modified

gzip 7,252|Debian-303927 19 |file permission mode is modified

lighttpd-1 [ 37,919|Lighttpd-2217 29 |http timeout

lighttpd-2 | 41,292[Lighttpd-2542 29 lerror (200 response with an empty body)
apache 195,005]Apache-43696 31 [server shutdown command is ignored

7.1 Benchmarks and Evaluation Metrics

All our benchmarks are real Linux applications with known con-
currency failures due to incorrectly shared resources between pro-
cesses and/or signal handlers. They are identified by searches of
open-source repositories such as GNU, Bugzilla, and Debian. There
are 22 program versions from 20 unique applications, among which
11 applicaitons were from Linux coreutils. Searches of these open-
source repositories were conducted by research assistants (students)
who are not involved in the DESCRY project to minimize bias. Fur-
thermore, the root causes of these failures were unknown to us
until we finished running and analyzing the results of DESCRY.

Table 1 shows the statistics of each benchmark, including the
name, the number of non-comment lines of code, the bug ID, the
total number of processes, and a short description of the symp-
tom. In this table, the benchmarks are divided into two categories,
separated by the double horizontal lines. Benchmarks in the first
category are from the GNU Coreutils. Benchmarks in the second
category are from other popular Linux applications.

Evaluation metrics. We measure both the effectiveness and the effi-
ciency. To measure the effectiveness, we check whether a known
failure can be successfully reproduced within the time limit. To mea-
sure the efficiency of DESCRY, we analyze the failure-reproduction
time, by measuring the time spent on PuD identification, log analy-
sis, input generation, and schedule generation, respectively.

Our experiments were conducted on a computer with an Intel
Core 15-2400 3.10 GHz CPU, 8 GB RAM and Ubuntu 14.10 Linux.
We used the most recent version of KLEE built from LLVM 3.4. We
set a two-hour time limit for all four techniques. To control for
variance due to randomization, we ran each of the three DESCRY
techniques five times to compute the average.

7.2 Experimental Results and Analysis

Table 2 summarizes the results of applying DESCRY to the bench-
marks. Column 1 shows the benchmark name. Column 2 shows the
number of log messages. Column 3 shows the number of relevant
PuDs. Columns 4-6 show the result of our log analysis, including the
number of relevant logging points (#RLP), the number of irrelevant
logging points (#ILP), and the number of goal lists (#GL).

Column 7 shows the failure-inducing data input. Columns 8-10
show the result of our schedule generation, including the total
number of explored happens-before relations (#HB), system calls
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(#SC), and system-level resources (#SV). In the latter two columns,
numbers in the parenthesis correspond to the events of interest
(i.e., relevant system calls and shared resources). Column 11 shows
the total number of loop iterations in the main algorithm; it is the
summation of the number of data inputs generated and the number
of times that goal relaxation occurred (numbers marked with *
indicates that goal relaxation occurred). Column 12 shows the total
execution time of DESCRY. Column 13 shows the result of failure
reproduction, where “Y” means it succeeded and “No” means it
failed. Finally, Column 14 shows the root cause of the failure, where
events are system calls in the current process, whereas system
calls marked with * are from other processes. For example, in mv
(with bug ID 438076), the buggy process causes another process to
terminate early due to a missing file when the atomicity of unlink
and rename is broken by the write operation of another process.

RQ1: Effectiveness in reproducing failures. DESCRY succeeded in
reproducing 22 of the 24 failures. We repeated each experiment five
times, and found that DESCRY consistently succeeded in generating
the failure-inducing data inputs and interleaving schedules to reach
all failure points of these 22 failures. Therefore, the results indicate
that DESCRY is effective in reproducing system-level concurrency
failures.

For the two cases where DESCRY failed, the failures were all due
to limitations of KLEE in modeling the file system, not limitations
of the algorithms in DESCRY. Specifically, the failures require the
program inputs to be hierarchical directories, but KLEE models
the file system as a flattened system, where symbolic files have
pathnames such as “A”,'B”, and “C” without any hierarchy [5]. Fixing
this problem in KLEE would have allowed DESCRY to handle these
two failures without any modification.

DESCRY is the only tool that can automatically reproduce the
22 known failures. Existing tools, such as RacePro [21] and Sim-
Racer [29, 38], may appear to be similar but cannot really solve
the same problem, due to the following limitations. First, they re-
quire the user to provide concrete data inputs, which cannot be
satisfied in practice. Second, their search for erroneous interleaving
schedules is not guided by logs. Since prior work has shown that
SimRacer outperformed RacePro (due to limitations of RacePro such
as replay divergence [38]), in this study, we compare DESCRY only
to SimRacer. SimRacer does not have the capability of generating
new data inputs, so we had to feed random inputs to SimRacer. As
shown in Table 3, SimRacer reproduced only eight out of the 22
failures reproduced by DESCRY.

Within DESCRY, we also evaluated different search strategies.
By default, DESCRY uses our log-directed symbolic execution to
compute data inputs. Another option is to use the search strat-
egy provided by KLEE, denoted DESCRY pfrs, where the symbolic
execution is not guided by the logging points. This controlled ex-
periment allows us to evaluate the performance of our new input
generation algorithm. The third option is DESCRY 45, which uses
the logging points to guide symbolic execution, but does not use
our new schedule generation algorithm. Instead, DESCRY 45 relies
on active testing techniques [31, 38]. This controlled experiment al-
lows us to evaluate the performance of our new schedule generation
algorithm.

As shown in Table 3, DESCRYpFs reproduced only 6 of the
22 failures reproduced by DESCRY, indicating that our new log-
ging points-guided symbolic execution procedure in DESCRY is
significantly more effective than existing techniques. DESCRY 45
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Table 2: Results of applying DESCRY to all benchmark applications.

Prog. #MSG [#PuDs| __Log analysis | Data input generated Schedule Generation Total | Time| Replay Bug Description
# # E # # #SV |Iterations|(min)|success!
mv 2 3 5 [ 62] 6 |AB.1Ink 0 46 (27) 15 (5 20* 8 Y |(unlink, rename, ..., stat*) — (unlink, ..., stat™, rename)
rm 102 3 2 [29] 2 ]2 0 38 (18) 5(14)] 1138 > No [(openat, fstat, ..., unlink*) — (openat, ..., unlink*, fstat)
pxz 2 5 2 [33] 1 |-z-tA 0 | 1494 (959) 61 (5) 1 5 Y |(umask, chmod, ..., symlink*) — (umask, ..., symlink®, chmod)
chmod 1 3 1 |21 1 |2 0 36 (17) 15 (5)] 1296 > No |(stat, fchmodat, ..., symlink*) — (stat, ..., symlink*, fchmodat)
In 1 2 2 2 1 [-s -fAB 1 36 (16) 13 (6)] 10* 4 Y |(stat,unlink, ..., unlink*) — (stat, ..., unlink*, unlink)
mkdir 98 3 3 6 2 |-m 400 A 0 36 (18) 13 (6)] 28 21 Y |(mkdir, chmod, ..., symlink*) — (mkdir, ..., symlink*, chmod)
mknod 70 3 3 [ 20| 2 |-m 400 A 0 39 (19) 14 (6)] 22 20 Y [(mkdir, chmod, ..., symlink*) — (mknod, ..., symlink*, chmod)
mkfifo 3 3 3 7 | 2 [-m 400 A 0 34 (16) 13(6) 26 20 Y [(mkdir, chmod, ..., symlink*) — (mkdir, ..., symlink*, chmod)
taill 201 2 11 [ 68 | 6 |-s -f A --pid=101 2 52 (32) 14 (6) 4 5 Y |(write,...,read*, exit) — (read*, write,..., exit)
tail2 112 2 5 65 3 |-f A 2 88 (37) 15 (6) 1 3 Y |(read, stat,...,write*) > (read, ..., write*, stat)
cpl 149 (3) 4 5 [126] 3 [-p 600 dirl dir2 0 72 (48) 18 (8) 8 6 Y [(mkdir, stat, ..., fchmod*) — (mkdir, ..., fchmod*, stat)
cp2 68 3 4 [131] 2 |-R dir1 dir2 0 44 (23) 16 (6)] 11* 8 Y [(stat,mkdir,...,mkdir*) — (stat,..., mkdir*, mkdir)
sort (sig) |71 2 7 54| 3 |-n -rA 3 53 (29) 21 (9) 1 5 Y (read,unlink,...,unlink*) > (read, ..., unlink*, unlink)
ps 447 2 2 [419] 1 [-u 4 [2636 (2512) 65 (8) 2 14 Y [(read*, execve) — (execve, read*)
stracel 65 2 3 [2655] 1 |-f A 5 | 1138 (331) 24 (7) 1 5 Y |(stat,write*, fork) — (fork, stat™, write)
strace2 (sig)[65 2 4 [2655] 2 |A.fork 4 ] 1492 (382) 32 (9) 1 8 Y [(wait*, execve) — (execve, wait*)
logrotate |28 4 4 [224] 2 |[-fA 3 96 (31) 23 (7)) 48* 4 Y [(open, chown, ..., fchmod*) — (open, ..., fchmod*, chown)
bash 2 2 2 [836| 1 |-c "aa;history -w"| 4 619 (208)] 64 (41)] 102 48 Y |(write,...,write) —> (..., write, write*)
tcsh 2 2 5 |1045] 2 [-c "aa" 3 358 (172)] 64 (23)] 138 18 Y [(write,...,write) > (..., write,write*)
bzip2 2 2 2 [209] 1 |-d A 0 63 (29) 19 (5) 3 9 Y |(close, chmod, ..., write*) — (close, ..., write*, chmod)
gzip 2 3 3 J211] 1 [-dA 0 49 (24) 14 (5) 5 10 Y (close, chmod, ..., symlink*) — (close, ..., symlink*, chmod)
lighttpd-1 _[503 4 15 [1268] 19 |mod.cgi 26 [2058 (1064)[1962 (581)] 199* 21 Y |(waitpid*, exit) — (exit,waitpid®)
lighttpd-2 [522 4 17 [1356] 20 [mod.cgi 29 [ 2132 (948)[1864 (572)] 251 19 Y [(waitpid, close,...,waitpid*) — (close, ..., waitpid*, waitpid)
apache 698 5 24 [3505] 18 |-k start 41 [3946 (1588)[2433 (962)] 432* 29 Y [(signal*, sigpromask) — (sigpromask, signal*)
Table 3: Comparing the success rate of different methods. 60 N ¥
[\ | 1
50 | § § =
[Prog. [ DESCRY success | SimRacer [38] success | DESCRYp s success | DESCRY o5 success| § \ § §
mv Y No No Y [ \ . \
Tm No No No No 40 N N \ § \
pxz Y No No Y 1 \ iR \
chmod No o o No in \ NI N iR §
In Y o 0 Y 30 i § \ § \ N § N
mkdir Y o 0 Y in \ | N N |
h \ R N N
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tail2 Y No o Y w0 KR §§$s§§§§§§5§
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sort (sig) Y No No Y o LI EI | N\ §I ;3] \E\E R R B BB
s Y Y Y Y N .
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gzip Y Y Y Y Figure 8: Comparing the time taken by different methods.
lighttpd-1 Y Y No Y
lighttpd-2 Y Y No Y
apache Y No No Y
[total [ 22 [ 8 [ 1 [ 22 ]

reproduced all 22 failures. However, as will be discussed in the
results of RQ2, it took significantly longer time than DESCRY.

RQ2: Efficiency in reproducing failures. For all 22 successful cases,
DESCRY reproduced the failures in less than 40 minutes. On average,
each benchmark took only a couple of minutes, indicating that
DESCRY is efficient for practical use. Furthermore, on average
81.7% of the time was spent on generating the failure-inducing data
inputs, while log analysis and schedule generation took only 8.1%
and 10.2% of the time, respectively.

Figure 8 compares the total time (in minutes) taken by SimRacer,
DESCRYprs, DESCRY 45, and DESCRY. When a bar reaches the
top of the vertical axis, it means the corresponding method failed
to reproduce the failure in the two-hour time limit. Among the
eight failures successfully reproduced by SimRacer, SimRacer was
3 times faster than DESCRY on average. Unfortunately, there are 14
other failures that SimRacer could not reproduce but DESCRY could.
Compared to DESCRY, the method DESCRYp s was 2.1 to 11 times
slower on the individual benchmarks both can handle (and 7.8 times
slower on average), and the method DESCRY 45 was 1.5 to 9 times
slower on the individual benchmarks both can handle (and 2 times
slower on average). These results demonstrate the effectiveness of

our new symbolic execution and predictive schedule generation
algorithms.

7.3 Case Study

We present two representative examples where DESCRY succeeded
in reproducing the system-level concurrency failures, to demon-
strate why it is helpful to developers.

Bash — Bash. When executing multiple bash shells concurrently,
the shell history file may be corrupted, e.g., when one bash process
P1 opens .bash_history using open(fd, O_WRONLY) before writing
to it, and another bash process P2 also opens the file for writing.
The failed execution is P1:open — P2:open — P1:write — P2:write —
P1:close — P2:close, which produced only the log message “writing
to the history file". Therefore, manually inspecting the source code
of bash to figure out the root cause of the failure would be extremely
difficult. In contrast, DESCRY was able to automatically reproduce
the failure using the log message. Specifically, it produced a program
input containing the command-line option “-c” (i.e., to execute a
new command) and the bash command “aa; history -w”, as well as
the failure-inducing event interleaving schedule.

Lighttpd — CGI. When the CGI program writes an HTTP response
to stdout, the server cannot complete the transaction. Under normal
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execution, the lighttpd process calls waitpid to wait for the CGI pro-
cess to terminate. Once the CGI terminates, the lighttpd receives the
FDEVENT_HUP signal and the http transaction successfully termi-
nates. However, when the waitpid in the lighttpd process happens
after the CGI process terminates (exit), lighttpd does the cleanup
work and removes the pipe’s fd. In this case, lighttpd never gets the
FDEVENT HUP event, and thus the connection cannot be closed,
causing a timeout of the http transaction. This race is caused by
the waitpid and exit calls on the shared resource /proc/pid, which
corresponds to the following log messages:

Benchmarking localhost
Completed 100 requests

Completed 599 requests

Completed 600 requests

apr_poll: The timeout specified has expired (70007)
Total of 600 requests completed

For lighttpd, DESCRY first identified the repeated messages (i.e.,
lines 2-5: a list of items printed by the same logging point in lighttpd)
and located the relevant logging points. Then, it used static chop-
ping to identify that the configuration option mod_cgi is relevant to
the logging points. This option is specified in the configuration file.
Next, it generated an input (start) using guided symbolic execu-
tion. Finally, given the configuration file and a regular CGI process
(http://cgi-bin/hello.cgi), DESCRY generated a failure-inducing in-
terleaving schedule by swapping the order of waitpid and exit.

7.4 Discussion

Symbolic execution. One limitation of DESCRY is that it relies
on symbolic execution, which is known to only scale up to medium-
sized applications, as in KLEE, although if suitably defined, well
tuned and well engineered, symbolic execution can scale up to
larger applications [10].

Quality of logs. The effectiveness of DESCRY depends on the qual-
ity of logs — in general, it performs better when given more detailed
logs. Fortunately, research has shown that logging is pervasive in
software development practice [39-41]. During our experiments,
the size of the logs ranges from one message to hundreds of mes-
sages (Column 2 of Table 2), indicating its effectiveness even in the
absence of detailed logs. (Server and storage applications tend to
produce significantly more detailed logs [40].) There is only one
case (tcsh) where our log-guided input generation algorithm did
not outperform the DFS-based algorithm of KLEE. Upon further
examination, we found it is because the logging points were not
under control flow points that lead to the observed failure. In other
words, these log messages are too general to provide any useful
information of the erroneous execution.

It is worth noting that logs used by DESCRY were generated by
the applications under their default production setting (i.e, verbosity
level). In such case, the logging overhead is less than 1% in the eleven
applications from the Linux coreutils, and 1.3% - 2.8% in other nine
applications.

8 RELATED WORK

Fault detection. The focus of our work is reproducing failures using
only default logs generated by the failed applications. However,
there is related work on detecting faults in concurrent systems,
such as the time of check to time of use (TOCTTOU) bugs [28, 34],
signal races [33], and order violations [22]. These techniques focus
only on fault detection using existing data inputs, e.g., by executing
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target programs in specialized environments. None of them can
automatically generate new data inputs to reproduce system-level
failures. Similarly, RAcEPRo [21] is a tool for detecting process-level
races but it assumes the failure-inducing data input already exists.
In contrast, DESCRY relies only on default logs generated in the
deployment environment.

Log and core dump analysis. There are tools for analyzing failure
information in core dumps and heap data [35, 42]. Core dumps
were also used to guide the search for failure-inducing program in-
puts [30]. Jin et al. [18] use various runtime information of the failed
execution to guide the generation of program inputs. SHERLOG [40]
analyzes the program’s source code by leveraging coarse-grained
logs generated by the program to infer paths that may lead to the
failure. However, these techniques focus on sequential programs
only. Furthermore, since they rely on core dumps, they cannot
handle non-crashing failures that do not lead to core dumps.

Symbolic execution. Symbolic execution has been widely used in
software testing to help increase code coverage and reveals bugs for
both sequential [4, 5, 24, 25] and concurrent [9, 32] software. Zamfir
et al. [42] leverage symbolic execution to generate failure-inducing
execution paths and the corresponding interleaving schedules. How-
ever, their method only handles thread-level concurrency failures.
Symbolic execution has also been combined with other techniques
for testing and debugging multithreaded software [13, 15, 19]. For
example, Guo et al. [13] use static analysis to identify program
paths that do not lead to any failure and prune them away dur-
ing symbolic execution. Huang et al. [15] compute feasible thread
schedules using a constraint solver by combining constraints from
thread paths and constraints from the memory model. Again, none
of these techniques handle multi-process systems.

Fault localization. Existing methods for localizing concurrency bugs
often rely on analyzing a large set of (passed and failed) test runs
to narrow down the root cause [6, 26, 35]. For example, Park et
al. [26] localize anomalous data-access patterns associated with a
program’s pass/fail results based on statistical analysis. Weeratunge
et al. [35] diagnose Heisenbugs by comparing core dumps of failing
and passing runs. However, these methods all assume that devel-
opers already have the failure-inducing data inputs together with
a large set of passing and failing execution traces. In contrast, our
method does not make such assumptions. Instead, it relies only on
the default logs of failed applications.

9 CONCLUSIONS

We have presented DESCRY, the first fully automated software tool
for reproducing concurrency failures of multi-process applications
using only default logs from these applications. DESCRY leverages
new static program analysis to identify the logging points, new sym-
bolic execution strategy to generate data inputs, and new predictive
dynamic analysis to generate failure-inducing interleaving sched-
ules. We have evaluated DESCRY on a large number of widely-used
Linux applications and showed that it successfully reproduced 22
real failures that could no be reproduced by any other tool. There-
fore, it is a useful addition to the application developer’s toolbox
for debugging multi-process concurrent software systems.
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