

PSFC/JA-17-45

Scientific data management with navigational metadata

J. Stillerman, M. Greenwald and J. Wright

January 2018

Plasma Science and Fusion Center
Massachusetts Institute of Technology

Cambridge MA 02139 USA

This work supported by NSF ACI-164029. Reproduction, translation, publication, use
and disposal, in whole or in part, by or for the United States government is permitted.

author’s email: firstname.lastname@some.mail.server

Scientific data management with navigational metadata
J. Stillerman, M. Greenwald and J. Wright

Massachusetts Institute of Technology, Cambridge, MA, 02139 USA

Modern science generates large complicated heterogeneous collections of data. In order to effectively exploit these data,

researchers must find relevant data, and enough of its associated metadata to understand it and put it in context. This

problem exists across a wide range of research domains and is ripe for a general solution.

Existing ventures address these issues using ad-hoc purpose-built tools. These tools explicitly represent the data

relationships by embedding them in their data storage mechanisms and in their applications. While producing useful tools,

these approaches tend to be difficult to extend and data relationships are not necessarily traversable symmetrically.

We are building a general system for navigational metadata. The relationships between data and between annotations and

data are stored as first-class objects in the system. They can be viewed as instances drawn from a small set of graph types.

General-purpose programs can be written which allow users explore these graphs and gain insights into their data. This

process of data navigation, successive inclusion and filtering of objects provides powerful paradigm for data exploration.

This paper lays out the underlying core ideas, progress to date, and plans for near term work.

Keywords: data science, metadata, annotation, navigation, graph data

1. Introduction

The size and complexity of the data collected during

all kinds experimental science has been growing rapidly

over time. This is due at least in part to improved

measurement equipment, faster computers, larger storage,

and better computer networks. In many spheres,

experiments are also getting larger and more

collaborative, and these collaborations are often spread

out geographically. These factors combine to make

descriptive metadata for these data sets imperative for

their exploitation. Expressive metadata provides context

documenting recorded measurements and computed

results. If sufficient metadata is present, then the data can

be understood and used by current and future

collaborators, without relying on direct communication

with the original experimenter, and relying on their

memories. The smaller scale experiments of the past had

a less urgent need to store and manage metadata, in that
the data sets were smaller and more homogeneous, and

the size of the scientific teams involved tended to be

smaller. A modern experiment such as a tokamak or a

particle accelerator may involve hundreds or even

thousands of scientists. In order for them to work

effectively they need to be able to access and understand

the results recorded and stored by their colleagues. Data

acquisition and data management tools have been

evolving to meet these challenges.

This evolution has been not only in the capabilities and

capacity of these tools but also in their level of

abstraction. Hand recorded measurements were replaced

by pen based chart recorders, oscilloscopes, and Polaroid

scope cameras. These in turn led to purpose built

hardware and software to record measurements with

computers, general purpose hardware with purpose built

programs, general data collection programs like LabView

[1] and MDS [2], and finally general data collection and

management systems such as MDSplus [3] and workflow

engines like Kepler[4]. Over time these tools increased in
their generality and allowed users to represent their data

at higher levels of abstraction.

Most current experiments have ad hoc systems to store

and navigate a subset of the relationships between their

data. For example, they connect experimental proposals

to experiment operations, comments on those operations,

machine status, and data provenance. These systems have

tended to encode data relationships explicitly, often in the

user interface program code itself. Furthermore, the

navigation is often asymmetric (e.g. a logbook entry refers

to some particular stored data, but this fact is not easily

discernable when the data is accessed). Many of the ideas

for this project stem from previous work by the authors,

Metadata Ontology Project[5], which represented data

provenance information as graphs, and data object

references as uniform resource identifiers, URIs[6]. It is a

logical next step, generalizing the storage and retrieval of

relationships between stored data.

2. Problem Statement

This project will provide a set of tools to define, store,

and retrieve a general representation of the relationships

between stored data. Distinguishing these from the

underlying data stores allows users to create multiple

organizations of the same underlying set of objects. These

organizations can then be explored using a successive

browse (navigate) and filter/search user interface. Users

filter by specifying criteria to limit the result set. For

example, find things that are ‘annotations’, ‘made by me’,

‘yesterday’. Once a reasonably small list of answers is

returned, one can browse their summaries, reorder them

and apply further filters or expansions to the list. After

locating objects of interest, the user will be able to

discover what relationships the objects are members of,

and the adjacent objects in those relationships. This

adjacency is a key feature enabling data discovery.

A key element of the system is its ability to query the

relationships of research objects, and then look at the

adjacent objects with respect to those relationships.

Figure 1 provides a cartoon of this multiple facet traversal.

Figure 1 - Data relationships as graphs. (a) and (b)
are alternate hierarchical representations of the
same collection of nodes. (c) shows a node as part
of a hierarchy, an ordered list, and an unordered
set.

Because we will store relationships and adjacency

internally, will be able to make them traversable

symmetrically, addressing one of the limitations of

previous ad hoc systems. Once target objects are located,

the system will, where possible, invoke the native tools to

examine them. At all stages, users will be able to add

annotations which will become first class relatable

elements in the system. Adding new relationships will be

done by modifying the schema which is also stored as data

in the system. Programs will automatically be aware of

the new stored relationships, without requiring new

coding in applications. A typical modern science

experiment stores a large set of kinds of information,

many of which must be integrated by data access tools, or

by the user by hand, in order to understand the

experimental results. For example, at a tokamak doing

magnetic fusion research they collect and store:

• Hierarchical data stores with raw and

processed data

• Relational databases with “high level” results

• Electronic logbooks & annotations

• Data provenance graphs

• Data catalogs

• Experiment planning documents

• Records about personnel

• Experimental proposals

• Simulation inputs & outputs

• Source code management systems

• Facility information, with details of

• experiment, measurement systems

• Document management systems

• Publications & presentations

as well as many other items. Some of these are navigable

using purpose built applications, others are hermetic

external systems. Each of these kinds of information, has
a primary organizational paradigm, which orders them

and facilitates access to their records. For example, the

logbook might contain records organized around

experimental run days, instances of the experiment and

topic. The raw and processed data, stored in MDSplus for

example, are arranged in a hierarchy defined by the site or

by individual users. The new system will support multiple

organizations of the same underlying data. A user could

view the collection of stored records by diagnostic, by

measurement type, or by the location / sightline of the

diagnostic, see Figure 1. These multiple organizations

will facilitate users finding data relevant to their research.

3. Solution

Our solution to these challenges is based on the idea

that relationships can be thought of as graphs, that is
collections of nodes and edges. Both of which are

subclasses of a general object type which all of the user

stored records in the system share. The ‘object’ meta type

provides fixed properties that all instances are guaranteed

to have: author, date-time-inserted, and type. Type is used

both as a gross filter and to inform the user interface

system how to display, modify and interact with the

object. Each node type will have a list of required and

optional properties. They can be either self-contained,

with their ‘data’ stored as values of the properties, or refer

to external data stores. In this latter case, one or more of

their properties are URIs. Examples of these include:

records in MDSplus trees, HDF5 files [7] or records in

them, other files in a filesystem, documents or drawings

in a document management system, etc… Similarly, the

relationships, or edges in these graphs, will have types and

properties. The required and optional lists of properties

for each type of object and relationship form the schema

for the system.

A small set of graph topologies can accommodate

most of the relationships we need to represent. Users of

the system will define their schemas as instances of these

metaschemas, and ontologies of the properties of their

nodes and edges. The small number of graph types allows
general applications to be produced that can be applied

not only within local groups or domains, but between

disparate communities of users. A hierarchical data

explorer could be used on multiple data hierarchies at a

site, and shared with users in other science domains.

We have initially identified five classes of graphs the

system will need to support They are:

• Hierarchies

• Ordered lists

• Unordered lists

• Timelines

• Threaded annotations

While these are not formally topologically distinct,

distinguishing them is useful both from both

implementation and user understanding perspectives. .

Figure 1 shows stored data as multiple hierarchies ((a),

(b)) and multiple topologies (c). If we encounter data and

relationships which we cannot fit into one of these, the

list can be expanded. However, at this metaschema level,

topology is dealt with in code as opposed to in data. This

list will be quite static, and by design, short.

Application specific schema is stored as data by the

system. Communities will curate collections of kinds of

graphs which are useful to support their data discovery

applications. Adding a new hierarchical organization of

objects is a data addition as opposed to a code change.

However, limiting the set of stored relationships is

required in order for users to be able to exploit the system.

If a group stores every possible relationship between all

of their data, separating the useful and interesting ones

from the rest would be impossible. Further, the

relationship types, object types, and their respective

required and optional property lists, must be labeled with

a limited vocabulary for them to be useful. If some people

objects have ‘name’ properties and others have a ‘full

name’ properties, it would be difficult for users of the

system to know that these refer to the same thing. Other
examples of this are Plasma Current vs IP, H-mode, vs

HMode plasmas, etc.. Accordingly, we will support the

creation and curation of ontologies for object types,

relationship types, their properties and values.

Applications can take advantage of these ontologies to

build user interfaces specifically tailored to their use. In

addition the formalism of defining ‘vocabulary’ will help

users of the systems think carefully about the

organization, meaning and content of their metadata and

data.

Given an object in the system, applications need to be

able to query its type, the set of relationships it is a

member of, and the adjacent nodes in any of those

relationships. For example, an annotation object is of type

annotation, it may be a member of a threaded

conversation, it may refer to some stored data, it was made

by a user and there are adjacent entries by time, or subject.

This list, while not exhaustive, demonstrates the need to

curate the list of data relationships that are stored. It would

not be interesting to sort annotations alphabetically for

example.

These basic operations will make it easy to refactor the

common data organization tools in use for an experiment

in a more general fashion. A scientific notebook

application can be described as a selector for objects of

type annotation which meet additional criteria, and then a

rendering of those objects with a specified ordering and

logbook like layout. These logbook entries can also be

members of other graphs, and it will be easy for the

application to allow users to explore the connected

objects. Annotations will contain markup tags to embed

references to other objects within their text. For example

the text of an annotation might contain: ‘…density rise at

<data-ref tree=”cmod”, shot=”$shot”, signal=”\ne-bar”,

time = “3.5 Sec”>. These ‘tags’ would also be stored and

indexed separately so that applications wanting to do the

reverse navigation could access them quickly. The details

of the tag syntax has not yet been designed. However,

there will be purpose built markup editors to help users to

insert them. In addition, tags will be rendered by the GUIs

in type specific ways. Images as thumbnails, people as

navigable contact links, etc… Any tags the application

does not have a specific renderer for, will be displayed as

their source text. If an entry refers to data, the application

can offer to display that data, or show its context in the

data system.

Populating the system will require significant effort on

the part of its users. This is exacerbated by several factors.

Descriptive meta data most benefits its consumers, not its

providers, demotivating users to provide them. Existing

programs would need to be modified to provide (and

consume) this new relationship metadata. Design

decisions about what to store and how to represent it must

be made in the absence of experience using the system.

Our design attempts to take these into account and

mitigate them where possible.

The system will store what it can automatically. When

a user enters a record, the system knows who is entering

it, when it is being entered, and what kind of record it is.

Depending on the context the system may be able to

populate more of the object’s properties automatically.

For example, if an object is replacing (overwriting)

another object, the system can attach the new object to its

original version.

Existing data stores can be mined to create object and

relationship records that reflect their contents. This will

be done as a combination of extraction/replication, and

the construction of records which refer to the existing data

in place.

Example schemas, both scientific domain specific
(other tokamaks, other earth science data sets) and from

other domains will inform users initial decisions about

what to store in the system. Pushing the specifics – the

schema – to data, instead of having it encoded in

programs, the cost of deciding to make changes to this, if

the initial choices prove to be bad, is minimized.

4. Implementation Plan

We will begin with concrete applications of these

ideas, and then proceed to generalize the system. By

solving a real-world problem, with users that have real

problems to solve, we can verify that the software we are

developing meets their needs. At the same time we are

collaborating with potential users from a variety science

domains. These include: other plasma physics

experiments, physics computer modelers, earth science

researchers, and people working in digital humanities.

We will begin by focusing on two data sets and users

at the MIT Plasma Science and Fusion Center. The first

will be retrospective, applying the software to the well

understood needs of an existing experiment. The Alcator

C-Mod tokamak [8] has an ad hoc system for metadata

associated with experimental operations[9]. Our first step

is to refactor these into the new more general framework.

This will provide immediate validation of the approach.
The refactored software must at a minimum work as well

as the purpose-built collection of programs it replaces.

The current system uses relational database tables to store

experimental proposals, experiment run plans,

descriptions of run days, individual shots on those days

and user comments about those shots. Graphical user

interfaces are implemented in PHP as a web 2.0

application.

The second application will be a new research effort

at the Plasma Science and Fusion Center concerning high

temperature superconductor magnet development. This

work has similar workflows and metadata needs to the

Alcator C-Mod tokamak, though the primary indices of

the records will be different. The tokamak’s annotations

are indexed by run, shot, topic, user, and time. These

conductor and magnet tests will be organized by work

breakdown structure (WBS), test samples, test runs,

recorded trending data recorded test data (MDSplus), and

time. The similarities and differences between these

requirements, provides an excellent check on the

generality of our solution. The active users will provide

essential feedback on the system functionality and

usability.

As we carry out this initial development, we will

continually refer back to our overall design. Iterating the
design and implementation so that in the next steps we

have confidence that our metaschema matches our

problem space. These initial applications will provide the

design validation. Do they adhere to the design and are

they extensible? If not, iterate.

The next step is to create records describing the

schema, iterating the implementations as necessary. We

can then write tools at the next level of abstraction,

operating on the schema as data. Again, as required, we

will iterate our designs and implementations.

The technology stack is still under discussion, though

our overall design will allow us to change out the various

pieces independently. There is only loose coupling

between the backend, the API and the graphical user

interface. The incremental approach to development

reduces the costs of early changes to the toolsets. For the

front-end user interface, we plan a web based single page
application (SPA) built with a modern javascript

framework. The current candidates are vue.js[10],

AngularJS[11] and React[12]. For the API we are looking

at either REST[13] or GraphQL[14] written in either

javascript or python. For the backend we will choose an

overall approach from graph databases - possibly

neo4j[15] or orientdb[16], other nosql databases, and

traditional sql databases.

5. Conclusion

Across all research domains the problem of locating

and understanding recorded results exists. Our core idea

is that the relationships between data can be represented

as graphs – that is collections of nodes and edges. Nodes

can have properties that are URIs for externally stored

data. This allows the system to represent relationships
between heterogeneous objects. The system will be based

on data driven schema, providing flexibility and

extensibility. This also allows it to apply to a wide range

of research domains. We have designed a set of tools to

address this and are starting on its implementation.

6. Acknowledgements

This work is funded by the National Science

Foundation under DIBBS award no. 1640829.

[1] Jeffery Y. Beyon. 2000. LabVIEW Programming, Data

Acquisition and Analysis (1st ed.). Prentice Hall PTR,

Upper Saddle River, NJ, USA.
[2] Fredian, T.W., Stillerman, J.A.. "MDS/MIT high‐speed data‐

acquisition and analysis software system." Review of

Scientific Instruments 57.8 (1986): 1907-1909.

[3] Stillerman, J.A., T.W. Fredian, K. A. Klare. and G.

Manduchi. “MDSplus data acquisition system.” Review of

Scientific Instruments 68, no. 1 (1997): 939-942

[4] Kepler https://kepler-project.org/, retrieved 6/8/2017.

[5] Greenwald, M., Fredian, T., Schissel, D., Stillerman, J., A

metadata catalog for organization and systemization of

fusion simulation data, Fusion Engineering and Design,

Volume 87, Issue 12, 2012, Pages 2205-2208, ISSN 0920-

3796, https://doi.org/10.1016/j.fusengdes.2012.02.128.

[6] URI https://www.w3.org/TR/uri-clarification/

retrieved 1/7/2018

[7] HDF5 https://support.hdfgroup.org/HDF5/ retrieved

6/8/2017.

[8] Greenwald, et.al., 20 years of research on the Alcator C-Mod

tokamak, Physics of Plasmas 21, 110501 (2014).

[9] Fredian, T.W., Stillerman, J.A., Web based electronic

logbook and experiment run database viewer for Alcator C-

Mod, Fusion Engineering and Design, Volume 81, Issues

15–17, July 2006.

[10] vue.js https://vuejs.org/ retrieved 6/8/2017.

[11] AngularJS https://angularjs.org/ retrieved 6/8/2017.

https://kepler-project.org/
https://www.w3.org/TR/uri-clarification/
https://support.hdfgroup.org/HDF5/
https://vuejs.org/
https://angularjs.org/

[12] React https://facebook.github.io/react/ retrieved 6/8/2017.

[13] REST

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arc

h_style.htm retrieved 6/8/2017.

[14] GraphQL http://graphql.org/ retrieved 6/8/2017.

[15] neo4j https://neo4j.com/ retrieved 6/8/2017.

[16] OrientDB http://orientdb.com/ retrieved 6/8/2017.

https://facebook.github.io/react/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://graphql.org/
https://neo4j.com/
http://orientdb.com/

	template no frame
	17ja045_full no cover
	Scientific data management with navigational metadata
	J. Stillerman, M. Greenwald and J. Wright

