PSFC/JA-17-45

Scientific data management with navigational metadata

J. Stillerman, M. Greenwald and J. Wright

January 2018

Plasma Science and Fusion Center
Massachusetts Institute of Technology
Cambridge MA 02139 USA

This work supported by NSF ACI-164029. Reproduction, translation, publication, use
and disposal, in whole or in part, by or for the United States government is permitted.

Scientific data management with navigational metadata
J. Stillerman, M. Greenwald and J. Wright

Massachusetts Institute of Technology, Cambridge, MA, 02139 USA

Modern science generates large complicated heterogeneous collections of data. In order to effectively exploit these data,
researchers must find relevant data, and enough of its associated metadata to understand it and put it in context. This
problem exists across a wide range of research domains and is ripe for a general solution.

Existing ventures address these issues using ad-hoc purpose-built tools. These tools explicitly represent the data
relationships by embedding them in their data storage mechanisms and in their applications. While producing useful tools,
these approaches tend to be difficult to extend and data relationships are not necessarily traversable symmetrically.

We are building a general system for navigational metadata. The relationships between data and between annotations and
data are stored as first-class objects in the system. They can be viewed as instances drawn from a small set of graph types.
General-purpose programs can be written which allow users explore these graphs and gain insights into their data. This
process of data navigation, successive inclusion and filtering of objects provides powerful paradigm for data exploration.

This paper lays out the underlying core ideas, progress to date, and plans for near term work.

Keywords: data science, metadata, annotation, navigation, graph data

1. Introduction

The size and complexity of the data collected during
all kinds experimental science has been growing rapidly
over time. This is due at least in part to improved
measurement equipment, faster computers, larger storage,
and better computer networks. In many spheres,
experiments are also getting larger and more
collaborative, and these collaborations are often spread
out geographically. These factors combine to make
descriptive metadata for these data sets imperative for
their exploitation. Expressive metadata provides context
documenting recorded measurements and computed
results. If sufficient metadata is present, then the data can
be wunderstood and used by current and future
collaborators, without relying on direct communication
with the original experimenter, and relying on their
memories. The smaller scale experiments of the past had
a less urgent need to store and manage metadata, in that
the data sets were smaller and more homogeneous, and
the size of the scientific teams involved tended to be
smaller. A modern experiment such as a tokamak or a
particle accelerator may involve hundreds or even
thousands of scientists. In order for them to work
effectively they need to be able to access and understand
the results recorded and stored by their colleagues. Data
acquisition and data management tools have been
evolving to meet these challenges.

This evolution has been not only in the capabilities and
capacity of these tools but also in their level of
abstraction. Hand recorded measurements were replaced
by pen based chart recorders, oscilloscopes, and Polaroid
scope cameras. These in turn led to purpose built
hardware and software to record measurements with
computers, general purpose hardware with purpose built
programs, general data collection programs like LabView

author’s email: firstname.lastname@some.mail.server

[1] and MDS [2], and finally general data collection and
management systems such as MDSplus [3] and workflow
engines like Kepler[4]. Over time these tools increased in
their generality and allowed users to represent their data
at higher levels of abstraction.

Most current experiments have ad hoc systems to store
and navigate a subset of the relationships between their
data. For example, they connect experimental proposals
to experiment operations, comments on those operations,
machine status, and data provenance. These systems have
tended to encode data relationships explicitly, often in the
user interface program code itself. Furthermore, the
navigation is often asymmetric (e.g. a logbook entry refers
to some particular stored data, but this fact is not easily
discernable when the data is accessed). Many of the ideas
for this project stem from previous work by the authors,
Metadata Ontology Project[5], which represented data
provenance information as graphs, and data object
references as uniform resource identifiers, URIs[6]. It is a
logical next step, generalizing the storage and retrieval of
relationships between stored data.

2. Problem Statement

This project will provide a set of tools to define, store,
and retrieve a general representation of the relationships
between stored data. Distinguishing these from the
underlying data stores allows users to create multiple
organizations of the same underlying set of objects. These
organizations can then be explored using a successive
browse (navigate) and filter/search user interface. Users
filter by specifying criteria to limit the result set. For
example, find things that are ‘annotations’, ‘made by me”’,
‘yesterday’. Once a reasonably small list of answers is
returned, one can browse their summaries, reorder them
and apply further filters or expansions to the list. After
locating objects of interest, the user will be able to

discover what relationships the objects are members of,
and the adjacent objects in those relationships. This
adjacency is a key feature enabling data discovery.

A key element of the system is its ability to query the
relationships of research objects, and then look at the
adjacent objects with respect to those relationships.
Figure 1 provides a cartoon of this multiple facet traversal.

(a) Organization of Data - By Diagnostic System
Top

T T } T
ECE VB Thomson Scattering Interferometer

1 1 1

| | T 1
Heds: Ru% Rsults Hardwe Raw Data Reslults Hardware Res:nlts

T T T 1
Te Raw Brightness Te ne ne

I
Zeff

The Alcator C-Mod Data System has ¥10° such nodes
for each shot, each with significant metadata.

(b) Organization of Data - By Physics Parameter

Plasma Parameters

Temperatures Density

Te Te ne ne

Figure 1 - Data relationships as graphs. (a) and (b)
are alternate hierarchical representations of the
same collection of nodes. (c) shows a node as part
of a hierarchy, an ordered list, and an unordered
set.

Because we will store relationships and adjacency
internally, will be able to make them traversable
symmetrically, addressing one of the limitations of
previous ad hoc systems. Once target objects are located,
the system will, where possible, invoke the native tools to
examine them. At all stages, users will be able to add
annotations which will become first class relatable
elements in the system. Adding new relationships will be
done by modifying the schema which is also stored as data
in the system. Programs will automatically be aware of
the new stored relationships, without requiring new
coding in applications. A typical modern science
experiment stores a large set of kinds of information,
many of which must be integrated by data access tools, or
by the user by hand, in order to understand the

experimental results. For example, at a tokamak doing
magnetic fusion research they collect and store:

e Hierarchical data stores with raw and
processed data

e Relational databases with “high level” results
e Electronic logbooks & annotations
e Data provenance graphs

e Data catalogs

e Experiment planning documents

e Records about personnel

e Experimental proposals

e Simulation inputs & outputs

e Source code management systems

e Facility information, with details of
e experiment, measurement systems

e Document management systems

e Publications & presentations

as well as many other items. Some of these are navigable
using purpose built applications, others are hermetic
external systems. Each of these kinds of information, has
a primary organizational paradigm, which orders them
and facilitates access to their records. For example, the
logbook might contain records organized around
experimental run days, instances of the experiment and
topic. The raw and processed data, stored in MDSplus for
example, are arranged in a hierarchy defined by the site or
by individual users. The new system will support multiple
organizations of the same underlying data. A user could
view the collection of stored records by diagnostic, by
measurement type, or by the location / sightline of the
diagnostic, see Figure 1. These multiple organizations
will facilitate users finding data relevant to their research.

3. Solution

Our solution to these challenges is based on the idea
that relationships can be thought of as graphs, that is
collections of nodes and edges. Both of which are
subclasses of a general object type which all of the user
stored records in the system share. The ‘object’ meta type
provides fixed properties that all instances are guaranteed
to have: author, date-time-inserted, and type. Type is used
both as a gross filter and to inform the user interface
system how to display, modify and interact with the
object. Each node type will have a list of required and
optional properties. They can be either self-contained,
with their ‘data’ stored as values of the properties, or refer
to external data stores. In this latter case, one or more of
their properties are URIs. Examples of these include:
records in MDSplus trees, HDF5 files [7] or records in
them, other files in a filesystem, documents or drawings
in a document management system, etc... Similarly, the
relationships, or edges in these graphs, will have types and
properties. The required and optional lists of properties

for each type of object and relationship form the schema
for the system.

A small set of graph topologies can accommodate
most of the relationships we need to represent. Users of
the system will define their schemas as instances of these
metaschemas, and ontologies of the properties of their
nodes and edges. The small number of graph types allows
general applications to be produced that can be applied
not only within local groups or domains, but between
disparate communities of users. A hierarchical data
explorer could be used on multiple data hierarchies at a
site, and shared with users in other science domains.

We have initially identified five classes of graphs the
system will need to support They are:

e Hierarchies

e Ordered lists

e Unordered lists

e Timelines

e Threaded annotations

While these are not formally topologically distinct,
distinguishing them is useful both from both
implementation and user understanding perspectives. .
Figure 1 shows stored data as multiple hierarchies ((a),
(b)) and multiple topologies (c). If we encounter data and
relationships which we cannot fit into one of these, the
list can be expanded. However, at this metaschema level,
topology is dealt with in code as opposed to in data. This
list will be quite static, and by design, short.

Application specific schema is stored as data by the
system. Communities will curate collections of kinds of
graphs which are useful to support their data discovery
applications. Adding a new hierarchical organization of
objects is a data addition as opposed to a code change.
However, limiting the set of stored relationships is
required in order for users to be able to exploit the system.
If a group stores every possible relationship between all
of their data, separating the useful and interesting ones
from the rest would be impossible. Further, the
relationship types, object types, and their respective
required and optional property lists, must be labeled with
a limited vocabulary for them to be useful. If some people
objects have ‘name’ properties and others have a ‘full
name’ properties, it would be difficult for users of the
system to know that these refer to the same thing. Other
examples of this are Plasma Current vs IP, H-mode, vs
HMode plasmas, etc.. Accordingly, we will support the
creation and curation of ontologies for object types,
relationship types, their properties and values.
Applications can take advantage of these ontologies to
build user interfaces specifically tailored to their use. In
addition the formalism of defining ‘vocabulary’ will help
users of the systems think carefully about the
organization, meaning and content of their metadata and
data.

Given an object in the system, applications need to be
able to query its type, the set of relationships it is a
member of, and the adjacent nodes in any of those

relationships. For example, an annotation object is of type
annotation, it may be a member of a threaded
conversation, it may refer to some stored data, it was made
by a user and there are adjacent entries by time, or subject.
This list, while not exhaustive, demonstrates the need to
curate the list of data relationships that are stored. It would
not be interesting to sort annotations alphabetically for
example.

These basic operations will make it easy to refactor the
common data organization tools in use for an experiment
in a more general fashion. A scientific notebook
application can be described as a selector for objects of
type annotation which meet additional criteria, and then a
rendering of those objects with a specified ordering and
logbook like layout. These logbook entries can also be
members of other graphs, and it will be easy for the
application to allow users to explore the connected
objects. Annotations will contain markup tags to embed
references to other objects within their text. For example
the text of an annotation might contain: ‘...density rise at
<data-ref tree="cmod”, shot="$shot”, signal="\ne-bar”,
time = “3.5 Sec”>. These ‘tags’ would also be stored and
indexed separately so that applications wanting to do the
reverse navigation could access them quickly. The details
of the tag syntax has not yet been designed. However,
there will be purpose built markup editors to help users to
insert them. In addition, tags will be rendered by the GUIs
in type specific ways. Images as thumbnails, people as
navigable contact links, etc... Any tags the application
does not have a specific renderer for, will be displayed as
their source text. If an entry refers to data, the application
can offer to display that data, or show its context in the
data system.

Populating the system will require significant effort on
the part of'its users. This is exacerbated by several factors.
Descriptive meta data most benefits its consumers, not its
providers, demotivating users to provide them. Existing
programs would need to be modified to provide (and
consume) this new relationship metadata. Design
decisions about what to store and how to represent it must
be made in the absence of experience using the system.
Our design attempts to take these into account and
mitigate them where possible.

The system will store what it can automatically. When
a user enters a record, the system knows who is entering
it, when it is being entered, and what kind of record it is.
Depending on the context the system may be able to
populate more of the object’s properties automatically.
For example, if an object is replacing (overwriting)
another object, the system can attach the new object to its
original version.

Existing data stores can be mined to create object and
relationship records that reflect their contents. This will
be done as a combination of extraction/replication, and
the construction of records which refer to the existing data
in place.

Example schemas, both scientific domain specific
(other tokamaks, other earth science data sets) and from
other domains will inform users initial decisions about

what to store in the system. Pushing the specifics — the
schema — to data, instead of having it encoded in
programs, the cost of deciding to make changes to this, if
the initial choices prove to be bad, is minimized.

4. Implementation Plan

We will begin with concrete applications of these
ideas, and then proceed to generalize the system. By
solving a real-world problem, with users that have real
problems to solve, we can verify that the software we are
developing meets their needs. At the same time we are
collaborating with potential users from a variety science
domains. These include: other plasma physics
experiments, physics computer modelers, earth science
researchers, and people working in digital humanities.

We will begin by focusing on two data sets and users
at the MIT Plasma Science and Fusion Center. The first
will be retrospective, applying the software to the well
understood needs of an existing experiment. The Alcator
C-Mod tokamak [8] has an ad hoc system for metadata
associated with experimental operations[9]. Our first step
is to refactor these into the new more general framework.
This will provide immediate validation of the approach.
The refactored software must at a minimum work as well
as the purpose-built collection of programs it replaces.
The current system uses relational database tables to store
experimental proposals, experiment run plans,
descriptions of run days, individual shots on those days
and user comments about those shots. Graphical user
interfaces are implemented in PHP as a web 2.0
application.

The second application will be a new research effort
at the Plasma Science and Fusion Center concerning high
temperature superconductor magnet development. This
work has similar workflows and metadata needs to the
Alcator C-Mod tokamak, though the primary indices of
the records will be different. The tokamak’s annotations
are indexed by run, shot, topic, user, and time. These
conductor and magnet tests will be organized by work
breakdown structure (WBS), test samples, test runs,
recorded trending data recorded test data (MDSplus), and
time. The similarities and differences between these
requirements, provides an excellent check on the
generality of our solution. The active users will provide
essential feedback on the system functionality and
usability.

As we carry out this initial development, we will
continually refer back to our overall design. Iterating the
design and implementation so that in the next steps we
have confidence that our metaschema matches our
problem space. These initial applications will provide the
design validation. Do they adhere to the design and are
they extensible? If not, iterate.

The next step is to create records describing the
schema, iterating the implementations as necessary. We
can then write tools at the next level of abstraction,
operating on the schema as data. Again, as required, we
will iterate our designs and implementations.

The technology stack is still under discussion, though
our overall design will allow us to change out the various
pieces independently. There is only loose coupling
between the backend, the API and the graphical user
interface. The incremental approach to development
reduces the costs of early changes to the toolsets. For the
front-end user interface, we plan a web based single page
application (SPA) built with a modern javascript
framework. The current candidates are wvue.js[10],
AngularJS[11] and React[12]. For the API we are looking
at either REST[13] or GraphQL[14] written in either
javascript or python. For the backend we will choose an
overall approach from graph databases - possibly
neo4j[15] or orientdb[16], other nosql databases, and
traditional sql databases.

5. Conclusion

Across all research domains the problem of locating
and understanding recorded results exists. Our core idea
is that the relationships between data can be represented
as graphs — that is collections of nodes and edges. Nodes
can have properties that are URIs for externally stored
data. This allows the system to represent relationships
between heterogeneous objects. The system will be based
on data driven schema, providing flexibility and
extensibility. This also allows it to apply to a wide range
of research domains. We have designed a set of tools to
address this and are starting on its implementation.

6. Acknowledgements

This work is funded by the National Science
Foundation under DIBBS award no. 1640829.

[1] Jeffery Y. Beyon. 2000. LabVIEW Programming, Data
Acquisition and Analysis (1st ed.). Prentice Hall PTR,
Upper Saddle River, NJ, USA.

[2] Fredian, T.W., Stillerman, J.A.. "MDS/MIT high-speed data-
acquisition and analysis software system." Review of
Scientific Instruments 57.8 (1986): 1907-1909.

[3] Stillerman, J.A., T.W. Fredian, K. A. Klare. and G.
Manduchi. “MDSplus data acquisition system.” Review of
Scientific Instruments 68, no. 1 (1997): 939-942

[4] Kepler https://kepler-project.org/, retrieved 6/8/2017.

[5] Greenwald, M., Fredian, T., Schissel, D., Stillerman, J., A
metadata catalog for organization and systemization of
fusion simulation data, Fusion Engineering and Design,
Volume 87, Issue 12, 2012, Pages 2205-2208, ISSN 0920-
3796, https://doi.org/10.1016/j.fusengdes.2012.02.128.

[6] URI https://www.w3.0org/TR/uri-clarification/
retrieved 1/7/2018

[7] HDEFS5 https://support.hdfgroup.org/HDF5/
6/8/2017.

[8] Greenwald, et.al., 20 years of research on the Alcator C-Mod
tokamak, Physics of Plasmas 21, 110501 (2014).

[9] Fredian, T.W., Stillerman, J.A., Web based -electronic
logbook and experiment run database viewer for Alcator C-
Mod, Fusion Engineering and Design, Volume 81, Issues
15-17, July 2006.

[10] wvue.js https://vuejs.org/ retrieved 6/8/2017.

[11] Angular]S https://angularjs.org/ retrieved 6/8/2017.

retrieved

https://kepler-project.org/
https://www.w3.org/TR/uri-clarification/
https://support.hdfgroup.org/HDF5/
https://vuejs.org/
https://angularjs.org/

[12] React https:/facebook.github.io/react/ retrieved 6/8/2017.

[13] REST
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arc
h_style.htm retrieved 6/8/2017.

[14] GraphQL http://graphql.org/ retrieved 6/8/2017.

[15] neo4j https://neo4dj.cony retrieved 6/8/2017.

[16] OrientDB http://orientdb.cony retrieved 6/8/2017.

https://facebook.github.io/react/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://graphql.org/
https://neo4j.com/
http://orientdb.com/

	template no frame
	17ja045_full no cover
	Scientific data management with navigational metadata
	J. Stillerman, M. Greenwald and J. Wright

