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Modern science generates large complicated heterogeneous collections of data. In order to effectively exploit these data, 

researchers must find relevant data, and enough of its associated metadata to understand it and put it in context. This 

problem exists across a wide range of research domains and is ripe for a general solution.  

 

Existing ventures address these issues using ad-hoc purpose-built tools. These tools explicitly represent the data 

relationships by embedding them in their data storage mechanisms and in their applications. While producing useful tools, 

these approaches tend to be difficult to extend and data relationships are not necessarily traversable symmetrically.  

 

We are building a general system for navigational metadata. The relationships between data and between annotations and 

data are stored as first-class objects in the system. They can be viewed as instances drawn from a small set of graph types. 

General-purpose programs can be written which allow users explore these graphs and gain insights into their data. This 

process of data navigation, successive inclusion and filtering of objects provides powerful paradigm for data exploration.  

 

This paper lays out the underlying core ideas, progress to date, and plans for near term work. 
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1. Introduction 

The size and complexity of the data collected during 

all kinds experimental science has been growing rapidly 

over time. This is due at least in part to improved 

measurement equipment, faster computers, larger storage, 

and better computer networks. In many spheres, 

experiments are also getting larger and more 

collaborative, and these collaborations are often spread 

out geographically. These factors combine to make 

descriptive metadata for these data sets imperative for 

their exploitation. Expressive metadata provides context 

documenting recorded measurements and computed 

results. If sufficient metadata is present, then the data can 

be understood and used by current and future 

collaborators, without relying on direct communication 

with the original experimenter, and relying on their 

memories. The smaller scale experiments of the past had 

a less urgent need to store and manage metadata, in that 
the data sets were smaller and more homogeneous, and 

the size of the scientific teams involved tended to be 

smaller. A modern experiment such as a tokamak or a 

particle accelerator may involve hundreds or even 

thousands of scientists. In order for them to work 

effectively they need to be able to access and understand 

the results recorded and stored by their colleagues. Data 

acquisition and data management tools have been 

evolving to meet these challenges.  

This evolution has been not only in the capabilities and 

capacity of these tools but also in their level of 

abstraction. Hand recorded measurements were replaced 

by pen based chart recorders, oscilloscopes, and Polaroid 

scope cameras. These in turn led to purpose built 

hardware and software to record measurements with 

computers, general purpose hardware with purpose built 

programs, general data collection programs like LabView 

[1] and MDS [2], and finally general data collection and 

management systems such as MDSplus [3] and workflow 

engines like Kepler[4]. Over time these tools increased in 
their generality and allowed users to represent their data 

at higher levels of abstraction. 

Most current experiments have ad hoc systems to store 

and navigate a subset of the relationships between their 

data. For example, they connect experimental proposals 

to experiment operations, comments on those operations, 

machine status, and data provenance. These systems have 

tended to encode data relationships explicitly, often in the 

user interface program code itself. Furthermore, the 

navigation is often asymmetric (e.g. a logbook entry refers 

to some particular stored data, but this fact is not easily 

discernable when the data is accessed). Many of the ideas 

for this project stem from previous work by the authors, 

Metadata Ontology Project[5], which represented data 

provenance information as graphs, and data object 

references as uniform resource identifiers, URIs[6]. It is a 

logical next step, generalizing the storage and retrieval of 

relationships between stored data. 

2. Problem Statement 

This project will provide a set of tools to define, store, 

and retrieve a general representation of the relationships 

between stored data. Distinguishing these from the 

underlying data stores allows users to create multiple 

organizations of the same underlying set of objects. These 

organizations can then be explored using a successive 

browse (navigate) and filter/search user interface. Users 

filter by specifying criteria to limit the result set. For 

example, find things that are ‘annotations’, ‘made by me’, 

‘yesterday’. Once a reasonably small list of answers is 

returned, one can browse their summaries, reorder them 

and apply further filters or expansions to the list. After 

locating objects of interest, the user will be able to 



 

discover what relationships the objects are members of, 

and the adjacent objects in those relationships. This 

adjacency is a key feature enabling data discovery. 

A key element of the system is its ability to query the 

relationships of research objects, and then look at the 

adjacent objects with respect to those relationships. 

Figure 1 provides a cartoon of this multiple facet traversal. 

 

Figure 1 - Data relationships as graphs. (a) and (b) 
are alternate hierarchical representations of the 
same collection of nodes. (c) shows a node as part 
of a hierarchy, an ordered list, and an unordered 
set.  

 
Because we will store relationships and adjacency 

internally, will be able to make them traversable 

symmetrically, addressing one of the limitations of 

previous ad hoc systems. Once target objects are located, 

the system will, where possible, invoke the native tools to 

examine them. At all stages, users will be able to add 

annotations which will become first class relatable 

elements in the system. Adding new relationships will be 

done by modifying the schema which is also stored as data 

in the system. Programs will automatically be aware of 

the new stored relationships, without requiring new 

coding in applications. A typical modern science 

experiment stores a large set of kinds of information, 

many of which must be integrated by data access tools, or 

by the user by hand, in order to understand the 

experimental results. For example, at a tokamak doing 

magnetic fusion research they collect and store: 

• Hierarchical data stores with raw and 

processed data 

• Relational databases with “high level” results 

• Electronic logbooks & annotations 

• Data provenance graphs 

• Data catalogs 

• Experiment planning documents 

• Records about personnel 

• Experimental proposals 

• Simulation inputs & outputs 

• Source code management systems 

• Facility information, with details of 

• experiment, measurement systems 

• Document management systems 

• Publications & presentations 

as well as many other items. Some of these are navigable 

using purpose built applications, others are hermetic 

external systems. Each of these kinds of information, has 
a primary organizational paradigm, which orders them 

and facilitates access to their records. For example, the 

logbook might contain records organized around 

experimental run days, instances of the experiment and 

topic. The raw and processed data, stored in MDSplus for 

example, are arranged in a hierarchy defined by the site or 

by individual users. The new system will support multiple 

organizations of the same underlying data. A user could 

view the collection of stored records by diagnostic, by 

measurement type, or by the location / sightline of the 

diagnostic, see Figure 1. These multiple organizations 

will facilitate users finding data relevant to their research. 

3. Solution 

Our solution to these challenges is based on the idea 

that relationships can be thought of as graphs, that is 
collections of nodes and edges. Both of which are 

subclasses of a general object type which all of the user 

stored records in the system share. The ‘object’ meta type 

provides fixed properties that all instances are guaranteed 

to have: author, date-time-inserted, and type. Type is used 

both as a gross filter and to inform the user interface 

system how to display, modify and interact with the 

object. Each node type will have a list of required and 

optional properties. They can be either self-contained, 

with their ‘data’ stored as values of the properties, or refer 

to external data stores. In this latter case, one or more of 

their properties are URIs. Examples of these include: 

records in MDSplus trees, HDF5 files [7] or records in 

them, other files in a filesystem, documents or drawings 

in a document management system, etc… Similarly, the 

relationships, or edges in these graphs, will have types and 

properties. The required and optional lists of properties 



 

for each type of object and relationship form the schema 

for the system.  

A small set of graph topologies can accommodate 

most of the relationships we need to represent. Users of 

the system will define their schemas as instances of these 

metaschemas, and ontologies of the properties of their 

nodes and edges. The small number of graph types allows 
general applications to be produced that can be applied 

not only within local groups or domains, but between 

disparate communities of users. A hierarchical data 

explorer could be used on multiple data hierarchies at a 

site, and shared with users in other science domains.  

We have initially identified five classes of graphs the 

system will need to support They are: 

• Hierarchies 

• Ordered lists 

• Unordered lists 

• Timelines 

• Threaded annotations 

While these are not formally topologically distinct, 

distinguishing them is useful both from both 

implementation and user understanding perspectives. . 

Figure 1 shows stored data as multiple hierarchies ( (a), 

(b)) and multiple topologies (c). If we encounter data and 

relationships which we cannot fit into one of these, the 

list can be expanded. However, at this metaschema level, 

topology is dealt with in code as opposed to in data. This 

list will be quite static, and by design, short.  

Application specific schema is stored as data by the 

system. Communities will curate collections of kinds of 

graphs which are useful to support their data discovery 

applications. Adding a new hierarchical organization of 

objects is a data addition as opposed to a code change. 

However, limiting the set of stored relationships is 

required in order for users to be able to exploit the system. 

If a group stores every possible relationship between all 

of their data, separating the useful and interesting ones 

from the rest would be impossible. Further, the 

relationship types, object types, and their respective 

required and optional property lists, must be labeled with 

a limited vocabulary for them to be useful. If some people 

objects have ‘name’ properties and others have a ‘full 

name’ properties, it would be difficult for users of the 

system to know that these refer to the same thing. Other 
examples of this are Plasma Current vs IP, H-mode, vs 

HMode plasmas, etc.. Accordingly, we will support the 

creation and curation of ontologies for object types, 

relationship types, their properties and values. 

Applications can take advantage of these ontologies to 

build user interfaces specifically tailored to their use. In 

addition the formalism of defining ‘vocabulary’ will help 

users of the systems think carefully about the 

organization, meaning and content of their metadata and 

data.  

Given an object in the system, applications need to be 

able to query its type, the set of relationships it is a 

member of, and the adjacent nodes in any of those 

relationships. For example, an annotation object is of type 

annotation, it may be a member of a threaded 

conversation, it may refer to some stored data, it was made 

by a user and there are adjacent entries by time, or subject. 

This list, while not exhaustive, demonstrates the need to 

curate the list of data relationships that are stored. It would 

not be interesting to sort annotations alphabetically for 

example.  

These basic operations will make it easy to refactor the 

common data organization tools in use for an experiment 

in a more general fashion. A scientific notebook 

application can be described as a selector for objects of 

type annotation which meet additional criteria, and then a 

rendering of those objects with a specified ordering and 

logbook like layout. These logbook entries can also be 

members of other graphs, and it will be easy for the 

application to allow users to explore the connected 

objects. Annotations will contain markup tags to embed 

references to other objects within their text. For example 

the text of an annotation might contain: ‘…density rise at 

<data-ref tree=”cmod”, shot=”$shot”, signal=”\ne-bar”, 

time = “3.5 Sec”>. These ‘tags’ would also be stored and 

indexed separately so that applications wanting to do the 

reverse navigation could access them quickly. The details 

of the tag syntax has not yet been designed. However, 

there will be purpose built markup editors to help users to 

insert them. In addition, tags will be rendered by the GUIs 

in type specific ways. Images as thumbnails, people as 

navigable contact links, etc… Any tags the application 

does not have a specific renderer for, will be displayed as 

their source text. If an entry refers to data, the application 

can offer to display that data, or show its context in the 

data system.  

Populating the system will require significant effort on 

the part of its users. This is exacerbated by several factors. 

Descriptive meta data most benefits its consumers, not its 

providers, demotivating users to provide them. Existing 

programs would need to be modified to provide (and 

consume) this new relationship metadata. Design 

decisions about  what to store and how to represent it must 

be made in the absence of experience using the system. 

Our design attempts to take these into account and 

mitigate them where possible. 

The system will store what it can automatically. When 

a user enters a record, the system knows who is entering 

it, when it is being entered, and what kind of record it is. 

Depending on the context the system may be able to 

populate more of the object’s properties automatically. 

For example, if an object is replacing (overwriting) 

another object, the system can attach the new object to its 

original version.  

Existing data stores can be mined to create object and 

relationship records that reflect their contents. This will 

be done as a combination of extraction/replication, and 

the construction of records which refer to the existing data 

in place. 

Example schemas, both scientific domain specific 
(other tokamaks, other earth science data sets) and from 

other domains will inform users initial decisions about 



 

what to store in the system. Pushing the specifics – the 

schema – to data, instead of having it encoded in 

programs, the cost of deciding to make changes to this, if 

the initial choices prove to be bad, is minimized. 

4. Implementation Plan 

We will begin with concrete applications of these 

ideas, and then proceed to generalize the system. By 

solving a real-world problem, with users that have real 

problems to solve, we can verify that the software we are 

developing meets their needs. At the same time we are 

collaborating with potential users from a variety science 

domains. These include: other plasma physics 

experiments, physics computer modelers, earth science 

researchers, and people working in digital humanities.  

We will begin by focusing on two data sets and users 

at the MIT Plasma Science and Fusion Center. The first 

will be retrospective, applying the software to the well 

understood needs of an existing experiment. The Alcator 

C-Mod tokamak [8] has an ad hoc system for metadata 

associated with experimental operations[9]. Our first step 

is to refactor these into the new more general framework. 

This will provide immediate validation of the approach. 
The refactored software must at a minimum work as well 

as the purpose-built collection of programs it replaces. 

The current system uses relational database tables to store 

experimental proposals, experiment run plans, 

descriptions of run days, individual shots on those days 

and user comments about those shots. Graphical user 

interfaces are implemented in PHP as a web 2.0 

application. 

The second application will be a new research effort 

at the Plasma Science and Fusion Center concerning high 

temperature superconductor magnet development. This 

work has similar workflows and metadata needs to the 

Alcator C-Mod tokamak, though the primary indices of 

the records will be different. The tokamak’s annotations 

are indexed by run, shot, topic, user, and time. These 

conductor and magnet tests will be organized by work 

breakdown structure (WBS), test samples, test runs, 

recorded trending data recorded test data (MDSplus), and 

time. The similarities and differences between these 

requirements, provides an excellent check on the 

generality of our solution. The active users will provide 

essential feedback on the system functionality and 

usability.  

As we carry out this initial development, we will 

continually refer back to our overall design. Iterating the 
design and implementation so that in the next steps we 

have confidence that our metaschema matches our 

problem space. These initial applications will provide the 

design validation. Do they adhere to the design and are 

they extensible? If not, iterate.  

The next step is to create records describing the 

schema, iterating the implementations as necessary. We 

can then write tools at the next level of abstraction, 

operating on the schema as data. Again, as required, we 

will iterate our designs and implementations.  

The technology stack is still under discussion, though 

our overall design will allow us to change out the various 

pieces independently. There is only loose coupling 

between the backend, the API and the graphical user 

interface. The incremental approach to development 

reduces the costs of early changes to the toolsets. For the 

front-end user interface, we plan a web based single page 
application (SPA) built with a modern javascript 

framework. The current candidates are vue.js[10], 

AngularJS[11] and React[12]. For the API we are looking 

at either REST[13] or GraphQL[14] written in either 

javascript or python. For the backend we will choose an 

overall approach from graph databases - possibly 

neo4j[15] or orientdb[16], other nosql databases, and 

traditional sql databases.  

5. Conclusion 

Across all research domains the problem of locating 

and understanding recorded results exists. Our core idea 

is that the relationships between data can be represented 

as graphs – that is collections of nodes and edges. Nodes 

can have properties that are URIs for externally stored 

data. This allows the system to represent relationships 
between heterogeneous objects. The system will be based 

on data driven schema, providing flexibility and 

extensibility. This also allows it to apply to a wide range 

of research domains. We have designed a set of tools to 

address this and are starting on its implementation.  
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