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ABSTRACT

Renewable resources are starting to constitute a growing portion
of the total generation mix of the power system. A key difference
between renewables and traditional generators is that many re-
newable resources are managed by individuals, especially in the
distribution system. In this paper, we study the capacity investment
and pricing problem, where multiple renewable producers compete
in a decentralized market. It is known that most deterministic ca-
pacity games tend to result in very inefficient equilibria, even when
there are a large number of similar players. In contrast, we show
that due to the inherent randomness of renewable resources, the
equilibria in our capacity game becomes efficient as the number of
players grows and coincides with the centralized decision from the
social planner’s problem. This result provides a new perspective
on how to look at the positive influence of randomness in a game
framework as well as its contribution to resource planning, sched-
uling, and bidding. We validate our results by simulation studies
using real world data.
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1 INTRODUCTION

Distributed renewable resources are starting to play an increasingly
important role in energy generation. For example, the installation of
photovoltaic (PV) panels across the world has grown exponentially
during the past decade [29]. These renewable resources tend to be
different from traditional large-scale generators as they are often
spatially distributed, leading to many small generation sites across
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the system. The proliferation of these individual renewable genera-
tors (especially PV) has allowed for a much more flexible system,
but also led to operational complexities because they are often not
coordinated [30]. Recently, there has been strong regulatory and
academic push to allow these individual generators to participate
in a market, hoping to achieve a more efficient and streamlined
management structure [11, 14]. Therefore, in this paper we study
an investment game where individual firms decide their installation
capacities of PV panels and compete to serve the load.

Currently, there are several lines of fruitful research on the in-
vestment of solar energy resources. The common challenge in these
works is to address the pricing of solar energy, since once installed,
power can be produced at near zero operational cost. In [6], feed-in
tariffs (fixed prices) are used to guide the investment decisions. In
[8, 32], risks about future uncertainties in prices are taken into ac-
count, although these prices are assumed to be independent of the
investment decisions. Instead of exogenously determined feed-in
tariffs, [12, 19, 21] study incentive based pricing, arguing that the
price of solar energies should match their market value, which is
the revenue that those resources can earn in markets, without the
income from subsidies. However, the investment question of how
to decide the capacity of each solar installation is not considered.

A common assumption made in existing studies is that an oper-
ator (or utility) makes centralized decisions about the capacity of
the solar installation at different sites [2, 10], although each instal-
lation may participate in a market to determine the exact pricing of
energy. It is rare that the two problems—capacity investment and
pricing—-are considered at the same time. On the other hand, since
small PV generation is mostly privately owned, it is arguably more
realistic to consider an environment where both the investment
and the pricing decisions are made in a decentralized market. In
this market setting, the PV owners compete by making their own
investment and price bidding decisions, based on the information
they have, as opposed to a centralized decision made by a single
operator. In this paper, we are interested in understanding these
strategic decisions, particularly in the electrical distribution system.

The competition between individual producers in a decentralized
market for electricity is normally studied either via the Cournot
model or the Bertrand model [16]. In the former, the producers
compete via quantity, while in the latter they compete via price.
In this work, we adopt the Bertrand competition to model price
bidding since it is a more natural process in the distribution system,
where there is no natural inverse demand function (required by the
Cournot competition model) [4, 5]. Then the investment game be-
comes a two-level game as shown in Fig. 1. For any given capacities,
the producers compete through the Bertrand model to determine
their prices to satisfy the demand in the system. Then the out-
come of this game feeds into an upper level capacity game, where
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Solar energy producer deter-
mines investment capacity
to maximize expected profit.

optimal revenue

Given capacity, each producer
competes through Betrand
model and maximizes revenue.

Figure 1: An illustration of the two level game between a
group of solar energy producers. In the higher level, the pro-
ducers determine their investment capacity to maximize ex-
pected profit (revenue minus investment cost), and the lower
game determines the pricing of solar energy through a Be-
trand competition and returns the expected revenue to the
upper game.

each producer determines its investment capacities to maximize its
expected profit.

This type of two-level game was studied in [1] in the context
of communication network expansion. They showed that Nash
equilibria exist, but the efficiency of any of these equilibria are
bad compared to the social planner’s (or operator’s) solution. More
precisely, as the number of players grows, the social cost of all of
the equilibria grow with respect to the cost of the social planner’s
problem. Therefore, instead of increasing efficiencies, competition
can be arbitrarily bad. A similar intuition has existed in traditional
power system investment problems, where the market power of
the generators is highly regulated and closely monitored [31].

In this paper, we show that contrary to the result in [1], the
investment game between renewable producers leads to efficient out-
comes under mild assumptions. More precisely, 1) the investment
capacity decisions made by the individual producers match the
capacity decisions that would be made by a social planner; 2) as
the number of producers increases, the equilibria of the price game
approaches a price level that allows the producers to just recover
their investment costs. The key difference comes from the fact that
renewables are inherently random. Therefore instead of trying to
exploit the “corner cases” in a deterministic setting as in [1, 31],
the uncertainties in renewable production naturally induces con-
servatism into the behavior of the producers, leading to a drastic
improvement of the Nash equilibria in terms of efficiency. There-
fore, uncertainty helps rather than hinders the efficiency of the
system.

To analyze the equilibria of the game, our work builds on the
results in [26]. In [26], the authors discuss the price bidding strate-
gies in markets with exactly two renewable energy producers. They
show that a unique mixed pricing strategy always exists given that
the capacity of those producers are fixed beforehand. They extend
it to a storage competition problem in later work [27]. However,
this work did not address the strategic nature of the capacity in-
vestment decisions, nor did it consider markets with more than two
producers.
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In our setting, we explicitly consider the joint competition for
capacity considering each player’s investment cost, as well as the
bidding strategy to sell generated energy. This problem is neither
studied in traditional capacity investment games (randomness is
not considered) [24, 25]! nor in competition of renewable resources
(investment strategy is considered) [17, 19]. To characterize the
Nash equilibria in the two level capacity-pricing game, we consider
two performance metrics. The first is social cost, which is the total
cost of a Nash equilibrium solution with respect to the social plan-
ner’s objective. The second is market efficiency, which measures
the market power of the energy producers. As a comparison, the
results in [1] show that in a deterministic capacity-pricing game, as
the number of producers grows, neither the social cost nor the effi-
ciency improves at equilibrium. In contrast, we show that a little bit
of randomness leads to improvements on both metrics. Specifically,
we make the following two contributions:

(1) We consider a two level capacity-pricing game between mul-
tiple renewable energy producers with random production.
We show that contrary to commonly held belief, randomness
improves the quality of the Nash equilibria.?

(2) We explicitly characterize the Nash equilibria and show that
the social cost and efficiency improve as the number of pro-
ducers grows.

The rest of the paper is organized as follows. Section 2 motivates
the problem set up and details the modeling of both the decen-
tralized and centralized market. Section 3 formally introduces the
evaluation metrics for our setting. Section 4 presents the main
results of this paper, i.e., the relationship between the proposed
decentralized market and the social planner’s problem, and the
analysis on the efficiency of the game in the decentralized mar-
ket. Proofs for the main theorems are left in the appendices for
interested readers. The simulation results are shown in Section 5
followed by the conclusion in Section 6.

2 TECHNICAL PRELIMINARIES
2.1 Motivation

Traditionally, power systems are often built and operated in a cen-
tralized fashion. The system operator acts as the social planner by
aggregating the producers and makes centralized decisions on in-
vestment and scheduling (as shown in Fig. 2a). The goal of the social
planner is to maximize the overall welfare of the whole system—
this includes optimizing the costs incurred due to the investment
and installation, and the cost paid by the consumers.

However, as distributed energy resources (DERs) start to dis-
perse across the power distribution network, the centralized setup
becomes difficult to maintain and manage. DERs such as rooftop
PV cells are small, numerous, and owned by individuals, allowing
them to act as producers and choose their own capacities and prices.
Consequently, managing these resources through a decentralized
market (as shown in Fig. 2b) is starting to gain significant traction
in the power distribution system.

' The work in [7, 9] studies an investment game where the demand curve is uncertain,
but under a very different context than ours

2This is conceptually similar to the results obtained in [33], where randomness in-
creases the efficiency of Cournot competition.
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Figure 2: Centralized vs. decentralized market setup.

Several issues arise in a decentralized market. Chief among them
is that it is not clear whether the decentralized market achieves the
same decision as if there were a central planner maximizing social
welfare. The competition between energy producers is suboptimal
if the following occurs:

o If the investment decisions by the competing producers de-
viate from the social planner’s decision: this means that the
competition is sub-optimal when it comes to finding a so-
cially desirable investment plan.

o If the bidding strategy leads to a higher payment from elec-
tricity consumers than that from the social planner’s deci-
sion, it means that the energy resource producers are taking
advantage of the buyers and the market is not efficient.

Both of these adverse phenomena can happen in decentralized
markets in the absence of uncertainty [1, 13, 22], even when there
are a large number of individual players. However, the rest of this
paper shows that neither of them occur in a decentralized market
with renewables resources having random generation. We show
that the inherent uncertainty in the production naturally improves
the quality of competition. We start by formally introducing the
game in the next section.

2.2 Renewable Production Model

Throughout this paper, we denote some important terms by the
following:

e Z;: Random variable representing the output of producer i,
scaled between 0 and 1. The moments of Z; are denoted as
EZ; = pi, B(Zi - EZ;)? = 07 and E|Z; - EZ;® = p;.
C;: Capacity of producer i.
D: Total electricity demand in the market
N: Number of producers in the market.
vi: Investment cost for unit capacity for producer i.
&: Efficiency of the game equilibrium.
x_;: The quantities chosen by all other producers except i,
thatis x—; = [X1, ..., Xi—1, Xi+15- - -» XN .

e (x)* := max(x, 0).

e (x)” = min(x,0).
Renewable Production Model: When producer i invests in a
capacity of Cj, its actual generation of energy is a random variable
given by C;Z; < C;. That is, due to the randomness associated with
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renewables, its realized production may not equal its maximum
capacity.
We make the following assumption on the Z;’s:

[A1] We assume that the random variable Z; has support [0, 1] and
its density function is bounded and continuous on its domain. This
assumption is mainly made for analytical convenience and captures
a wide range of probabilistic distributions used in practice, e.g., trun-
cated normal distribution and uniform distribution. Furthermore,
we assume that Z; is not a constant, so E(Z; — EZ;)% = O'iz > 0.

2.3 Competition in decentralized markets

Consider N renewable producers who compete in a decentralized
market. Each producer needs to decide two quantities: capacity
(sizing) and the corresponding everyday price bidding strategy. To
make this decision, each producer needs to take into consideration
the fact that larger capacities lead to higher investment costs but
may also result in enhanced revenue due to increased sales. If the
invested capacity is low, then the investment cost is low but the
producer risks staying out of the market because of less capability to
provide energy. Therefore competition requires non-trivial decision
making by the decentralized stakeholders. In this paper, we consider
the case where each producer has the same investment cost, that
is, y; = y for all i. This assumption is true to the first order since
the solar installation cost in an area is roughly the same for all the
consumers. Since the producers need to compete for capacity based
on revenue (which is determined by optimal bidding), we refer
to the capacity competition—how much to invest—as the capacity
game and the pricing competition, i.e., how much to bid, as the
price sub-game.

2.4 Capacity game

The ultimate decision for the producers is to determine the optimal
capacity to invest in. Suppose that the capacity is denoted by C; for
each producer i, then each producer’s objective is to maximize its
profit, which is specified as:

1)

where 7;(C;,C-;) is the payment (revenue) from consumers to
producer i when its capacity is fixed at C; and the others’ capac-
ities are fixed at C_;. This payment is determined by the price
sub-game given that a capacity decision is already made, i.e.,C =
[C1,Ca,...,CN]: we leave a detailed discussion of the revenue and
the price sub-game to Section 2.5. The term yC; represents the
investment cost.

Since we are in a game-theoretic scenario, the appropriate solu-
tion concept is that of a Nash equilibrium. Specifically, a capacity
vector C° = [C],C5, ..., CX]] is said to be a Nash equilibrium if:

(Profit) ;i (Ci,C-;) — yCi, Vi,

C; = argmax m;(C;,C2;) — yCi, Vi,
C;i>0

@)

The Nash equilibrium shown in (2) is interpreted as the follow-
ing: each producer i chooses a capacity C; such that given the
optimal capacity strategy of the others, there is no incentive for this
producer to deviate from this capacity C;. Note that while choosing
its capacity, each producer implicitly assumes that its resulting
revenue is decided by the solution obtained via the price sub-game.
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2.5 Price sub-game

In this section, we explicitly characterize the payment function
7i(Ci, C-;) at the equilibrium solution of the price sub-game for
a fixed capacity vector (C;);<j<n. The producers now compete
to sell energy at some price p;. This is known as the Bertrand
price competition model, where the consumer prefers to buy en-
ergy at low prices. In this model, consumers resort to buying at a
higher price only when the capacity of all the lower-priced pro-
ducers are exhausted. Suppose that the profit for producer i when
the producers bid at p = [p1,p2, ..., pN] = [pi, p-i] is denoted by
7i(Ci, C—i, pi, p—i). We make the following assumption about the
prices:

[A2] The customers have the options to buy energy at unit price
from the main grid.

This assumption follows the current structure of a distribution
system, where customers have access to the main grid at a fixed
price, and here we normalize the price to 1. Equivalently, this can
be thought as the value of the lost load in a microgrid without a
connection to the bulk electric system [15].

As shown in [1, 26], there is no pure Nash equilibrium on p
for the price sub-game. Intuitively, this means that no player can
bid at a single deterministic price and achieve the most revenue,
since the other players can undercut by a tiny amount and sell all
their generation. Therefore no player settles on a pure strategy.
Such a situation particularly arises where each producer is small
(Ci < D, Vi), but the aggregate islarge (3;; C; > D, where D denotes
the total demand in the market).

However, there exists a mixed Nash equilibrium on price p, where
the optimal bids follow a distribution such that the bids of each DER
are independent of the rest. Informally, this implies that each pro-
ducer i draws its price p; from a distribution P, which maximizes
its expected revenue given the distributions of the other producers.
For example, the price distribution of a two player Bertrand model
is given in [26]. For our purpose, the exact form of the optimal price
distribution is not of particular interest. The quantity of interest
is the form of the revenue function , i.e., the expected payment,
resulting from this random price bidding. Let us denote the ex-
pected payment to producer i based on the optimal random price
by 7; (Ci, C—;) = EP“’PTXMXP?\/”[' (Ci,C—i, pi, p—i)- Proposition 2.1
characterizes the optimal payment to each producer:

ProPoOsSITION 2.1. Given any solution (C1,Co,...,CN) having
C1 £ C3 £... £ Cn, the expected payment received by producer i
in the equilibrium of the pricing sub-game is given by:

CiE[min(Z;, £)]

71"(C1, A N .
: CyE[min(Zy. 2]

®)

.CN) = 7N(Cr,...,C
Moreover, if the capacity is symmetric, ie, C; = Cj,¥Vj # i €
{1,2,...,N}, then:

7i(Ci,C-i) = Bz Bz, min{(D - Y Z;C)*, ZiCy).
J#i

4

A complete proof of Proposition 2.1 is deferred to the Appen-
dix. Let us now understand Proposition 2.1 for the symmetric in-
vestment solution. Equation (4) denotes the payment received by
producer i when it bids deterministically at price p; = 1 and all of
the other producers bid according to their mixed pricing strategy.

122

Pan Li, Shreyas Sekar, and Baosen Zhang

By assumption A2, this player bids at the highest possible price.
Then the amount of energy sold equals the minimum of the leftover-
demand from the market (D~ jx; Z;C 7)) and the player’s actual
production (C; Z;). Since p; = 1 belongs to the support of the mixed
pricing strategy adopted by this player, one can use well known
properties of mixed Nash equilibrium [1, 26] to argue that producer
i’s payment at this price equals the expected payment received by
this producer at the equilibrium for the pricing sub-game.

3 EVALUATION METRICS

3.1 Social planner’s problem

One essential characteristic of a game is its cost as compared to a
centralized decision. In this section, we present the benchmark cost
that we consider; in particular, we focus on the social cost mini-
mization achieved by a social planner controlling the producers. In
Section 3.2 we give more details on the definition of game efficiency
as compared to this benchmark.

Suppose that these producers are managed by a social planner
in a centralized manner. The purpose of the social planner is to
fulfill demand while minimizing the total cost by deciding the
investment capacities of the producers. The social planner thus
wants to minimize social cost in the following form:

N N
C*=  argmin DG+ E(D- Y ZiC)), (5)
C;>0,Vie{1,2,..,N} =1 i=1
where C* = [C],CJ, ...,Cy] is the optimal capacity decision from
the social planner for each producer i. The social cost presented
in (5) is composed of two terms. The first term is the total invest-
ment cost which is linear in the capacities, and the second term
is the imbalance cost in buying energy from electricity grid if the
renewables cannot satisfy the demand. These two terms represent
the tradeoff between investing energy resources and buying en-
ergy from conventional generators in order to meet the electricity
demand.

3.2 Performance of the decentralized market

Given the definition of the equilibrium solutions due to both price
and capacity competition, a natural question is to evaluate the per-
formance of the decentralized market: i.e., does competition result
in efficiency?. As mentioned previously, we measure this efficiency
via two metrics: the social cost of the decentralized capacity invest-
ment compared to that achieved by the social planner, and the total
investment cost compared to the payments made by the demand.
Example. Let us consider a one-player case, where there is only one
producer participating in the electricity market. We further assume
that the random output of this plant follows a uniform distribution,
ie., Z1 ~ unif(0, 1). Suppose that y < % otherwise there is no
incentive to enter the market. The social planner’s optimization is
reduced to :

C; = argmin yC1 + E(D - Z1C1)",

G
2 . . .
where C;‘ = ,IZDT,. In this case, the total investment cost is D/ %:
in a centralized scenario, one can imagine that this is the price

charged by the social planner to the demand, and thus there is no
‘markup’.

(6)
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Let us now take a look at the decentralized market. Since there
is only one producer, the decentralized investment strategy clearly
coincides with that of the social planner. The payment from the

demand to the producer as per (4) is Emin{D, Z;C;} = D(l—\/g) >

D\/g (wheny < %) This suggests that the producer is exploiting
its market power to considerably improve its profit and the benefits
of renewables are not being transferred to the consumers.
Market Efficiency As noticed in the above example, inefficiency
arises due to the high prices felt by the demand in the decentralized
market. Formally, we define market efficiency as the ratio between
the investment cost paid by the producers to the total payment
received by the producers at any equilibrium of the capacity price
game. Therefore, efficiency takes the following form:

Yzfil c;

a IR (e el

™

A “healthier” game should achieve a higher ¢ that is as close as to
1. This means that the producers should bid at the prices that cover
their investment cost, so that bidding is efficient and does not take
advantage of the electricity consumers. A particularly interesting
question is whether competition leads to increased efficiency as the
number of producers in the market increases. We formalize this
notion below.

Definition 3.1. We define the efficiency of a Nash equilibrium
in a capacity game illustrated in (1) by £. The capacity game is
asymptotically efficient when ¢ — 1 as N — oo for every Nash
equilibrium.

Now the question of interest is 1) whether uncertainty in gener-
ation deteriorates or improves the market efficiency of the game,
and 2) whether efficiency increases as the number of players in the
game increases. In the following sections, we will see that without
randomness in the generation, the producers are able to charge a
relatively high price for energy, which makes the game less efficient.
Interestingly, when producer’s generation becomes uncertain, the
game becomes more efficient as more producers are involved in the
decentralized market.

Inefficiency due to Social Cost: When there are multiple producers,
it is possible that even the investment decisions may not coincide
with that of the social planner. Therefore, a second source of ineffi-
ciency is the social cost due to the capacity investment, as defined
in (5). More concretely, we compare the social cost of the equi-
librium solution (C;) with that of the social cost of the planner’s
optimal capacity (C;)— clearly, the latter cost is smaller than or
equal to the former.

3.3 Deterministic game

Before moving on to the main results, we highlight the (in)efficiency
of the equilibrium in the deterministic version of the capacity game,
i.e., one without production uncertainty where Z; = 1 with proba-
bility one. Understanding the inefficiency of this deterministic game
is the starting point for us to better gauge the effects of uncertainty
in investment games.
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We begin with the social planner’s problem, which in the absence
of uncertainty can be formulated as follows:

N N
min Ci+ (D- ci)T.
C,-ZO,Vie{l,Z,..‘,N}Y; i+ ; i)

Every solution with non-negative capacities that satisfies
Zf\i 1 Ci = D optimizes the above objective — this includes the sym-

®)

metric solution C} = C; = --- =Cy, = %. Moving on to the decen-
tralized game with deterministic energy generation, we can directly
characterize the equilibrium solutions using the results from [1].
Specifically, by applying Proposition 13 in that paper, we get al-
though there are multiple equilibrium solutions, every such solu-
tion (Cj)1<i<N satisfies (i) Zfil C; = D, and (ii) n;(C;,C—;) = C;.
The second result implies that at every equilibrium, each producer
charges a price that is equal to the electricity price of one from
the main grid. Finally, by applying (7), we can characterize the
efficiency in terms of the investment cost y:

yD
=7 = ©)

Why is this result undesirable? First note that when y < 1, (9)
implies that the deterministic game is inefficient at every Nash equi-
librium. In fact, using the results from [1], one can deduce that the
system is inefficient even when different producers have different
investment costs. Perhaps more importantly, the costs of invest-
ment as well as the market price of renewable energy have dropped
consistently over the past decade and are expected to continue
doing so in the future [3, 18, 28]. In this context, Equation (9) has
some stark implications, namely that as y (the investment price)
drops in the long-run, the efficiency actually becomes worse (£ — 0
asy — 0), i.e., the improvements in renewable technologies do not
benefit the electricity consumers.

4 MAIN RESULTS

In this section, we first characterize the capacity decision from
the social planner’s problem. We then illustrate the relationship
between the decentralized market, and the social planner’s problem
in the centralized market. We also give a thorough analysis on the
efficiency of the decentralized market. We begin by considering the
case where the capacity generated by the producers are independent
of each other and then move on to the correlated case. All of the
proofs from this section can be found in the appendix.

4.1 Social planner’s optimal decision

An immediate observation of the socially optimal capacity as de-
scribed in (5) is that if the randomness is independent and identical
across different producers, the socially optimal capacity is symmet-
ric:

THEOREM 4.1. If the random variables Z; are i.i.d. and satisfy
assumption A1, then the optimal capacity obtained by (5) is symmetric,
ie,Ci=Cy=--=Cy=C"

Theorem 4.1 states that when the investment cost per unit ca-
pacity is the same across all producers, and the random variable is
i.i.d., then the optimal decision for the social planner is to treat all
producers equally and invest the same amount of capacity for each
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producer. In reality, the randomness due to renewable sources can
be correlated and Section 4.4 shows that Theorem 4.1 stills holds
under some conditions on the nature of the correlation.

4.2 Existence and Social Cost

Now that we have captured the structure of the socially optimal
capacity decision, we want to address the issue of whether or not
the capacity price game admits Nash equilibrium solutions in the
decentralized market. A second question concerns the social cost
of Nash equilibria when compared to the optimum investment
decision adopted by a social planner. As discussed in Section 3.2, one
of the two sources of inefficiency in decentralized stems from the
fact that the social cost of equilibrium solutions may be larger than
that of the central planner’s solution. Theorem 4.2 addresses both
of these questions by proving the existence of a Nash equilibrium
that coincides with the socially optimal capacity decision.

THEOREM 4.2. There is a Nash equilibrium that satisfies (2), which
also minimizes the social cost. That is, (C*,C*,...,C") is a Nash
equilibrium.

Therefore, existence is always guaranteed in our setting. More
importantly, Theorem 4.2 provides an interesting relationship be-
tween the centralized decision that minimizes social cost, and the
decentralized decision where producers seek to maximize profit. It
states that the game yields a socially optimal capacity investment
solution as if there were a social planner controlling the producers.
In addition, as we will show later in Section 4.5, this Nash equi-
librium is the unique symmetric equilibrium in the capacity game.
For the following sections, we use C* to denote both the socially
optimal capacity decision and this Nash equilibrium.

4.3 Efficiency of Nash equilibrium

Although the capacity price game studied this work admits a Nash
equilibrium that minimizes the social planner’s objective, there may
also exist other equilibria that result in sub-optimal capacity invest-
ments. How do these (potential) multiple equilibria look like from
the consumers’ perspective, i.e., is the price charged to consumers
larger than the investment? In this section, we show a surprising
result: the two-level capacity-pricing game is asymptotically effi-
cient. That is, as N — oo, the total payment made to the producers
approaches the investment costs for every Nash equilibrium. The
reason for this startling effect is that as the number of producers
competing against each other in the market increases, with the
presence of uncertainty, the market power of these producers de-
creases and the efficiency of the game equilibrium increases. We
first present our main theorem with ii.d. generation.

THEOREM 4.3. Let (C?, C;, ..
solution in an instance with N producers and N > L. Then, as long

,Cyy) denote any Nash equilibrium

as the Z;’s are i.i.d and satisfy assumption A1, we have that:

N
> mi(CY. G5
i=1

where a, ¢ > 0 are constants that are independent of N. Therefore,
as N — oo, & — 1, where & denotes the market efficiency due to any
Nash equilibrium solution.

N
LGRSy ). CF +aNTE,
i=1
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Combining Theorems 4.2 and 4.3 yields that if we restrict the
game to only have the symmetric equilibrium, then the equilibrium
minimizes the social cost and the game is asymptotically efficient.
Moving beyond the symmetric equilibrium, Theorem 4.3 states
that any Nash equilibrium obtained from the capacity game is
efficient, that the collected payment (revenue) tends to exactly
cover the investment cost. This further suggests that the capacity
game described in (1) elicits the true incentive for the producers to
generate energy.

4.4 Correlated generation

In reality, renewable generation due to multiple entities in a power
distribution network is usually correlated with each other because
of geographical adjacencies. We assume that the randomness of
each producer’s generation can be captured as an additive model
written as the following:

Zi =2i+2. (10)

The model in (10) captures the nature of renewable generation. We
can interpret Z as the shared random variable for a specific region.
For example, the average solar radiation for a region should be
common to every PV output in that region. On the other hand, Zi
can be seen as the individual-level random variable for the particular
location of each PV plant i, and this random variable can be seen
as i.i.d. across different locations.

For analytical convenience, we make the following assumptions
onZ;:
[A3] Both Z and Z; in (10) satisfy assumption A1, the Zi’s are iid,
and are independent of Z for all i.

If the correlation is captured as in (10), the optimal capacity
decision is still symmetric, i.e., C;f‘ = C;f, Vi # j is a valid solution to
(5). This is stated in Theorem 4.4.

THEOREM 4.4. If the random variable Z; is captured as in (10)
and assumption A3 is satisfied, then the optimal capacity vector that
minimizes the planner’s social cost is symmetric, i.e, C] = C; = +++ =
Cy =C"

N

In addition, note that Theorem 4.2 does not require the i.i.d
assumption on Z;. Therefore, we infer that the symmetric solution
that minimizes social cost is a Nash equilibrium even when the
generation is correlated. In what follows, we further show that
correlation does not tamper the efficiency of any Nash equilibria in
the capacity game.

THEOREM 4.5. Suppose that (C7,Cy, . .. ,C;’V) denotes any Nash
equilibrium solution in an instance with N producers and N > %

Then, as long as the random variable Z;, is captured in (10), and
assumption A3 is satisfied, we have that:

N
D mi(Cy. G,
i=1

where &, c > 0 are constants that are independent of N.

N
LCR) <y D Gl +aNTE,

i=1

Theorem 4.5 extends the statement in Theorem 4.3 from i.i.d.
random variables to correlated random variables. This indicates
that if the randomness of each producer is captured by an additive
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model interpreted as the sum of shared randomness and individual-
level randomness, then the decentralized market is efficient and
that both producers and electricity users benefit from this market.

4.5 Uniqueness of the Symmetric Equilibrium

Although our setting could admit many equilibrium solutions, we
know that one of these solutions must always be symmetric, i.e.,
every producer has the same investment level. This solution is of
particular interest as it minimizes the social cost. We now show
that the symmetric Nash equilibrium C7,C5, .. ., Cj‘v is unique in
Theorem 4.6.

THEOREM 4.6. Under assumption A1, the symmetric Nash equilib-
rium in the capacity game (1) is unique.

Theorem 4.6 states that there is only one symmetric Nash equi-
librium in the capacity game. This indicates that if the decentralized
market is regulated such that each producer behaves similarly in the
presence of uncertainty, then it is guaranteed that the competition
is both efficient and socially optimal in the investment decision.

5 SIMULATION

In this section, we validate the statements by providing simulation
results based on both synthetic data and real PV generation data.
For convenience, we use the symmetric Nash equilibrium as the
solution of interest in our simulations.

5.1 Two-player game

Let us assume that the generation distribution is uniform, i.e., Z; ~
unif(0, 1). Suppose that the investment price is the same for all
players, i.e., y = 0.25, then following the analysis in Section 4, we
know that the optimal capacity satisfies C; = C;. Assuming that
the demand is normalized to 1, we solve the social optimization in
(5) with equal investment price y. The optimal solution leads to a
total capacity of C},, = Cj + C; = 1.71, where C} = C; = 0.855.
The result is shown in Fig. 3.

Social cost

Figure 3: Social cost with respect to total capacity when in-
vestment price is the same.

To verify that C] = C; = 0.855 is indeed a symmetric Nash
equilibrium, we vary the capacity from C] and study how player
1’s profit changes. The analysis for player 2 proceeds in the same
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way because of symmetry. We show the result of optimality for
player 1 in Fig. 4 in terms of profit, with a fixed capacity for player
2 where C; = Cj = 0.855.

0.15

o
IS

=]
w

o
S

=]

Profit for player 1

o

0.09
0.2

0.4 0.6 08 ¢c 1

Figure 4: Profit for player 1 when its capacity deviates from
Cr.
1

As can be seen from Fig. 4, the profit for player 1—when the other
player’s capacity is fixed at C;—peaks at C; = C}. By symmetry,
we can argue that player 2’s profit is maximized at C; when player
1’s capacity remains fixed. Therefore, (C*,C; ) is indeed a Nash
equilibrium as neither player has any incentive to deviate from its
investment strategy. In other words, the socially optimal capacity
is also a Nash equilibrium for the game shown in (1).

5.2 N-player game

To illustrate that the Nash equilibrium is efficient with respect to the
metric defined in (7), we need to show that the payment collected
from users in the game exactly covers the investment costs of the
producers when the number of producers increases. We therefore
simulate the capacity game with identical players (y; = 0.25, Vi)
with i.i.d. generation (uniform distribution). We then compute the
efficiency ¢ when there are 10, 50, 100, 150, 200, 250, 300 players in
the game. The results are shown in Fig. 5.

0.95

=]
o

Efficiency &
=3
&

o
o

e
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v
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50 100 150 200 250
Number of players in the game

300

Figure 5: Efficiency of the symmetric Nash equilibrium in
the game as a function of number of players.

In Fig. 5, we see that the efficiency is growing with the number
of players in the game. We therefore infer that the competition is
healthy as the producers only bid their true costs and do not exploit
the consumers of electricity.
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5.3 Case study using real data

In this section, we simulate the efficiency of the game equilibrium
using a real PV generation profile obtained from the National re-
newable energy laboratory [20]. Our data comes from distributed
PVs located in California with a 5 minute resolution. Typical PV
profiles after normalization are shown in Fig. 6. From Fig. 6, we see
that the randomness of PV generation from different locations is
strongly correlated. The correlation between those PV profiles is
also symmetric across different PV plants, as shown in Fig. 7.
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Figure 6: PV generation profile in different locations.
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Figure 7: Correlation of PV generation in different locations.
A lighter color (yellow) represents stronger correlation and
dark colors (blue) represent weak correlation.

We then use these PV profiles to obtain the game equilibrium as
we vary the number of PV participants. The result is shown in Table
1, with the assumption that y = 0.15. As we can see from Table 1,
in the absence of randomness when the producers are assumed to
generate energy deterministically, the efficiency is the investment
price as described in Equation (9). On the other hand, the efficiency
of the game with uncertainty improves as the numbers of producers
in the market increases.

Table 1: Game efficiency with different number of producers,
when investment price is 0.15 and demand D = 5.

Number of producers 5 30 | 120
Efficiency of deterministic producers | 0.15 | 0.15 | 0.15
Efficiency of random producers 0.83 | 0.96 | 0.98
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In addition, in a deterministic game, the total capacity is always
the same as the market demand because there is no randomness in
generation. In the capacity game with uncertainty, since each pro-
ducer faces randomness in its own production as well as the random
generation from the other producers, the total invested capacity
is greater than demand as illustrated in Table. 2. This means that
in the capacity game with uncertainty, the total capacity exceeds
market demand, which elicits competition among producers.

Table 2: The ratio between total capacity and market de-
mand , i.e., }}; C;/D, when investment price is 0.15 and de-
mand D = 5.

Number of producers 5 30 | 120
> C;/D with deterministic producers | 1 1 1
>.i C; /D with random producers 1.26 | 1.32 | 1.30

6 CONCLUSION

In this paper, we consider a scenario where many distributed energy
resources compete to invest and sell energy in a decentralized
electricity market especially when uncertainty is present. Each
energy producer optimizes its profit by selling energy. We show
that such a competitive game has a Nash equilibrium that coincides
with the solution from a social welfare optimization problem. In
addition, we show that all Nash equilibria are efficient, in the sense
that the collected payment to the energy producers approaches their
investment costs. Our statement is validated both by theoretical
proofs and simulation studies.
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A PROOF FOR PROPOSITION 2.1

We know that the producers adopt a mixed pricing strategy in the
equilibrium for the pricing sub-game. Let [;, u; denote the lower
and upper support of the distribution corresponding to the mixed
strategy of producer i. From previous results [1, 26] and assumption
A2, we know that [; = I; and u; = uj = 1 for all i, j. Therefore, let p
denote the common lower support (price) for every producer— it is
known that no producer has an atom at the lower support. Using
the basic properties of mixed strategy equilibria (e.g., see [1]), we
can infer that the total payment received by any producer i equals
its payment when this producer bids a deterministic price of p and
all of the other producers bid according to their mixed strategies in
the pricing sub-game equilibrium. Explicitly writing this out, we
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get
. . D
7i(C1, 2, ... CN) = pE[min(CiZ;, D)] = pCiE[min(Z;, —)]
1
(11)
. . D
N (C1,Ca,...,CN) = pE[min(CNZyN, D)] = pCNE[min(Z;, a)]

Indeed, observe that when any one player selects a price of p,
all of the capacity generated by this player must be sold because
no other player can bid below this price and the probability that
other players bid exactly at this price can be ignored due to the
lack of atoms. Using the second equation above, we can explicitly
characterize p in terms of the payment received by the producer
with the highest capacity investment, i.e.,

_ (€1, G, ..., CN)
CNE[min(Zi, £%)]

Substituting the above into Equation 11 gives us:
CiE[min(Z;, £)]
CNE[min(Zy, £2)]

[m]

7i(C1,Co,...,CN) = N (C1,Co,...,CN)

B PROOF FOR THEOREM 4.1

Suppose that at the optimum solution that minimizes Equation (5),
the aggregate capacity investment by the producers is C},, and let
Ci=C=...=Cy = C}’\}” > 0. Then, in order to prove Theo-
rem (4.1), it is sufficient to show that for any capacity C1,Ca, ...,Cn =
0 with Zfil Ci = C;,;, the following equation is satisfied:

N N
E[(D- Y Z:C))* 1 < B[(D- ) Z:Ci)*].
i=1 i=1

In fact, using the transformation that for any capacity vector
(Cf....CQ). BU(D = £, ZiC))*] = D — E[min(D, 3%, Z:C))],
the above equation can be rewritten as:

N N
E[min(D, Z ZiC¥)] > E[min(D, Z ZiCi)). (12)
i=1 i=1
So, to prove Theorem 4.1, it is indeed sufficient to prove Equa-

tion (12). To prove this, we introduce Proposition B.1 and Proposi-
tion B.2.

ProPOSITION B.1. Let us consider the following definitions:

* X I=Zl% +Zz%+...+ZNCTN,

* Xy 1221% +Zg%+...+ZN%

o ...
o Xy = Zl%" +Zz% +... +ZI\;—C’I‘\’{1
That is:
N Citj-1
Xi = ZZj N (13)
Jj=1
where i + j — 1 is computed modulo N.
Then:
N N D
E[min(D,ZXi)] > ZE[min(—,Xl)] (14)
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ProOF. We prove the inequality by proving that inequality holds
for each realization of X7 = x1, X2 = x2,...,Xn = xn. Denote the
whole index set by N. In each realization, there are the following
four scenarios:

e Each of x; is smaller than %. In this case, min(D, Zf\il xi) =
Zf\il xi, and min(%,xi) = x;. So equality holds.

e Each of x; is bigger than %, In this case, min(D, Zﬁl xi) =
D, and min(%,xi) = %. So equality again holds.

e xj,j € J C N is bigger than %, the rest are smaller than
%,but Zl{il x; < D.In this case, min(D, Zﬁ\il Xi) = Z%L X;
The RHS of (14) reduces to %lj’l + DieN\T Xi < Zf\il Xi
Therefore, the inequality holds.

¢ xj,j € J C N is smaller than %, the rest are bigger than %,

but Zl{\il x; = D. The RHS of (14) reduces to %(N 19D+
2jeg *j < D. Therefore, the inequality holds.
In all cases, we have that:
N N
E[min(D, Z Xi)] Z [rmn X1 (15)
i=1 i=1
O

PRrROPOSITION B.2. With the assumptions in Proposition B.1, we
have:

E[min(B

N,X,-)] LVie N.

= E[min(%,Xl (16)

To prove Proposition B.2, we introduce Fact 1. It is based on
exchangeability of independent random variables, and that Z;’s’
are i.i.d. copies. We refer to [23] for interested users and omit the
proof here.

Fact 1. IfZ;’s are i.i.d. random variables, then:

f(Zl,Zz, .

where S1, Sz, . .., SN is a permutation of 1,2, . ..
density function.

(17)
,SN, and f(-) is the

,ZN) = f(zs,,25,, .- 25y ),

Now we proceed to prove Proposition B.2.

PRrOOF OF PROPOSITION B.2. Using Fact 1, we show thatE[min(%, Xi)]

is the same for all i:

E[min(D/N, X;)] = E[min(D/N, ZZ Gy ]

(a) Cz+] 1

= E[min(D/N, ) Z;
E[min(D/ ,Zl wey

N

®) op . Ck

= E D Z—
[min( /N,;1 2

= E[min(D/N, X1)],

where (a) is based on the observation that [i,i + 1,...,i + N — 1],

mod N, Vi is a permutation of [1,2, ..., N], and (b) is the result of
rearranging Cjj-1. O
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Now, we are ready to prove (12). Let (X )N be as defined in the
statement of Proposition B.1. The LHS of (12) can be written as:

E[min(D, Z ZiC}

E[min(D ZZlCtot/N)]
= E[min(D, Z Z; %)]

= E[min(D, Z ZiXi)]

(19)

N
Q3" Bimin(, X))
i=1

= NE[min(%,Xl)]

N
E[min(D, Z ZiCi)]l,

where (a) is based on Proposition B.2 and (b) is based on Proposition
B.1. This concludes the proof. O

C PROOF FOR THEOREM 4.2

Suppose that there are N producers in the market, and suppose that
the optimal capacity from solving (5) is denote by C},C7, ..., C;‘V,
we argue that CJ, Cj, ..., Cy; is a Nash equilibrium for the capacity
game in (1).

We prove the equilibrium for player 1, and the same argument
holds for any of the rest players. To show this, we rewrite C} as the
following:

N N
ci = argmin yC, +ch;? +E((D - Zz,-ci — 7,01}

i=2 i=2

N
argmin yCy + D — Emin(D, Z ZiCi + Z1Cy)

i=2
N
=argmin yC; — Emin{D — Zzici,zlcl}
G i=2
N
— ; _ 3 _ .c\t
—argnélln yC1 — Emin{(D ZZICI) ,Z1C1}
— min E{( ZZLC) ,Z1C1}

argmin yC; - E min{(D — Z Z:Ci)*t, 7101} —

N
- ZZiCi)_
i=2

i=2
N
= argmax Emin{(D - Z ZiCi)*,Z,C1) - yCy
G i=2
= Clo,
(20)
which characterizes the optimal solution to the game depicted in
(1). O
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D PROOF FOR THEOREM 4.4

Similar to the proof for Theorem 4.1, we need to show that (12) is
true when Z; = Z + Z; as given in (10). The proof boils down to
show that Proposition B.1 and Proposition B.2 are true under such
asssumption on correlation. Note that the proof for Proposition B.1
does not require that Z;’s to be i.i.d., therefore naturally carries
over. To show Proposition B.2, we need Lemma D.1. Then these
two propositions validate (12), which concludes the proof.

Lemma DA, IfZ; =7 + Z;i as (10), then:

f(z1,22,...,2N) = f(2s,, 25,5 - - - 255 )5

where S1, Sz, . .., SN is a permutation of 1,2,...,SN, and f(-) is the
density function.

Proor.
f(Z],Zz,. . .,ZN) = f(2+’2'1,5+22,...,’2+2N)

=ff({z+21,z+22,...,2+2N}|Z'=2)f(Z'=2)d2
(i)ff(z+21,5+22,...,2+2N)f(2:2)d2

® ff(2+251,2+252,...,2+£5N)f(Z = 5)dz
z

= f(zs,,2s,,---12Z55)s

where (a) is based on the assumption that Z is independent of Z;
(assumption A3), and (b) is based on Fact 1. O

E PROOF FOR THEOREMS 4.3 AND
THEOREM 4.5

E.1 Berry-Esseen Theorem

The following Lemma is useful to facilitate the proofs of Theorem
4.3 and Theorem 4.5. It relates the behavior of the mean of indepen-
dent random variables to a standard Gaussian distribution in terms
of CDF.

LeEmMA E.1 (BERRY-ESSEEN THEOREM). There exists a positive
constant a, such that if X1, Xo, ..., XN, are independent random
variables with E(X;) = 0, E(Xlz) =02 >0, and E(|1X;]3) = p; < oo,
and if we define Sy = ZiXiz,
i0;
tion function of Sy is close to ®, the CDF of the standard Gaussian
distribution. This is mathematically interpreted as:

IFN (x) - ()| < ay,

then Fy, the cumulative distribu-

(21)

Pi

_1
where y = (3; oiz) 2 Maxi<i<N -
i

E.2 Some useful lemmas

Before the detailed proof, let us visit some useful propositions and
lemmas that assist the proofs for Theorem 4.3 and Theorem 4.5. In
what follows, we assume without loss of generality that given any
solution (C1, Ca, . ..,Cp), it must be the case that C; < Cy < ... <
CN-
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ProrosITION E.2. The partial derivative of
7N(C-N,CN) = E(min(D - Zjl\i]l CiZi)*,Cn) is:

N-1
0 C_N,C
JELJ&JQ:E]«D_Elqarchaqzm,@m
oCN =

and for alli # N.

N-1
OnN(C-N,CN) _ . .
ac, =E|1{0 < (D ; CiZj) < CNZNY(=Zi)| .
(23)

Based on Proposition E.2, we have the following lemma on the
optimality of the symmetric Nash equilibrium of the game.

Lemma E.3. If the invested capacity is symmetric, i.e., C1 = Cy =
-+ =CN =C, then:

ey =E[1 {(D—CZ;L Zj)* 2 CZi| Z;|, where 11} is the

indicator function and takes value 1 if the argument is true,

otherwise takes value 0.
e NC<Dly.

Proor. We begin by proving the first part. Suppose that capaci-
ties are the same, i.e., C; = C2 = --- = Cny = C, the profits for all
producers in the capacity game is:

N
NE min((D -C Z Z)*, czj) ~ yCN. (24)

J#i

The optimality of a player i in the game is captured as the fol-
lowing:

N
i)
—E|min|(D-C ) Z)*.CiZi|| -y =o. 25
e mm(( ;») y (25)

Differentiating in the expectation with respect to each individual
C; and based on Proposition E.2, we have:

N
y=E|1{(D-C) Z)* 2 CZi{ Z, (26)

J#i

where 1{-} is the indicator function and takes value 1 if the argu-
ment is true, otherwise takes value 0.
Then we proceed to prove the second part, i.e., NC < D/y.
When there is a social planner making centralized decision as
described in (5), the total payment from the electricity consumers
in the system is

min

E
Ci,¥i=1,2,...,N

N
(D= Cizy)*
i=1

N
+y Y. G (@)
i=1

where each site should have the same optimal invested capacity
Ci =G .-+ = CNy = C as discussed in Section 4. This also
coincides with the symmetric Nash equilibrium in the capacity
game.
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To show that NC is a bounded by a constant, assuming differen-
tiability and based on (27), we know

N
YN=E 1(D>CZZi)ZZi (28)
L i=1 i=1
[ N N
=E 1(2 Z; < DJC) Z Z; (29)
L i=1 i=1
[ N
<E 1(2 Z; < DJC)D/C (30)
L i=1
N
=D/C Pr(Z Z; < DJC) (31)
i=1
< DJC, (32)
rearranging, we get NC < D/y. O

Based on Lemma E.3, we now present two lemmas on arbitrary
Nash equilibria of the game in Lemma E.4 and Lemma E.5.

LemMA E.4. Given any equilibrium solution of the two-level game
(€. Cy,. .. ,C;I), it must be the case that C < y% and CJOV < %.

ProOF. Assume by contradiction that the first part of the above
statement is not true and there exists an equilibrium solution
(C°,C§, ... ,C;]) such that yAN < Cf < ... < C}}\,. Recall the
formula for the payment received by producer N, i.e.,
N (CYy.Cy.....CY) = E[(D-Xixn CiZi)*, C{yZN)]. Since this is
an equilibrium solution, the derivative of this payment must equal
the investment cost y. More specifically, using the expression for
the derivative that was previously derived in Equation (26), we have

that
( d

—nN(c°,c°,...,C)) =y
dc ? c=cs,

A Jax

Now, since the symmetric equilibrium solution (C*, ..., C*) also
satisfies this condition, we have that:

|

— E|1{(D- Z CIZ)* = CyZn

i#N

E|1{(D- Z C'z)t > C*Zy =y.
i#N
Further, recall that in the symmetric equilibrium C* < y% as de-

rived in Equation (32). Since C; > YAN’ this implies that C} > C*. Fi-

nally, let & denote the set of events® 1 {(D - 2izNCiZ)T = Ci]ZN}
and let & denote the events satisfying

L{(D~ Sisn C*Zi)* = C*Zy). Since C* < Cf < C5 < ... < C3,,
it is not hard to deduce that & c &*. Indeed for any (non-zero)
instantiation (Z1,...,Zy), we have that (D — Y;xn C/Zi)* <
(D= XixN C*Zi)* and C} ZN > C*ZN. Therefore, we get that:

3For our purposes, an event is a tuple of instantiations of the i.i.d random variables
(Z4, Z3, . . ., ZN) satisfying the required condition
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E|1 {(D - Z izt > c;,ZN}ZN <
i#N
E|1 {(D— Z C*Z)* = C*ZN}ZN =y,

i#N
which is a contradiction.
Next, we prove that at equilibrium Cg, < %. The proof is some-

what similar and once again, proceeds by contradiction. Suppose

D .

that C;] > Now, we have:

1 {(D - Z ezt = C;]ZN} N
i#N

<E[1{D>C} 2N} 2ZN]

D
1 {D > ?ZN}ZN]
=E[1{y 2 Zn} ZN]
<E[1{y 2 Zn}y]
< Pr(Zn <y)y.

Of course, this leads to the claim that Pr(Zy < y) > 1, which is
an obvious contradiction. m]

y=E

<E

LemMmA E.5. Suppose that C; < Cj < % for somek < 1. Then, we
have that:

D D
E[min(Z;j, CT])] < E[min(Zl-C—i)].
) D
E[mln(Zj, —)1 = kE[Z;].
G
Proor. The first part is easy to see. For any instantiation of
Zj, we have that min(Z;, D/C;) < min(Z;,D/C;) since C; < Cj.
Taking the expectation, and changing the variable from Z; to Z;
(these variables have the same marginal distribution due to either
i.i.d assumption, or follows (10)), we get that:

D D D
E[min(Z;}, C_j)] < E[min(Z;, c—l)] = E[min(Z;, C_z)]
The second part of the lemma can be proved as follows: once again
fix any instantiation of Z;, we have that,

D/k

Taking the expectation, we get the required result.

min(Zj, CB) > min(Z;, ) = min(Zj, k) > kmin(Z;,1) = kZ;.
j

[m]

Last, we present a lemma on the bound for integrating on a
standard Gaussian distribution.

LEmMA E.6. Let ®(-) denote the CDF for standard Gaussian distri-
bution, i.e., zero mean and unit variance. Then:

1
O(x) - P(y) £ —((x—-y),x>y. (33)
Var
Lemma E.6 is a direct observation based on the density function
L=
Vex

f(x) of standard Gaussian random variable, i.e., f(x) =

which has a maximum value of ——.
Va2
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E.3 Proof for Theorem 4.5 and Theorem 4.3

Now we proceed to prove Theorem 4.5 and Theorem 4.3. Note that
Theorem 4.3 is a special case of 4.5 when Z = 0, in the following
proof, we assume that Z; = Z + Z; as in (10).

To avoid lengthy notation, let us define G; = E[min(Z;, D/C})]
forall 1 <i < N. Consider the payment received by the producer
with the smallest investment, which happens to be C]. As per
Equation (3), this equals:

o o> o> < Ci}GI
7[1(C1,...,CN) = ”N(Cl""’CN)CO GN
N
CyE[Z4]
= HN(CT,.. .’C}i])éo—GN.
N

The second equation comes from our assumption that N > %,
and therefore, by Lemma E.4, we have that C; < D and G; =
E[min(Z1,1)] = E[Z1]. In what follows, we will continue to use
Gy = E[Z;] for consistency but remark that G; is a constant that
is independent of C;. The total profit made by this producer is
m(Cy,...,Cx) — yCy. Since this is an equilibrium solution, we
have that (<L (C.C5.....CY))

entiation term, we get that:

c=cs = y. Expanding the differ-

G
CK]GN

<7rN(Cf, e ,CK])

- CYE[1 {o <D- Z CiZi < c;{,zN}zl) =y. (34)

i#N

In the above equation, we used the fact that -& 767N (G, Cﬁ]) =

E[1 {O <D-CZ + Zﬁzl CiZ; < CX,ZN} Zl].RearrangingEqua-

tion (34), we get an upper bound for the payment made to producer
N, namely

o

nN(Cf,...,Cg]) =
i#N

(35)

Fix some constant k. The rest of the proof proceeds in two cases:

(Case I: ZN 1 )

Intuitively, thls refers to the case where the investments are
rather asymmetric—i.e., the investment by the ‘larger producers’ is
significantly bigger than that by the ‘smaller producers’. Note that
in Equation (35), Z1 < 1. Therefore, we get:

C3,GN
AN(CY, .. CR) < y—— + CJE[1{0 < D - Zc°zl<c° Znl]
i#N
C,GN
=y2—+CiPrl0<D- ) CiZ < C}Zy
G i#N
C2.GN
N o
< +C2.
Gy 1

Recall from Lemma E.4 that in any equilibrium solution, we must
have that C] < %. Substituting this above, we get that

CyGN . D
Gy YN’

”N(Cf, . ,C;)\]) <

C%GNn
y J\él +CSE[1{0 < D~ Zcle- < CRZN)ZA].
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Next, observe that for any i # N, we can apply Proposition 2.1
to obtain an upper bound on its profit, namely that:

o

<o o o < c G
7i(Cy,....Cx) < an(CY,. .. CN)C<> < G

( CJGN D) C{G;

<y +— | =
G1 YNJ C{GN

C{Gi . DC;G;

G1 yNC},GN
DC?E[Zi]

VNG yBLZn]
DC?

yANCY,’

A

=Y

o

<yCy+ (36)

=yC; + (37)

Equations (36) and (37) were derived using Lemma E.5, namely
we used the simple properties that (i) G; < Gy, (ii) G; < E[Z;],
and (iii) GN > yE[ZN], and finally the fact that E[Z;] = E[ZN].

Summing up Equation 37 over all i including i = N, we get that

N N C<>
s o o4
;n,(cl,.. cN)<ch ;CQ .
Of course, as per our assumption, we have that Zl 1 gol <
N
kN7, Substituting this above, we get that
N N D 5
s o o 2
Zm(cl,...,C ) yZCl + _Nyz (KN4 + 1))
i=1 i=1
N
D 1
<y )G (KN—% + —)
i=1 Y
This proves the theorem statement for the case where Zl 1 CCJ <
N

kN . Note that the # term can be incorporated into the constant
a, without affectmg any of the asymptotic bounds.

(Case I: le )
Let us go back to Equatlon (34) and consider the term
B=E[1 {0 <D-3XizNC;Z; < C} ZN} Z1]. We will now obtain a

Ccs
tighter upper bound on this quantity conditional upon Zl 1 C"l >
N

kN1 . First note that applying the Cauchy-Schwarz inequality, we
can get a lower bound on the sum-of-squares, i.e.,

N-1
Sy s

o
i=1 N

K2N3/2
N-1

27t
> 2k’Nz. (38)

PICR)” =
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The final simplification comes from the fact that N > 2 (since we
assumed N > % > 1). Next, we have that:

B<E[L {o <D- Z CiZ; < c;i,ZN}]

i#N

=Pr(D—c;,ZN Wevs SD)
i#N
D D
(& -may das k)
D C; D
< Pr C—O—lﬁzc—ozl'ﬁg .

i#N N
N i#N N

We will show that Pr (CD}QV -1<YixN CC—Q;IZi < c% ) is decreas-
ing with N.
Using the fact that Z; = Z; + Z, we can write out the probability
more explicitly:
D e D
Pr C—O -1< Z y Zl = C—O
N i#N N N
(39)
D o
:Prc_o_ls (Z,+Z)sc—
N i#N N
c - , co s
Let us denote Zo = };xN 7o Z and Z' = 3 jxN = Zi. From the
N N

assumption A3 along with (10) we know that Z is independent of
Z;, therefore Zj is independent of Z’. The probability in (39) can
be written as an integral over the possible values for Zy with f7 (-)
being the probability density function for the random variable Zj.
So, we have:

D c? D
Pr ——1<Z—;Z,-§—O
CN #NCN N

D D
:Pr(—O—ISZO-FZ/S—)
C CX
DN N (40)
= D D
(i)ch fzo<z>Pr(C7—1sZo+Z’Sc—o'Z(’”)"z
N
b D
O [ popn D 1oz e Do

where (a) uses the property of conditional probability, and (b) is
based on the fact that Zy and Z’ are independent.

We now show that Pr (C% -1-z<27'< C% - z) is decreas-
N N

ing w.r.t. N, for any z.

Since Z' = YizN g—;Z, where Z;’s are i.i.d. random variables

N

and BZ; = fi, B(Z; —BZ;)? = 6% > 0,E|Z; —BZi> = p < oo,
this variable has a mean p’ = ji ZN teey Cy = ﬁKN i Simﬂarly,
~2 Z

the variance of Z’ can be written as (¢’)? = & . Now,

applying Equation (38), we get the following lower bound for vari-
ance:

(/)2 > 26°k2N’%. (41)
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Note that Z are independent random variables because Z;’s

3

.. . M _ C? .
are i.i.d.. What is more, we know that ﬁZi has mean fi; = &p,
2 _ (S
1

i \2A2
o o
Z'=%i i

,[2,0‘

CDF of Sn. We rewrite the probability of interest as the following:

non negative variance &; and finite centered third mo-

ment p; = (

gf )3p. Denote Sy = and let Fy denote the
N

D G, _D
Pr —O—l—ZS _éZl—__Z
c Cx
N i#N N N
D
=Pr<7—l—z<Z’S7—2>
Cx Cy
BN gy &m0
:Pr =
Y67 %i67 %07
CDj\]—Z—Ziﬂz C%—l—Z—Ziﬁi
=Fn Fn
Zié—l 215—12

We can now apply the Berry-Esseen Theorem from Lemma E.1
to get an upper bound:

D ¢, D
Pr T—l—ZSZ—iZiS—O—Z
Cn S CN Cn
& -z- i B -1-z-%i4
—Fy | X _Fy| X
20 20
D
(@ [~ 72— Ziki o —l—z— %[
< -o| X
Y67 Y67
_o\—1 pi
+2a 52 2 max —;
(Zi: P 57 (43)
) i i i i
< -
Zié'lz Zié'lz
CO —
+20(26%3 N 4)max(7_ﬁ)
i C
© 1 2 234y P
<— +2a(26°k°N 4)(_—2)
27 |3 &2 ?
@ ,
<k'N 1

where ®(-) is the CDF for standard Gaussian distribution. Inequality
B—z-%;
N

*Z
11

. Inequality (b) is based on (41). Inequality

(a) applies Berry Esseen Theorem to Fy(x) at x =
o2 —1=2=Li i

\Zio}
(c) is based on Lemma E.6. Inequality (c) also depends on the fact

and x =
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¢
o

that < 1,Vi. Lastly, (d) uses the fact that '1,2 < 1

% V202Kk:N 3
from (41), and rewrites the constants into x’ for brevity.
Plugging the above upper bound back to (40), we get that:

D Cy D
Pr o -1 < Z —OIZ[ < o
Cx iEN Cx oY
. rb/cN (44)
<k'N71 f fz,(z)dz
0

Ja—1
<k'N™ 1.
If Z = 0, then Z;’s are i.i.d. random variables, then Zy = 0 and the
bound naturally carries over, as stated in the following corollary.

CoroLLARY E.7. If Z;’s are i.i.d. random variables, then it is a
special case of correlated Z;’s in Assumption A3 when Z, and the
upper bound in (43) is valid for i.i.d. Z;’s, i.e.:

D c; D
Pr(c—<> -1< Z —Z; < c_°) <K'N7i. (45)
N i#N N N
Now we can complete the proof. Going back to (35), and substi-
tuting the above upper bound to get that:

o

C,GN

AN(CS,. . CR) <y +COK/NTH

D , _1
+—k'N" 1.

YN

Next, we upper bound the aggregate payment made to the pro-
ducers using Proposition 2.1. Recall that G; < Gy for all i and that
GN 2 yYE[ZN] as per Lemma E.5. We now get that:

CXIGN

< =6 (46)

CiGi
C3,GN

N N
}:nacﬁ.“,cg)5;§:nN(cﬂ.n,cg)
i=1 i=1

N o -
cy,G . ey
< ()/ NYN + DG; K/N_i) C(:lGl
a Gl )/NGN CNGN
N N =
Gi D _1 Z Ci
=< Y E C;}— + Z—K,N 4 5
— G1  yéN p CN

In the penultimate equation, we used the fact that C;? < C;] and
N &
i=1 C;V
case, and hence, the theorem. m]

so, trivially, ),

< N. This completes the proof of the second

F PROOF FOR THEOREM 4.6

To prove that there is only one symmetric Nash equilibrium, we
need to show that there is a unique C such that C; = Cy = -+ =
CN = C which minimizes the total profit in the game:

(47)

N
NE mm(a)-cﬁjz»tch ~ YCN.
J#i
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The optimality condition on C to minimize this payment is shown
in (26).

Showing a unique C maximizes (47) is equivalent to showing that
the right hand side that involves C in (26) has only one intersection
withy,ie, E []l {(D -C Zﬁi Zp)*t = CZ,-} Z,-] is monotonic with
respect to C. This can be seen from the fact that as C increases, (D —
C Z}L Zj)* decreases for each realization of Z; and CZ; increases
by each realization of Z;. Therefore the term inside the expectation
is monotonically decreasing as C increases. O



