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ABSTRACT 
 

Infrared breast thermography has been associated with the early detection of breast cancer. However, 

findings in previous studies have been inconclusive. The upright position of subjects during imaging 

introduces errors in interpretation because it blocks the optical access in the inframammary fold region and 

alters the temperature due to contact between breast and chest wall. These errors can be avoided by 

imaging breasts in prone position. Although the numerical simulations provide insight into thermal 

characteristics of the female breast with a tumor, most simulations in the past have used cubical and 

hemispherical breast models. We hypothesize that a breast model with the actual breast shape will provide 

true thermal characteristics that are useful in tumor detection. A digital breast model in prone position is 

developed to generate the surface temperature profiles for breasts with tumors. The digital breast model is 

generated from sequential MRI images and simulations are performed using Finite Volume Method 

employing Pennes bioheat equation. We investigated the effect of varying the tumor metabolic activity on 

the surface temperature profile. We compared the surface temperature profile for various tumor metabolic 

activities with a case without tumor. The resulting surface temperature rise near the location of the tumor 

was between 0.665 and 1.023 °C, detectable using modern Infrared cameras. This is the first time that 

numerical simulations are conducted in a model with the actual breast shape in prone position to study the 

surface temperature changes induced by breast cancer. 

 

Key words: Breast thermography, digital breast model, detection of breast cancer, actual breast shape, 

numerical simulation of the breast 

 

1. - INTRODUCTION 

 

Breast cancer (BC) is the most common form of cancer among women in the US, 

with more than 246,000 new cases diagnosed in 2016. It is estimated that one in every 

eight women (12.5%) will develop BC during her lifetime [1] and that one in every 24 

woman (4.16%) will die of BC [2]. Early detection of BC is crucial to increase the survival 

of individuals; since 2003, the mortality rate has dropped ~ 1.2% annually mainly due to 

improvements in detection and treatment [1]. Therefore, improving available BC 

screening techniques is necessary for more accurate early detection.  

 

1.1 – SCREENING OF BREAST CANCER 

 

Manual self-examination is recommended monthly by the America Medical 

Association. A self-breast exam consists of palpating the breasts with the fingers moving 
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in various patterns to detect abnormal lumps. Although self-exams can detect up to 50 % 

of asymptomatic BCs [3], it is highly individual-dependent and results in a high rate of 

false positives (~50%), which can cause anxiety [4].  

Various clinical screening techniques such as mammography, ultrasound and 

Magnetic Resonance Imaging (MRI) are widely used for BC screening. Mammography 

consists of emitting low energy X-rays to the breasts while they are compressed between 

two plates to detect abnormal masses and calcifications. It has been the most prevalent 

technique since the early 60’s and is recommended every 1 to 2 years for women aged 40 

or older [5], [6]. The sensitivity of mammography decreases in women with dense breasts 

(found in > 40% of women) because dense tissue can mask tumors resulting in high false 

negative rates. Digital Breast Tomosynthesis or 3D mammography has been shown to 

improve the detection of BC. However, it suffers from subject discomfort, higher cost and 

increased radiation exposure as compared to mammography [7].  

Ultrasound or sonography is one of the most commonly used adjuncts for breast 

cancer screening. It involves high frequency sound waves directed to the breasts through 

a transducer. The success of this modality depends on the experience of the operator and 

findings may be difficult to reproduce. Despite its low cost, it results in both high false 

positives and high false negatives. MRI uses strong magnetic fields and radio waves to 

generate images of the breasts. Supplemental screening with contrast-enhanced breast 

MRI is recommended in women at high risk for breast cancer. However, MRI is time 

consuming, expensive and results in a large number of false positives [8].  
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1.2 – BREAST THERMOGRAPHY 

 

Infrared thermography uses infrared radiation emitted by an object to measure 

its temperature. Since every object emits thermal radiation, the temperature of the 

object can be related to its output on the electromagnetic spectrum. For example, objects 

that have a temperature over 500 K will emit radiation in the visible spectrum. At human 

body temperatures,  infrared radiations are emitted in the wavelengths bands of 2 – 20 

µm [9]. Human bodies are often represented as a blackbody because their emissivity is ~ 

0.97 (Watmough and Oliver [10]) with negligible variations for different skin colors. A 

blackbody is defined as an object that absorbs all electromagnetic radiation, and whose 

absorption of radiation is related to its emission according with Planck’s Radiation Law 

[11].  Integrating Plank’s Radiation Law for all frequencies, the Stefan-Boltzman law is 

obtained, which describes the emissive power from a black body. For a real surface with 

emissivity ε, Stefan-Boltzman is [11]: E =  ϵσT4                                                                  (1) 

Therefore, the wavelength of infrared radiation can be related to the temperature 

of human skin. Further details of the methodology are given by Lahiri et al [9]. 

Infrared (IR) breast thermography is an FDA approved adjunct modality for BC 

screening. In this technique, the surface temperature of the breasts is acquired by an IR 

camera. In individuals without breast cancer, the temperature distribution of the breasts 

is close to symmetric. When cancer is present, the symmetry is lost because the 

temperature of the breast with cancer is affected by two factors: (1) tumors have a higher 

metabolic activity than the surrounding healthy tissue, and (2) tumors are associated with 
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formation of new blood vessels (angiogenesis) to sustain their accelerated growth and 

develop a more robust vascular network [12]. The temperature rise caused by the 

presence of tumors has been measured to be up to 3.5 °C as compared to the 

contralateral breast [13]. The ensuing surface thermal changes depend on the location of 

the tumor in the breast, its metabolic activity and vascularity, which are related to grade 

and histology of the tumor [12], [13]. IR breast thermography has been associated with 

the detection of pre-invasive lesions [14] and with the early detection of BC [15]. 

Effectiveness of IR thermography has been however limited. The dynamic IR 

thermography, which involves cooling the breasts prior to imaging, has been proposed to 

improve the performance by enhancing the thermal contrast caused by tumors; however 

its advantage over steady state thermography remains unclear [16]. Conventional IR 

examinations are conducted while patients are upright. In this position the chest wall 

contacts the inframammary fold of the breasts, which creates thermal artifacts [17]. 

One of the difficulties with current IR imaging systems is that they do not directly 

provide definitive information on the location and size of the tumors within the breast. 

Such information is available through MRI images of the breast. To make the simulation 

and detection seamless, the digital breast model can be generated using the MRI images; 

this allows for exact positioning of the tumor in the model.  

This paper presents a new approach to predict the surface temperature 

distribution of a breast with and without tumor through numerical simulations. The 

underlying digital model is created from sequential MRI images of the breast in prone 

position because this imaging modality allows to obtain the exact tumor location and size. 
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Such information is not available through the IR images, hence the use of MRI images 

becomes essential. Although there are techniques to obtain digital models with the actual 

shape while patients are upright [18], the exact tumor position within the breast cannot 

be obtained accurately.  

Numerical simulations on a model with the breast shape in prone position are 

expected to provide accurate temperature predictions and a better understanding of the 

effect of tumor size and location on the resulting surface thermal profile of the breast. 

 

2. – LITERATURE REVIEW 

 

Biological tissues are a complex structure that comprises of fat, muscles, nerves, 

veins and arteries. The exact morphology of a tissue is unique to each individual and body 

part. To model a tissue, a set of assumptions must be made. The Pennes model or bioheat 

equation [19] is the most widely used model because information about the discrete 

vasculature is not needed. Pennes model assumes that the main heat exchange between 

blood vessels and surrounding tissue occurs at the wall of capillary vessels with a diameter 

between 5 and 150 µm. Pennes model also accounts for the metabolic activity (heat 

generation) within tissues. This model provides accurate approximations for tissues with 

capillary vessels smaller than 300 µm, such as those in the female breasts. Pennes model 

is given by: 𝜌𝑡𝑐𝑡 (𝜕𝑇𝑡𝜕𝑡 ) = ∇. (𝑘𝑡∇𝑇𝑡) + 𝜔𝑏𝑐𝑏(𝑇𝑎 − 𝑇𝑡) + 𝑞𝑚       (2) 
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where ρ, c and k are the density, specific heat and thermal conductivity, 

respectively. The subscripts t, b and a refer to tissue, blood and arteries, respectively, ω 

is the blood perfusion rate per unit tissue volume in kg/m3-s and qm is the metabolic 

activity within the tissue in W/m3. In the case of the breasts, the blood flow warms the 

surrounding tissue. Thus the temperature profile on a breast surface is influenced by heat 

conduction from chest wall, blood perfusion rate and tumor metabolic activity when 

cancer is present. 

 

2.1 – MODELS OF THE FEMALE BREAST 

 

Numerical simulations have also been used to aid in the estimation of tumor 

parameters through artificial intelligence algorithms [20] and have also aided the 

determination of unknown parameters through inverse modeling [21]. This modeling 

approach has the potential to improve the detection of breast cancer (BC) using IR 

thermography. 

One of the first attempts to study the heat transfer processes on a female breast 

used a Cartesian model [22], [23]. Cartesian models have been used to study a portion of 

the female breast. These models can be either 2D or 3D sections of the breast with 

different layers of tissue. The bottom wall is considered to be at the core body 

temperature (37 °C) and the upper wall is considered as the surface of the breast, which 

is exposed to a convection boundary condition. The sides of the computational domain 

are considered adiabatic neglecting the heat flux across them. Tumors are embedded 

within the tissue along the centerline of the computational domain. Simulation of 
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Cartesian geometries provides insight into thermal interactions within the breasts. 

However, heat transfer processes in these models are close to unidimensional due to the 

boundary conditions, which do not provide an accurate description of the actual thermal 

profile.  

Osman and Afify [24] developed a hemispherical domain with concentric tissue 

layers to study heat transfer in a breast without tumor. They considered a 144 mm 

diameter breast with four different layers of tissue, viz., core, muscle, fat and skin. They 

modified the Pennes equation to account for the countercurrent heat exchange between 

vessels. They also imposed values of perfusion rates that varied within the breast; this 

resulted in a warmer upper outer quadrant, which is in agreement with clinical 

thermograms. Later, Osman and Afify [25] modified their previous model to account for 

a tumor embedded within the breast; the tumor had a higher thermal conductivity, 

metabolic activity and perfusion rate than the healthy tissue.  Their results showed that 

surface temperature variations can be observed in tumors with sizes ranging from 10 to 

36 mm at depths from 5 to 18 mm. The hemispherical breast model developed by Osman 

and Afify have not been studied further mainly due to the complexity of its 

implementation. Further, the underlying assumptions of local variations in perfusion rate 

and counter current heat exchange are a matter of concern [26].   

Sudharsan et al. [26] developed a hemispherical model with non-concentric layers 

to study the temperature variations induced by the presence of a tumor. They considered 

a 144 mm diameter breast with four different tissue layers named thoracic wall, muscle, 

gland and subcutaneous fat. Sudharsan and Ng [27], through a parametric study, 
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identified that tumor depth and metabolic activity are the parameters with the highest 

influence on surface temperature profile. Their results indicate that the environmental 

conditions that enhance the thermal contrast between the tumor and the surrounding 

healthy tissue are a high heat transfer coefficient and a low ambient temperature. 

Gonzalez [28] used a hemispherical breast model with two non-concentric layers, namely, 

the chest wall and the gland; in this model, the breast diameter was 180 mm. The  author 

considered a spherical tumor embedded within the gland tissue; the perfusion rate and 

metabolic activity of the tumor were selected from [13]. The author conducted a 

parametric study to identify the minimum tumor size that can be detected at a given 

depth along the center axis for modern IR cameras with a thermal sensitivity of 20 mK. 

Their results indicate that tumors as deep as 70 mm can be found using steady state IR 

thermography. However, the value of the heat transfer coefficient was only 5 W/m2-K, in 

contrast with the values reported for clinical conditions of ~13 W/m2-K.  Numerical 

models with non concentric layers have been used only for tumors along the centerline; 

yielding symmetric temperature distributions, which do not agree with clinical IR images. 

More realistic breast models have been developed to accurately predict the 

temperature distribution over the breasts. Ng et al. [29], [30] developed a breast model 

capturing the breast outline from a mannequin with a breast size of 34 (cup C). The model 

consisted of five different layers consisting of muscle, core gland, fat gland, subcutaneous 

fat and nipple; the authors considered a tumor diameter of 32 mm. The temperatures 

predicted by their model show a colder nipple region and a warmer upper outer quadrant, 

in agreement with clinical thermograms. Jiang et al. [31], [32] developed a deformed 
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breast geometry from a hemispherical model with concentric layers to mimic individuals 

seated upright. They imposed a gravity load and the elastic deformation was estimated 

using finite element simulation. The authors reported that variation in tumor size has a 

smaller effect on the surface temperature profile than changing the tumor depth. They 

stated that the thermal contrast for tumors between 5 and 15 mm deep is higher than 

0.5 °C; for tumors deeper than 20 mm, the thermal contrast reduces to less than 0.1 °C. 

Recently, Bezerra et al. [18] presented a methodology to generate 3D surrogate breast 

geometries by extracting curves of IR images in frontal and lateral views. The temperature 

predictions from these surrogate geometries, resemble the temperatures obtained 

during IR imaging. This model is useful in creating a 3D view of the thermal images 

generated using IR thermography. 

 Numerical models with a more accurate representation of the breast shape 

provide predictions that agree with thermal clinical data. However, the chest wall 

contacting the inframammary fold of the breast affects the temperature distribution. A 

numerical model with the actual breast shape in prone position is thus needed to 

understand the effect of various parameters on the surface temperature distribution on 

a position that avoids contact between the breasts and the chest wall. 

 

3. – PROPOSED ANALYSIS METHODOLOGY 

 

3.1 – GENERATION OF A DIGITAL MODEL OF THE FEMALE BREAST FROM MRI IMAGES 

 

A digital model of the breast in prone position is developed using sequential MRI 

images. The images were provided by clinical collaborators at the Rochester General 
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Hospital. The images do not contain any personal identifiers of the subjects. The digital 

model is then used to simulate the temperature distribution on the breast. The MRIs were 

captured at Rochester General Hospital using GE 3T MRI scanners. The MRI involved axial, 

coronal and sagittal imaging both pre and post contrast. The images were viewed and 

analyzed using PACS (Picture Archiving and Communication System) with the aid of iCAD 

VersaVue breast MRI Computer-Aided Detection software. They were viewed with both 

non-fat saturation and fat saturation. Although there is the potential of motion artifacts, 

the images were collected from the MRI tech and reimaged if blurry or if any movement 

was introduced. 

Although the individual images have been refined by the internal software of the 

MRI machine, noise is still present. We have filtered the individual images in Matlab ® to 

reduce the noise and improve the edge detection process. We have used an image 

smoothing software (Autodesk Remake ®) and confirmed that the shape is smooth and 

actually reproduces the breast shape. 

The steps to reconstruct the geometry of the breast from the sequential MRI 

images are described below (Figure 1): 

1. Select a region of interest from the MRI images - The model considers only one breast. 

In this step, the region containing the breast of interest is selected to ensure that only this 

region is analyzed and processed. 

2. Identify the tumor - In this step, the tumor is measured and its location is stored for 

future steps; the volume of the tumor is measured as well. 
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3. Filter the noise in the MRI images - This step is necessary to reduce the noise present 

in the images and improve the edge detection process. In this step, a 3D median filter is 

applied. The dimensions of the applied 3D median filter are (3, 3, 3). 

4. Detection of the outline of the breast - For this step, a modified version of the Canny 

edge detector was used [33]. The algorithm employed detects a continuous outline of the 

breast. This is achieved by rejecting edges based on connectivity criteria and identifying 

missing edges that belong to the outline based on the continuity and connectivity of the 

edges.   

5. Segmentation of the images – The breast model considers only one type of tissue (two 

in the case of a breast with tumor). The region that lie within the outline of the breast is 

labeled as breast tissue and the region outside the outline is labeled as background.  

6. Breast surface - The breast surface was generated from the stack of MRI slices using 

the Marching Cubes algorithm [34], which results in a surface mesh composed of 

triangular elements. The resulting surface mesh is jagged and needs to be smoothed to 

represent more accurately the geometry of the breast.  

7. Smoothing - The surface mesh was smoothed using an algorithm that replaced the 

angle of a mesh face with the average angle of the neighboring faces [35]; it is similar to 

applying an averaging filter to a 3D image.  

8. Finalizing geometry - In the smoothed breast geometry, some regions of the mesh 

needed further smoothing. The software Autodesk Recap Photo was used for a final 

smoothing only on the regions that needed it. The resulting surface mesh is seamless and 
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accurate in its representation of the breast surface where the temperature profiles are 

numerically obtained. 

Figure 2 shows the results of this approach using sequential MRI images. The 

generated geometry accurately resembles the geometry of the breasts, which will result 

in a more accurate model to predict the surface temperature distributions for comparison 

with the observed in clinical IR examinations in future work. 

 

3.2 – NUMERICAL MODEL 

 

For the computational domain, Pennes bioheat equation (2) is subjected to the 

following boundary conditions (Figure 3): 

𝜕𝑇𝜕𝑛 = 0          at the top, bottom and side faces     (2) 𝑇(𝑥, 𝑦, 𝑧 = 0) = 𝑇𝑐                                                    (3) −𝑘 𝜕𝑇𝜕𝑛 = ℎ(𝑇𝑠 − 𝑇∞)           at the surface                       (4) 

where n denotes the normal direction at a given location, Tc is the core body 

temperature, h is the heat transfer coefficient between the breast and the ambient 

temperature, Ts is the local temperature at the surface and T∞ is the ambient 

temperature. These boundary conditions imply that heat is conducted from the chest at 

temperature Tc into the breast, and is convected at the breast surface.  

Pennes model (2) lacks an analytical solution for the geometry of the breast and 

the boundary conditions used prompting the need for a numerical solution. To compute 

the numerical solution, the computational domain (breast model) must be separated into 

smaller volumes, known as mesh elements. The accuracy of the numerical solution 
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depends greatly on the quality of the mesh employed. To solve Pennes bioheat equation 

subject to boundary conditions (2-4), a mesh in the computational domain with ~3.5 

million elements is generated. The mesh is uniform throughout most of the domain, 

except towards the surface of the breast, where the mesh was finer to capture the 

temperature gradients accurately. 

Once the mesh was created, the governing equations are discretized using the 

Finite Volume Method [36], which results in a set of simpler equations that can be solved 

using numerical techniques. A second order spatial discretization of the governing 

equation was used to improve the accuracy of the results. 

In this work, the numerical solution is obtained using the software ANSYS Fluent. 

To take into consideration the two blood perfusion and metabolic activity terms in the 

Pennes bioheat equation, these terms were defined as source terms in the software using 

User Defined Functions (UDFs). The UDFs were prepared to vary the location and size of 

the tumor without need to again mesh the tumor domain separately. This offers flexibility 

if the position and size of the tumor is changed in the model because there is no need to 

re-mesh the domain; only the UDF will be modified to account for the new tumor position 

and size.  

The UDFs are compiled in a parallel solver, which significantly reduces the 

computational time. The solution was considered satisfactory when the residuals of the 

Pennes bioheat equation were less than 1×10-16. This criterion was used because the 

temperature of the tissue in the previous iteration is used to compute the first source 

term (blood perfusion). After solving, the temperature of the tissue is updated and the 
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process repeats; therefore, the updated and previous temperatures must be very close 

to obtain accurate results. Table 1 lists the values of the thermophysical properties and 

environment conditions used in the simulations.  

Gautherie [37] found a hyperbolic relation between the metabolic activity and 

the tumor doubling time. From this relation, he derived an expression for metabolic 

activity as a function of the tumor diameter. However, the accuracy of its predictions is 

about 50%. In another study, Ng and Sudharsan [27]conducted a parametric study of 

the effect of various parameters on the breast surface temperature caused by the 

presence of a tumor. The authors observed that the surface temperature is more 

sensitive to changes in metabolic activity of the tumor than to changes in the tumor 

diameter. Therefore, in this paper, for modelling purposes only, we consider a fixed 

tumor diameter with a varying metabolic activity. The modeling presented here is 

intended to show the effects of the parameters on the resulting surface temperature 

profiles. The authors agree that a more detailed parametric study is needed in future. 

Our work represents the first step in establishing a model that can be used in future 

simulations with the actual breast shape. 

 

4. – RESULTS AND DISCUSSION 

 

The digital model of the breast is used to predict the surface temperatures 

numerically. These simulations need to be compared with clinical data to verify the 

accuracy of the predictions. However, detailed temperature data correlated with tumor 

position and metabolic activity in prone position is lacking in the literature. In order to 



Journal of Engineering and Science in Medical Diagnostics and Therapy 

 

Satish G. Kandlikar                                                                                                           16 

 

gain confidence in the numerical predictions, the numerical approach and the UDF 

developed will be validated by simulating a hemispherical breast model for which 

temperature measurements are available in the literature for an upright breast. 

 

4.1 – VALIDATION OF THE UDF WITH EXPERIMENTAL DATA USING A HEMISPHERICAL 

BREAST MODEL 

 

The UDF and the modeling approach are validated by using the experimental 

temperature distribution measured by Gautherie [37]. Gautherie introduced a needle 

thermocouple on a breast with a tumor to measure axially the internal temperature 

distribution. The thermophysical properties reported in the experiment are given in Table 

1, except for the metabolic activity, which had a value of 29,000 W/m3 [37]. Gautherie 

reported a breast diameter of 18 cm, a tumor depth of 2 cm and a tumor diameter of 2.3 

cm. As a hemispherical breast was modeled and the tumor was along the axis, only one 

quarter of a circle was simulated; an axisymmetric boundary condition along the axis was 

imposed. The results shown in Figure 4 demonstrate that the UDF developed can be used 

to accurately predict the temperature distribution within the female breast.  

 

4.2 – SIMULATIONS ON THE DIGITAL BREAST MODEL GENERATED FROM MRI IMAGES 

 

Numerical simulations are conducted using the reconstructed geometry of the 

breast from the MRI images using the validated UDFs. The diameter of the tumor was 2.9 

cm. The tumor was located at 12 o’ clock, at a depth of  4.5 cm, measured from the center 

of the tumor to the closest surface and the distance between the tumor and the chest 
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wall is 10 cm. A grid independence study has been prepared using a metabolic activity of 

qm = 29,000 W/m3. Five different meshes were prepared to analyze the effect of number 

of elements in the solution. The number of elements for each mesh is shown in Table 2. 

The maximum surface temperature in the region surrounding the tumor is reported and 

used as an indicator to compute the numerical convergence of the simulations. Mesh 4 is 

used in this paper to conduct the simulations because the match between Mesh 4 

(3,583,674 elements) and Mesh 5 (6,831,328) is within 0.3%; therefore, the differences in 

computed values are minimal. The parameters presented in Table 1 were used for the 

simulations. For the metabolic activity, we considered values of 5,000, 10,000, 29,000, 

45,000 and 70,000 W/m3; these values cover the range of metabolic activities for tumors 

reported in [37]. Simulations were also conducted for a breast without tumor. Figure 5 

shows the surface temperature distributions over the breast for all six cases considered. 

For a breast without tumor, the surface temperature is layered with the coldest region 

located near the nipple. This is expected as this region is the farthest from the chest wall. 

Then, the temperature increases in a layered pattern as the distance to the chest wall 

decreases as observed in [38]. For a tumor with a metabolic activity of 5,000 W/m3 (low 

activity tumor), the surface temperature and the layered pattern are distorted near the 

region of the tumor. In addition, a hot spot is visible, which indicates the presence of an 

abnormality within the breast. For a metabolic activity of 10,000 W/m3 (low to moderate), 

the local hot spot becomes larger. For higher metabolic activities, alterations in the 

surface temperature induced by the tumor become further evident.  
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Figure 6 shows the surface temperature profile obtained along a line passing 

through the center of the tumor projected on the surface. The temperature on a breast 

without tumor decreases almost linearly as the distance from the chest wall increases. In 

the presence of a tumor, the surface temperature in the vicinity of the tumor increases 

and reaches its maximum at the location of the tumor. To measure the temperature rise 

caused by the presence of the tumor, we compared each case with the corresponding 

temperature of a breast without tumor. The maximum temperature rise values for each 

metabolic activity simulated were 0.665°, 0.693°, 0.797°, 0.884° and 1.023 °C for qm = 

5,000, 10,000, 29,000, 45,000 and 70,000 W/m3, respectively. From Figures 5 and 6, it can 

be seen that the temperature rise and the temperature distribution near the location of 

the tumor is different for each metabolic activity used. Thus it is seen that a careful 

examination of the surface temperature of the breast in prone position provides 

detectable thermal signature that is useful in the detection of breast cancer. 

Figure 7 shows the temperature distribution inside the breast in a vertical plane 

passing through the line in Figure 6. In a breast without tumor, the temperature pattern 

is layered and isotherm lines follow the outline of the breast. In the presence of a tumor, 

the heat generated by tumor metabolic activity is dissipated to the surrounding tissue, 

which causes deviation from the layered pattern. For low metabolic activities (5,000 and 

10,000 W/m3), the temperature of the tumor remains lower than 37 °C and the warming 

effect of the tumor is confined only to the immediate surrounding tissue. For higher 

metabolic activities, the temperature of the tumor is higher than 37 °C and the warming 
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effect extends to a larger area within the breast. These temperature distributions agree 

with the findings reported in Figures 5 and 6. 

 

4.3 – DISCUSSION 

 

The results presented in this paper demonstrate the potential of the digital breast 

model developed using sequential MRI images to accurately determine the surface 

temperature distribution of a breast with and without tumor. The UDFs used in the 

thermal simulation software were validated by comparing the computed temperature 

profile with a hemispherical model data available in literature. This comparison provided 

confidence in the temperature predictions and the approach used. 

 Findings reported in this paper demonstrate that the temperature distribution 

can be correlated with the presence of a tumor. Further, it may provide estimates of the 

metabolic activity of the tumor (Figure 6). A detailed study of the effect of various tumor 

parameters such as size, position and metabolic activity on the surface temperature 

distribution is planned in future work. 

 

5. – CONCLUSIONS 

 

In this paper a digital model was generated for a female breast in prone position. 

The model was developed from a sequence of MRI images of a breast with tumor; the 

approach resulted in a seamless and smooth digital model of the breast. This digital model 

was used to conduct numerical simulations with the Pennes bioheat equation in a 
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commercial CFD software ANSYS Fluent. The perfusion rate and metabolic activity terms 

in the Pennes bioheat equation were implemented by means of User Defined Functions 

(UDFs). Many previous works have not considered studying a breast in prone position and 

therefore detailed clinical data is unavailable. Therefore, we validated the ability of our 

UDF to predict the temperature distribution using a hemispherical model data available 

in literature. Simulations were conducted for six different cases, namely, a breast without 

tumor, and with a tumor experiencing metabolic activities ranging from 5,000 to 70,000 

W/m3. In all the simulations with tumor, the tumor was located at a depth of 4.5 cm and 

the diameter of the tumor was 2.9 cm. Results from these simulations indicate a 

temperature rise on the breast surface of 0.665 °C for a metabolic activity of 5,000 W/m3. 

The temperature rise increased as the metabolic activity increased; the maximum 

temperature rise was 1.023 °C for a tumor with a metabolic activity of 70,000 W/m3. 

Results also indicated that the temperature profile can be correlated with the presence 

of a tumor and its metabolic activity.  
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Fig. 2 Steps required to generate breast geometry in prone position 

Fig. 3 Computational domain with the actual breast shape. 
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Table 1. Thermophysical properties and conditions used in the simulations 

Parameter Value Unit 

Thermal conductivity (k) [37] 0.42 W m-1 K-1 

Perfusion rate of healthy tissue (ωh)  [37] 1.8×10-4 s-1 

Perfusion rate of tumor (ωt) [37] 9×10-3 s-1 

Metabolic activity of healthy tissue (qh) [37] 450 W m-3 

Metabolic activity of tumor (qt) [37] 5,000 -70,000 W m-3 

Temperature of arteries (Ta) [39] 37 °C 

Specific heat of blood (cb) [39] 3,840 J kg-1 K-1 

Density of blood (ρb) [39] 1,060 Kg m-3 

Core temperature (Tc) [37] 37 °C 

Ambient temperature (T∞) [40] 21 °C 

Heat transfer coefficient [24] 13.5 W m-2 K-1 
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Table 2. Grid independence study 

Mesh number Number of Elements Tmax (°C) 
𝑻𝒎𝒂𝒙𝒊+𝟏 − 𝑻𝒎𝒂𝒙𝒊𝑻𝒎𝒂𝒙𝒊 × 𝟏𝟎𝟎 

1 446,312 35.16 2.08 

2 825,644 35.89 0.61 

3 1,791,154 36.11 0.17 

4 3,583,674 36.17 0.03 

5 6,831,328 36.18 — 
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Figure 1. Approach to generate breast geometry. 
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Figure 2. Steps required to generate breast geometry in prone position. 
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Figure 3. Computational domain with the actual breast shape. 
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Figure 4. Validation of the UDF with clinical data [37] using a hemispherical breast 

model. 
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Figure 5. Surface temperature distribution for six cases with different tumor metabolic 

activities. 
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Figure 6. Surface temperature profile along centerline of tumor. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Engineering and Science in Medical Diagnostics and Therapy 

 

Satish G. Kandlikar                                                                                                           34 

 

 

Figure 7. Temperature distribution on a vertical plane passing though the tumor 

center. 

 

 

 

 

 

 

 

 

 

 

 


