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Trustworthy Website Detection Based on Social
Hyperlink Network Analysis

Xiaofei Niu, Guangchi Liu, Student Member, and Qing Yang, Senior Member

Abstract—Trustworthy website detection plays an important role in providing users with meaningful web pages, from a search engine.
Current solutions to this problem, however, mainly focus on detecting spam websites, instead of promoting more trustworthy ones. In
this paper, we propose the enhanced OpinionWalk (EOW) algorithm to compute the trustworthiness of all websites and identify
trustworthy websites with higher trust values. The proposed EOW algorithm treats the hyperlink structure of websites as a social
network and applies social trust analysis to calculate the trustworthiness of individual websites. To mingle social trust analysis and
trustworthy website detection, we model the trustworthiness of a website based on the quantity and quality of websites it points to. We
further design a mechanism in EOW to record which websites’ trustworthiness need to be updated while the algorithm “walks” through
the network. As a result, the execution of EOW is reduced by 27.1%, compared to the OpinionWalk algorithm. Using the public dataset,
WEBSPAM-UK2006, we validate the EOW algorithm and analyze the impacts of seed selection, size of seed set, maximum searching
depth and starting nodes, on the algorithm. Experimental results indicate that EOW algorithm identifies 5.35% to 16.5% more
trustworthy websites, compared to TrustRank.

Index Terms—Trust model, social trust network, trustworthy website detection, social hyperlink network.
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1 INTRODUCTION

SEARCH engines have become more and more important
for our daily lives, due to their ability in providing

relevant information or web pages to users. Although a
search engine typically returns thousands of web pages to
answer a query, users usually read only a few ones on top
of the list of recommended pages [1]. The advantage of
a company’s website being ranked on top of the list can
be converted to an increase in sales, revenue and profits.
As a result, several techniques are created to clandestinely
increase a web page’s ranking position, to achieve an unde-
served high click through rate (CTR). The deceptive actions
produce untrustworthy websites that are generally referred
to as spam websites [2]. It is shown that 22.08% of English
websites/hosts are classified as spams [3]. Similarly, about
15% of Chinese web pages are spams. With spam websites
ranked on the top of searching results, users waste their time
in processing useless information, leading to a deteriorated
users’ quality of experience (QoE). Therefore, it is critical to
design a mechanism to promote more trustworthy websites
and eliminate spams in the searching results provided to
users.

1.1 Limitations of Prior Art

Existing solutions to trustworthy website detection focus
mainly on identifying spam websites, i.e., while spam web-
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sites are removed from the searching results, more trust-
worthy websites are promoted. Web spams can be broadly
classified into four groups: content spam, link spam, cloak-
ing and redirection, and click spam [4]. Content spam refers
to deliberate changes in HTML fields of a web page so that
the spam page becomes more relevant to certain queries. For
example, keywords relevant to popular query terms can be
inserted into a spam page. Link spam allows a web page
to be highly ranked by means of manipulating the page’s
connections to other pages, resulting in a confusion of hy-
perlink structure analysis algorithms, e.g., PageRank [5] and
HITS [6]. Cloaking is a technique that provides different ver-
sions of a page to users, based on the information contained
in user queries. The redirection technology redirects users to
malicious pages through executing JavaScript codes. Click
spam is used to generate fraud clicks, with the intention to
increase a spam page’s ranking position.

Although human can easily recognize spamwebsites, it’s
unrealistic to mark all spam websites manually. Therefore,
humongous anti-spam techniques are proposed, including
solutions based on genetic algorithm [7] and genetic pro-
gramming [8], [9], [10], [11], [12], [13], artificial immune
system [14], swarm intelligence [15], particle swarm opti-
mization [16] and ant colony optimization [17]. It is very
difficult, however, to detect all types of web spams, due
to the fact that new spam techniques are created almost
instantly once a particular type of spam is identified and
banned within the Internet. Instead of classifying and de-
tecting spam websites, PageRank [5] and TrustRank [18]
make an attempt to explore the possibility of promoting
more trustworthy websites to users in the searching results.
The solutions first rank all web pages or websites, based on
their trust scores, in a descending order. Then, only websites
ranked on top of the list are provided to users. As such,
the number of spam websites that a user may encounter



TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2

with will be significantly reduced. Unfortunately, existing
trust-ranking based algorithms do not accurately model the
trustworthiness of web pages, and thus often mistakenly
identify spams as trustworthy websites. To improve the
performance of trustworthy website detection, we approach
this problem by studying the trust relations among websites,
leveraging social network analysis techniques.

1.2 Proposed Solution

Trust has been intensively studied in online social net-
works [19], [20], and the knowledge obtained from this field
can be applied to analyze the hyperlink network, consisted
of websites, to understand website trustworthiness. Consid-
ering a website as an individual user, and the hyperlinks
connecting websites as the social relations among them, we
can model the network of websites as a social hyperlink
network.

According to the three-valued subjective logic model
(3VSL) [21], the trust relation between two websites can
be modeled as a trust opinion < b, d, n >. Based on the
opinion operations defined in 3VSL, the trustworthiness
of every website can be computed using the OpinionWalk
algorithm [22]. The algorithm starts from a seed node and
searches the network, in a breadth first search manner, to
compute the trustworthiness of all other nodes, from the
seed node’s perspective. If multiple seed nodes are chosen,
the algorithm will compute several different trust opinions
of the same node. These opinions will then be combined to
obtain the trustworthiness of the node. As such, the websites
with higher trust values can be ranked on top of the list
provided to users.

To apply the OpinionWalk algorithm in trustworthy
website detection, however, we need to address two chal-
lenges. First, the 3VSL models trust as an opinion vector
containing three values b (belief), d (distrust), and n (un-
certainty). It unfortunately does not specify how the three
values of an opinion are obtained. To initialize the trust
opinion between two linked websites, we need to under-
stand which factors affect the trustworthiness of a website.
From previous studies, we find trustworthy websites rarely
point to spam websites and the websites linking to spams
are likely to be spams [18] [23]. Therefore, by checking how
many trustworthy (or spam) websites a website links to,
we can possibly determine the website’s trustworthiness,
i.e., the values of b, d and n in the corresponding trust
opinion. The second challenge lies in the large execution
time of the algorithm. As OpinionWalk searches a network
level by level, the trustworthiness of all nodes will be
updated in each searching/iteration, which yields frequent
trust computation and updates that are often not necessary.
To address this challenge, we design a mechanism to record
which websites’ trustworthiness need to be updated and
only change them when the algorithm “walks” through the
network. As a result, we are able to detect more trustworthy
websites within a relatively shorter period of time, com-
pared to the state-of-art solutions [5], [18], [22].

1.3 Contributions

In this paper, we discuss how to identify more trustworthy
websites by proposing the enhanced OpinionWalk (EOW)

algorithm. The key contributions of this paper are as fol-
lows.

For the first time, the hyperlinks between websites are
viewed as the “social” connections between websites. Lever-
aging the trust model designed for social networks, the
trustworthiness of websites can be quantified. Due to the
accuracy of 3VSL in modelling trustworthiness, individual
website’s trustworthiness can be precisely calculated, using
the proposed EOW algorithm. Based on the previous re-
search results, the trustworthiness of a website are mainly
determined by the numbers of trustworthy and spam web-
sites it links to. As only labeled websites’ trustworthiness are
known, we treat all other websites as uncertain/undecided.
Therefore, by counting the numbers of trustworthy, spam,
and uncertain websites a website points to, the website’s
trustworthiness opinion can be formed. We enhance the
OpinionWalk algorithm by identifying which opinions need
to be updated while the algorithm searching within a social
hyperlink network. Specifically, a Boolean vector is used
to keep track of the websites that are connected from the
current websites whose trustworthiness values are just up-
dated. When the EOW algorithm searches the next level
in the network, only these websites’ trustworthiness are
changed accordingly. The proposed EOW algorithm is vali-
dated by experiments using the WEBSPAM-UK2006 dataset
that contains both trustworthy and spam websites crawled
within the .uk domain. Experimental results indicate that
the EOW algorithm identifies 16.5%, 12.65%, 8.77%, 5.35%
more trustworthy websites, in the top 1000, 2000, 3000 and
4000 websites, respectively, compared to TrustRank (the
start-of-art solution), when the number of trustworthy seeds
is 200. In addition, EOW saves (on average) about 27.1%
execution time, compared to the OpinoinWalk algorithm, in
computing the trustworthiness of all websites.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the proposed EOW algorithm, followed
by an example illustrating how it works. In Section 3, we
describe how EOW algorithm performs, regarding to detect-
ing trustworthy websites from a real-world dataset. Then,
we summarize the related work of trustworthy website
detection in Section 4. Finally, we conclude our work and
point out future research directions in Section 5.

2 DETECTING TRUSTWORTHY WEBSITES USING
ENHANCED OPINIONWALK ALGORITHM

Considering websites as users, a hyperlink network can
be modeled as a ”social network” that reflects the “social
connections” among different websites. The connection be-
tween two linked websites can be assigned a weight to
indicate the trustworthiness between them, which results
in a weighted trust social network. Within the network,
we can leverage trust propagation and trust combination
to compute the trustworthiness of individual websites. As
such, trustworthy websites can be identified from all web-
sites available.

OpinionWalk was designed to solve the massive trust
assessment problem in social networks [22], however, a few
challenges need to be addressed before it can be applied
to trustworthy website detection. The first challenge is to
design a mechanism to assign weights on connections/links



TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 3

so that the trustworthiness between websites can be re-
flected by the weights. The second challenge is to enhance
the OpinionWalk algorithm to make it more efficient as the
current OpinionWalk algorithm is very slow.We propose the
enhanced OpinionWalk (EOW) algorithm that starts from
a trustworthy node and searches the hyperlink network to
detect more trustworthy websites.

2.1 Social Hyperlink Network Model
The hyperlink graph of websites can be modeled as a
directed graph G = (V,E,W ), where vertex i 2 V denotes
a website, edge e(i, j) 2 E represents the hyperlink from
websites i to j. We call website j as i’s adjacent node, and
weight w(i, j) 2W of the edge e(i, j) indicates how i trusts
j. We further define the indegree of a website as the number
of websites pointing to it. The outdegree of a website is
defined as the number of websites that it points to. The
weight on each edge in graphG is usually modeled as a real
number [19], however, we find it cannot accurately reflect
the trust between two nodes [21]. To conduct precise trust
computation, OpinionWalk algorithm defines the trust as an
opinion vector that contains three numbers reflecting how
likely a user is trustful, not trustful and uncertain, respec-
tively. We adopt this definition and propose a mechanism
to assign the three values of an opinion in the trustworthy
website detection problem.

2.2 Edge Weight Assignment
By analyzing the structure of existing hyperlink graphs, we
find that a trustworthy site rarely links to a spam site [18].
Besides, a website pointing to many spam sites is very likely
to be a spam site [23]. By looking at how many trustworthy
websites that a website points to, and how trustworthy these
websites are, we are able to determine the trustworthiness
of the website. In other words, the quality and quantity
of pointed websites should be considered in modeling the
trustworthiness of a website.

trustworthy
spam
uncertain

j
i

t

}

Fig. 1: Illustration of weight assignment in a hyperlink
structure graph.

For trustworthy website detection, there are usually a
group of websites that are labeled as either normal or spam
by humans. This group of websites is commonly referred
to as a labeled set. We further divide the labeled set into
two groups: seed set and testing set. While the former is
used to initialize trust relations between websites, the latter
is used for evaluation purpose. As shown in Fig. 1, we now
focus on the nodes that website j points to. These nodes
could be either trustworthy, not trustworthy, or uncertain,
depending on the nature of the corresponding websites. As
such, we consider a labeled normal website as a trustworthy
one, a spam website as a untrustworthy one. For those that
are not analyzed by humans, or not being labeled, we call
them undecided or uncertain websites.

We use gj , sj and uj to denote the number of labeled
good/normal websites, labeled spam websites, and unde-
cided websites that j points to. Let bj , dj , nj denote the
probabilities that website j is trustworthy, not trustworthy,
and uncertain, respectively. According to the three-valued
subjective logic [21] that is used to model trust in Opinion-
Walk [22], these probabilities can be computed as follows.

8
>>>>>><

>>>>>>:

bj =
gj

gj + sj + uj + 3
dj =

sj
gj + sj + uj + 3

nj =
uj

gj + sj + uj + 3
ej =

3
gj + sj + uj + 3

. (1)

In the above equations, ej denotes the prior uncertainty
existing in website j. As we can see, if website j points
to no other website, the values of bj , dj and nj are zeros
and ej = 1, indicating the trustworthiness of website j is
unknown or fully uncertain. In this case, we assume website
j points to 3 virtual websites, a normal one, a spam one, and
an uncertain one. This is why ej is called as the prior uncer-
tainty of website j. The assumption is reasonable because
Eq. 1 considers both prior (ej) and posterior uncertainties
(nj) and still works even website j does not point to any
other website. More details about the difference between
prior and posterior uncertainties can be found in [21].

Based on the above analysis, we model the trustworthi-
ness between two websites i and j as an opinion vector
!ij = (bij , dij , nij , eij) = (bj , dj , nj , ej). !ij indicates how
trustworthy website j is, from website i’s perspective. As
shown in Fig. 1, if there is another website t also pointing to
j, we have !tj = !ij = (bj , dj , nj , ej). Note that !ij = !tj ,
which is different from OpinionWalk that assumes different
users have different opinions on the same user.

If there is no hyperlink from i to j, i.e., e(i, j) /2 E,
then we define i has an uncertain opinion O on j as
O

�
= (0, 0, 0, 1) that indicates a website is totally uncertain

about whether another website is trustworthy. For !ii, a
certain opinion I is defined as I �

= (1, 0, 0, 0) that indicates a
website absolutely trusts itself.

2.3 Opinion Matrix Initialization
Given a hyperlink graph G = (V,E,W ) containing n nodes
and a subset S ⇢ V with labeled nodes, we can obtain the
opinion matrix M , as it is defined in [22]. In the matrix,
!ij = (bj , dj , nj , ej) is calculated from Eq. 1, if e(i, j) 2 E;
otherwise, !ij = O except for !ii = I.

M =

2

664

I !12 ... !1n

!21 I · · · · · ·
· · · · · · · · · · · ·
!n1 · · · · · · I

3

775.

The opinion matrix records all the trust relations among
websites that are connected to each other. This matrix will
then be used to compute trustworthiness of all websites,
which will be introduced in later sections.

Algorithm 1 shows how to initialize the opinion matrix,
based on a directed graph G and a labeled seed set S.
Please note that S is composed of websites that are selected
from the labeled set with seed selection method described in
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section 3.1.1. Lines 1-9 initialize the opinion matrix M with
I or O. Lines 10-28 update M [i][j] based on the number
of normal, spam and unlabelled websites that j points to.
Finally, line 29 returns the opinion matrix M .

Algorithm 1 GetOpinionMatrix(G, S)

Require: Directed graph G, labeled seed set S.
Ensure: Opinion matrix M .
1: for all node i do
2: for all node j do
3: if i = j then
4: M [i][j] = I

5: else
6: M [i][j] = O

7: end if
8: end for
9: end for
10: for all node i do
11: for all nodes j s.t. e(i, j) 2 E do
12: gj  0, sj  0, uj  0;
13: for all nodes p s.t. e(j, p) 2 E do
14: if p 2 S and p is normal then
15: gj  gj + 1
16: else
17: if p 2 S and p is spam then
18: sj  sj + 1
19: else
20: uj  uj + 1
21: end if
22: end if
23: end for
24: m gj + sj + uj + 3;
25: bj  gj/m, dj  sj/m, nj  uj/m, ej  3/m;
26: M [i][j] (bj , dj , nj , ej);
27: end for
28: end for
29: return M

2.4 Trust Propagation and Combination
Given two edges e(i, s) and e(s, j) 2 E with the weights
!is = (bis, dis, nis, eis) and !sj = (bsj , dsj , nsj , esj), we
are able to compute !ij = �(!is,!sj). In other words, s’s
opinion on the trustworthiness of website j can be propa-
gated to website i so that i derives its own opinion about
j’s trustworthiness. The above-mentioned process is call
trust propagation in social networks. To distinguish from
direct opinions, we use ⌦ij to denote i’s indirect opinion
on j. In this way, ⌦ij can be computed from the following
equations [21].

8
>><

>>:

bij = bisbsj
dij = bisdsj
nij = 1� bij � dij � esj
eij = e

, (2)

where e = esj if eis 6= 1, otherwise, e = 1. That implies the
prior uncertainty in i’s opinion on j is determined by that of
!sj if !sj is not uncertain; otherwise, !ij will be uncertain.
Note that !is and !sj can be replaced by indirect opinions
⌦is and ⌦sj .

If there are several different paths from website i to
website j, we can combine these opinions. Let ⌦1

ij =

(b1ij , d
1
ij , n

1
ij , e

1
ij) and ⌦2

ij = (b2ij , d
2
ij , n

2
ij , e

2
ij) be two differ-

ent opinions derived from two parallel paths from i to j.
Then, a new opinion ⌦ij = (bij , dij , nij , eij) can be gener-
ated by the combining operation⇥(⌦1

ij ,⌦
2
ij) as follows [21]:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

bij =
e2ijb

1
ij + e1ijb

2
ij

e1ij + e2ij � e1ije
2
ij

dij =
e2ijd

1
ij + e1ijd

2
ij

e1ij + e2ij � e1ije
2
ij

nij =
e2ijn

1
ij + e1ijn

2
ij

e1ij + e2ij � e1ije
2
ij

eij =
e1ije

2
ij

e1ij + e2ij � e1ije
2
ij

. (3)

For a computed opinion ⌦ij = (bij , dij , nij , eij), it
contains four values and cannot be directly used to sort
websites. We need to convert it to a single trust value.
The Eq. 4 is used to calculate the probability that j is a
trustworthy website, where x and y are the coefficients of
posterior uncertainty and prior uncertainty, indicating how
much of the posterior uncertainty and prior uncertainty are
credible, respectively.

E(⌦ij) = bij + x⇥ nij + y ⇥ eij (4)

2.5 Enhanced OpinionWalk Algorithm
Based on the previous discussion, opinions are used to
quantify the trust relations between individual websites.
Specifically, the opinions are derived from the labeled web-
sites, based on formula (1). With these trust opinions, the
opinion matrix can be initialized that reflects the social
connections among websites and the strength of these con-
nections. OpinionWalk algorithm starts from a seed node
to search the network level by level, and the trustwor-
thiness of all websites are iteratively obtained during the
searching process. The trust computation is then realized
by carrying out propagating and combining operations on
opinions. However, the OpinionWalk algorithm updates the
trustworthiness of all websites iteratively and every opinion
needs to be recalculated in each iteration. Let’s assume the
algorithm starts from website i and aims at computing the
trustworthiness of all other websites. The trustworthiness
values are recorded in

Y (k)
i = [⌦(k)

i1 ,⌦(k)
i2 , · · · ,⌦(k)

ij , · · · ,⌦(k)
in ]T ,

where ⌦(k)
ij denotes i’s opinion about the trustworthiness

of website j, after the algorithm searches k levels in the
network. As a result, the execution time of OpinionWalk
is not favorable for quick trustworthy website detection.
To address this issue, in this section, we introduce the En-
hanced OpinionWalk (EOW) algorithm that updates fewer
opinions in each iteration, and thus results in a shorter
running time.

When the algorithm starts from website i, the opinion
vector Y (1)

i = [!i1,!i2, · · · ,!ij , · · · ,!in]
T

is initialized, based on the direct links among websites.
Next, we show how to obtain Y (k+1)

i from Y (k)
i , which

occurs when the algorithm moves from the k-th level to
(k + 1)-th level in the network. For a trust opinion in Y (k)

i ,
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e.g., ⌦(k)
is , if it is not an uncertain opinion O and !sj 6= O

where !sj 2 M and s 6= i 6= j, we can compute a
new opinion �(⌦(k)

is ,!sj), based on the trust propagation
operation. It denotes i’s opinion on the trustworthiness of j,
based on its k-hop “friend” website s’s “recommendation”.
As shown in Fig. 2, if there existm nodes that can make this
type of recommendation, labeled as s1, s2, · · · , sm, we can
combine the m newly obtained opinions to get a new opin-
ion ⇥(�(⌦(k)

is1 ,!s1j),�(⌦(k)
is2 ,!s2j), · · · ,�(⌦(k)

ism ,!smj)). As
the opinion expresses i’s most current opinion on j’s trust-
worthiness, we denote it as ⌦(k+1)

ij . In the same way, we can
update all elements in Y (k)

i to form Y (k+1)
i .

߱௦௠௝

߱௦ଶ௝
߱௦ଵ௝

i

s1

}
s2

sm

j

Fig. 2: Illustration of trustworthiness update from k-th level
to (k + 1)-th level in the network.

From the above description, we can see that Y (k+1)
i

is solely determined by Y (k)
i and M , and not all opin-

ions are changed in the updating process. In fact, if ⌦(k)
ij

changes when the algorithm is processing the k-th level
of the network, then only i’s opinions on j’s adjacent
nodes need to be recalculated in the next iteration. We
propose a mechanism to keep track of which elements in the
opinion vector Y (k)

i need to be updated and only update
those opinions in Y (k+1)

i . In the enhanced OpinionWalk
(EOW) algorithm, there exists a Boolean vector F (k) =
[f1, f2, · · · , fj , · · · , fn]T that indicates whether i’s opinion
on j needs to be updated in the (k + 1)�th iteration. If fj
equals to 1, ⌦(k+1)

ij needs to be recalculated and unchanged
otherwise. With the subtle modification on the OpinionWalk
algorithm, the (average) execution time of EOW is only
72.9% of OpinionWalk’s. We will use the example shown

߱ଵଶ

߱ଷସ

߱ଶସ

߱ଵଷ

2

1

3

4߱ଶଷ

Fig. 3: An example of illustrating the Enhanced Opinion-
Walk algorithm.
in Fig. 3 to illustrate how the EOW algorithm works. With
the given network, we derive the opinion matrix as follows.

M =

2

664

I !12 !13 O

O I !23 !24

O O I !34

O O O I

3

775.

Let’s assume EOW starts from node 1, then we have

Y (1)
1 = [I,!12,!13,O]

T ,

and F (1) = [0, 0, 1, 1]T that means ⌦(1)
13 and ⌦(1)

14 will be
updated next but ⌦(1)

11 and ⌦(1)
12 remain the same, when

EOW searches the second level of the network. For node 3,
there is an opinion !12 2 Y (1)

1 , and an opinion !23 2 M ,
we can update node 1’s opinion on node 3 via node
2 to �(!12,!23). Similarly, because there is an opinion
!11 2 Y (1)

1 and !13 2 M , node 1 gets a new opinion on
node 3 as follows.

�(!11,!13) = �(I,!13) = !13

These two newly obtained opinion will be combined to form
node 1’s most current opinion on the node 3’s trustworthi-
ness.

⌦(2)
13 = ⇥(!13,�(!12,!23))

For node 4, we have !12 2 Y (1)
1 and !24 2 M , node 1’s

opinion on node 4 is updated to �(!12,!24). With !13 2
Y (1)
1 and !34 2 M , node 1 gets another opinion on node 4,

i.e. �(!13,!34). Combining these two opinions yields

⌦(2)
14 = ⇥(�(!12,!24),�(!13,!34)).

Therefore, after EOW algorithm finishes searching the sec-
ond level, the opinion vector is updated to Y (2)

1 :

[I,!12,⇥(!13,�(!12,!23)),⇥(�(!12,!24),�(!13,!34))]
T

After this iteration, because ⌦13 and ⌦14 change, we
need to update the Boolean vector to F (2) = [0, 0, 0, 1]T

indicating node 1 will update its opinion on node 4 but keep
its opinions on other nodes unchanged, in the next round.
This is because node 4 is the adjacent neighbor of node 3.

When EOW searches the third level, because there exist
!12 2 Y (2)

1 and !24 2 M , we update ⌦14 to �(!12,!24).
With ⌦(2)

13 2 Y (2)
1 and !34 2 M , node 1 has a new opinion

on 4, �(⌦(2)
13 ,!34). Combining these two opinions, node 1

derives a new opinion on node 4 as follow.

⌦(3)
14 = ⇥(�(!12,!24),�(⌦(2)

13 ,!34)).

As such the opinion vector is update to

Y (3)
1 =

h
I,!12,⌦

(2)
13 ,⌦

(3)
14

iT
= [I,!12,⇥(!13,�(!12,!23)) ,

⇥(�(!12,!24),�(⇥(!13,�(!12,!23)),!34))]
T

After this iteration, because node 4 has no adjacent node,
we have F (3) = [0, 0, 0, 0]T . That also means the EOW algo-
rithm stops and node 1’s opinions on the trustworthiness of
all other nodes are obtained.

Algorithm 2 describes how to get the trustworthiness
of all other websites, from website i’s perspective. Line 1
calls Algorithm 1 to obtain the opinion matrix M . Lines
2-5 initialize F and Y (1)

i , based on M . Lines 6-12 update
the bit corresponding to i’s adjacent nodes to 1. Line 13
initializes the searching level k to 1. Line 14 controls how
many levels that EOW algorithm will search on the graph
G. Lines 15-29 compute Y (k+1)

i based on Y (k)
i and M , and

update the Boolean vector F accordingly. Line 15 copies
all opinions from Y (k)

i to Y (k+1)
i . Lines 16-21 recalculate

node i’s opinions on the websites whose trustworthiness
need to be updated. Lines 18-20 combine all opinions de-
rived from !sj 6= O. Lines 22-29 update F [j] based on
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the information of which element in Y (k+1)
i [j] is different

from that of Y (k)
i [j]. Finally, the vector Y (k)

i will contain
node i’s opinions on all other nodes, after EOW searches
H levels within the graph G. By increasing the value of
H , more accurate trust computation is expected, however,
it will increase the execution time of the EOW algorithm.
In practice, the value H is set to be a number ranging from
3 to 6 to achieve the good trade-off between accuracy and
performance.

Algorithm 2 EOW(G,S,i,H)

Require: A directed graph G, labeled sample set S, starting
node i, maximum searching depth H .

Ensure: i’s opinion on j where j 6= i.
1: M = GetOpinionMatrix(G,S);
2: for all node j do
3: Y (1)

i [j] M [i][j]
4: F [j] 0
5: end for
6: for all node j do
7: if Y (1)

i [j] 6= O then
8: for all node q s.t. M [j][q] 6= O do
9: F [q] 1
10: end for
11: end if
12: end for
13: k  1
14: while k < H do
15: Y (k+1)

i  Y (k)
i

16: for all node j 6= i s.t. F [j] = 1 do
17: Y (k+1)

i [j] O

18: for all node s s.t. Y (k)
i [s] 6= O s.t. M [s][j] 6= O do

19: Y (k+1)
i [j] ⇥(Y (k+1)

i [j],�(Y (k)
i [s],M [s][j]))

20: end for
21: end for
22: for all node j do
23: F [j] 0
24: end for
25: for all j 6= i s.t. Y (k+1)

i [j] 6= Y (k)
i [j] do

26: for all node q s.t. M [j][q] 6= O do
27: F [q] 1
28: end for
29: end for
30: k  k + 1
31: end while
32: return Y (k)

i

3 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first introduce the experimental setup
and evaluation metrics. Then, we provided a detailed ex-
perimental result analysis.

3.1 Dataset and Experiment Setup
To study trustworthy or spam website detection, there
are two publicly available datasets WEBSPAM-UK2006 and
WEBSPAM-UK2007 1. The WEBSPAM-UK2007 dataset in-
cludes 114,529 websites with 6479 websites labeled (5.65%),
while WEBSPAM-UK2006 contains 65.5% labeled hosts.

1. http://chato.cl/webspam/datasets/

Generally more labeled data lead to more detailed evalu-
ation, so we adopt WEBSPAM-UK2006 dataset in evaluat-
ing the proposed EOW algorithm. The WEBSPAM-UK2006
dataset was collected by a web crawler through “crawling”
the .uk domain. It contains 77.9 million web pages, which
equals to 11402 websites with 7473 websites/hosts labelled
as either normal/trustworthy or spam.
3.1.1 Seed Selection
Because both TrustRank and EOW start from a set of seed
nodes/websites to search for more trustworthy websites, in
this section, we first introduce how seed nodes are usually
chosen. The commonly-used seed selection methods for
trustworthy website detection are high PageRank and in-
verse PageRank [18]. Applying the PageRank algorithm on
a website hyperlink network, every website will be assigned
a PageRank score. If the websites are sorted based on their
scores, in a descending order, then those located at the top
of the list are considered trustworthy. Among these website,
the labelled trustworthy hosts are chosen as the seed nodes,
which is why this algorithm is called high PageRank. On
the other hand, inverse PageRank algorithm first inverts the
links in the network, and then performs PageRank on the
inverted graph. These labeled websites with large PageRank
scores are then treated as the seed nodes.
3.1.2 Evaluation
The proposed EOW algorithm will rank all websites based
on their trust scores (derived from trust opinions), and
those with higher trust values (e.g., the top N websites) are
considered trustworthy websites. As expected, an algorithm
is effective in searching for trustworthy websites if it identify
more normal and fewer spam samples in the top N chosen
websites. To evaluate the EOW algorithm’s performance,
we sort 11402 hosts in a descending order, based on their
trust scores. We then measure the ratio/percentage of la-
beled normal hosts (true positive) and labeled spam hosts
(false positive). The value of N varies from 1000 to 4000.
With the same performance measure, the EOW algorithm is
compared with TrustRank algorithm, the state-of-art spam
detection algorithm based on trust propagation.
3.1.3 Parameter setting
For the seed selection algorithms, i.e., high PageRank and
inverse PageRank algorithms, the iteration time and decay
factor are set to be 20 and 0.85, respectively. In [5], it is
reported that the decay factor of 0.85 was considered a
standard setting in PageRank. It is also believed that 20
interactions are enough for PageRank algorithms to produce
converged results [18]. Because TrustRank is a variation
of the PageRank algorithm, we adopt the same parameter
settings in TrustRank. For the EOW algorithm, after the
seed nodes are chosen, it iteratively propagates trust from
a starting node to all other nodes in the network. Note that
every normal sample in the seed set can be used as a starting
node. We pick the top 100 or 200 normal samples as the
starting nodes, and select the best result to evaluate EOW’s
performance. To understand how the maximum searching
depth affects the EOW’s performance, we set the value to
be 6, 10, and 20, respectively. The reason of choosing 20 as
the maximum depth is that the iteration time of PageRank
algorithm is 20. To make a fair comparison with PageRank,
we adopt 20 as the maximum searching depth of EOW
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TABLE 1: Parameter setting

Parameters Values
# of normal websites 100, 200, 500, 1000, 1500, 2000, 3000
# of spam websites 50, 100, 500, 1000

Maximum searching depth 6, 10, 20

algorithm. On the other hand, based on the “six degrees
of separation” theory, i.e., a person can be connected to any
other person through a chain of acquaintances that has no
more than five intermediaries, we adopt 6 as the maximum
searching depth of EOW algorithm. The parameter settings
of our experiments are summarized in Table 1.
3.2 Impact of Seed Selection
Good seeds tend to generate good results, therefore, we
evaluate the impacts of high PageRank and inverse PageR-
ank, as seed selection methods, on the performance of
TrustRank and EOW algorithms. Specifically, we carry out
different experiments with either the high PageRank or the
inverse PageRank as the seed selection scheme. We execute
these two algorithms with the same number of iterations
and decay factor. We then choose the top 100 normal
samples as the seeds for TrustRank and EOW algorithms.
Moreover, for the EOW algorithm, we set its maximum
searching depth as 6. Finally, we compare the performance
of TrustRank and EOW, regarding to their true positive and
false positive values.
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Fig. 4: (a) Percentages of labeled normal websites identified
by TrustRank and EOW with different seed selection algo-
rithms. (b) Percentages of labeled spam websites identified
by TrustRank and EOW with different seed selection algo-
rithms.

Fig. 4 shows the percentages of labeled normal and
labeled spam hosts, within the top N websites, detected
by the TrustRank and EOW algorithms. With different
seed selection algorithms, we summarize the results as
follows. TrustRank High and Opinion High denote the re-
sults generated by TrustRank and EOW with high PageR-
ank as the seed selection algorithm. TrustRank Inverse

and Opinion Inverse indicate the results obtained using
inverse PageRank to select seeds. From Fig. 4 we can
see that the true positive of TrustRank High is slightly
better than that of TrustRank Inverse, and the false pos-
itive of TrustRank High is also smaller than that of
TrustRank Inverse. This implies high PageRank selects bet-
ter seeds, which is opposite to the conclusion that inverse
PageRank is slightly better in choosing seeds in [18]. For
the EOW algorithm, on the other hand, Opinion Inverse
generates larger true positive values than Opinion High,
when N = 1000, 2000. The true positive values of Opin-
ion Inverse, however, are smaller than those of Opin-
ion High when N = 3000 and 4000. When we look at
the false positive values, Opinion High performs much
better than Opinion Inverse. Overall, we conclude that high
PageRank algorithm offers a better seed selection whenN is
greater than 2000, which is the common case for trustworthy
website detection.
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Fig. 5: Sum of PageRank scores of top N websites .

Because PageRank evaluates a website as trustworthy
if and only it is linked from several other trustworthy
websites, we speculate hosts with high PageRank scores
tend to link to each other. To validate our hypothesis, we sort
all websites based on their scores and sum up the scores of
all top N websites generated by the EOW algorithm. As we
can see from Fig. 5, different seed selection algorithm yields
different results. In detail, the sum of PageRank scores of
top N websites identified by Opinion High is much higher
than that generated by Opinion Inverse. It also implies that

high PageRank algorithm, serving as the seed selection algorithm,

offers EOW the best opportunity in identifying more trustwor-

thy websites. Because high PageRank seed selection method
makes both EOW and TrustRank algorithms identify more
normal websites (and fewer spams), we adopt it in the rest
of our experiments.

3.3 Influence of Number of Seeds

To understand the influence of number of seeds on EOW’s
performance, we conduct experiments by varying the num-
bers of normal and spam samples in the seed sets. We use
OpinionX Y to denote the results generated by EOW, with
X normal and Y spam samples in the corresponding seed
set. If there is no spam sample in the seeds, the results are
labeled as OpinionX , indicating X normal samples in the
seeds. Opinion100 50 and Opinion100 100 use the top 100
normal samples as the starting nodes, while Opinion200,
Opinion2000 and Opinion2000 500 use the top 200 normal
samples as the starting nodes. The maximum searching
depth of EOW is set to be 6.
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Fig. 6 shows the true positive and false positive values
of EOW with different number of seeds. We can see that
the percentages of labeled normal and spam samples of
Opinion100 50 are the same as Opinion100 100. Similarly,
the portions of labeled normal and spam samples of Opin-
ion2000 are the same as Opinion2000 500. Furthermore, we
find that Opinion2000 and Opinion2000 500 almost always
generate the same results. For example, the trust opinion on
host “www.comp.rgu.ac.uk” is (0.071527,0,0.927648,8.25E-
04) in Opinion2000 and (0.071527,6.33E-04,0.927015,8.25E-
04) in Opinion2000 500, respectively. All the observations
leads to one conclusion: spam samples in seed sets have almost

no impact on EOW algorithm. This is mainly because the value
of d in an opinion becomes smaller and smaller when trust
propagates within the network.
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Fig. 6: Percentages of labeled (a) normal websites and (b)
spam websites identified by EOW with different numbers
of seeds.

Comparing the results of Opinion100 100, Opinion200
and Opinion2000, we can clearly observe that the values
of true positive are getting higher and the false positive
values are becoming smaller. In other words, the number of

normal samples in a seed set plays a critical role in EOW detecting

trustworthy websites . This is mainly because EOW leverages
large amount of trustworthy websites to reach/identify
more trustworthy ones, thanks to the principle of trust
propagation [20]. For the top 1000 websites identified by
EOW, the percentages of labeled normal samples in Opin-
ion100 100, Opinion200 and Opinion2000 are almost the
same. Additionally, there is only 1 spam sample, detected
as trustworthy website by Opinion100 100 and Opinion200,
within the top 1000 websites, which turns out to be a
0.1% false positive rate. We further manually check all the
unlabeled websites in the top 1000 ones in Opinion100, and
find that there are only 2 spam websites (with 10 more
websites that are not accessible). These observation conclude
that EOW algorithm performs well, with 100 normal seeds, if we

are only interested in detecting no more than 1000 trustworthy

websites.

3.4 Influence of Maximum Searching Depth

As the EOW algorithm searches deeper on the hyperlink
graph, more accurate trust evaluation on websites are ex-
pected. The execution time of EOW algorithm, however, will
increases significantly when the searching depth is getting
larger. To identify the best yet effective search depth, we
carry out experiments with the different searching depths in
EOW. Specifically, we set it to be 6 and 20, given 200 normal
samples in the seed set. We also set the maximum searching
depth as 6, 10 and 20, when the seed set is composed
of 2000 normal samples. Fig. 7 provides the experimental
results where OpinionX(Y ) represents the results generated
by EOW with a searching depth of Y and X normal seed
samples.
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Fig. 7: Performance of the EOW algorithm in detecting
trustworthy websites with different setting of the maximum
searching depth.

In Fig. 7, we find that the performance of Opinion200(6)
and Opinion200(20) are very similar, i.e., deeper searching
does not always lead to better results, given 200 normal
seeds. This may be because EOW algorithm is not able to
reach more trustworthy websites, due to the limited amount
of trustworthy seeds that it can start with. This reason
can also explain the following observations: the results of
Opinion2000(20) are slightly better than Opinion2000(10)
which is in turn slightly better than 2000(6). In a word,
EOW with a deeper searching and a larger seed set tends
to detect more trustworthy websites. To achieve a better
performance, however, EOW takes a longer time to search
the whole network. Table 2 gives the running times of EOW
with different search depths. In the table, we can see that
Opinion2000(10) takes about two times of the time taken
by Opinion2000(6), and Opinion2000(20) needs 4.5 times as
many as that of Opinion2000(6). The computer used in our
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TABLE 2: Running time of EOW algorithms with different
maximum searching depths

Maximum Searching Depth Running Time (Second)
6 92.565
10 188.229
20 420.072

experiments has an Intel R5 CPU, 4G memory, and 320G
hard disk. The operating system is Windows10, and the
programming language is Java.

When the searching depth is 6, EOW’s performance is
almost only determined by the size of seeds; therefore, we
conclude that a search depth of 6 is adequate for EOW to work

properly in detecting normal websites. This conclusion is also
supported by the “six degrees of separation” theory. It seems
that the hyperlink network constructed among websites
also represent the “small world” phenomena. Therefore, we
set the maximum searching depth as 6 in the rest of our
experiments.

3.5 Impact of Starting Nodes
Every normal sample in the chosen seed set can be used
as a starting node of the EOW algorithm. Therefore, the
performance of the EOW algorithm may vary if it starts
from different seed nodes. To investigate whether and how
different starting nodes will affect EOW’s performance, we
conduct a series of experiments with 1000 normal websites
in the seed set. Out of the 1000 samples, we randomly select
200 websites to serve as the starting nodes. We plot the
performance of EOW in Fig. 8 by showing the best, worst
and combined results. For every node in the 200 websites,
we let EOW algorithm start from it and rank all websites
accordingly. From the ranking results, we identify the cases
where EOW gives the best and worst performance and
labeled them as “Best1000” and “Worst1000”, respectively.
For each website, different trust opinions will be generated
if EOW starts from different seeds. We then combine all
these trust opinions, according to the combining operation
defined previously, to derive the “overall” trust opinion of
the website. All websites with combined trust opinions will
be ranked again, based on their (combined) trust values.
The newly website ranking results are named as “Com-
bine1000”.

In Fig. 8, we can see the best results are better than
the combined ones which are much better than the worst
results. We also notice that the combined results do not merely

provide an average between the best and worst results, i.e., they

lean very much towards the best results. This implies that
a combining operation of results derived from different
seeds tend to offer a near optimal result, which should
be considered a practical solution. To understand the im-
pact of different starting nodes on EOW, we zoom into
the results and present two examples here. When EOW
starts from the website www.jobs.ac.uk, EOW places 1728
labelled normal and 1 labelled spam websites in its top
2000 trustworthy websites. On the other hand, when it starts
from www.lovehoney.co.uk, EOW put 851 labelled normal
and 122 labelled spam samples in its top 2000 trustworthy
websites. Apparently, more spam websites could be treated
as trustworthy if a bad starting node is chosen. To miti-
gate this issue, results generated by EOW using different

starting nodes need to be combined. Thanks to the opinion
combining operation, untrustworthy websites are likely to
be eliminated from the final results, while trustworthy ones
may not suffer from the process.
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Fig. 8: Performance of EOW algorithm in detecting trust-
worthy websites with different starting nodes.

We further analyze the characteristics of the starting
nodes and try to discover general rules in selecting good
starting nodes for EOW. First, we find that the outdegree

and indegree of good starting nodes are much larger than the

bad ones. The average outdegree and indegree of the top
10 good starting nodes are 713.9 and 778.1, respectively.
The outdegree and indegree of the best starting node are
1363 and 738, respectively. On the other hand, the average
outdegree and indegree of the worst 10 starting nodes are
163.4 and 454.9, respectively. Five of these bad starting
nodes are with a outdegree of 0. Second, we discover that
a good starting node tends to connect to more (labeled) normal

websites, compared to the bad ones. The average ratio of labeled
normal websites linked from the top 10 good starting nodes
is 87.09%, with the maximum ratio of 93.99%. On the other
hand, the average ratio of the worst 10 starting nodes is only
21.5%. This observation is also in line with our conclusions
about the importance of seed selection.

3.6 PageRank, TrustRank vs Enhanced OpinionWalk

This section compares the EOW algorithm with PageR-
ank and TrustRank algorithms, regarding to their perfor-
mance in detecting trustworthy websites. For the EOW and
TrustRank algorithms, we only report the results with 200
and 2000 normal seeds. Fig. 9 shows percentages of labeled
normal and labeled spam websites in the top N websites
detected by the three algorithms.

We can see that the true positive values of EOW are
always the highest and the corresponding false positive
values of EOW are the lowest, given the same number of
seeds. The performance of PageRank is the worst, i.e., lowest
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true positive and highest false positive values. The reason
is that PageRank algorithm does not take into account
any knowledge about the trustworthiness of a website, nor
does it penalize a spam host. TrustRank considers not only
the trust values of websites but also the link relationships
among websites, it provides slightly better results. Because
EOW algorithm relies on a more accurate trust representa-
tion of websites and rigorously defined trust propagation
and combing operations, it yields the best results.
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Fig. 9: Percentages of labeled (a) normal and (b) spam
websites detected by different algorithms.

When the number of normal seeds is 200, the true
positive values of EOW algorithm are 16.5%, 12.65%, 8.77%,
5.35% larger than TrustRank, in the top 1000, 2000, 3000 and
4000 websites, respectively. When the number of normal
seeds is 2000, the values of EOW algorithm are 9.6%, 7.55%,
12.63%, 12.1% larger than TrustRank, in the top 1000, 2000,
3000 and 4000 websites, respectively. On the other hand, the
corresponding false positive values of EOW algorithm are
0.1%, 0.25%, 1.4%, 2.8% smaller than TrustRank algorithm
(in the top 1000, 2000, 3000 and 4000 websites). With 2000
normal seeds, the false positive values of EOW algorithm
are 0.2%, 1.37% and 2.6% smaller than TrustRank (in the top
2000, 3000 and 4000 websites). From the above results, we
conclude that EOW algorithm is able to detect more trustworthy

websites with fewer seeds, offering a higher true positive and lower

false positive values.

3.7 Experiment Results Summary

From the experimental results analysis, we can make the
following conclusions. (i) EOW algorithm favors for high
PageRank serving as the seed selection method, not the
inverse PageRank. (ii) The selected spam seeds have almost
no impact on EOW’s performance, however, the number of
normal seeds plays a critical role in detecting trustworthy
websites. (iii) EOW algorithm achieves adequately good
results when its maximum searching depth is 6. (iv) Starting

EOW algorithm from nodes with larger outdegree and inde-
gree tends to yield a better detection result. (v) EOW detects
more trustworthy websites (and fewer spam websites) with
fewer seeds, comparing to TrustRank.

4 RELATED WORK
The problem of trustworthy website detection can be ap-
proached from two different directions. One type of solution
is to identify spam or untrustworthy websites, based on
either the contents or link structures of websites. An alter-
native solution to the problem is to rank websites based on
their trust values so that trustworthy websites are placed on
top of the list. Majority of existing research works belongs
to the first category, while there are not adequate studies in
the second one.

4.1 Trustworthy Website Ranking
The most popular algorithm of ranking website based on
their trustworthiness/importance is the PageRank algo-
rithm [5]. The intuition behind PageRank is that a web page
is important if many other important web pages point to
it. If the PageRank algorithm is executed on the hyperlink
graph of websites, then every host in the link structure
will be assigned an importance score. The websites are then
sorted according to their PageRank scores, in a descending
order, so those located at the top of the list are consid-
ered trustworthy. Truncated PageRank [2] is a variation of
PageRank in that it disregards the paths with length that is
below a certain threshold. Similarly, the inverse PageRank
algorithm is proposed in [18]. The algorithm first reverses
the directions of all edges and then perform the PageRank
algorithm to rank websites.

Another important solution to trustworthy website rank-
ing is the TrustRank algorithm [18] that separates normal
websites from spams. In the algorithm, a small set of seed
nodes are hand picked by experts. The trust scores of these
seeds are set to be 1

D , where D is the total number of seeds.
The TrustRank algorithm then propagates trust through the
out-links of seeds to discover nodes that are likely to be
trustworthy. Topical TrustRank [24] is proposed to use the
topical information of websites to partition seeds, and then
calculate the trust scores for each topic. Finally, the trust
scores of all topics of a website are combined to determine
its ranking. BrowseRank [25] makes an attempt to solve
the problem in a different way: it models user browsing
behavior data (e.g., dwelling time, click data, etc.) to con-
struct a browsing graph and then calculates the stationary
dwelling distribution to capture the importance of a website.
This method is a promising solution, however, the browsing
behavior data are usually confidential and difficult to obtain.

In addition to trustworthy website ranking, there exist
works on how to select seeds to improve ranking perfor-
mance. Zhang Xianchao et al. [26] propose an automatic
seed set expansion algorithm (ASE) that enriches a small
seed set to a larger one. The basic idea of ASE is that if
a page is recommended by many trustworthy pages, the
page itself must be trustworthy. The links among websites
can be considered a means of conveying recommendation,
therefore, several links recommending the same page is
called joint recommendation. With joint recommendation,
the ASE algorithm is able to obtain more trustworthy seeds
from the given ones.
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4.2 Spam Website Detection

There is a flurry of research works on spam website de-
tection. Existing techniques can be roughly categorized into
three groups [4]: content analysis, link structure analysis,
and user behavior analysis. In the first group, labeled web
contents are analyzed to construct classifiers to detect spam
websites [27], [28], [29], [30], [31], [32], [33], [34], [35], [36].
For example, Fetterly et al. propose to detect spam web-
sites through statistical analysis of the terms included in a
website [27]. Similarly, Ntoulas et al. [28] propose to detect
spams by building up a classification model that combines
multiple heuristics, based on page content analysis. Urvoy
et al. [29] suggest to first cluster web pages based on their
HTML similarity and then detect spams with a classifica-
tion model. Biro et al. [30] use modified Latent Dirichlet
Allocation (LDA) method to determine spam and non-spam
topics, and then use them to classify spam websites.

In the second group, spam websites are detected by
analyzing the link structure between websites [3], [23],
[37], [38], [39], [40], [41], [42], [43]. Some of this group of
methods are similar to those used in trustworthy website
detection, however, they focus on detecting only spams.
For example, Anti-TrustRank [23] starts from a set of seed
nodes and propagates anti-trust scores within the network
to identify spams. Wu et al. [38] propose to use a linear
combination of trust and distrust values to detect spam
pages. Others are based on classification techniques. Such
as, C. Castillo et al. [3], for the first, time, integrate link
structure and content attributes to detect web spams. In [40],
a novel classication technique is presented, based on the
Minimum Description Length (MDL) principle. R. C. Patil
and D. R. Patil [41] implement a spam detection system,
based on a supporting vector machine (SVM) classifier that
combines new link features with content. O. M. Eugene [43]
propose a Link Authorization Model (LAM) to detect link
spam propagation onto neighboring pages. G. G. Geng et
al. [44] propose a two-stage ranking strategy that makes
good use of hyperlink information among websites and
websites intra-structure information to combat link spam.

The last group consists of algorithms that exploit click
stream data, user behaviour data, query popularity informa-
tion and HTTP sessions information, to detect spams. Yiqun
Liu et al. [45] propose to use three user behavior features to
separate web spams from ordinary ones. S. Webb et al. [46]
design a lightweight client-side web spam detection method
that considers HTTP session information, instead of analyz-
ing content-based and link-based features. F. Radlinski [47]
propose to use personalized ranking functions to prevent
click fraud manipulation. Xin Li et al. [48] use a bipartite-
graph iterative algorithm to get higher precision and recall
of click spam detections.

5 CONCLUSIONS AND FUTURE WORK

The proposed EOW algorithm is well-suited for trustworthy
website detection, which confirms our hypothesis that a
hyperlink structure can be analyzed, using the techniques
designed for social networks. Particularly, we find that an
appropriate seed selection scheme (e.g., high PageRank)
can significantly improve the trustworthy website detection
results. Interestingly, the “small world” phenomena is also

observed in a hyperlink space. In other words, the EOW
algorithm only needs to search a hyperlink network for
six levels, to accurately determine a website’s trustworthi-
ness, i.e., websites are six-degree separated in the hyperlink
space. Compared to existing solutions, e.g., PageRank and
TrustRank, the EOW algorithm is able to detect 5.35% -
16.5% more trustworthy websites. Meanwhile, EOW saves
about 27.1% of execution time, compared to OpinionWalk
that is designed for social network analysis.

As seed selection plays a critical role in determining the
trustworthiness of all other websites, we believe a com-
prehensive study of seed selection is necessary to further
improve the detection results. Possible solutions may ex-
plore the centrality, influence, and in- and out-degree of
a website while selecting seeds. Another important direc-
tion is to investigate whether the EOW algorithm starting
from multiple seeds will outperform that starting from a
single seed. It might also be possible to combine the EOW
algorithm together with classification-based methods that
consider web contents, to decide a website’s trustworthi-
ness. Last but not the least, it is possible to speed up
the EOW algorithm by dividing a hyperlink network into
individual communities so that the algorithm only searches
each community, instead of the whole network. This can
be done by grouping websites based on their features, e.g.,
website category, keywords, and contents.
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