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Abstract—Cyber-physical social system (CPSS) has emerged to integrate the interaction between the physical, cyber, and social
world. However, due to the ever-increasing amount of sensing data and the limited resources of mobile systems, how to allocate the
tasks by crowd sensing to enable a high-confidence CPSS becomes a new challenge. Therefore, in this paper we propose a novel
game theoretic approach to allocate tasks with the trust and incentives in CPSS. Firstly, with the analysis of social tie of mobile users, a
trust evaluation mechanism is developed to evaluate the reputation of mobile users. Secondly, by introducing a virtual currency, the
incentive mechanism is designed to encourage mobile users to undertake the tasks by crowd sensing. Thirdly, based on the interaction
of task requester and mobile users, a bargaining game model is presented to allocate tasks where the optimal price can be determined
by the subgame perfect Nash equilibrium. Finally, extensive simulations are carried out to demonstrate that the proposal can

outperform other conventional methods.

Index Terms—Cyber-physical social systems, Task allocation, Bargaining game.

1 INTRODUCTION

Yber-physical social system (CPSS) has been a promis-
C ing paradigm to seamlessly integrate the cyber, physi-
cal, and social world. With the advance of CPSS, more and
more users can take a variety of mobile devices to interact
with each other [1], [2], [3]. In the CPSS, various sensors
are equipped to analyze physical phenomena, monitor com-
putational entities and make decisions based on sensing
information [4], [5], [6], [7], [8]. Nowadays, the CPSS has
received increasing demands and keen research attentions.

To enable a high-confidence CPSS for better benefits,
crowd sensing is advocated in recent years. Instead of col-
lecting data from a fixed mobile user, multiple social users
are encouraged to provide sensing data to the CPSS [9], [10],
[11], [12]. With the crowd sensing, the CPSS can collect sens-
ing data of human society in an interactive and automatic
way [13], [14], [15]. These sensing data are excavated and
analyzed by remote data servers and practitioners, which
can provide sensing services to individuals, social groups,
the third parties, etc [16], [17], [18], [19].

However, with the ever-increasing scale of CPSS, the task
allocation becomes a new challenge for crowd sensing in
the CPSS with the following reasons. On one hand, due to
the large number of mobile devices equipped with sensors
and controlled by different individual users, it is difficult to
depend on a single mobile user who has limited resources
to undertake the sensing tasks. How to encourage multiple
mobile users to cooperatively undertake the tasks should
be considered [20], [21], [22], [23], [24]. One the other hand,
because of the unstability of networks and the uncertainty
of mobile users, the quality of sensing data may be low even

unfaithful sometimes [25], [26]. How to provide the accurate
sensing data with high-quality needs to be discussed.

Although the existing works have studied the optimiza-
tion in crowd sensing for CPSS, most of them cannot be
directly used for task allocation by crowd sensing in CPSS
[27], [28]. Firstly, mobile users may be selfish and have a
low will to undertake the sensing task as it consumes their
energy and resources. An incentive mechanism is needed
for mobile users to encourage them to undertake the tasks
in the crowd sensing. Secondly, a user with high reputation
is likely to provide high-quality sensing data in CPSS. A
novel trust mechanism should be designed to evaluate
the reputation of mobile users. Finally, as different mobile
users have different relationship, the social tie should be
considered to model the interaction among them in order
to allocate the tasks efficiently. Therefore, how to develop
an efficient task allocation scheme for crowd sensing in the
CPSS is still an open and vital issue.

Therefore, in this work, we study the task allocation in
CPSS with trust management and social tie. Our work is
different from the conventional models for crowd sensing
[29], [30], [31], where the social tie among mobile users
in CPSS is not focused on to encourage mobile users to
provide sensing content cooperatively and the secure task
allocation in CPSS such as the trust mechanism is not
mentioned either. Firstly, by considering the reputation and
social interaction among mobile users, we design the trust
mechanism to guarantee the security of CPSS for sensing.
Secondly, a credit clearance center is introduced to manage
the virtual currency of mobile users. Mobile users can obtain
virtual currency as incentives by providing high-quality of
sensing services to the task requester. Finally, based on the
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interaction between the task requester and mobile users, a
game theoretical model is presented to allocate tasks. In a
nutshell, the main contributions of this work are three-fold
as follows.

o Trust Evaluation: We establish a mechanism to e-
valuate the trust of mobile users in the CPSS. The
trust value is obtained from the historic interaction
among mobile users according to the social tie. The
task requester can allocate the sensing task to mobile
users with high reputation to improve the quality of
sensing data.

e Incentive Scheme: The virtual currency is intro-
duced to stimulate mobile users to participate in the
CPSS. Mobile users who are active to undertake the
tasks can obtain the virtual currency as incentives.

o Task Allocation: We develop a bargaining game
model based on the interaction between the task
requester and mobile users. The optimal price for
task allocation can be determined by the subgame
perfect Nash equilibrium.

This remainder of this paper is organized as follows. In
Section 2, the related work is given. Section 3 presents the
system model. Section 4 introduces the task allocation with
incentive mechanism. Performance simulations are shown
in Section 5. Finally, we give the conclusion in Section 6.

2 RELATED WORK
2.1 Mobile Crowd Sensing

To improve the performance of task allocation scheme,
various studies have been done in crowd sensing appli-
cations and systems. Jayaraman et al. [32] study a context
aware distributed mobile data analytics platform. The au-
thors propose a cost model for a typical distributed data
analytics application, which enables efficient data analytics
in the fog by providing a standardized component-oriented
approach. Yang et al. [33] develop two system models:
the platform-centric model where the platform provides a
reward shared by participating users, and the user-centric
model where users have more control over their received
payment. He et al. [34] consider a standard mobile crowd
sensing model to design an incentive scheme. The notion
of walrasian equilibrium is employed as a comprehensive
metric. Song et al. [35] propose an auction-based budget
feasible mechanism. The mechanism consists of a winner
selection rule and a payment determination rule. Thereby an
incentive mechanism is designed to stimulate mobile users
to contribute to the system.

Li et al. [36] study the mobile crowd sensing and develop
a software defined opportunistic network scheme to solve
the optimal decision of mobile devices and the sensing
service provider. Then an incentive mechanism for data
forwarding and collection in a software defined opportunis-
tic network is designed. Wang et al. [37] present a points-
of-interest trajectory prediction method that uses a semi-
markov process to determine the probability distribution
of users’ arrival times. The authors propose an efficient
prediction-based user recruitment for mobile crowd sensing.
The users are separated into two groups corresponding to
different price plans: pay as you go and pay monthly. Sei

2

et al. [38] study the aggregator in crowd sensing systems.
A new data-collection scheme is proposed to estimate data
distributions. The aggregator can estimate data distributions
more accurately than other randomization methods.

2.2 Mobile Social Networks

Xu et al. [39] discuss the social relationships in mobile
social networks (MSNs). The social relationships are divid-
ed into four types: blood relationship, geographical rela-
tionship, work relationship, and interest relationship. An
analytical model is developed to evaluate the influences of
multiple relationships on the information spreading process.
Li et al. [40] develop a novel framework where each sub-
network has its own currency and can earn currency by
providing other sub-networks with relay service. Thereby a
bargaining game based on cooperative scheme is proposed
for relay service in heterogeneous content centric networks.
Xu et al. [41] present a novel virtual currency to pay for the
relay service. Each node has a certain currency and can earn
the currency as a relay for other nodes. In addition, a model
between the bundle carrier and the relay node is developed
to obtain the optimal transaction pricing. Mahmoud et al.
[42] study the centralized and decentralized network model-
s to securely outsource data. The authors develop searchable
encryption scheme and cryptography construct to enable
the server to match the topics.

Wang et al. [43] study the collaboration agent for each
subtask of each complex task. A distributed multiagent-
based task allocation model is presented to maximize the
objective of social effectiveness. Hao et al. [44] aggregate
the prestige-based trust value, the social context aware
trust value, the spatio-temporal factors related trust values
and the risk of trust between mobile users in MSNs to
generate an overall trust value between them. Then a new
fuzzy inference mechanism is proposed for inferring trust
semantically from one mobile user to another. Sharma ef al.
[45] develop a pervasive trust management framework for
pervasive social networking. The framework can generate
high trust value between the users with a lower cost of
monitoring.

Different from the above works, this paper incorporates
the trust mechanism into task allocation scheme in CPSS.
The trust mechanism can improve the quality of sensing
data, while the task allocation scheme with incentives can
increase the number of tasks to undertake by crowd sensing.

3 SYSTEM MODEL

We focus on the fundamental and simplest case of the
CPSS as in Fig. 1. Accordingly, we present the model of the
crowd sensing involved in this section, including the user
model, network model and incentive model.

3.1 User Model

Mobile users are interacted with each other via short-
range wireless communication in the CPSS. There are I
mobile users which are denoted by Z = {1,2,--- ,i,--- , I}.
The inter-meeting time between user ¢ and user j follows
the exponential distribution with the parameter \; ;. All
users in the network can generate sensing tasks based on
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Fig. 1. Cyber-physical social systems.

the Poisson distribution with the parameter ~; [46]. There
are different social relationships between two mobile users.
The set of relationships between two users is denoted as
K ={1,2,---,k,--- ,K}. Let e} (k € K) be the credibil-
ity value between two users with a relation k, we have
e1 > ey > -+ > ex [39]. Let li,j = (li,j,hli,j,%' .. ,li’ij)
denote the relation vector between user ¢ and user j. The
social relation k is determined by the types between two
mobile users in the CPSS. I; ; , = 1 implies that user 7 and
user j have the relation with k. If /; ; , = 0, it indicates that
two users do not have the relation. Then, the direct trust
value between user i and user j becomes

0ij=Li-e" )

where

e:(617627"'76K) (2)

3.2 Network Model

Each mobile user can generate sensing tasks in the CPSS.
A user needs to seek help from his/her friends when the
sensing task cannot be finished by himself/herself. Here,
the sensing tasks are classified into two types denoted by
N; and M;, respectively. The set N; = {n;1,n;2, - , 7N, }
indicates that the sensing task can be finished by the user
himself/herself. Whereas the sensing task that cannot be
finished by himself/herself is denoted by the set M; =
{mi1,miz2, - ,m;m, } For each sensing task m, it has the
time-to-live (TTL) , denoted by T,. It means that the sensing
task is invalided when the time exceeds T,,,. Task m has its
sensing time t; ,,, for user i. The sensing time for users to
finish the same task m is different from each other, which is
related to the characteristics of users and devices. Let g; .,
denote the minimum remaining time for user j to finish the
sensing task m, then we have

Gjm = (T — To) — tjm (3)

3

Here, Tj is the current time. The time for user j to finish the
sensing task in set N; is ¢; x,, which is denoted as

tin, = Y, tim 4)

meN;

Considering that user ¢ generates sensing task m at time Tj.
The probability of adding sensing task m to set N; becomes

_J1
pm,Ni - O

Pm,N, = 0 indicates that sensing task m is added to the set
M;. By considering the inter-meeting time between user ¢
and user j, user ¢ will allocate sensing task m to user j if
jm = tiN; + )\i when user ¢ encounters user j. Here,

if Giom 2> tiN,
otherwise )

gjm = ljN; + 5 — represents the constraint to add the
K2V}
sensing task m to the set N;.

3.3 Incentive Model

Since it consumes the energy and resources for mobile
users to undertake the sensing tasks, mobile user may
have a low will to undertake the sensing task due to the
selfishness. Therefore, in this section, we introduce the vir-
tual currency as an incentive for mobile users who finish
the sensing task. A third-party management agency, called
credit clearance center (CCC), is used to manage the virtual
currency of users. All users are registered in the CCC.

Here, user ¢ allocates the sensing task m to user j when
they encounter each other. At the same time, a receipt
is sent to user j, which contains the information of the
price between user ¢ and user j, the number of currency
TFy,;; and the code with respect to the sensing task m.
The receipt is transferred to the CCC when user j accesses
to the CPSS. User j submits the sensing data to user ¢ after
he/she finishes the sensing task m and encounters user i.
Similarly, user ¢ submits an acknowledgement (ACK) to the
CCC when user ¢ accesses to the CPSS. The virtual currency
based on the receipt will be sent to user j from user 4’s
account when CCC confirmed correctly. After finishing the
sensing task m, we have the following account balance for
user ¢ and user j

VC; =VC, —TFp.; (6)

VC; = V0 +TFp, @)

Here, VC; and VC; denote the number of current virtual
currency of user i and user j, respectively. VC; and VC’;
represent the number of virtual currency of user ¢ and user
J before the trade, respectively.

4 TASK ALLOCATION WITH INCENTIVE MECHANIS-
M

In this section we introduce the task allocation between
the requester and mobile user and the incentive mechanism
based on the bargaining game.
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4.1 Trust Evaluation

The trust evaluation mechanism includes direct trust
and indirect trust. The indirect trust is calculated by col-
lecting the recommendation information from other users.
In the CPSS, user ¢ and user j have the same neighbor
users j, = {ji,jé,~-~ ,j;}. Let
successful interactions between user i and user j' while
@, ; means the contrary. W, mdlcates the number of
interactions between user ¢ and user j in the unit time AT.
By calculating the reliability value of each case, we have

w; ;+ denote the number of

_ g
P, = W (8)
0,
P/ . wm-/
Wi T W, ©)
0
Here, P, ;» and P , indicate that the reliability value of

successful 1nteract10n and failure interaction between user
i and user j, respectively. Similarly, the reliability value of
successful interaction between user jl and user j can be
calculated as

w .

P, = I (10)
7 Wj J

The reliability value of failure interaction between user j
and user j is shown as

ro_ Wy

(11)
WJ’J

VA
JJ

Let © = {T, T} denote the set of possible status of users
in CPSS, where {T'} indicates that one user trusts others.
Whereas {T'} means the contrary. The indirect trust vector
IT; ; is defined as

IT,; = (n(T),x (T) 7 (T, T)) (12)
Here, 7 (T) and 7 (T') mean that the support degree of trust
and distrust, respectively. 7 (T, T) denotes the uncertainty
degree due to the lack of information. The values of trust,
distrust and uncertainty degree range in [0, 1]. Therefore,
the indirect trust vector can be determined by

ﬂ-(j:) :Pi;J :Pl;j x Pj//,j
n(T)=P,; =P, xP, (13)
ﬂ(T,T)Zl—F(T)—?T(T)

According to (12), the indirect trust value between user ¢
and user j is the combination of the reliability functions,
which can be calculated as

> m(l)m(be) Ty

/ NNl =T
T (61)7('2 (62) e

e

£1N--Ner=0

(4r)
Tr (f[)

(14)

where ¢; € {T, T} denotes the possible status of user.

4.2 Node Reputation

Based on the historical interaction information, the repu-
tation of user ¢ to user j can be obtained from the evaluation
value of sensing task. We consider that user ¢ and user j
encounter at time Zo. Q; ; = {q1,¢2, - ,qq, ;} is defined as
the set of sensing tasks that user j received from user ¢. For
each task ¢; € Q; , it has the following two cases:

Case 1: Task ¢ is uncompleted within its TTL, ie.,
tZ‘Z_Ck > Tg,. Here, tZZCk is the time that user ¢ receives
the sensing data of task g, from user j. In this case, the
reputation of user ¢ to user j decreases as below

’

Tq = —Mi(to'r —T,,) (15)

where T;k is the change of reputation value and 7; is the
adjustment coefficient of user 4.

Case 2: Task ¢y, is completed within its TTL, i.e., tggd“ <
Ty, - Then, user 7 gives an evaluation value to the sensing
data. We define x4, € [0,1] as the evaluation value of task
gx- The reputation changing value in this case is

"

Taw = Mi (Kq, — K) (16)

where yi; is the adjustment coefficient of user 7 and « is the
evaluation threshold of user i. If k4, > &, the evaluation
value of sensing data is higher than the threshold value
of mobile user i. The reputation of user j will increase
if the evaluation value of sensing data is higher than the
threshold. Otherwise, the reputation of user j decreases and
the reputation changing value is T(;Ik

Combining case 1 with case 2, the change of reputation
value caused by task gy, is

T, = Ty = 1 (tf}‘idﬂ - Ty
qu = /’Li(HQk - K/)

if thack > T,

17
otherwise (17)

Therefore, by considering the direct trust, indirect trust and
the reputation value of sensing task, the trust value of user
i to user j can be obtained by

Qi.j
0; ’
trij = a—pl— + Bo ; (T) + el > 1 (18
Zk 1€k Qij k=1

where a, 3, € are weight parameters and a + 5 + ¢ = 1.

The candidate of user i, who wants to allocate the
sensing task to other users, is to finish the sensing task with
high quality within its TTL. Thus, user ¢ always wants to
allocate sensing tasks to the user with high trust value. Here,
we introduce the trust threshold of user 7 at time ¢y, which
is associated to the remaining time of task. We have

thit, = fz (19)

Z Giom

Z meM;

where &; is the adjustment coefficient of user 7. From (19),
we can know that the trust threshold th;;, is small when
the remaining time g; ,,, of the task is short. Therefore, user ¢
allocates the sensing task to user j only when the trust value
of user j is higher than the threshold (i.e., tr; ; > th; ¢,).
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4.3 Task Allocation

For user ¢, he/she allocates sensing tasks to user j from
the set M; if user j is credible, which means tr; ; > th; 4.
Since user i wants to finish all tasks within TTL, he/she
always allocates the tasks which have the short remaining
time at first. As user j does not want to decrease his/her
reputation value, user j only receives the tasks that he/she
can finish within the task’s TTL. Therefore, we have the
following two rules for the task allocation:

1) User j only receives the task m which can be fin-
ished within the task’s TTL, i.e., the task m can be
added to the set N;.

2) The task m in set M; with short remaining time is
allocated to other user with a high priority.

As for the task allocation scheme, if mobile user j is
credible to task requester i, the task requester ¢ will allocate
the task to mobile user j. There are two constraints to be
satisfied: 1) The requester ¢ firstly allocates the task within
a short remaining time. 2) Mobile user j only receives the
task which can be finished within the task’s TTL. With the
task removing and task adding, we can obtain set N2* that
the task requester ¢ allocates the task to mobile user j.

Based on the two rules, we propose a minimum remain-
ing time (MRT) algorithm for task allocation in Algorithm
1. The algorithm contains two parts: the task removing and
the task adding. In Algorithm 1, N1 is the set that user 4
needs to allocate tasks to other users, N2 is the set that user
1 wants to allocate tasks to user j. At the initialization phase,
we have N1 = M;, N2 = ().

In the task removing process: based on rule 1, user j
only receives the task which he/she can finish within the
task’s TTL. By considering the task in set N; and set N2, the
arranging time that user j needs to finish those tasks is

t?T’T = tj,Nj —|— tj,NQ (20)
1N, and ; N2 are the time that user j finishes those tasks in
the set N; and set N2, respectively. Then we have

tine =Y tjn,n€N2 1)

For task m € N1, if user j cannot finish the task within
its TTL, i.e., task m does not satisfy rule 1. Thus, task m will
be removed from the set N1. The process is denoted as

_ ) INLm]
Nl_{ N1

Here, [A, x| means to remove element x from set A. After
removing all the tasks which do not satisfy rule 1 from the
set N1, we return to the task adding process.

In the task adding process: if set N1 is non-null based
on rule 2, the tasks which have short remaining time will
be allocated to user j, i.e., the task is added into the set
N2. Since all tasks in the set N1 are sorted by the ascending
sequence according to their remaining time, the first element

- 1
Zf 9j,m < t?rr + Tg

22
otherwise (22)

5

in the set N1 will be allocated to user j. Let N1(1) represent
the first element in set N1, we have

[ IN2,NIL(1)]  if N1#£0

N2 = { N2 otherwise 23)
[ IN1,N1(1)] if N1#£0

N1 = { N1 otherwise 24

Here, | A, X | means to add element X to set A. The process-
es of task removing and task adding are repeated until set
N1 is null. Therefore, we can obtain the task set N2* = N2
that user 7 allocates to user j.

Algorithm 1 : MRT Algorithm (user ¢ to user )
1 Input: N;, M; = {m;1,m;z2, -
gi,miyg S e S gi,mi71\1i}

y M M, 0 Gims <

2: Initialization: N1 = M;, N2 = ()
3: Repeat the iteration
4: while N1 # () do
5. compute t;"" by Eq. (20)
6:  for each task m in N1 do
7 if gjm < t?rr + A ; then
8: update N1 by Eq. (22)
9: else
10: break the loop
11: end if

12 end for

13:  if N1 # () then

14: add N1 (1) to N2 by Eq. (23)

15: remove N1 (1) from N1 by Eq. (24)
16:  end if

17:  Output: N2* = N2

18: end while

4.4 Bargaining Game

When user ¢ encounters user j who is credible to user i,
user ¢ may allocate sensing task from set N2* to user j. Here,
the transaction process is modeled as a bargaining game,
where user 7 is the buyer who wants to buy the sensing
service and user j is the seller who sells his/her sensing
service.

There are two players defined as {B, S} in the bargain-
ing game. They represent the buyer and the seller, respec-
tively. Here, user ¢ is the buyer and the reserve price (ie.,
the highest price) that he/she can pay for the transaction is

rB = ’I“i,Ng* = min {VCi, V;}
IN27| L IN27|
Vi=pi X MG X 30 tjNow(m) X Vi| v 22 Yim
m=1 m=1

(25)

where p; is the reserve coefficient of buyer ¢ and v; is the
coefficient of remaining time, respectively. Eq. (25) indicates
that the reserve price of buyer ¢ will be high if the sensing
time of task in set N2* is long. Moreover, if the average
remaining time of task in set N2 is short, the task in set
N2* is urgent to finish and the reserve price of user i for the
task is high.
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Similarly, user j acts as the seller in the game and the
reserve price is
N2

rs = TjN2x = Pj X tri,j X Z tj,NQ*(’H’L)
m=1

(26)

Here, p; is the reserve coefficient of seller j. Eq. (26) repre-
sents that the reserve price of user j is high if the sensing
time of the task in set N2* is long or the trust value of user
j is high. Furthermore, if user j has less virtual currency,
he/she may be more urgent to earn virtual currency and
give a low reserve price to make sure that the transaction is
successful.

Based on the reserve price of buyer ¢ and seller j, there
are three cases which are r; N2« > 7; N2+, TjNox = T3 No=
and 7; n2= < 7; N2+, respectively. In the case 7 N2+ > 75 N2+,
the reserve price of buyer 7 is lower than the reserve price of
seller j. The transaction will be canceled. In the case r; N2+ =
r;,N2+, the transaction will be ended and the price of the
transaction is r; N2+. In the case 7j N2+ < 7; N2+, the optimal
price of the transaction is obtained by the bargaining game.
In the bargaining game, two players make the bargaining to
divide a “cake”, which is denoted as

C:’["B—TS (27)

Then the utilities of seller S and buyer B can be expressed
by

up (zg) = xgC (28)

us (zs) = xsC (29)

Here, up (-) and ug (+) are the utility functions of buyer
and seller, respectively. g and x5 are the proportion of the
”cake” which is divided by the buyer and seller, respective-
ly. We have

z={(zs,zp) x5 +axp =125 >0,z > 0} (30)

In the bargaining game, two players give their dividing
offer in turn. We consider that the seller gives the offer first,
i, the seller S gives the offer z1 = (z},z}) in round 1.
The buyer B decides whether to accept the offer or not. If
the buyer B accepts offer x, the bargaining game between
buyer B and seller S is over. The “cake” C is divided by the
offer z. Otherwise, the bargaining game comes to round 2.
In round 2, the buyer B gives his/her offer x5 = (x%, x2B) If
the seller S accepts the offer x5, the bargaining game is over
and they divide the “cake” C by the offer z. Otherwise,
the bargaining game comes to the next round and the seller
S starts to give the offer. The bargaining game is continued
until one player accepts the dividing offer which is proposed
by another player.

Since the bargaining process brings some costs, i.e., time,
between buyer and seller, there are discounts for the utility
between buyer B and seller S. Here, we define dp and g
(0B, ds € [0,1]) as the discount factor for buyer B and seller
S, respectively. For buyer B, he/she is more concerned with
the remaining time of task. In other words, he/she wants the

6

task to be finished as soon as possible. Thus, the discount
factor satisfies

N2 |

dép (|N12 mz::1 Gi,m

Y
d N2+ > Gi,m
m=1

Here, we set the discount factor of the buyer B as

) >0,05(0) =0, dg(c0) =1 (31)

vl —v0

e’ —e
p=—F——> 32
B evlt + e—vb ( )

where v is the patience coefficient of the buyer.

1 N
0= g im 33
N2+ | e O %9

The discount factor of seller S is related to the number
of tasks in set N ;. If there are many tasks in N, seller S may
have less patience on bargaining process with the result that
the discount factor is low. For the discount factor dg, we
have

dds(e™|N;|)

0, 65(0)=1, 9 =0 34
de ) <0 3s0)=1, ds(0) =0 @Y
Similarly, ég is set as
po' o —ub
by =1— (35)
end + e— 1o
where (1 is the patience coefficient of the seller.
0" = eV |N,| (36)

Thus, at round £, the utilities of seller S and buyer B can be
calculated separately as

ulg(xlg) = 5];7156@0 (37)

up(p) = 0 'whC (38)
Here, uf (-) and uf (-) are the utility functions of seller S
and buyer B at round k, respectively. With the discount fac-
tors, both buyer B and seller S want to reach an agreement
as quickly as possible. Therefore, we have the following
theorem.

Theorem 1: There exists a unique subgame perfect Nash
equilibrium for the proposed bargaining game, where the
bargaining game can be ended in round 1 with the following
agreement

* 1- 6B
S (39)
. O0p—0pdg
— 0B 9B9S 4
T = 7= Spds (40)

Proof: For seller S, he/she gives the offer at each odd
round. Since the offer given by the seller S at each round
is equivalent to the first round, the infinitely repeated game
can be seen as a bargaining game with three rounds [41].
Here, x% is denoted as the best offer for the seller S in round
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3. With a backward induction method, the proportion that
seller S requests in round 3 satisfies

Tg=Tg (41)

rh=1-2a%

(42)
Thus, at round 3, the utility of seller S and buyer B can be
obtained separately by

ul = 6250 (43)

up = 631 —25)C (44)

Back to round 2, the buyer B gives his/her offer. Here,
as we have ac?; = xp, x2B = 1 — xp, the utilities of seller .S
and buyer B at the current round become

U2B = 53(1 —:L'B)C (46)
If 25 > dgz% holds when u% > u?, seller S will accept the
offer at the current round. Otherwise, the bargaining game
comes to round 3. Thus, the utility of buyer B is

u? B = =dp (1 xp)C

UB:{ (1—955)

Here, 05 € [0,1] and the best offer of buyer B is x5 = dgz§
at round 2.

Back to round 1, the seller S gives his/her offer. From the
above analysis, we know that seller S insists that % is the
best offer in this round. The utilities of both sides become

’Lf B Z 53:E>g

otherwise (47)

uB:

uy = 25C (48)

up = (1—2%)C (49)
Similarly, only if ul, > u%, ie, 1 — 2% > 05 (1 —zp), the
buyer B will accept the offer at the current round. It is obvi-
ously that the task allocation strategy 1 — 2% = dp (1 — )
is the best offer for seller S. The best offer can be obtained
by

26=1-0p(l—xp)=1—-0p(1 — dsz%) (50)
* 1_63
ST o0 (1)

Therefore, the optimal price of the transaction in the case
75 N2 < T N2* is

1-6p

T op0s C (52)

*
T =TjN2x +

This completes our proof.

5 PERFORMANCE EVALUATION
5.1 Simulation Setup

In the simulation, there are 100 mobile users in the
CPSS. We consider that there are only 5% mobile users to
generate sensing tasks over time in the CPSS [47]. The rate
of task-generating ; follows the uniform distribution in
[0,1] [47]. The average frequency that two users encounter
each other is 0.2 times per hour [46]. Similarly, the average
completion time ¢, of each task is [10,20,--- ,50](hours)
[47]. The sensing time of task m for users is [0.9%,,, 1.1t,,].
The TTL of task m is 2t,,. The adjustment coefficients 7; and
;i of mobile user ¢ are 0.1, 0.8, respectively. The adjustment
coefficient ¢; of the reputation threshold is 0.005.

In addition, there are five kinds of social relationships
between two mobile users. The credibility value between
two users is settobe e; = 1,e9 = 0.8, e3 = 0.6, e, = 0.4,
es = 0.2, respectively. Moreover, based on the different
social ties between two mobile users, the evaluation value
of the requester for the quality of sensing data follows the u-
niform distribution in [0.7,1.0], [0.6,1.0], [0.5, 1.0], [0.4, 1.0],
[0, 1.0], respectively. The simulation results are obtained by
repeating the experiment until 100 times.

5.2 Performance Evaluation

Since the evaluation threshold « has an effect on the trust
value of users, the simulations are carried out by comparing
the performance of the proposed algorithm on the value of
k. Fig. 2 shows the number of finished tasks within TTL
under different value of . From Fig. 2, we can observe that
the number of finished tasks within TTL increases over time.
In addition, the large value of x implies that the number
of finished tasks is few. The reason is that the update of
user’s reputation value is controlled by the value of . The
requester does not select a user whose reputation value is
less than the evaluation threshold to finish the task. When
the number of mobile users employed by the requester
decreases in the CPSS, the number of finished tasks within
TTL is also reduced.

4500 ‘f ‘f ;

4000 TV w04
—6— «=0.6 /
3500 —| ——4+— =07

x=0.8

3000 ,,f ,
L

N

2500

1500 /"/e//;z/}/
s

1000 “ 4
500 %
|
£ |

|

:
200 400 600 800 1000 1200 1400 1600 1800 2000
Time (hours)

The number of finished tasks within TTL

Fig. 2. The number of finished tasks with different value of .
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the high value of x can improve the evaluation value of the
sensing data, but increase the number of unfinished tasks.

= S A ;} ] In Fig. 5, we compare the performance of the algorithm
_: T =04 i with different value of &;. From Fig. 5, we can obtain that the
g 2000(-—| T O k=06 : 1 number of finished tasks within TTL increases over time. In
2 et i addition, the large value of §; indicates that the number of
E 08 i LT finished tasks is small. The reason is that the trust threshold
= 1500 i ' | > i ;
2 | // value is controlled by the value of {;. The requester does not
E i i / ’ i select a user whose reputation value is less than the trust
£ 1000}- : : / M-e’e" threshold. If the value of &; is high, the number of users to
'*é i i ’ ‘e’e’e,e»e- ; finished task is reduced. Therefore, the number of finished
é o i : » i tasks within TTL reduces.
=
et
= | |

%" 20 400 600 80 1000 1200 1400 1600 1800 2000 5000 i i i

>

Time (hours)
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4000 {~—| !
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Fig. 3. The number of unfinished tasks with different value of «.
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Fig. 3 depicts the number of unfinished tasks within TTL
under different value of . It can be seen from the figure
that the number of unfinished tasks within TTL increases
over time. Moreover, the large value of x implies that the
number of unfinished tasks is large. The reason is that the
requester does not select a user whose reputation value is
less than the evaluation threshold to finish the task. If the N
number of users to finish the task is reduced, the number of O 200 400 600 800 1000 1200
unfinished tasks within TTL increases. Time(hours)

i

1000 —

500 e

The number of finished tasks within TTL

A

& —
+—t ———

400 1600 1800 2000

¢

+

Fig. 5. The number of finished tasks with different value of ¢;.

In Fig. 6, we compare the performance of the algorithm
on different value of TTL. From Fig. 6, we can observe that
the number of finished tasks within TTL increases over time.
Note that the large value of TTL indicates that the number
of finished tasks is high. This is because the task’s TTL is
used to measure the valid time of the task. If the task’s TTL
PSS S anas is longer, the number of finished tasks is higher.
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Fig. 4. The average evaluation value with different value of «.

Fig. 4 illustrates the average evaluation value with dif-
ferent value of k. Note that the average evaluation value
changes slowly and gradually when it reaches the stable 1000
k. Moreover, the large value of x means that the average sool /%;((; o
evaluation value is large. This is because the reputation / L *i’?x L
value is controlled by the value of . If the user’s reputation A I TR ET Tl
value is high, the task will be finished with high quality and Time(hours)
the average evaluation value becomes large.

From the above analysis, we obtain that different values
of k have different effects on the mobile CPSS. Specifically, Fig. 6. The number of finished tasks with different value of TTL.
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In Fig. 7 — Fig. 9, we investigate the performance of the
algorithm when the value of « is 0.5. The proportion of
selfish user in the CPSS is set to be 50%. We compare the
proposed algorithm with two other algorithms: the random
selection with MRT (RSWM) algorithm and the random
selection without MRT (RSWOM) algorithm. In RSWM
scheme, the requester randomly selects a user to finish the
task and the task is allocated by MRT algorithm. In RSWOM
scheme, the requester randomly selects a user to finish the
task and the task is not allocated by MRT algorithm.

4500 t

—A— T I P
40001- e proposal

—6— RSWM

35001 o Rswom

3000 -
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The number of finished tasks within TTL
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Fig. 7. The number of finished tasks in three algorithms.

Fig. 7 shows the number of finished tasks within TTL in
three algorithms. From Fig. 7, we can obtain that our pro-
posal outperforms the other two conventional algorithms in
terms of the number of tasks. It is because the bargaining
game facilitates the transaction between two mobile users
with the incentives. Mobile users become more active to
provide sensing tasks to obtain more virtual currency where
the efficiency of sensing can be improved. Similarly, it can be
seen that the number of finished tasks by RSWM algorithm
is more than that by RSWOM algorithm. The reason is that
the task allocation based on MRT algorithm can improve the
number of finished tasks.

Fig. 8 indicates the number of unfinished tasks within
TTL in three algorithms. From the figure, we can see that
the number of unfinished tasks in the proposed algorithm is
much lower than other algorithms. The reason is that the
proposed algorithm can improve the number of finished
tasks. Therefore, the number of unfinished tasks is reduced
within TTL. Similarly, it can be seen that the number of
unfinished tasks by RSWM algorithm is much lower than
that by RSWOM algorithm. The reason is that the task can
be effectively allocated to users according to the MRT algo-
rithm, with the result to decrease the number of unfinished
tasks.

Fig. 9 indicates the average evaluation value of sensing
data changes over time in three algorithms. In Fig. 9, we
observe that the evaluation value of sensing data can be
significantly improved by setting the reputation threshold of
the requester. This is because the requester only selects the
user whose reputation value is higher than the reputation
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Fig. 8. The number of unfinished tasks in three algorithms.
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Fig. 9. The average evaluation value of sensing data changes over time
in three algorithms.

threshold to finish the task. Therefore, the quality of sensing
task is high and the evaluation value of the sensing task is
also large.

From the above simulation analysis, we can conclude
that the proposed algorithm outperforms other two schemes
in terms of both the number of finished tasks and the quality
of tasks. Our proposal can effectively improve the number of
finished tasks. In addition, the performance of the proposed
algorithm is more effective when the number of users in the
CPSS is larger.

6 CONCLUSION

In this paper, we have proposed a novel task alloca-
tion scheme for crowd sensing in CPSS by using a game
theoretical approach. Firstly, a trust mechanism has been
proposed to evaluate the reputation of mobile users, based
on the historical interaction among mobile users. Secondly,
the virtual currency management has been introduced to
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stimulate mobile users to participate in crowd sensing to
undertake the tasks with incentives. Thirdly, the interaction
between the task requester and mobile users has been mod-
eled by the bargaining game. The optimal price to provide
sensing service can be obtained by a subgame perfect Nash
equilibrium. In addition, simulation results have shown
that our scheme outperforms other conventional schemes
in terms of the number of tasks and the quality of tasks.

As for the future work, a secure task relay between the
task requesters and mobile users will be studied to protect
the privacy of mobile users.
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