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Abstract
A wide range of learning tasks require human input in labeling massive data. The collected data
though are usually low quality and contain inaccuracies and errors. As a result, modern science and
business face the problem of learning from unreliable data sets.

In this work, we provide a generic approach that is based on verification of only few records
of the data set to guarantee high quality learning outcomes for various optimization objectives.
Our method, identifies small sets of critical records and verifies their validity. We show that many
problems only need poly(1/ε) verifications, to ensure that the output of the computation is at most
a factor of (1 ± ε) away from the truth. For any given instance, we provide an instance optimal
solution that verifies the minimum possible number of records to approximately certify correctness.
Then using this instance optimal formulation of the problem we prove our main result: “every
function that satisfies some Lipschitz continuity condition can be certified with a small number of
verifications”. We show that the required Lipschitz continuity condition is satisfied even by some
NP-complete problems, which illustrates the generality and importance of this theorem.

In case this certification step fails, an invalid record will be identified. Removing these records
and repeating until success, guarantees that the result will be accurate and will depend only on the
verified records. Surprisingly, as we show, for several computation tasks more efficient methods
are possible. These methods always guarantee that the produced result is not affected by the invalid
records, since any invalid record that affects the output will be detected and verified.
Keywords: unreliable data set, verification, Lipschitz continuity

1. Introduction

Modern science and business involve using large amounts of data to perform various computational
or learning tasks. The data required by a particular research group or enterprise usually contain
errors and inaccuracies because of the following reasons:

- the validity of the data changes dynamically. For example data involving home locations
of customers or employees are not constant over time. Hence a set of data collected in a
particular time frame probably is not going to remain valid for the future,

- the data might be provided by other entities or collected online from a source that has no
certification for their validity. For example data collected from crowdsourcing environments.

We call a set of data with the property that only a subset of them is valid an unreliable data set. The
goal of this paper is to develop theoretically established methods that lead to certified computation
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over such data sets. Towards this goal we assume that we have the ability to verify the validity of
a record in our data set. Usually this verification process is costly and hence it doesn’t make sense
to verify all the records in our data set every time we want to compute a function on them. On the
other hand if the majority or the most important part of the data are invalid then trying to find a valid
subset could lead to essentially verifying the entire data set. In our work we introduce the concept
of learning with certification, in which we can distinguish between the following scenarios

1. the value of the function that we computed on the unreliable data set is close to the value of
the function computed on the valid subset of our data set,

2. there exists at least one invalid record that could dramatically charge the value of the function
that we want to compute.

by verifying only a small number of records.

Computations in Crowdsourcing. Crowdsourcing Doan et al. (2011) is a popular instantiation of
an unreliable data set, where records are provided by a very large number of workers. These workers
may need to put significant effort to extract high quality data and without the right incentives they
might choose not to do so giving, as a result, very noisy and unreliable reports. Experimental
evidence Kazai et al. (2011); Vuurens et al. (2011); Wais et al. (2010) suggests that There are a large
number of examples where crowdsourcing fails in practice because of the unreliability of the data
that it produces. An anecdotal failure of crowdsourcing is the example of Walmart’s mechanism that
made the famous rapper Pitbull travel to the remote island of Kodiak, Alaska, see e.g., ABCNews
(2012). In 2012, Walmart asked their customers to vote, through Facebook, their favorite local
store. The store with the most votes would host a promotional performance by Pitbull. Probably as
a mean joke, a handful of people organized an #ExilePitbull campaign, inviting Facebook users to
vote for the most remote Walmart store, at Kodiak. The campaign went viral and Pitbull performed
at Kodiak, in July 2012. While the objective of Walmart was to learn the location that would
maximize attendance to the concert, the resulting outcome was terribly off because the incentives
of the workers were misaligned.

Our work is motivated by these observations and aims through the use of verification to provide
a generic approach that guarantees high quality learning outcomes. Verification can be implemented
either directly, in tasks such as peer grading, by having an expert regrade the assignment, or indi-
rectly, e.g. in the Walmart example by verifying the locations of the voters. The main challenge in
our framework it to minimize such verifications since they can be very costly.

1.1. Our Model and Results

A data set is a set of recordsN . The setN may contain, apart from the valid subset of records T , a
set of recordsN \T that are invalid due to reasons that we described earlier. But how much does the
presence of these invalid records affect the output of the computation? The answer to this question
depends on the number but also on the importance of the invalid records, where the importance
depends on the specific computation task that we want to run.

In order to assess whether the computed output is accurate, we can verify the validity of some
of the records. Our goal is to verify as few reports as possible and eventually be confident that the
output of the computation is accurate. At this point we have to define a measure to evaluate the
accuracy of an output. Ideally, an accurate output is the output that we would get if all the records
were valid. Such a benchmark, however, is impossible to achieve as the correct values of the invalid
records are unobservable. We instead focus on a simpler benchmark. We want to decide whether
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given an unreliable data set the output of the computation based on N is close to the output of the
computation based only on T . That is, if we could see which records are invalid and perform the
computation task after discarding them, would the output of the computation be close to the current
value?

Certification Schemes A positive answer to the question above is called certification of the com-
putation task based on the unreliable data set N . A negative answer is a witness that at least one
record in N is invalid. Our first goal of this paper is to provide certification schemes for general
computation tasks that verify only a small number of records and can distinguish between these two
cases.

f(x )
↑    
N ≈ε f(x )

    ↑
T

8  10  3   

2  28  16

Collected Data xN

8  10    

2   16

Valid Data xT

Figure 1: The property that a certification scheme certifies.

As a toy example of these models let us consider the simple function f(xN ) = maxi∈N xi,
where we assume that each record is a real number xi ∈ R. For the certification task we want to
check whether f(xN ) = f(xT ) or not. This can be easily done by checking whether the record
i∗ = arg maxi∈N xi is valid or not.

Not all functions though have such efficient deterministic and exact correction schemes. For
several functions, we can obtain randomized certification schemes that succeed with high probabil-
ity and certify that the output is close up to a multiplicative factor. Moreover, for some functions
it might not even be possible to efficiently certify them without certifying almost everything. One
extreme such example is a threshold function that is 1 if all records are valid and 0 otherwise, IN=T
where we cannot obtain any meaningful approximation without verifying Ω(n) records of N .

In Section 3, we provide efficient certification schemes for many different functions. Our results
are the following:

- sum function. We start by presenting a randomized scheme for certifying the sum of all
records that uses only O(1

ε ) verifications to certify correctness up to a multiplicative factor
1± ε. This is a very useful primitive that can be used in several different tasks: For example
for computing the average, we can compute and certify the total sum of records and divide
by the total number of records which we can also certify as another summation task. Another
example is the max-of-sums function, where as in the Walmart example we presented earlier,
agents vote on different categories and the goal is to compute the total category that has the
maximum number (or sum) of valid records. This can be easily certified by computing the
max of all sums of records and certifying that this sum is approximately correct.

- functions given by linear programs. We then study the set of functions expressible as
LPs where the input data corresponds to either variables or constraints of the LP. We show
that for functions expressible as packing or covering LPs, only O(1

ε ) verifications to certify
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correctness up to a multiplicative factor 1 ± ε while for more general LPs we provide a
deterministic scheme that depends on the dimensionality (number of variables or constraints).

- instance-optimal schemes. To study more general functions, we devise a linear program
that characterizes (up to a constant factor) for any given instance the minimum number of
verifications needed for approximate certification. We show that even though optimal cer-
tification schemes may be arbitrarily complex, there are simple schemes that verify records
independently that are almost-optimal.

- Main theorem for certification. Our main most general result is that we can provide explicit
solutions to the instance optimal linear program for a large class of different objectives that
satisfy a w-Lipschitz property. We illustrate the flexibility of this constraint by showing that
even very complex functions that correspond to NP-hard problems satisfy the w-Lipschitz
property. Specifically, using our general theorem, we prove this for the TSP problem and the
Steiner tree problems where we show that the certification complexity is only O(1

ε ). These
capture settings where agents report their locations in a metric space and the goal is to design
an optimal tour that visits all of them (TSP) or connecting them in a network by minimizing
total cost (Steiner tree).

Correction Schemes Although very useful, the certification process fails when at least one invalid
record is found. Naturally the next question to ask is how we can proceed in order to actually
compute the value of the function that we are interested in by throwing away the invalid records.
In a worst case example where all records are invalid, we would need to verify all the agents to
complete the correction task. To get a more meaningful and realistic measure of the verification
complexity of a correction task, we carefully define it in terms of a budget B. For verification
complexity V , we assume that the designer has an initial budget for verifications B = V which
decreases as he performs verifications but might increase every time he finds an invalid record. The
rationale behind the increase is that verifications of incorrect records lead to their removal from
the data set, which makes it more accurate. Therefore, in this model we measure the number of
verifications needed to correct one incorrect record. We distinguish correction schemes into two
models depending on the budget increase.

In the weak correction model, the budget increases by V every time an invalid record is found.
This means that finding an invalid record allows us to restart the process from the beginning.

In the strong correction model, the budget does not increase but does not decrease either. This
means that verification of invalid records is costless.

Of course, as we said, in the worst case a correction scheme has to verify all the data in the data
set which is not realistic. However, during the correction procedure for specific tasks it would be
reasonable to have an upper bound on the number of invalid data that we are willing to verify before
dismissing the entire data set for being too corrupted. In particular, if the correction scheme succeeds
within the verification budgets we have an accurate output to our computation task. Otherwise, we
can conclude that our data set is too corrupted and hence we need to collect the data from the
beginning.

Notice that in the example of the max function, if the certification fails then we can continue
by checking the second largest record and so on until we find a valid record which will give us the
value f(xT ) precisely. However, strong correction schemes are much harder to obtain than weak
ones in general.

If our computation or learning task has a deterministic certification scheme, e.g. the max func-
tion, it is easy to obtain weak correction schemes by repeating the certification scheme until success.
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For randomized schemes though, one needs to be more careful as it is possible that errors can accu-
mulate. This is easy to fix by requiring that the certification scheme fails with probability at most
1/n. However, this increases the total weak-verification complexity by a logarithmic factor.

In Section 5, we prove our main result for weak correction schemes which implies that such
an increase is not necessary and it is possible to obtain weak correction schemes with the same
complexity as the underlying certification scheme (up to constant factors). To do this, we run the
certification scheme many times and do not stop the first time it succeeds but continue until the total
number of successes is more than the number of failures. A random walk argument guarantees that
this produces the correct answer with constant probability. If the objective function is not monotone,
additional care is needed to get the same guarantee.

While weak correction schemes with good verification complexity exist for all tasks that we can
efficiently certify, strong correction schemes are more rare. In Section 6, we show that it is possible
to obtain strong correction schemes for the sum function using only O( 1

ε2
) verifications of valid

records. Since that many verifications are necessary to get a 1± ε multiplicative approximation for
the sum, this implies a gap between the weak and strong correction models. The gap between them
can be arbitrarily large though. As an example, the max-of-sums function we discussed earlier has
certification and weak-correction complexityO(1

ε ), although it is impossible to get a constant factor
approximation in the strong correction model without verifying Ω(n) valid records.

Despite the impossibility of obtaining strong correction schemes even for simple functions such
as the max-of-sums, we can show that efficient certification schemes exist for quite general opti-
mization objectives. We prove (Theorem 12) a very interesting and tight connection of strong cor-
rection schemes with sublinear algorithms that use conditional sampling Gouleakis et al. (2017).
We can exploit this connection to directly obtain efficient strong correction schemes. This gives
efficient schemes for general optimization tasks such as clustering, minimum spanning tree, TSP
and Steiner tree that capture settings where agent reports lie on some metric space.

1.2. Related Work

Our certification task resembles the task of property testing, as formalized in Goldreich et al. (1996),
where one has to decide whether the data has a particular property versus being ε-far from it in some
distance metric. In our case, the property we want to test is whether the evaluation of the function
on all the collected data is equal to its evaluation on the subset of the valid data only.

Our correction task is related to a large body of work in statistics on how to deal with noisy
or incomplete datasets. Several methods have been proposed for dealing with missing data. The
popular method of imputation Rubin (1987); Little and Rubin (2002); Schafer (1997) corrects the
dataset by filling in the missing values using the maximum likelihood estimates.

In addition, the field of robust statistics Hampel et al. (1980); Huber (2011) deals with the prob-
lem of designing estimators when the dataset contains random or adversarially corrupted datapoints.
Several efficient algorithmic results have recently appeared in the context of robust parameter esti-
mation and distribution learning Diakonikolas et al. (2016, 2017a, 2018, 2017b); Lai et al. (2016).
The goal of these works is to learn the parameters of a multidimensional distribution, that belongs
to a known parametric family, while a constant fraction of the samples have been adversarially cor-
rupted. Charikar et al. (2017) deal with parameter estimation in cases where more than half of the
dataset is corrupted and identification is impossible by providing a list of candidate estimates. They
show that the correct estimate can be chosen as long as a small “verified” set of data is provided. In
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contrast to Charikar et al. (2017), the verification oracle in our model allows us to verify any subset
of datapoints but verification is costly. Steinhardt et al. (2016) consider similar verification access
to the dataset in crowdsourced peer grading settings.

Selective verification of datapoints has also been explored in the context of mechanism design.
Fotakis et al. (2016) study mechanisms with verification and achieve truthfulness by solving a task
similar to certification in social choice problems.

Finally, another related branch of literature considers the task of correcting datasets through
local queries (Jha and Raskhodnikova (2011); Blum et al. (1990); Bhattacharyya et al. (2012); Saks
and Seshadhri (2010); Ailon et al. (2008); Canonne et al. (2016)). For example, using local queries,
Ailon et al. (2008) correct datasets to ensure monotonicity and other structural properties. Canonne
et al. (2016) solve similar local correction tasks for noisy probability distributions.

2. Model and Preliminaries

Notation For m ∈ N we denote the set {1, · · · ,m} by [m]. Let N = [n] be the set of all records
of the data set and T ⊆ N be the subset of records that are valid. The set T is unknown to the
algorithm. Suppose we are given an input xN = (x1, x2, · · · , xn) of length n, where every xi
belongs to some set D. Let xT = (xj)j∈T be a vector consisting only of the coordinates of x that
are in T . Our general goal is to approximate the value of a symmetric function f : D∗ → R+ on
input xT ∈ D∗. Finally, Every input xj with j ∈ T is called valid and the rest N \ T are called
invalid. We consider two different tasks; certification and correction.

In the certification task, we count the total number of verifications of records needed to test between
the following two hypotheses:

(H1)

f(xN ) ∈
[
1− ε, 1

1− ε

]
· f(xT )

(H2) there exists a record i such that i /∈ T .

We allow a small probability δ that the algorithm fails to find a witness, i.e.

P
(
f(xN ) 6∈

[
1− ε, 1

1− ε

]
· f(xT ) ∧ no invalid record found

)
≤ δ

In the correction task, the goal is to always compute an approximation to the correct answer, even
when the certification task fails. We consider two models for correction the weak correction and
the strong correction.

In the weak correction model after catching an invalid record we are allowed to restart the task
and therefore we do not count the number of verifications that we already used before catching the
invalid record. So if we have the guarantee that a weak correction scheme uses v(n, ε) verifica-
tions and during the execution of the scheme we find k invalid records, then the total number of
verifications used is at most (k + 1) · v(n, ε).

In the strong correction model instead of restarting every time we find an invalid record, we just
ignore the data of this record and we also don’t count them in the number of verifications. So
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if we have the guarantee that a strong correction scheme uses v(n, ε) verifications and during the
execution of the scheme we find k invalid records, then the total number of samples used is at most
k + v(n, ε).

3. Certification Schemes for Linear Programs

In this section, we present examples of certification schemes for frequently arising problems such
as computing the sum of values or functions that can be expressed as a linear programs. In the next
section we will see the more general statement about certification schemes for functions that satisfy
a general Lipschitz continuity condition.

3.1. Computing the Sum of Records

One of the most basic certification tasks is computing the sum of the values of the records. For this
task, we are given n positive real numbers x1, x2, . . . , xn each one comming from a record in our
data set. Our goal is to certify whether the sum of all the records is closed to the sum of the subset
of records that are valid, i.e. belong to T .

More formally, we want to check with probability of failure at most δ > 0 whether
∑

i∈N xi ∈[
1− ε, 1

1−ε

]
·
∑

i∈T xi or there is at least one record i such that i /∈ T . We show that there exists
an efficient certification scheme for this task:

x  x  x  x  

> ε x

x  x
 1  2  3  4

∑
 i∈N  i

 5  6

Figure 2: If the invalid records make up more than ε fraction of the total sum, there is at least ε
probability that an invalid record is found with a single verification.

Lemma 1 Let x1, x2, . . . , xn ≥ 0 be the values of the records inN and f(xN ) =
∑

i∈N xi. Con-
sider the probability distribution pi = xi∑

j xj
which assigns to each record a probability proportional

to its value xi. Verifying k = Θ(1
ε log(1/δ)) records sampled independently from p, guarantees that

the certification task succeeds with probability at least 1− δ.

Proof Since T ⊆ N and xi’s are positive numbers, the inequality
∑

i∈N xi ≥ (1 − ε)
∑

i∈T xi
holds trivially. If the inequality

∑
i∈N xi ≤

1
1−ε

∑
i∈T xi does not hold, we can bound the proba-

bility that all of the k verifications fail to find an invalid record, as follows:
The probability that a single verification fails to find an invalid record is

∑
i∈T pi =

∑
i∈T xi∑
i∈N xi

<

1− ε.
Therefore the probability that all k verifications fail is at most (1−ε)k. Setting k = Θ(1

ε log(1/δ)),
we guarantee that an invalid record is found with probability at least 1− δ.
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3.2. Functions given by Linear Programs

We now extend the previous results for the sum function to more general objective functions that
can be represented as linear programs. We first consider the special case of packing and covering
LPs while later we present a result for general linear programs.

Packing LP Covering LP

maxy
∑
i∈N

ci yi

s.t.
∑
i∈N

aij yi ≤ bj , j = 1, . . . ,m

yi ≥ 0, i ∈ N

minx

m∑
j=1

bj xj

s.t.
m∑
j=1

aij xj ≥ ci, i ∈ N

xj ≥ 0, j = 1, . . . ,m

Packing and Covering LP’s are parameterized by the non-negative parameters aij , bj , ci. We
assume that each record i contains all parameters under his control, i.e. the value ci and aij for all
j, while the parameters bj are accurately known in advance.

Packing LPs capture settings where several resources (each available in a quantity bj) are to
be divided among a set of agents in the system and agents report how much of each resource they
need (given by aij) and how much value they can generate if they are given the resources they
ask for (given by cij). Our goal is to compute an efficient allocation to agents that maximizes the
total value generated. For the certification task, we want to certify that the total value generated by
the true agents in an optimal allocation is close to the value computed under the possibly incorrect
reports. We show that efficient certification schemes exist by extending the certification scheme
presented for the sum function:

Lemma 2 Let aij , ci ≥ 0 be values contained in the records N and y∗ be the optimal solution to
the packing LP. Consider the probability distribution pi =

y∗i ci∑
j y
∗
j zj

which assigns records a prob-

ability proportional to their computed value y∗i ci. Verifying k = Θ(1
ε log(1/δ)) records sampled

independently from p, guarantees that the certification task for the packing LP succeeds with prob-
ability at least 1− δ.

To see why this lemma holds, notice that the value
∑

i∈N ciy
∗
i computed using all the records

N is higher than the value
∑

i∈T ciȳi computed using only the valid records T . Moreover, if∑
i∈T ciy

∗
i ≥ (1 − ε)

∑
i∈N ciy

∗
i , then it must be that

∑
i∈T ciȳi ≥ (1 − ε)

∑
i∈N ciy

∗
i as well,

since setting yi = y∗i for i ∈ T and yi = 0 otherwise is a feasible solution to the packing LP
under the valid records. Finally, if

∑
i∈T ciy

∗
i < (1 − ε)

∑
i∈N ciy

∗
i , it means that invalid records

contribute more than an ε fraction of the total value and thus an invalid record can be easily found
as in the previous case of the sum function.

Covering LPs naturally capture various settings with public goods where the designer wants
to introduce new goods to satisfy all the demands coming from the records of our data set, but
minimizing the total cost at the same time. In facility location problems, the designer wants to open
facilities so that all a set of agents have access to at least one facility and the agents report which
locations are accessible to them.

Certification schemes for covering LPs are less direct than previous examples, but can be easily
obtained through LP duality. As the dual of a covering LP is a packing LP which has the exact same
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value, we can use the certification scheme of Lemma 2 to certify that value. We directly get the
following:

Lemma 3 Let aij , ci ≥ 0 be values in the records N . Verifying k = Θ(1
ε log(1/δ)) records

sampled independently according to a distribution p given by the solution to the dual packing LP,
guarantees that the certification task for the covering LP succeeds with probability at least 1− δ.

General LPs can be written in the form of a packing or a covering LP but have arbitrary (possibly
negative) parameters aij , bj , ci. The value of such LPs is harder to certify in general as a lot more
verifications than before might be needed. However, we can show that m verifications suffice to
certify their value exactly.

Lemma 4 Let aij , ci be (possibly negative) values contained in the records N . The certification
complexity for general LPs (written in the form of packing or covering LPs above) is at most m.

To see why this is true, notice that in the covering LP formulation, the optimal value is given
by at most m tight constraints as there are only m variables. Verifying the m records relevant to
those constraints guarantees that the optimal value of the LP under only the value of the records is
equal to the computed one. This is because only those m constraints determine the optimal value
and even if every other constraint i was dropped (i.e. because i /∈ T ) the value would remain the
same. The result also holds for general LPs under the packing LP formulation by LP duality.

4. Certification Schemes for w-Lipschitz Functions and Applications

In this section, we present a unified way of finding almost-optimal certification schemes. For a
given a function f , a desired approximation parameter ε and an instance xN , we want to compute
the “instance-optimal” number of verifications in order to certify that f(xN ) ∈

[
1− ε, 1

1−ε

]
f(xT )

with probability of failure at most 1/3. The first result of this section is a structural result. We show
that even though optimal schemes may be arbitrarily complex, there are simpler schemes, that verify
records independently, which are almost-optimal.

To show this we define for every set S ⊆ N the probability pS that the instance-optimal certifi-
cation scheme C∗ verifies at least one record in S, i.e. pS = P

(⋃
i∈S {C∗ verifies record i}

)
. For

such an event, we say that the certification scheme verifies S and for simplicity we denote pi, the
probability that C∗ verifies record i, i.e. pi = p{i}.

For the instance xN , the set of invalid records could be any S ⊆ N . For the certification scheme
to work with failure probability at most 2/3, we must have that pS ≥ 2/3 for any subset S ⊆ N
such that f(xN )/f(xN\S) /∈ [1− ε, 1/(1− ε)]. If this doesn’t hold for some S, an adversary could
choose the set of invalid records to be S and the certification scheme C∗ would fail with probability
more than 1/3. Moreover, even though the optimal certification scheme C∗ may verify records in a
very correlated way, we have that

∑
i∈S pi ≥ pS ≥ 2/3 from a simple union bound. Therefore, the

certification scheme C∗ must satisfy the following set of necessary conditions:∑
i∈S

pi ≥ 2/3 ∀S ⊆ N such that
f(xN )

f(xN\S)
/∈
[
1− ε, 1

1− ε

]
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By linearity of expectation, the expected total number of verifications that C∗ performs is,

E[total number of verifications] = E

[∑
i∈N

1{C∗ verifies record i}

]
=
∑
i∈N

pi

The above imply that the value of the following linear program is a lower bound on the total number
of verifications needed by the optimal scheme C∗ for this specific instance xN .

min
∑
i∈N

pi

s.t.
∑
i∈S

pi ≥ 2/3, ∀S ⊆ N , f(xN )
f(xN\S) /∈

[
1− ε, 1

1−ε

]
0 ≤ pi ≤ 1, ∀i ∈ N

(1)

Notice that the solutions to LP (1), do not directly correspond to certification schemes with success
probability 2/3. However, as we show, any solution to LP (1) can be converted to a certification
scheme with number of verifications at most twice as many as the optimal value of LP (1) and
success probability 2/3. Since the optimal value of LP (1) lower bounds the instance optimal
number of verifications, our derived certification scheme will be a 2-approximation to the instance
optimal scheme.

Definition 5 For a solution p̄ of LP (1), we define the certification scheme Cp̄ that verifies each
record i independently with probability qi = min{2p̄i, 1}.

It is clear that the certification scheme Cp̄ uses in expectation at most twice as many verifications
as the optimal value of LP (1) and the instance optimal scheme. We now show that it also achieves,
success probability of 2/3 as required.

Assume that the subset of valid records is T = N \ S. The probability that the scheme Cp̄ does not
verify anyone in the set S = {s1, . . . , sm} is

P(Cp̄ doesn’t verify T ) = P((Cp̄ doesn’t verify s1) ∧ · · · ∧ (Cp̄ doesn’t verify sm)) =
∏
s∈S

(1− qs)

Since p̄ is a feasible solution to LP (1), the probability that some record from S is verified is

P(Cp̄ verifies S) = 1−
∏
s∈S

(1− qs) ≥ 1− exp

(
−2
∑
i∈S

p̄s

)
≥ 1− exp (−4/3) ≥ 2/3.

This means that our certification scheme succeeds with probability 2/3 using at most twice the
optimal number of verifications in expectation. We can amplify the probability of 2/3, making it
arbitrarily close to one by repeating the certification scheme. Since the repetitions are independent
and each of them fails with probability at most 1/3, after r repetitions the total probability of failure
is 3−r. Repeating r = log(1/δ) times, guarantees that for any subset S, the probability that it will
be verified is at least 1− δ. This result is summarized in the following theorem.

Theorem 6 For any given function f : D∗ → R and any set of valus if records xN , a solution
to LP (1) corresponds to a certification scheme that verifies records of the data set independently
using at most twice as many verifications as the optimal scheme for this instance and succeeds with
probability 2/3. Repeating the scheme log(1/δ) times increases the success probability to 1− δ.

10
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Remark We note that the LP (1) has exponentially many constraints and it may be computation-
ally intractable to solve depending on the function. It is very useful though as a tool to uncover the
structure of approximately optimal certification schemes. For example, Theorem 6 implies that even
though optimal schemes may be arbitrarily complex, there are simpler schemes, that verify records
independently, which are almost-optimal.

In the following section, we derive a general methodology to obtain solutions to LP (1) for the
very general class of w-Lipschitz functions.

4.1. Certification Schemes for w-Lipschitz Functions

In this section we show how we can use Theorem 6 to get sufficient smoothness conditions on the
function f that can be used to provide certification schemes with small number of verifications.

For any record i ∈ N we define wi to be the weight of the record i. The weight of record i
will be the quantity that will determine the probability that we will verify record i according to the
verification scheme that we want to define. We state now the property that we want f to satisfy in
order to find a good verification scheme.

Definition 7 We say that a function f : D∗ → R is w-Lipschitz, with w ∈ Rn+, if for any S ⊆ N
it holds that |f(xN )− f(xN\S)| ≤

∑
i∈S wi.

For any function that satisfies this Lipschitz property we can get a good verification scheme that
depends on the weight vector w.

Theorem 8 For any non-negative w-Lipschitz function f : D∗ → R+, set of recordsN with value
xN , and real numbers ε, δ > 0, there exists a certification scheme that uses at most 4

∑
i∈N wi

3f(xN )ε log(1/δ)
verifications and has probability of success at least 1− δ.

In Appendix D we present the proof of Theorem 8. Also, in Appendix A.1 and A.2, we present
two applications of Theorem 8 to get certification schemes for the Traveling Salesman (TSP) and
the Steiner Tree problems. In both applications, we show that the optimal solution is w-Lipschitz
with

∑
i∈N wi

f(xN ) ≤ 2. Hence, the total number of verifications by Theorem 8 is O((1/ε) log(1/δ)).

5. Weak Correction Model

We show how starting from a certification scheme, we can obtain a weak-correction scheme with
the same verification complexity (up to constants).

Theorem 9 Suppose that there exists a certification scheme for a function f that uses q(n, ε) verifi-
cations and fails with probability 1/3. Then, there exists a weak-correction scheme with verification
complexity O(q(n, ε) log(1/δ)) that outputs an accurate estimate of the function f and fails with
probability δ.

Theorem 9 shows that the certification task we defined in section 3 is already strong enough to
perform this seemingly more challenging task. Intuitively, this is because we can run many rounds
of certification until we have enough confidence that we have an accurate result while we remove
from the dataset any invalid record we might find during these rounds. Indeed, a simple way to

11
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make the conversion is to start from a certification scheme with error probability 1/3 and reduce its
probability of error to δ/n, by repeating it log(n/δ) times. Then use this scheme repeatedly until no
more invalid records are detected. By a union bound, the probability of error is at most δ since the
process takes at most n steps. Theorem 9 shows a stronger result than the above result showing that
the logarithmic dependence on the number of records can be avoided if the stopping time is more
carefully chosen. The full proof of Theorem 9 is presented in Appendix B.

6. Strong Correction Model

In section, we show that it is possible to obtain more efficient correction schemes for several prob-
lems. We show that this is true for the sum function which implies strong correction schemes for
other functions such as the average. In addition, we show strong correction schemes for more gen-
eral combinatorial tasks through a connection with conditional sampling. However, as we show
there are simple functions, e.g. the composition of the max and the sum function, for which good
weak correction schemes exist that do not admit strong correction schemes.

6.1. Computing the Sum of Values of Records

Using the formulation in Section 3.1, we get the following result. Its proof appears in Appendix C
and shows that Θ(1/ε2) verifications are both necessary and sufficient.

Lemma 10 Let x1, x2, . . . , xn ≥ 0 be the values of the records N and f(xN ) =
∑

i∈N xi. Con-
sider the probability distribution pi = xi∑

j xj
which selects a record xi with probability proportional

to its value. If we sample M times independently from p until k = Θ
(

1
ε2

log(1/δ)
)

valid records

found, then the estimator ŝ = k
M

∑
i∈N xi lies in

[
1− ε, 1

1−ε

]
·
∑

i∈T xi w.p. at least 1− δ.

6.2. Lower Bound for the Maximum of Sums Function

In this section we show that no efficient strong correction scheme exists for the composition of the
max and the sum function. More precisely we assume we have a partition J = {N1, . . . ,N`} of
the set N and we want a strong correction scheme for the function f(xN ) = maxA∈J

∑
i∈A xi.

Lemma 11 shows that any strong correction scheme for f that achieves constant approximation has
to verify at least a constant fraction of the records. Its proof can be found in Appendix C.

Lemma 11 Let c > 0. There exists a partition J = {N1, . . . ,N`} of N and a vector xN ∈ Rn
such that any strong correction scheme for the function f(xN ) = maxA∈J

∑
i∈A xi, that returns

an estimate ŝ ∈
[

1
c , c
]
· f(xT ) with probability at least 3/4, must verify |N | /4c2 records.

6.3. From Algorithms using Conditional Sampling to Strong Correction Schemes

The design of a strong correction scheme can be challenging since the guarantee is very strong. Our
main theorem in this section shows that there is a correspondence of strong correction schemes with
sublinear algorithms using conditional sampling, introduced recently in Gouleakis et al. (2017). We
state here the main theorem for this section and we defer its proof and applications for Appendix E.

Theorem 12 Any function that can be approximated using k conditional samples admits a strong
correction scheme with cost k.

12
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Appendix A. Applications of Theorem 8

A.1. Optimal Travelling Salesman Tour

In this section we examine the metric travelling salesman problem where we are given n points
(each provided by one record in N ) in a metric space X and we wish to find the length of the
minimum cycle going through each point in the set T ⊆ N of correct answers. As usual we let xN
be the input vector with record values whose coordinates are points in the metric space X . Our goal
is to find a certification scheme for this metric travelling salesman problem. That is, the algorithm
should either output a sufficiently accurate value (according to (H1)) for the minimum weight cycle
going through the points in xT or find a invalid record 1. The following lemma combined with
Theorem 8 give us the desired result.

Lemma 13 Let f : D∗ → R be the function mapping a set of points in a metric space X to their
minimum TSP tour and let v1v2 . . . vn be the minimum TSP tour. Also, let w ∈ Rn+ = (w1, . . . , wn),
where wi = d(vi−1, vi) + d(vi, vi+1) and the second indices are mod n. Then, f is w-continuous.

Proof According to definition 7, we need to show that for any S ⊆ N :

f(xN ) ≤ f(xN\S) +
∑
i∈S

wi (2)

To see why this inequality is satisfied, let TR be the minimum TSP tour going through the points in
R = N \ S and TN = v1v2 . . . vn be the minimum TSP tour that goes through all the points
in the set N ⊇ R. Now let j1 < j2 · · · < jr be the indices at which the points of the set
R appear in this TSP tour. Consider two consecutive points vjk , vjk+1

in this sequence and let
Pk = {vjk+1, vjk+2, . . . , vjk+1−1} be the set of consecutive points in the tour TN between vjk
and vjk+1

. Clearly, ∀k : Pk ⊆ S and therefore the weights of those points appear in the sum
that is in the rhs of equation (2). Now consider the two paths p1,k = vjk , vjk+1, . . . , vjk+1−1 and
p2,k = vjk+1, vjk+1, . . . , vjk+1

which are both part of TN . We have that:

∑
i∈Pk

wi = d(vjk , vjk+1) + d(vjk+1−1, vjk+1
) + 2 ·

jk+1−2∑
i=jk+1

d(vi, vi+1) = l(p1,k) + l(p2,k)

where l(·) denotes the length of a path. We now consider the walk that goes through all the vertices
in N and has the following two properties:

• It respects the order in which the vertices in R are visited by TR

• Between any two consecutive such vertices, it follows whichever path among p1,k and p2,k

has smaller length in the forward and then backwards direction.

We know that f(xN ) smaller or equal to the walk we have just defined, since the walk goes
through all the given points and even repeats the points in R 2. Thus,

1. Note that throughout this paper we don’t consider the computational complexity of the problems, since we are more
interested in the number of verifications needed. Besides that in the case of Euclidean TSP we could use the (1+ ε)-
approximation algorithm that we know in order to get similar results and avoid NP-completeness.

2. Since we are working on a metric space, skipping points in the order that we visit them can only decrease the cost.
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f(xN ) ≤ f(xN\S) +
s∑

k=1

2 ·min{(d(vjk , vjk+1), d(vjk+1−1)}+ 2 ·
jk+1−2∑
i=jk+1

d(vi, vi+1)

≤ f(xN\S) +

s∑
k=1

∑
i∈Pk

wi

≤ f(xN\S) +
∑
i∈S

wi

Using lemma 13 and theorem 8, we get the following corollary:

Corollary 14 Let f : D∗ → R be the function mapping a set of points in a metric space X to
their minimum TSP tour. Then, there exists a verification scheme that uses at most O(1

ε log(1
δ ))

verifications per correction.

Proof This is a straightforward application of lemma 13 and theorem 8 since
∑

i∈N wi contains
each of the edges in the optimal TSP tour TN exactly twice. Thus,∑

i∈N
wi = 2f(xN )

A.2. Steiner tree

In the classic Steiner tree problem, the input is a positively weighted graph G = (V,E,w) and the
set of vertices V is partitioned into two disjoint sets T and U such that V = T ∪ U . Usually T is
called the set of terminal nodes and U the set of Steiner nodes. The goal is to compute a connected
subgraph of G that has the smallest possible weight and has a set of vertices T ⊆ V ′ ⊆ V that
includes all terminal nodes and any number of steiner nodes.

Here, we are going to examine the Steiner tree problem in the following setting: We are given
a fixed graph G = (V,E) on |V | vertices and we also have |N | values from the set of records N .
Each record is a node from the set V claiming that this node is in the set T ⊆ V of terminal nodes
that need to be connected by the tree. However, the records might be invalid and the algorithm
is allowed to do verifications on those records. Let xN be the input vector whose coordinates are
vertices claimed to be in the set T of terminal nodes. Similarly, let xA be a vector containing only a
subset A ⊆ N of those vertices. Our goal is again to be able to either output a sufficiently accurate
answer for the cost of the optimal Steiner tree of find an invalid record.

As in the previous section we are going to use theorem 8 to achieve this. The conditions of
theorem 8 are satisfied in this case due to the following lemma:

Lemma 15 Let G = V,E be a graph and fG : V ∗ → R be the function mapping a set of vertices
T ⊆ V to the minimum cost of a steiner tree connecting the vertices in T . Then, there exists a vector
w ∈ Rn+ such that f is w-continuous and also

∑
i∈N wi = O(fG(xN )).

17
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Proof We need to show that there exists a vector w ∈ Rn+ = (w1, . . . , wn), such that for any
S ⊆ N , the following inequality holds:

f(xN ) ≤ f(xN\S) +
∑
i∈S

wi (3)

We start by introducing some notation. Let t be a tree subgraph of G. We denote by Ht the
Eulerian graph that results when we double each edge in t. Also, let tA denote the optimal Steiner
tree for the set A ⊆ V of terminal nodes. Thus, ∀A : f(xA) = cost(tA).

Now let tR be the optimal Steiner tree for some set R = N \S ⊆ V of terminal nodes. In order
to show equation (3), it suffices to show that there exists a tree t and a vector w ∈ Rn+, such that t is
a valid Steiner tree for the set N of terminal nodes and its cost is: cost(t) ≤ cost(tR) +

∑
i∈S wi.

In other words, we would like to find a weight vector w ∈ Rn+, such that starting from the
Steiner tree tR and using the weight assigned to the set S = N \ R as budget, we are able to
construct a Steiner tree the covers the set N . To keep the number of verifications low, we also
require this vector to be such that

∑
i∈N wi = O(fG(xN )).

Now fix a specific Euler tour (i.e an ordering of the nodes) UN for the graphHtN and also fix an
Euler tour UR for the graphHtR . Note that the cost of each Euler tour is exactly twice the cost of the
corresponding Steiner tree (e.g cost(UR) = 2cost(tR) where cost(·) denotes the sum of weights of
all edges in the Euler tour or the tree).

We define each weight wi to be the length of the path from the predecessor to the successor of
node i in the ordering UN .

Our goal is to find a new Euler tour which directly corresponds to a valid Steiner tree 3 for the
set N and is within our budget

∑
i∈S wi.

Now let UN = v1v2 . . . vn be the ordering in which the terminal nodes are visited in the Euler
tour of HtN and j1 < j2 · · · < jr be the indices at which the points of the set R = N \ S
appear in this Euler tour. Consider two consecutive points vjk , vjk+1

in this sequence and let Pk =
{vjk+1, vjk+2, . . . , vjk+1−1} ⊆ S be the set of consecutive points in the Euler tour UN between vjk
and vjk+1

. Note that the sets Pk are mutually disjoint and therefore:
∑r

k=1

∑
i∈Pk

wi ≤
∑

i∈S wi.
Also,

∑
i∈Pk

wi is enough budget to add the set of nodes Pk in the ordering UR between vjk and
vjk+1

. 4 By repeating this for all k ∈ [r], we get the desired Steiner tree t that covers all nodes inN
and is such that:

2 · cost(tN ) ≤ 2 · cost(t) ≤ 2 · cost(tR) +
∑
i∈S

wi ⇒

cost(tN ) ≤ cost(tR) +
∑
i∈S

wi
2
⇔

f(xN ) ≤ f(xN\S) +
∑
i∈S

w′i

where w′i = wi
2 .

Thus, f is w
2 -continuous and also

∑
i∈N w

′
i = 1

2 · 2 · cost(UN ) = 2 · f(xN ).

The following corollary is a direct application of lemma 15 and theorem 8:

3. That is, the traversing each edge of that tree twice and in opposite directions.
4. To be more precise here, we need an argument similar to the two paths argument in the proof of lemma 13.
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Corollary 16 Let G = V,E be a graph and fG : V ∗ → R be the function mapping a set of vertices
T ⊆ V to the minimum cost of a steiner tree connecting the vertices in T . Then, there exists a
verification scheme that uses at most O(1

ε log(1
δ )) verifications per correction.

Appendix B. Proof of Theorem 9

We will first provide a simple analysis when the function f is increasing with record values and
later extend to the general case.
Proof [Proof of Theorem 9 for increasing functions] Our weak correction scheme works by re-
peating the certification process enough times so that the number of times it failed is less than the
number of times it succeeded. In particular, we model this procedure as a random walk on the inte-
gers starting from point C and ending once it reaches 0. We move to the right whenever the round
of verifications (i.e an execution of the certification scheme) reveals some invalid record, and we
move to the left otherwise.

The random walk is guaranteed to return to the origin eventually since if all invalid records are
removed the certification scheme will not be able to find any additional invalid record. The only
case that the weak correction scheme fails is if it returns early without removing enough invalid
records having a value larger than f(xT )/(1 − ε). In such a case, at all points of the random walk
the estimate was always larger than f(xT )/(1 − ε) which means that the random walk was biased
with probability at least 2/3 to the right. The probability that such a biased random walk reaches

the origin is at most
(

1/3
2/3

)C
= 2−C . Setting C = log(1/δ) times guarantees a probability of error

δ. The number of verifications performed if k invalid records are found is (C + 2k)q(n, ε), thus the
total verification complexity is O(q(n, ε) log(1/δ)).

We will now remove the assumption that the function f is increasing. We again use the same
random walk that starts at C and ends at 0 as before. However, instead of outputting the result of
the function f on the final subset of records (after all deletions), we will consider every possible
intermediate subset of records during the random walk as a candidate for producing an (1 + ε)-
approximate solution. Note that, at each step i of the random walk, we run a certification scheme
on some set Si ⊆ N . We define a subset S ⊆ N to be “bad” if f(xT )

f(xS) 6∈
[
1− ε, 1

1−ε

]
and to be

“good” otherwise.
By the definition of the certification scheme, if the set S is “bad”, then an invalid record is found

with probability at least 2/3, in which case the random walk moves to the right. Otherwise, we do
not have any guarantee on how the random walk will behave.

However, if at all steps the probability of finding an invalid record is more than 3/5, then the
probability that the random walk reaches 0 is less than (2/5

3/5)C = (2
3)C < δ/2 forC = O(log(1/δ)).

Thus given that we returned, with high probability, there must be some set Si for which the correc-
tion scheme accepts with probability more than 2/5. Note that, this can only be true if the set Si is
good since 2/5 > 1/3.

At this point, given a list of these subsets, our goal is to find a “good” subset for which the
certification scheme accepts with probability more than 1/3. We know that a “good” subset exists
for which the acceptance probability is more than 2/5. We view the certification process for a
subset S as sampling from a Bernoulli random variable. We say that a set S has probability p if the
certification process on the set S does not find an invalid record with probability p.
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Let Test(S, γ) be a test that accepts if the probability of a set S is more than 2/5 (call such
a set “very good”) and rejects if it is less than 1/3. Such a test fails with probability γ requiring
O(log(1/γ)) samples.

The main idea behing this algorithm is to iteratively run Test(S, γ) for all candidate subsets
S with varying error probabilities γ to throw out the failing ones until a significant fraction of the
subsets in our pool is “good”. When this happens, we pick a subset at random and check if it is
actually “good” by running Test(S, γ) with small γ. We repeat this until we actually find a good
subset and output the value on the function f on that subset. To ensure that this will eventually
happen, we choose parameters appropriately, so that a constant fraction of the “bad” subsets fail
while the “good” subsets pass the certifications with high enough probability.

Let K be the number of candidate subsets Si. We have that K is equal to the number of invalid
records found during the random walk process.

Our algorithm proceeds in rounds until there are at most K/ logK sets remaining. In the t-th
round:

• The algorithm runs Test(Si, 10−t) for every set Si and discards all sets that fail.

• If the number of remaining sets is did not drop by a factor of 2 the algorithm stops and returns
a set Si uniformly at random from the remaining sets.

If the algorithm has not returned after log logK steps, then it runs Test(Si, 1/K2) for every re-
maining set Si and returns one that passes the test.

The proposed algorithm returns a “good” set with probability more than 3/5 − o(1). First,
notice that a “very good” set will be discarded in the first log logK rounds with probability at most∑

t 10−t ≤ 1/10
1−1/10 = 1/9. Hence, if the algorithm did not return after log logK rounds, the last

step returns a “good” set with high probability.
Now, suppose the algorithm returns at some round t. LetKt−1 be the total remaining sets before

round t. The probability that the number Bt of “bad” sets remaining after round t to be more than
Kt−1/5 is at most:

P (Bt > Kt−1/5) ≤ exp(−Bt−1/10) ≤ exp(−Kt−1/50) ≤ exp(−K/(50 logK))

This is an exponentially small probability and by a union bound over all log logK rounds it is still
negligible.

Thus, assuming that Bt < Kt−1/5 and Kt > Kt−1/2, a set chosen uniformly at random is
“bad” with probability Bt/Kt ≤ 2/5.

Therefore, a good set is chosen with probability at least 3/5 − o(1) and thus by repeating
O(log(1/δ)) times and choosing the median of the values f(xS), we have that with probability
1− δ/2, f(xT )

f(xS) ∈
[
1− ε, 1

1−ε

]
.

The total number times the certification scheme is called isO(log(1/δ))
∑

tO(2−tK log 10t) =
O(K log(1/δ)).

Thus, the verification complexity of the weak correction scheme is equal toO(q(n, ε) log(1/δ))
and the Theorem follows.

Appendix C. Missing Proof of Section 6

Proof [Proof of Lemma 10] We let the random variable M to be the total number of verifications
until we found k valid records and letM be the set of samples that we observed. Also we define
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Z = |M ∩ T | /M = k/M . We claim that

P
(∑

i∈T xi∑
i∈N xi

∈
[
1− ε, 1

1− ε

]
· Z
)
≥ 1− δ

given that |M ∩ T | ≥ k.
Let q =

∑
i∈T xi∑
i∈N xi

. For tha sake of contradiction let Z > 1
1−ε

∑
i∈T xi∑
i∈N xi

then M < (1 − ε)k/q.
Hence the expected number of valid records if we draw M samples according to the described
distribution is at most (1 − ε)k. But know using simple Chernoff bounds and the fact that k ≥
1
ε2

log(2/δ) we get that with probability at most δ/2 the number of valid records found is at least k.

Similarly we can show that if Z < (1−ε)
∑

i∈T xi∑
i∈N xi

then with probability at most δ/2 the number
of valid records found is at most k. Hence we have

P(|M ∩ T | = k) = P
(
|M ∩ T | = k | q ∈

[
1− ε, 1

1− ε

]
· Z
)
P
(
q ∈

[
1− ε, 1

1− ε

]
· Z
)

+ P (|M ∩ T | = k | q < (1− ε)Z)P (q < (1− ε)Z)

+ P
(
|M ∩ T | = k | q > 1

1− ε
Z

)
P
(
q >

1

1− ε
Z

)
but from the definition of the strong correction scheme P(|M ∩ T | = k) = 1 and as we proved

P (|M ∩ T | = k | q < (1− ε)Z) ≤ δ/2 and

P
(
|M ∩ T | = k | q > 1

1− ε
Z

)
≤ δ/2

therefore

P(|M ∩ T | = k) = 1 ≤ P
(
|M ∩ T | = k | q ∈

[
1− ε, 1

1− ε

]
· Z
)
P
(
q ∈

[
1− ε, 1

1− ε

]
· Z
)

+ δ

which implies

P
(
q ∈

[
1− ε, 1

1− ε

]
· Z
)
≥ 1− δ.

This finally implies that our estimator is in the correct range

P

(
Z ·
∑
i∈N

xi ∈
[
1− ε, 1

1− ε

]
·
∑
i∈T

xi

)
≥ 1− δ.

To see that Θ
(

1
ε2

log(1/δ)
)

are also necessary let x1 = · · · = xn = 1/n and let |T | = |N | q
where q = 1/2. This instance is identical with estimating the bias of a Bernoulli random variable
with error at most ε and since all the xi’s are equal we can assume without loss of generality that at
each step we take a uniform sample from N . But it is well known that for estimating a Bernoulli
random variable within ε with probability of failure at most δ we need at least Θ

(
1
ε2

log(1/δ)
)

total samples. Half of those samples are expected to be correct samples and hence the verification
complexity for any strong correction scheme is also at least Θ

(
1
ε2

log(1/δ)
)
.
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Proof [Proof of Lemma 11] We consider a partition J of N into n/c2 sets of size c2 each with
xi = 1 for all i ∈ N . Let S be a certification scheme that verifies less than n/4c2 records. Then
there exists a set A ∈ J such that

P(S verifies some j ∈ A) < 1/4.

We prove this by contradiction. Let P(C verifies some j ∈ A) ≥ 1/4 for all A ∈ J . Then
E[verification by C] ≥

∑
A∈J P(C verifies some j ∈ A) ≥ n/4c2 and hence we have a contradic-

tion on the assumption that S verifies less than n/4c2 records. Let ŝ be the output estimator of S
then we have that

P
(
ŝ ∈

[
1

c
, c

]
· f(xT )

)
= P

(
ŝ ∈

[
1

c
, c

]
· f(xT ) | S verifies some j ∈ A

)
P (S verifies some j ∈ A)

+ P
(
ŝ ∈

[
1

c
, c

]
· f(xT ) | S does not verify A

)
P (S does not verify A)

< 1/4 + P
(
ŝ ∈

[
1

c
, c

]
· f(xT ) | S does not verify A

)
Now if we fixQ ⊆ N, we observe that the quantity P (ŝ ∈ Q | S does not verify A) does not depend
on T ∩A since we are conditioning on the event that S does not verify any record in A. Now let jB
be an arbitrary record from the set B ∈ J . We consider the following two possibilities for the set
T .

T0 =
⋃

B∈J ,B 6=A
{jB}

T1 = T0 ∪A

We observe now that if T = T0 then f(xT ) = 1 and if T = T1 then f(xT ) = c2. Now since ŝ does
not depend on T ∩A given that S does not verify A we have that we can change T between T0 and
T1 without changing the quantity P (ŝ ∈ Q | S does not verify A). Now

- if P (ŝ ∈ [1, c] | S does not verify A) < 1/2 then we set T = T1 and

- if P
(
ŝ ∈ [c(c− 1), c2] | S does not verify A

)
< 1/2 then we set T = T1.

Observe that one of the two cases has to be true. In any of these we get that

P
(
ŝ ∈

[
1

c
, c

]
· f(xT ) | S does not verify A

)
< 1/2.

Hence we get that

P
(
ŝ ∈

[
1

c
, c

]
· f(xT )

)
< 1/4 + P

(
ŝ ∈

[
1

c
, c

]
· f(xT ) | S does not verify A

)
< 3/4

and therefore S has to verify at least n/4c2 records.
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Appendix D. Proof of Theorem 8

Proof We set pi = 2wi
3f(xN )ε and we show that those values satisfy the LP (1). Thus, if we choose to

verify record i with probability min{2pi, 1}, we get a valid (ε, δ)-certification scheme.
For any subset S ⊆ N by the w-Lipschitz property we get that

|f(xN )− f(xN\S)| ≤
∑
i∈S

wi ⇔
∣∣∣∣ 2

3ε
−

2f(xN\S)

3εf(xN )

∣∣∣∣ ≤∑
i∈S

2wi
3f(xN )ε

.

Now if f(xN )
f(xN\S) >

1
1−ε , we have

∣∣∣ 2
3ε −

2f(xN\S)

3εf(xN )

∣∣∣ > 2
3 .

Also if f(xN )
f(xN\S) < 1− ε, we have

∣∣∣ 2
3ε −

2f(xN\S)

3εf(xN )

∣∣∣ > 2
3ε(1−ε) −

2
3ε ≥

2
3 .

Therefore when f(xN )
f(xN\S) /∈

[
1− ε, 1

1−ε

]
, we have

∑
i∈S pi =

∑
i∈S

2wi
3f(xN )ε ≥

∣∣∣ 2
3ε −

2f(xN\S)

3εf(xN )

∣∣∣ ≥
2
3 .
This means that LP (1) is satisfied. Now we can apply Theorem 6 and we conclude that the
certification scheme that verifies each record independently with probability min{2pi, 1}, where
2pi = 4wi

3f(xN )ε , verifies at most 4
∑

i∈N wi

3f(xN )ε records and has probability of success at least 2/3. In
order to get probability of success δ we instead verify each record i with probability 2pi log(1/δ)
and the theorem follows.

Appendix E. Complete Statement and applications of Theorem 12

More precisely we are given an input xN = (x1, x2, · · · , xn) of length n, where every xi belongs
in some set D. In this section, we will fix D = [D]d for some D = nO(1) to be the discretized
d-dimensional Euclidean space. Our goal is to compute the value of a symmetric function f :
Dn → R+ with input x ∈ Dn. We assume that all xi are distinct and define X ⊆ D as the set
X = {xi : i ∈ N}. Since we consider symmetric functions f , it is convenient to extend the
definition of f to sets f(X ) = f(x).

The conditional sampling model allows such queries of small description complexity to be per-
formed. In particular, the algorithm is given access to an oracle COND(C) that takes as input a
function C : D → {0, 1} and returns a tuple (i, xi) with C(xi) = 1 with i chosen uniformly at
random from the subset {j ∈ [n] | C(xj) = 1}. If no such tuple exists the oracle returns ⊥.

The main result of this section is a reduction from any algorithm that uses conditional sampling
to a strong correction scheme.

Theorem 17 An algorithm that uses k conditional samples to compute a function f can produce a
strong correction scheme with verification cost k.

Proof We will show how we can implement one conditional sample using only one verification.
We take all the values of the records x1, . . . , xn and we randomly shuffle them to get xπ1 , . . . , xπn .
Then we take one by one the records xπi with this new order and we check if C(xπi) = 1. If yes
then we verify xπi and if it is valid we return it as the result of the conditional sampling oracle. If
πi is invalid then we just ignore this records without any cost and we proceed with the next record.
If we finish the records and we found no valid record xπj such that C(xπj ) = 1, then we return ⊥.
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It is easy to see that this procedure produces at every step a verified conditional sample. Since the
conditional sampling algorithm has only this access to the data we get that any guarantees of the
conditional sampling immediately transfer to this corresponding strong correction scheme.

The above result gives a general framework for designing strong correction schemes for several
computational and learning problems. We give some of these examples below that are based on the
work of Gouleakis et al. (2017). For other distributional learning tasks, one can use the conditional
sampling algorithms of Canonne et al. (2014) to get efficient strong correction schemes. Some
applications of Theorem 12 can be found in Appendix E.

k-means Clustering Let D be a metric space with distance metric d : D × D → R, i.e. d(x, y)
represents the distance between x and y. Given a set of centers Ct we define the distance of a point
x from Ct to be d(x,Ct) = minc∈Ct d(x, c). Now given a set of n input points X ⊆ D and a set
of centers Ct ⊆ Ω we define the cost of Ct for X to be d(X , Ct) =

∑
x∈X d(x,Ct). The k-means

problem is the problem of minimizing the squared cost d2(X , Ct) =
∑

x∈X d
2(x,Ct) over the

choice of centers Ct subject to the constraint |Ct| = k. We assume that the diameter of the metric
space is ∆ = maxx,y∈X d(x, y). In this setting we assume that the records contain the points in the
d-dimensional metric space.

Corollary 18 Let x1, x2, . . . , xn be the points in the d-dimensional metric space D stored in the
records N and f(xN ) be the optimal k-means clustering of the points xN . There exists a strong
correction scheme with Õ(k2 log n log(k/δ)) verifications that guarantees a constant approxima-
tion of the value optimal clustering, with probability of failure at most δ.

The proof of this corollary is based on the Theorem 12 and the Theorem 2 from Gouleakis et al.
(2017).

Euclidean Minimum Spanning Tree Given a set of points xN in Rd, the minimum spanning
tree problem in Euclidean space ask to compute the a spanning tree T on the points minimizing the
sum of weights of the edges. The weight of an edge between two points is equal to their Euclidean
distance. We will focus on a simpler variant of the problem which is to compute just the weight of
the best possible spanning tree, i.e. estimate the quantity mintree T

∑
(x,x′)∈T ‖x− x′‖2.

Corollary 19 Let x1, x2, . . . , xn be the points in Rd stored in the records N and f(xN ) =
mintree T

∑
(x,x′)∈T ‖x − x′‖2. There exists a strong correction scheme with Õ(d3 log4 n/ε7) ·

log(1/δ) verifications that guarantees an (1 + ε)-approximation of the weight of the minimum
spanning tree, with probability of failure at most δ.

The proof of this corollary is based on the Theorem 12 and the Theorem 3 from Gouleakis et al.
(2017).

Remark. Observe that the value of the MST gives a 2-approximation of the metric TSP and the
metric Steiner Tree problems. Hence Corollary 19 implies efficient strong correction schemes that
achieve constant approximation for those problems as well.
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