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Abstract: We prove that Chern classes in continuous �-adic coho-
mology of automorphic bundles associated to representations of G

on a projective Shimura variety with data (G, X) are trivial ratio-
nally. It is a consequence of Beilinson’s conjectures which predict
that the Chern classes in the Chow groups vanish rationally.

Introduction

Let X be a smooth projective variety defined over a number field k. Beilinson
[Bei85, Conj. 2.4.2.1] conjectures that the rational Chow ring CH(X)Q in-
jects into Deligne cohomology of X ⊗k C. Concretely, if a class in CHn(X)Q
vanishes in H2n

D (X,Q(n)), it is expected to be 0. There is not a single exam-
ple with dimension X ≥ 2 with large Chow ring CH(X ⊗k C) for which this
conjecture has been verified.

On the other hand, there are Chern classes reflecting the fact that X is
defined over a number field. On proper models XU over a non-trivial open
U of Spec(Z), one has Chern classes in �-adic cohomology H2n(XU ,Q�(n)).
By taking the inductive limit over such XU , these yield the Chern classes
in continuous �-adic cohomology H2n

cont(X,Q(n)) ([Jan87, Section 2]). Each
space H2n

cont(X,Q(n)) is filtered by the abutment of the Hochshild-Serre spec-
tral sequence, which, by Deligne’s argument [Del68, Thm. 1.5] using the
strong Lefschetz theorem [Del80, Thm. 4.4.1], degenerates at E2. Given that
H1(k, H2n−1(Xk̄,Q�(n))), the first graded piece of the filtration, can be inter-
preted as the extension group of Q�(0) by H2n−1(Xk̄,Q�(n)) in the category
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of Galois modules – just as H2n−1
D (XC,Q(n)) can be interpreted as the exten-

sion group of Q(0) by H2n−1(XC,Q(n)) in the category of Hodge structures
over Q – Beilinson’s conjecture predicts that

Conjecture 0.1. With notation as above, if a class in CHn(X)Q vanishes
in H i(k, H2n−i(Xk̄,Q�(n)) for i = 0, 1, then it does for i = 2.

This conjecture seems to be more modest than the general motivic one
above. It is a fascinating problem in Galois cohomology, and it hasn’t been
studied at all. An analogous question for function fields over finite fields has
been considered and proved to be true for 0-cycles in [Ras95, Thm. 0.1].

On the other hand, the Chern classes of flat bundles on a smooth projec-
tive variety X defined over C vanish in Deligne cohomology H2n

D (X,Q(n)) for
n ≥ 2, due to Reznikov’s theorem [Rez94, Thm. 1.1], giving a positive answer
to Bloch’s conjecture [Blo77, Intro.]. In particular, Beilinson’s conjecture im-
plies that the Chern classes of flat bundles on a smooth projective variety X
defined over a number field vanish in the Chow groups CHn(X)Q for n ≥ 2.

In addition, in [Esn96, 4.7] (in a vague form) and in [EV02, Intro.] (in
a more precise form) the problem is posed whether Chern classes of Gauß-
Manin bundles on a smooth variety X defined over a field of characteristic
0 vanish in the Chow groups CHn(X)Q for n ≥ 2. It is proved to be the
case for those of weight 1; that is, for the Gauß-Manin bundles of relative
first de Rham cohomology of an abelian scheme over X ([vdG99, Thm. 1.1],
[EV02, Thm. 1.1]). In fact, the weight 1 Gauß-Manin bundle is defined on
Ag, which is defined over Q, and in [EV02, loc. cit.] it is proved that the
Chern classes in the Chow groups of the Deligne extension on the toroidal
compactification of Ag vanish. Thus this example confirms (in a weak sense)
Beilinson’s conjecture as well.

The moduli space Ag is a quasi-projective Shimura variety and the weight
1 Gauß-Manin bundle on it is an automorphic bundle associated to the tau-
tological representation of Sp(2g). A Shimura variety KS(G, X) (notation
explained below) has a canonical model over its reflex field E(G, X), which is
a number field [Mil05, Section 14]. It carries a natural family of automorphic
vector bundles that are defined on this model and themselves have models
over explicit finite extensions of E(G, X) [Har85, Thm. 4.8] (for unexplained
notation see Section 1.1 below). An automorphic vector bundle [E ]K that
comes from a representation of G is endowed canonically with a flat con-
nection, and its Chern classes in Deligne cohomology H2n

D (KS(G, X),Q(n))
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vanish for n ≥ 1 (Theorem 2.3, Remark 2.5 1)). Thus, at least when KS(G, X)
is projective, Beilinson’s conjecture implies that the Chern classes vanish even
in CHn(KS(G, X))Q for n ≥ 1. Unfortunately, we can not prove this. Instead
we prove

Theorem 0.2. If KS(G, X) is projective, the Chern classes of an automor-
phic bundle attached to a representation of G vanish in continuous �-adic
cohomology H2n

cont(KS(G, X),Q�(n)) for n ≥ 1.

Stated differently, we prove Conjecture 0.1 in this particular case. The
proof relies strongly on the purely algebraic definition of the automorphic
bundles, as being associated to a representation of G. Indeed, all automorphic
bundles, seen in the category of vector bundles on the Shimura variety, are
eigenvectors for the so-called volume character of the Hecke algebra. The
Hecke algebra acts semi-simply on (continuous) �-adic cohomology, and the
corresponding eigenspace Hj(KS(G, X)Q̄,Q�)v in �-adic cohomology identifies
with �-adic cohomology Hj(X̂Q̄,Q�) of the compact dual X̂ of X, which itself
is generated by algebraic cycles. This allows us to compute the invariants in
i-th Galois cohomology of H2n−i(KS(X, G)Q̄,Q�(n)) (Theorem 3.3).

Finally, we remark that if every Q-simple factor of G has real rank at
least 2, then the super-rigidity theorem of Margulis, applied to the connected
components of KS(G, X), implies that every flat vector bundle over KS(G, X)
becomes isomorphic to an automorphic vector bundle after replacing K by an
appropriate subgroup of finite index. Since the non-vanishing of Chern classes
in the cohomology theories considered here is stable under finite coverings,
this implies that for most Shimura varieties the vanishing holds for all flat
vector bundles.
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Conventions

If G is a reductive algebraic group over Q, by an admissible irreducible rep-
resentation of G(A) we will mean an irreducible admissible (g, K) × G(Af )-
module, where g is the complexified Lie algebra of G, K ⊂ G(R) is a con-
nected subgroup generated by the center of G(R) and a maximal compact
connected subgroup, G(Af ) is the group of finite adèles of G. If π is such a
representation then we will write

π � π∞ ⊗ πf

where π∞ is an irreducible admissible (g, K)-module and πf is an irreducible
admissible representation of G(Af ).

1. Automorphic vector bundles and flag varieties

1.1. Review of automorphic vector bundles

Let (G, X) be a Shimura datum, in other words a datum defining a Shimura
variety. We recall that this means that G is a connected reductive group over
Q and that X is a G(R)-conjugacy class of homomorphisms h : S → GR of
real groups, where S = RC/RGm,C is C× viewed as an algebraic group over
R. The pair (G, X) must satisfy a list of familiar axioms that guarantee that
X is a G(R)-equivariant finite union of hermitian symmetric spaces for the
identity component of the derived subgroup of G(R); see [Mil05]. In particular,
we include the axiom that guarantees that the maximal R-split torus in the
center of G is also split over Q; without this hypothesis the construction of
automorphic vector bundles, as in (1.5), is not strictly true as stated, although
there are ways to fix this. Then, for any open compact subgroup K ⊂ G(Af ),
the double coset space

KS(G, X) = G(Q)\X × G(Af )/K

is canonically the set of complex points of a quasiprojective algebraic variety
that has a canonical model over a number field, usually denoted E(G, X) and
called the reflex field of (G, K). If K ′ ⊂ K is a subgroup of finite index then
the natural map

πK,K′ :K′ S(G, X) → KS(G, X)

is finite; if K ′ is a normal subgroup of K then πK,K′ is the quotient map for
the action of the group K/K ′ on the right. Moreover, if K is sufficiently small
(neat, in the sense of [Pin90]), then the map πK,K′ is finite étale.
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The precise nature of the canonical model will not be considered in this
paper; we will be concerned with KS(G, X) as a complex algebraic variety,
and our aim is to study the Chern classes of a class of vector bundles on
KS(G, X) that are defined canonically by reference to the origin of the variety
in linear algebra. To this end, choose a base point h ∈ X and let Kh ⊂ G(R)
be its stabilizer. Then Kh is the group of real points of a reductive subgroup
of G, which we also denote Kh. We make the useful assumption that Kh is
defined over a number field Eh; this is always possible, and we may even
assume that Eh is a CM field and that every irreducible representation of Kh

is defined over a CM field. In any case, Kh is reductive and there is a natural
maximal parabolic subgroup Ph ⊂ GC that contains Kh,C as a Levi factor. Let
X̂ = G/Ph be the corresponding flag variety. We view X as an analytic open
subset of X̂ by means of the Borel embedding β (this determines the choice
of Ph among the two maximal parabolics containing Kh). In particular, the
complex dimension of this analytic variety is the same as that of X̂, which is
the same as that of KS(G, X). Moreover, h may be viewed as a point of X̂.

Let E′
h ⊃ Eh denote a finite extension over which Kh becomes a split

reductive group. Then every representation of Kh has a model over E′
h.

For any variety Z over C, let Vect(Z) denote the exact category of complex
vector bundles on Z. Let VectG(X̂) be the category of G-equivariant vector
bundles on X̂ with coefficients in C; let

f : VectG(X̂) → Vect(X̂)

be the forgetful functor. Let Vectss
G (X̂) ⊂ VectX̂

G denote the subcategory of
semisimple G-equivariant bundles. If H is an algebraic group over a ring R

and k ⊃ R is another ring, let Repk(H) denote the category of algebraic
representations (of finite type) of H on free modules over k. There is an
equivalence of symmetric monoidal categories

rP : VectG(X̂) � RepQ̄(Ph)(1.1)

given by taking a vector bundle B/X̂ to its fiber Bh at h, with the isotropy
representation of the stabilizer Ph. Similarly, let Vectss

G (X̂) ⊂ VectX̂
G denote

the subcategory of semisimple G-equivariant vector bundles on X̂. Then (1.1)
restricts to an equivalence of symmetric monoidal categories

r : Vectss
G (X̂) � RepQ̄(Kh)(1.2)
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Evidently we have canonical isomorphisms

K0(Vectss
G (X̂)) ∼

−→ K0(VectG(X̂));

K0(RepQ̄(Kh)) ∼
−→ K0(RepQ̄(Ph))

(1.3)

compatible with the isomorphisms (1.1) and (1.2).

Lemma 1.4. Every simple object in VectG(X̂) has a model over E′
h.

Proof. The fiber functor (1.2) at h is evidently rational over the number
field Eh, so the claim comes down to the assertion that every irreducible
representation of Kh has a model over E′

h, which we have already noted.

On the other hand, for any K ⊂ G(Af ) as above, there is a functor

(1.5) E 
→ [E ] : VectG(X̂) → Vect(KS(G, X))

defined algebraically in [Har85, Thm. 4.8]. As a functor on complex vector
bundles we have the explicit construction:

[E ] = [E ]K = G(Q)\E × G(Af )/K.

This is a monoidal functor and it satisfies the following property with respect
to change of group: if K ′ ⊂ K then there are canonical isomorphisms

(1.6) π∗
K,K′([E ]K) ∼

−→ [E ]K′ ; πK,K′,∗([E ]K′) ∼
−→ [E ]K ⊗ IK

K′1,

where IK
K′1 is the representation of K induced from the trivial representation

of K ′. On the left, this is by definition, and on the right, this is the projection
formula. In particular,

(1.7) πK,K′,∗([E ]K′) ∼
−→ ([E ]K)[K:K′]

as vector bundles.
In this paper we work systematically with Chow groups CH and the

Grothendieck group K0 of locally free sheaves with rational coefficients. For
H and k as above, we let K0(Repk(H)) denote the Grothendieck group of
Repk(H), tensored with Q.

chX̂ : Vect(X̂) → CH(X̂)Q, chK : Vect(KS(G, X)) → CH(KS(G, X))Q

denote the respective Chern characters. We shall use the following proposi-
tion:
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Proposition 1.8. 1) The map

chX̂ ◦ f ◦ r−1 : RepQ̄(Kh) → Vect(X̂)Q → CH(X̂)Q

factors through the composite homomorphism

K0(Rep
Q

(Kh))Q → K0(X̂)Q → CH(X̂)Q.

2) The restriction of chX̂ to VectG(X̂) generates CH(X̂)Q.
3) If we let Rep

Q
(G) → Rep

Q
(Kh) denote the restriction functor, then

chX̂ ◦ r−1 induces an isomorphism

(1.9) KQ(Rep
Q

(Kh)) ⊗KQ(Rep
Q

(G)) Q
∼

−→ CH(X̂)Q.

Here the map KQ(Rep
Q

(G)) → Q is given by the augmentation, that
is by the rank of a representation.

Proof. Point 1) is essentially a tautology: the Chern character obviously fac-
tors through K0(X̂) and r is an exact tensor functor. Point 2) is the main
theorem of [Mar76]. Suppose V is a representation of G; then the correspond-
ing homogeneous bundle on X̂ is just V × X̂, with G acting diagonally. In
particular, as a vector bundle it is a sum of dim V copies of the trivial bundle,
hence the restriction to KQ(Rep

Q
(G)) of the Chern character factors through

the augmentation map. Thus the surjection chX̂ ◦ r−1 factors through the
left-hand side of (1.9). Now it follows from the main theorem of [Mar76] that
this left hand side is of dimension [WG : WKh

], where WG (resp. WKh
) is the

absolute Weyl group of G (resp. Kh) relative to a common maximal torus.
On the other hand, the Schubert cells form a basis for the right-hand side,
and there are [WG : WKh

] of them (cf. [Bri05, 3.4.2 (2)]). So the surjection is
an isomorphism by comparing dimensions.

The purpose of the present note is to provide some evidence for the follow-
ing conjecture, which is an analogue of Proposition 1.8 for Shimura varieties.

Conjecture 1.10. The map cK : RepQ̄(Kh) → CH(KS(G, X))Q defined by

cK(W ) = chK([r−1(W )])

induces an injective ring homomorphism

KQ(Rep
Q

(Kh)) ⊗KQ(Rep
Q

(G)) Q ↪→ CH(KS(G, X))Q.
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We denote by c>0
K the composite of cK with the projection

CH(KS(G, X))Q = ⊕n≥0CHn(KS(G, X))Q → ⊕n>0CHn(KS(G, X))Q.

Claim 1.11. Conjecture 1.10 is equivalent to

c>0
K |RepQ̄(G) = 0.

Proof. Indeed this condition is equivalent to saying that cK induces a homo-
morphism

KQ(Rep
Q

(Kh)) ⊗KQ(Rep
Q

(G)) Q → CH(KS(G, X))Q.

On the other hand, given the Grothendieck-Riemann-Roch theorem, to say
that it is injective is equivalent to saying that the ring homomorphism

K0(RepQ̄(Kh))Q ⊗KQ(Rep
Q

(G)) Q → K0(KS(G, X))Q

induced by the functor K0(r−1) is injective. This is true, as follows from
Proposition 1.20 and point 3) of Proposition 1.8.

Remarks 1.12. 1) The only instance for which one knows that Conjec-
ture 1.10 is true is when KS(G, X) is the Siegel domain Ag and the represen-
tation of G = Sp(2g) is the tautological one (see [EV02, Thm. 1.1], [vdG99,
Thm. 1.1]). Then the flat vector bundle [E ] on Ag is the Gauß-Manin bun-
dle of the relative de Rham cohomology H1 of the universal abelian scheme.
The family is defined only over a level structure, but the Gauß-Manin bun-
dle, together with its Gauß-Manin connection, descends to Ag. In this case
the vanishing is even stronger: on the finite cover over which the local mon-
odromies are unipotent, the Deligne extension of the Gauß-Manin bundle has
vanishing Chern classes in the rational Chow groups.

2) To tie up with the conjecture on flat bundles alluded to in the introduc-
tion, we remark that the automorphic vector bundles [E ]K in the conjecture
are those coming from RepQ̄(G) which have a G(Af )-equivariant integrable
connection [Har85, Lemma 3.6].

3) Let cD : CH∗(KS(G, X))Q → H2∗
D (KS(G, X), ∗) be the cycle homomor-

phism into Deligne cohomology [EV88, Section 7]. We prove in Theorem 2.3
that

cD ◦ c>0
K |RepQ̄(G) = 0.
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Using Claim 1.11 in addition, one sees that Conjecture 1.10 when KS(G, X)
is projective is a special case of Beilinson’s motivic conjecture discussed in
the introduction.

4) We are not able to prove Conjecture 1.10. In fact, apart from the example
mentioned in 1), we can not prove vanishing in any other example.

Let us denote by KS(G, X)E(G,X) the model of the Shimura variety over its
reflex field. If

c� : CH∗(KS(G, X)E(G,X))Q → H2∗
cont(KS(G, X)E(G,X),Q�(∗))

denotes the cycle homomorphism to continuous �-adic cohomology [Jan87,
Section 2], we prove

c� ◦ c>0
K |RepQ̄(G) = 0.

in Theorem 3.3. (More precisely, we prove this after replacing E(G, X) by
the finite extension E′

h of Lemma 1.4.) In particular, we verify Conjecture 0.1
in this case. To our knowledge, the examples treated in this note are the
first that confirm this prediction for cycle classes of flat bundles that do not
depend on knowing in advance that the Chow class itself vanishes.

1.2. Hecke operators

Fix K ⊂ G(Af ). Let g ∈ G(Af ) and consider Kg = K ∩ gKg−1 ⊂ K. Let

π1,g = πK,Kg
: Kg

S(G, X) → KS(G, X),

defined as above. Right multiplication by g defines an isomorphism

rg : gKg−1S(G, X) ∼
−→ KS(G, X).

Let

π2,g = rg ◦ πgKg−1,Kg
: Kg

S(G, X) → KS(G, X).

We first observe that

T (g)[E ]K ∼= ⊕
[K:Kg]
1 [E ]K(1.13)

in K0(KS(G, X)), where T (g) = π2,g∗ ◦ π∗
1,g. Indeed, the definition implies

r∗
g [E ]K ∼= [E ]g−1Kg, and formula (1.6) implies formula (1.13).



202 Hélène Esnault and Michael Harris

Both π1,g an π2,g are finite étale morphisms. So for any contravariant
cohomology theory H which has push-downs for proper (or even only finite
étale) morphisms, one can define the Hecke operator

T (g) : H(KS(G, X))
π2,g∗◦π∗

1,g
−−−−−−→ H(KS(G, X)).(1.14)

We shall use the Hecke operators on Chow groups, on continuous �-adic
cohomology, on Deligne cohomology, on syntomic cohomology. All of them are
considered rationally. In particular, they are (possibly infinite) dimensional
vector spaces over Q, and the Hecke algebra splits those cohomologies as a
sum of generalized eigenspaces.

A rational prime number q is unramified for K if there exists a Kq ⊂
K with Kq ⊂ G(Qq) a hyperspecial compact open subgroup, and ramified
otherwise. There is a finite set S(K) of ramified primes. We let HK denote
the Q-subalgebra of the ring tensor Q of correspondences generated by the
T (g), where g runs through elements of G(Qq) with q /∈ S(K); this is well-
known to be a commutative algebra.

The following is obvious:

Lemma 1.15. Let R be a ring, a ∈ R, and let [a] : KS(G, X) → R be the
constant function with value a. Then [a] is an eigenfunction for every T (g),
with eigenvalue v(K, g) = [K : Kg].

We thus define the volume character T (g) 
→ v(K, g) of HK by the formula

T (g) · [1] = v(K, g) · [1]

where [1] is the constant function with value 1 on KS(G, X), as above.
For any cohomology theory H∗(KS(G, X)), including the Chow groups, let
H∗(KS(G, X))v ⊂ H∗(KS(G, X)) be the eigenspace for the volume charac-
ter. As H∗(KS(G, X)) is a possibly infinite dimensional Q-vector space, so is
H∗(KS(G, X))v.

Lemma 1.16. Let E ∈ VectG(X̂). Then for any open compact subgroup
K ⊂ G(Af ), ch([E ]K) ∈ CH(KS(G, X))v.

Proof. As π2,g is finite étale, its Todd class is equal to 1, thus the Grothendieck-
Riemann-Roch theorem implies

ch(π2,g∗π∗
1,g[E ]K) = π2,g∗(ch(π∗

1,g[E ]K) · 1),
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from which we conclude using formula (1.13)

ch(T (g)[E ]K) = π2,g∗(ch(π∗
1,g[E ]K)·1) = π2,g∗π∗

1,gch([E ]K) = T (g)ch([E ]K).

Applying (1.6) and (1.7) one concludes

[K : Kg]ch([E ]K) = T (g)ch([E ]K).(1.17)

Corollary 1.18. Let H∗ be a cohomology theory which, for any open compact
subgroup K ⊂ G(Af ), admits a cycle map

cK
H : CH(KS(G, X)) → H(KS(G, X))

which commutes with the action of HK . Then for any E ∈ VectG(X̂),

cK
H ◦ ch([E ]K) ∈ H∗(KS(G, X))v.

The cohomology theories H i(−, j) with coefficients in a characteristic 0
field F considered in this note are all functorial. Thus to check that the cycle
map commutes with the action of HK , it suffices to verify compatibility with
the push-down via π2,g∗. In all those cohomology theories, the cycle map can
be defined via purity: for Z =

∑

i miZi a codimension n cycle on a smooth Y ,
where mi ∈ Z and the codimension n cycles Zi are prime, the Gysin morphism
exists and is an isomorphism

γ : ⊕F · [Zi]
∼=
−→ H2n

Z (Y, n).

See [EV88, Section 7] for Betti, de Rham and Deligne cohomology, [Jan88,
Thm. 3.23] for continuous �-adic cohomology. Thus compatibility reduces to
showing

γ(π∗[Zi]) = γ(deg(k(Zi)/k(π(Zi))) · [π(Zi)]) = π∗γ([Zi]) ∈ H2n
p(Zi)(Y

′, n)

for a finite surjective morphism p : Y → Y ′. In Deligne cohomology, it follows
as the cohomology verifies the Bloch-Ogus axioms. In �-adic cohomology, for
lack of reference, we restrict ourselves to the case where Y is defined over a
number field k. Let Y be a flat smooth model over a non-trivial open U in
the spectrum of the ring of integers of k. Then the cycle class in H2n(Y , n)
is just the standard cycle class from [SGA4.5], for which the trace properties
are known [SGA4.5, 2.3].
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Corollary 1.19. Corollary 1.18 holds true for Deligne cohomology and con-
tinuous �-adic cohomology.

In the next section we study H∗(KS(G, X))v for Betti and �-adic coho-
mology.

1.3. Chern classes in cohomology

Henceforward we assume the Shimura variety KS(G, X) to be projective;
equivalently, the derived subgroup Gder of G is anisotropic over Q. In the
non-compact case the automorphic theory naturally gives information about
Chern classes of canonical extensions on toroidal compactifications on the one
hand; on the other hand, the v-eigenspace most naturally appears in inter-
section cohomology of the minimal compactification. This has been worked
out in detail by Goresky and Pardon in [GP02], and we expect to study the
analogous questions for Chow groups in a second paper.

Although the point of the Goresky-Pardon paper is to study non-compact
Shimura varieties, it still contains a convenient reference for our purposes. The
following statement is well known.

Proposition 1.20. Assume the derived subgroup Gder of G is anisotropic, so
that KS(G, X) is projective. There is a canonical isomorphism of algebras

H∗(X̂,Q) ∼
−→ H∗(KS(G, X),Q)v.

Proof. We first show the corresponding statement over C; thus we can com-
pute H∗(KS(G, X),C) using automorphic forms and Matsushima’s formula.
Say the space A(G) of automorphic forms on G(Q)\G(A) decomposes as the
direct sum

A(G) = ⊕πm(π)π

where π runs over irreducible admissible representations of G(A) and m(π)
is a non-negative integer, which is positive for a countable set of π. Then

H i(KS(G, X),C) ∼
−→ ⊕π m(π)H i(g, Kh; π∞) ⊗ πK

f .

Then

H i(KS(G, X),C)v
∼

−→ ⊕π m(π)H i(g, Kh; π∞) ⊗ (πK
f )v,

where (πK
f )v is the eigenspace in πK

f for the volume character of HK . Write
πf = ⊗′

qπq, where q runs over rational primes. Now if q is unramified for
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K then πK
f = 0 unless πq is spherical; but the only spherical representation

of G(Qq) whose spherical subspace is an eigenspace for the (local) volume
character is the trivial representation of G(Qq). Thus (πK

f )v = 0 implies πq is
the trivial representation for all q that are unramified for K. It then follows
from weak approximation that π is in fact the trivial representation. Thus for
all i,

(1.21) H i(KS(G, X),C)v
∼

−→ H i(g, Kh;C).

But this is equal to H i(X̂,C) by a standard calculation; see [GP02, Rmk. 16.6].
In particular, H i(KS(G, X),Q)v = 0 if i is odd. Now to prove that there

is an isomorphism over Q, it suffices to show that, for each m,

(1.22) H2m(X̂,Q)(m) ∼
−→ H2m(KS(G, X),Q)(m)v,

where we write

H2m(X̂,Q)(m) = H2m(X̂, (2πi)m · Q) ⊂ H2m(X̂,C).

But composing the isomorphism of Proposition 1.8 with the Chern class in
cohomology, we obtain an isomorphism [Mar76], [GP02]

(1.23) KQ(Rep
Q

(Kh)) ⊗KQ(Rep
Q

(G)) Q
∼

−→ H2m(X̂,Q)(m).

Then (1.22) follows from the diagram in [GP02, Rmk. 16.6], where of course
we are replacing intersection cohomology with ordinary cohomology.

Remark 1.24. As the referee pointed out, the homomorphism

H∗(X̂,Q) → H∗(KS(G, X),Q)v

can be constructed without reference to Lie algebra cohomology. More pre-
cisely, it can be described as the composition of quasiisomorphisms

RΓdR(X̂) → RΓdR(GC/Kh,C) ← Γ(GC/Kh,C, Ω•) ← Γ(GC/Kh,C, Ω•)GC

and the restriction map

Γ(GC/Kh,C, Ω•)GC → Γ(X, Ω•
C∞)G(Q)∩Kh(R)

using the identification of X with G(R)/Kh(R) ⊂ GC/Kh,C. Here we have
used standard notation. The fact that this defines an isomorphism, as stated
in Proposition 1.20, seems to require reference to Matsushima’s formula.
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The proof of Proposition 1.20 gives additional information on the Galois
action on �-adic cohomology. The Shimura variety KS(G, X) and the flag va-
riety X̂ have canonical models over the reflex field E(G, X). Theorem [Har85,
Thm. 4.8] asserts, among other things, that the functor of (1.5) commutes
with the action of Gal(Q/E(G, X)). In addition, the Hecke correspondences
T (g) are all rational over E(G, X). It follows that, for any prime �, the �-adic
cohomology spaces H∗(X̂Q̄,Q�) and H∗(KS(G, X)Q̄,Q�)v carry an action of
Gal(Q/E(G, X)), where we denote by Q̄ the base change of the models of the
Shimura variety and of the flag variety over the reflex field E(G, X).

Moreover, for any E ∈ VectG(X̂), the i-th Chern class

ci
�(E) ∈ H2i(X̂Q̄,Q�(i)), resp. ci

�([E ]K) ∈ H2i(KS(G, X)Q̄,Q�(i))v

generates a Gal(Q/E(G, X))-subspace that is isotypic for the i-th power of
the cyclotomic character.

Proposition 1.25. Under the hypotheses of Proposition 1.20, the algebra
isomorphism induces an algebra isomorphism

H2∗(X̂Q̄,Q�(∗)) ∼
−→ H2∗(KS(G, X)Q̄,Q�(∗))v

ci
�(E) 
→ ci

�([E ]K)

in �-adic cohomology over Q̄, which is equivariant for the action of the Galois
group Gal(Q/E(G, X)) on both sides.

Proof. Both sides are generated by Chern classes ci
�(E) and ci

�([E ]K), and the
isomorphism is defined on those Chern classes.

2. Chern classes in Deligne cohomology

We use the notations from Remarks 1.12 2). First we recall some of the basic
properties of automorphic vector bundles in the image of Rep

Q
(G).

Proposition 2.1. Let i : Rep
Q

(G) → VectG(X̂) be the composition of the
natural inclusion Rep

Q
(G) → Rep

Q
(Kh) with the inverse of the equivalence

(1.2). Let ρ : G → GL(V ) be a finite-dimensional representation. Then

(a) The vector bundle [i(ρ)] on KS(G, X) has a canonical flat connection.
(b) Let [i(ρ)]∇ denote the local system on KS(G, X) that corresponds to the

flat connection of (a). Let Z ⊂ KS(G, X) be a connected component,
let z ∈ Z be a base point, and let rz : π1(Z, z) → V be the monodromy
representation attached to [i(ρ)]∇. Then V has a model over the integers
OF of a number field F that is preserved by the image of rz.
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(c) If ρ is defined over Q then [i(ρ)] is endowed with a canonical variation
of Hodge structure, which is a direct sum of variations of pure Hodge
structures.

Proof. These points are all well-known. For (a), one can cite [Har85, Lem. 3.6];
for (c) see [Del79, Section 1.1], especially 1.1.13-1.1.17. For (b) we use Lemma 2.2,
the proof of which was provided by Bruno Klingler. Indeed, the complex va-
riety Z in (b) is the quotient of a connected component X0 of X, which is
contractible, by a congruence subgroup Γ ⊂ G(Q), and the topological fun-
damental group π1(Z, z) can be identified with Γ. It suffices to assume (rz, V )
is irreducible. The reductive group G splits over a number field F , and by
the theory of Chevalley groups, every irreducible representation of G has a
model over F . Then RF/Q(rz, V ) is a representation defined over Q, to which
Lemma 2.2 applies. The lattice L of Lemma 2.2 generates an OF lattice in V

which is invariant under Γ.

Lemma 2.2. Let G be a linear algebraic group over Q and Γ ⊂ G(Q) an
arithmetic subgroup. Let W be a vector space over Q and let r : G → GL(W )
be a representation defined over Q. Then there exists a lattice L in W such
that r(Γ) ⊂ GL(L).

Proof. Let H = rz(G) ⊂ GL(W ). By [PR94, Thm. 1.4], rz(Γ) is an arithmetic
subgroup of H. The Lemma then follows from [PR94, Prop. 4.2], which is the
special case where r is injective.

Theorem 2.3. Let KS(G, X) be a Shimura variety. Then

cD ◦ c>0
K |RepC(G) = 0.

Proof. Given Proposition 2.1, the theorem is a direct consequence of [CE05,
Thm. 0.2], which in fact says more: the Chern-Simons invariants of the flat
connection on [E ] are torsion, for E coming from RepC(G).

However, for projective Shimura varieties, the theorem is a consequence
of Lemma 1.19 and of the following proposition.

We denote by HdR de Rham cohomology.

Proposition 2.4. Let KS(G, X) be a projective Shimura variety. Then

H2n
D (KS(G, X),Q(n))v ⊂ H2n

dR(KS(G, X)).
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Proof. Proposition 1.20 implies that H2n−1(KS(G, X),Q)v = 0. On the other
hand, the action of HK on H2n

D (KS(G, X),Q(n)), via correspondences, is
semi-simple. Thus it respects the exact sequence

0 → H2n−1(KS(G, X),C)/
(

H2n−1(KS(G, X),Q(n)) + F n)

→ H2n
D (KS(G, X),Q(n)) → H2n

dR(KS(G, X))

and on the left respects each of the three terms of the quotient. This finishes
the proof.

Remarks 2.5. 1) We have assumed KS(G, X) projective in order to apply
Proposition 1.20 as stated above. For general Shimura varieties the map in
Proposition 1.20 is in any case surjective – cf. [GP02] – and this suffices for
the above proposition.

2) Theorem [CE05, Thm. 0.2] used in the proof of Theorem 2.3 is a variant
of Reznikov’s main theorem [Rez94] which also rests on the fact that some
forms of odd weight do not exist.

3. Chern classes in continuous �-adic cohomology

Recall the field E′
h introduced in §1. It follows from Lemma 1.4 that every

�-adic Chern class cK(W ) belongs to CH∗(KS(G, X)E′

h
). Thus we can define

the class c� ◦ cK(W ) ∈ H2∗
cont(KS(G, X)E′

h
,Q�(∗)).

Remark 3.1. The discussion of the present section seems to depend on
the choice of a CM point h. In fact, it is not difficult to see that, if we
let E(G) denote the extension of Q over which G splits, we can replace E′

h by
E(G)E(G, X), and Lemma 1.4 remains true. The point is that, up to twist-
ing by a power of the canonical bundle of X̂, every irreducible G-equivariant
vector bundle on X̂ can be obtained, by a construction that is defined over
E(G, X), as a canonical quotient of a G-equivariant vector bundle attached to
an irreducible representation of G. This is a simple application of the theory
of the highest weight, applied to Kh for variable h ∈ X̂, and to G. Since for
our purposes it suffices to prove the vanishing in rational continuous �-adic
cohomology after restriction to some finite extension, the choice of number
field is immaterial.

We use the notation of Remarks 1.12 3), 4). The action of the Hecke alge-
bra HK commutes with the Galois action of Gal(Q̄/E(G, X)). The Hecke



Chern classes of automorphic vector bundles 209

algebra splits étale cohomology H i(KS(G, X)Q,Q�) into a sum of gener-
alized eigenspaces which are Galois invariant. Thus HK splits the filtra-
tion stemming from the Hochshild-Serre spectral sequence. In particular,
one has a filtration on H2n

cont(KS(G, X)E′

h
,Q�(n)))v with 0-th graded quo-

tient equal to H0(E′
h, H2n(KS(G, X)Q̄,Q�(n))v), first graded quotient equal

to H1(E′
h, H2n−1(KS(G, X)Q̄,Q�(n))v) and last graded quotient being the

subspace

H2(E′
h, H2n−2(KS(G, X)Q̄,Q�(n))v) ⊂ H2n

cont(KS(G, X)E′

h
,Q�(n)))v.

The pendant on the �-adic side of Proposition 2.4 is

Proposition 3.2. Let KS(G, X) be a projective Shimura variety. Then

(

H2n
cont(KS(G, X)E′

h
,Q�(n)))/H2(E′

h, H2n−2(KS(G, X)Q̄,Q�(n)))
)

v

⊂ H2n(KS(G, X)Q̄,Q�(n)).

Proof. Proposition 1.25 implies that H2n−1(KS(G, X)Q̄,Q�(n))v = 0.

Theorem 3.3. Let KS(G, X) be a projective Shimura variety. Then

c� ◦ c>0
K |RepQ(G) = 0.

Proof. By Proposition 3.2, together with Corollary 1.19, c� ◦ c>0
K |RepQ(G) has

values in

H2(E′
h, H2n−2(KS(G, X)Q̄,Q�(n))v).

We now apply a variant of the proof of [Ras95, Prop. 2.3]. Let us denote
by d the dimension of KS(G, X). Then Proposition 1.25 implies that the
non-degenerate E′

h- equivariant cup-product

H2n−2(KS(G, X)Q̄,Q�(n)) × H2d−2n+2(KS(G, X)Q̄,Q�(d − n + 1))

→ H2d(KS(G, X)Q̄,Q�(d + 1)) = Q�(1)

restricts to a non-degenerate E′
h-equivariant cup-product

(3.4) H2n−2(KS(G, X)Q̄,Q�(n))v × H2d−2n+2(KS(G, X)Q̄,Q�(d − n + 1))v

→ H2d(KS(G, X)Q̄,Q�(d + 1))v = H2d(KS(G, X)Q̄,Q�(d + 1))v = Q�(1).

Write
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h = dimQ�
H2n−2(KS(G, X)Q̄,Q�)v = dimQ�

H2d−2n+2(KS(G, X)Q̄,Q�)v.

Then (3.4) is written as

⊕h
1Q(1) × ⊕h

1Q�(0) → Q�(1)

as a non-degenerate E′
h-equivariant pairing. Indeed, by Proposition 1.25, for

all i ∈ N, H2i(KS(G, X)Q̄,Q�(i))v is spanned as a Q�-vector space by the
classes

ci
�([E ]K,Q̄) ∈ H0(E′

h, H2i(KS(G, X)Q̄,Q�(i))),

where E comes from a Kh-representation, so is algebraic. This implies that
the pairing of Q�-vector spaces

H2(E′
h, ⊕h

1Q�(1)) × H0(E′
h, ⊕h

1Q�(0)) → H2(E′
h,Q�(1))(3.5)

is non-degenerate.

On the other hand, for W ∈ RepQ̄(G), and E ∈ Rep(Kh) defining [E ]K ,
one has

cn
K(W ) ∪ chd−n+1([E ]K) ∈ CHd+1(KS(G, X))Q = 0.

(Recall here cK is defined in Conjecture 1.10.) Thus

0 = cd+1
� (cn

K(W ) ∪ chd−n+1([E ]K)) =

cn
� (cn

K(W )) ∪ cd−n+1
� ([E ]K,Q̄) ∈ H2(E′

h,Q�(1)).

Applying (3.5) we conclude cn
K(W ) = 0. This finishes the proof.

Remark 3.6 (Syntomic cohomology). In addition to Deligne and continuous
�-adic cohomology, it is natural to consider syntomic cohomology as defined
by Fontaine, Kato and Messing. Let us denote by E′

p the p-adic completion of
the number field E′

h at a place p. We assume that KS(G, X)E′

p
is proper and

has a semi-stable model. Then with p-power torsion coefficients, the syntomic
cohomology group H2n

synt(KS(G, X)E′

p
,Z/pnZ(n)) is defined as the étale co-

homology group of the τ≤n-truncation of the vanishing cycle complex [KM92,
Thm. 2.2]. This isomorphism lifts to continuous p-adic coefficients [NN16,
Proof of Cor. 4.5] yielding a Hochshild-Serre spectral sequence

Est
2 = Hs

st(E
′
p, Ht(KS(G, X)Q̄p

,Qp(n)) =⇒ Hs+t
synt(KS(G, X)E′

p
,Q(n))
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where st stands for ‘stable’, compatible with the one on continuous p-adic
cohomology [NN16, Thm. 4.8]. Thus the same proof as in Theorem 3.3 yields
the same result, with c� replaced by the syntomic Chern classes ([NN16,
Section 5]).

Remark 3.7 (Construction of torsion classes in cohomology). One motiva-
tion for studying the Chern classes of automorphic vector bundles is the hope
that they might provide a way to construct interesting torsion classes in the
Chow group, or that their �-adic Abel-Jacobi classes in H1(E′

h, H2n−1(KS(G,
X)Q̄,Q�(n))v) might be torsion. It follows easily from (1.21) and (1.23) that
any class in K0(VectG(X̂)) � K0(RepQ(Kh)) whose image in the Chow group
CH(KS(G, X)) under all Chern classes of positive degree is torsion, must nec-
essarily belong to the ideal generated by the kernel of the augmentation map
K0(RepQ(G)) → Z. Any torsion classes arising in this way would naturally
be eigenvectors for the volume character of the Hecke algebra; in particular,
the associated cohomology classes are Eisenstein classes, in the usual sense.
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