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Summary

Wide-spread abundance in soil and water, coupled
with high toxicity have put arsenic at the top of the
list of environmental contaminants. Early studies
demonstrated that both concentration and the
valence state of inorganic arsenic (arsenite, As(lll) vs.
arsenate As(V)) can be modulated by microbes. Using
genetics, transcriptomic and proteomic techniques,
microbe-arsenic detoxification, respiratory As(V)
reduction and As(lll) oxidation have since been exam-
ined. The effect of arsenic exposure on whole-cell
intracellular microbial metabolism, however, has not
been extensively studied. We combined LC-MS and
TH NMR to quantify metabolic changes in Agrobacte-
rium tumefaciens (strain 5A) upon exposure to
sub-lethal concentrations of As(lll). Metabolomics
analysis reveals global differences in metabolite con-
centrations between control and As(lll) exposure
groups, with significant perturbations to intermedi-
ates shuttling into and cycling within the TCA cycle.
These data are most consistent with the disruption of
two key TCA cycle enzymes, pyruvate dehydroge-
nase and a-ketoglutarate dehydrogenase. Glycolysis
also appeared altered following As(lll) stress, with
carbon accumulating as complex saccharides. These
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observations suggest that an important consequence
of As(lll) contamination in nature will be to alter
microbial carbon metabolism at the microbial com-
munity level and thus has the potential to
foundationally impact all biogeochemical cycles in
the environment.

Introduction

Interest and concomitant progress in understanding
microbe-arsenic interactions have grown substantially over
the past approximate decade. Early physiology and genetic
studies focused on an arsenic detoxification model featur-
ing the ars genes (Mukhopadhyay et al., 2002; Rosen,
2002). In the most general terms, this involves arsenate
[As(V)] accessing the cell cytoplasm via a phosphate
transporter, being reduced by an As(V) reductase (ArsC)
to the more toxic arsenite [As(Ill)], which is then actively
transported out of the cell by antiporters (ArsB or Acr3).
Important discoveries have followed, illustrating that a dif-
ferent As(V) reductase (ArrBA) could couple As(V)
reduction to anaerobic respiration and energy generation
(Saltikov and Newman, 2003). The arrAB genes and their
regulation, as well as electron transport have since been
described in some detail (Murphy and Saltikov, 2007;
2009; Reyes et al., 2010). Similar progress has been
made regarding As(lll) oxidase, which is encoded by aioBA
(Muller et al., 2003), and functions as a detoxification
mechanism (Osborne and Ehrlich, 1976; Phillips and
Taylor, 1976) or to generate energy (Santini et al., 2000;
Wang et al., 2015). This oxidase is regulated by a three
component signal transduction system AioXSR and RpoN
(Kashyap et al., 2006; Koechler et al., 2010; Kang, Both-
ner, et al., 2012; Liu et al., 2012). In addition, elements of
the phosphate stress response (PhoRB) are varyingly
involved depending on the organism (Kang, Heinemann,
etal., 2012; Chen et al., 2015).

Central themes of microbial cellular arsenic responses
have begun to emerge from proteomics and transcriptom-
ics studies (Parvatiyar et al., 2005; Carapito et al., 2006;
Weiss et al.,, 2009; Cleiss-Arnold et al., 2010; Andres
et al., 2013). Induction of ars, arr and aio genes occurs in
response to As(lll) (Kashyap et al., 2006; Cleiss-Arnold
et al,, 2010; Andres et al., 2013). However, elements of an



oxidative stress response are also quite evident in Pseudo-
monas aeruginosa (Parvatiyar et al., 2005), as well as
other bacteria (Abdrashitova et al, 1990; Ji and Silver,
1992) and mammalian systems (e.g., (Hall et al, 1997;
Ochi, 1997; Jomova et al., 2011). While the exact mecha-
nism of how reactive oxygen species (ROS) are generated
in response to As(lll) exposure remains speculative (Shi
et al., 2004); it is known that As(lll) aggressively attacks
sulfhydryl groups. This is suspected to rapidly inactivate
reduced glutathione, which is a primary antioxidant in cells,
rendering the cell susceptible to damage resulting from
normal levels of ROS generated by aerobic metabolism.
Progress notwithstanding, the specific influence of arsenic
on the microbial cellular metabolome per se has received
only limited attention thus far (Jain et al., 2012) and in com-
plex experimental settings wherein the effects of arsenic
per se may be difficult to parse out (Lu et al., 2014). Herein
we summarize the results of experiments using integrated
MS and 'H-NMR metabolomics approaches to examine
how and to what extent cellular metabolite pools are influ-
enced by bacterial cellular exposure to As(lll).

Results

LC-MS analysis of metabolic changes in response to
as(lll)

Our previous efforts illuminated how aioSRBA expression
is suppressed by high phosphate (Pi) (Kang, Heinemann,
et al. 2012). Therefore, in this study 50 uM Pi was present
in the growth media to achieve an active growth state, fol-
lowed by transiton to a Pi stress condition at
approximately 4 h, then by an additional 2 h to achieve full
induction of the aioBA genes (Kang, Heinemann, et al.,
2012) and ars genes (Kang et al., 2016). It is thus reason-
able to assume that under these growth conditions, full
induction of As(lll)-sensitive genes is well underway and
that As(lll)-sensitive enzymes are likewise influenced.
Cells were harvested 6 h after exposure to 100 uM As(lll)
and metabolites were extracted. The experimental repro-
ducibility for the five biological replicates was good, and
encompassed culturing, cell lysis, metabolite extraction
and analysis. LC-MS conditions specific for polar and non-
polar metabolites were used to ensure significant coverage
of the Agrobacterium tumefaciens metabolome, illustrating
differences for both polar and non-polar fractions after
exposure to As(lll) (Fig. 1). Approximately 2300 polar
features were detected in each of the replicates with and
without As(lll)-treatment (Fig. 2). Reverse-phase LC
detected twice as many molecules in each sample. An
overall comparison of the extent to which As(lll) alters the
cellular metabolite profiles was made using volcano plots.
This revealed that roughly three times more non-polar fea-
tures increased versus decreased in abundance, while
changes in the polar metabolite pool were more balanced

Altered regulation of metabolic pathways by arsenite 711

(Fig. 3). From the pool of metabolites that were significant-
ly changed by exposure to As(lll) (p-value <0.05, fold-
change > 1.5), 12 could be identified. These were primarily
carbohydrates and amino acids, with increases ranging
from 1.5- to 8-fold and decreases up to 5-fold (Table 1).

Metabolite profiling using "H NMR spectroscopy

Metabolite extracts were profiled by recording 'H NMR
spectra on a 600 MHz Bruker AVANCE Ill NMR spectrom-
eter. A representative one-dimensional spectrum is shown
in Fig. 4. In all NMR spectra, signals originating from mono
and poly saccharides (3.4-4.0 ppm) were highest in inten-
sity. Less intense signals were observed for aliphatic (0.5~
3.4 ppm) and aromatic (6—8 ppm) protons. Based on com-
parison of peak intensity, multiplicity and chemical shifts
with standard compounds observed in the Chenomx™
600 MHz library, 36 metabolites were identified unambigu-
ously and quantified. The majority of detected metabolites
corresponded to amino acids, sugars and a few organic
acids (Table 2). A comparison of the metabolites concen-
trations between As(lll) stressed and control samples
established that 26 of the identified metabolites were
higher in concentration in the As(lll) stressed group. Unsu-
pervised PCA analysis was performed as a means of
visualizing the differences between control and As(lll)
groups. The resulting score plot showed clear separation
between the two groups, with the control group much less
tightly clustered than the arsenic stressed group (Fig. 5).
This dispersion appears to arise from larger variations in
metabolite concentrations between individual control sam-
ples. This metabolic “scatter” of the control group
compared with the more tightly clustered stressed group
has been seen previously, suggesting a similar response
and narrowing of metabolic space when bacterial cells
experience environmental stress (Heinemann, Mazurie,
et al., 2014; Tokmina-Lukaszewska et al., 2014).

To further analyze the metabolic differences and identify
the metabolites most responsible for the separation
between control and As(lll) stressed groups, a supervised
partial least squares discriminant analysis (PLS-DA) was
performed. A model with goodness of fit and cross-
validation predictive ability was determined with good sep-
aration between control and As(lll) groups. The variable
influence on projection (VIP) value for each metabolite was
calculated, and metabolites identified with a VIP score-
> 1.1 are presented in Table 2. These included the amino
acids alanine, glutamine, glutamate, leucine, isoleucine,
phenylalanine, valine and B-alanine. Other metabolites
included lactate, nicotinate, oxypurinol, putrescine, cyto-
sine and ribose. '"H NMR-based metabolomics analysis
shared metabolites in common with LC-MS; lactate, ala-
nine, putrescine, ribose and in particular glutamate, were
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Relative Abundance >

Fig. 1. LC-MS analysis of
intracellular metabolites.

A. Total ion chromatogram of
the C18 column (reverse-
phase) illustrating varying peak
intensities of features for
controls cultures (blue trace) as
compared with As(lll) treated
cells (red trace).

B. Principal component
analysis of polar metabolites
and (C) non-polar metabolites
from control (blue dots) and
As(l1l) exposed cultures (red
dots).
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Fig. 2. Average number and variation in spectral features detected
by LC-MS. Data represent five biological replicates for control and
As(lll)-treated cultures. Two columns were used for LC-MS
analysis, HILIC to capture polar compounds and reverse-phase to
capture non-polar compounds.

(TCA) (Fig. 6). As metabolites were identified and added to
the model, a pattern emerged inferring that carbon flow
through the specific pathways was increased when cells
were exposed to As(lll). Specifically, accumulation of vari-
ous metabolites (amino acids in particular) suggested the
formation of “metabolic bottlenecks,” involving reactions
catalyzed by the enzymes pyruvate dehydrogenase and o-
ketoglutarate dehydrogenase. In addition to identifying
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Fig. 3. MS-based analysis of global perturbation of A. tumefaciens cellular metabolism in response to As(lll) exposure. MS features detected
using hydrophilic interaction chromatography are referred to as polar metabolites, whereas features detected using C18 reverse phase
chromatography are referred to as non-polar. Gray vertical lines denote the —2 and +2 fold change designated cut-off. Horizontal gray lines
denote a statistical significance p-value <0.05. Green arrows refer to subset of features exhibiting 1.5- or 2.0-fold change (FC) with a p-value

<0.05.

metabolites exhibiting significant changes, the LC-MS data
was examined to determine if the intermediates in the sug-
gested branches could be identified to obtain additional
evidence of carbon flow through these specific pathways
(defined as solid vector arrows in Fig. 6). This was the
case for most, e.g., two of the four intermediates involved
in the synthesis of valine from pyruvate were found, as
were three of the nine intermediates involved in the synthe-
sis of lysine from aspartate. In some cases, intermediates
initiating key pathways could not be identified; however,
pathways were nevertheless suggested based on accumu-
lated evidence of key intermediates. For example, several
maltose derivatives that were identified in the LC-MS spec-
tra, suggesting that carbon originating from carbohydrate
catabolism may be diverted from glycolysis for other cellu-
lar purposes. Similarly, the shikimate pathway used by
microbes for the de novo synthesis of aromatic amino
acids was inferred from the identification of significant lev-
els of phenylalanine and tryptophan, as well as high levels
of chorismate, a key downstream metabolite of this path-
way. However, we could not unambiguously identify any of
the nine intermediates involved in the pyruvate to leucine
biosynthesis pathway, suggesting uncertainty as to wheth-
er this specific pathway is enhanced in As(lll) stressed
cells.

Discussion

The studies of microbe-arsenic interactions have pro-
gressed to where there is now a foundational

understanding of how microbes detect and respond to
arsenic. These studies have primarily concerned various
major arsenic redox transformations or resistance mecha-
nisms (Stolz and Oremland, 1999; Rosen, 2002;
Oremland and Stolz, 2003; Silver and Phung, 2005) as
well as non-targeted assessments of arsenic effects at
more global levels using proteomics (Parvatiyar et al.,
2005; Carapito et al., 2006; Muller et al., 2007; Weiss
et al., 2009; Pandey et al, 2012; Andres et al., 2013;
Belfiore et al., 2013; Sacheti et al., 2014; Thomas et al.,
2014; Ge et al.,, 2016) and transcriptomics (Cleiss-Arnold
et al, 2010; Andres et al., 2013; Sanchez-Riego et al.,
2014; Halter et al, 2015). A central theme that has
emerged from each study is that As(lll) exposure induces
bacterial functions directly related to arsenic transforma-
tions or resistance (e.g., arsC, arsB and aioBA.), oxidative
stress response (Parvatiyar et al., 2005) presumably due
to loss of reduced glutathione (e.g., up-regulation of gor,
sod and kat), as well as DNA repair activities (Bryan et al.,
2009; Weiss et al., 2009; Cleiss-Arnold et al., 2010; Li
etal., 2010).

Though complete concordance between transcriptional
and translational change is not expected, this information
is generally informative for the prediction of metabolic
changes, in particular up-regulated functions. However,
with the exception of proteins that recognize As(lll) as their
regulatory ligand, interactions between As(lll) and protein
thiols has a high probability of protein inactivation. These
interactions are post-translational, cannot be observed at
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Table 1. Metabolites identified using LC-MS. Metabolites with tenta-
tive assignment are shown in italic. Metabolites with tentative
assignment were missing confirmation based on MS/MS fragmenta-
tion due to insufficient number of generated fragments or indistin-
guishable patterns (isomers).

Metabolite Fold change p-Value Regulation
Betaine 4.6 0.03 Down
Cytosine 2.4 0.04 Up
p-pyroglutamate 1.8 0.00 Up
p-sorbitol 1.5 0.03 Down
Glutamate 1.8 0.00 Up
Glycerophosphocholine 1.6 0.09 Down
Hypoxanthine 8.0 0.15 Up
Isonicotinate 2.4 0.02 Up
Lysine 1.2 >0.2 Up
Maltohexaose 11 >0.2 Up
Maltopentaose 1.5 0.04 Up
Maltotetraose 1.9 0.01 Up
Maltotriose 2.1 0.02 Up
Phenylalanine 1.3 >0.2 Up
Proline 1.4 0.20 Down
Tryptophan 1.4 0.16 Up
Xanthine 3.5 0.02 Down
Arginine >0.2

Aspartate >0.2

Chorismate >0.2

Mannose >0.2

Sucrose >0.2

Valine >0.2

(S)— 2-Acetolactate/3-hydroxy-3-methyl-2-oxobutanoate.
(R)—2,3-Dihydroxy-3methylbutanoate.
2-Oxoisovalerate.

(2S)— 2-Isopropyl-3-oxosuccinate.

Pyruvate.

Nicotinate p-ribonucleoside.

N-Formyl-kynurenine.

Anthranilate.

3-hydroxy-L-Kynurenine.

L—4-Aspartate semialdehyde.
LL—2,6-Diaminopimelate/meso-2,6-diaminoheptanedioate.

the transcriptional level and may not necessarily be detect-
able in a proteomics analysis. As such, increased gene
transcription or protein abundance in reaction to As(lll)
exposure may not ultimately result in increased function,
and thus could result in an incomplete understanding of
overall global cellular responses. Complementing tran-
scriptomics and proteomics data with metabolomics
analyses provides a powerful mean to enhance our knowl-
edge of how As(lll) impacts cellular functions.

Protein thiols are subject to As(lll) inactivation and if
such a residue is critical to enzyme function, this will lead
to interruption of a pathway whose reactions are catalyzed
by such enzymes. The complete or partial inactivation of
an enzyme will result in accumulation of upstream metabo-
lites and depletion of downstream intermediates or end
products. Accumulation of metabolites as a result of
enzyme inactivation could divert carbon flow to other path-
ways, even in the absence of changes in the enzyme

abundance or activity. As expected, a range of enzyme
classes can be inhibited by As(l1l) (Gonzalez-Segura et al.,
2009; Jain et al., 2012). Specific examples relevant to the
current study include documented inhibition of pyruvate
dehydrogenase (PDH), o-ketoglutarate dehydrogenase
(KGDH) and branched-chain a-ketoacid dehydrogenase
(BCKDH) enzymes. These enzymes all contain a dihydroli-
poamide dehydrogenase subunit that is sensitive to As(lll)
inactivation across organisms (Bergquist ef al., 2009; Afzal
et al., 2012; Chen et al., 2014). Inhibition of these specific
enzymes is consistent with the measured increase in
abundance of several metabolites observed in As(lll)
exposed A. tumefaciens 5A (Fig. 6). Specifically, As(lll)
inhibition of PDH would lead to the accumulation of pyru-
vate, which is the precursor to the formation of lactate,
leucine, isoleucine, alanine and valine. Some of these
compounds are precursors for other metabolites observed
to increase in abundance, such as nicotinate and isonicoti-
nate, although these latter metabolites could also be
synthesized from tryptophan. Preferential accumulation of
the branched-chain amino acids leucine, isoleucine and
valine could be further promoted by As(lll) inhibition of
BCKDH which catalyzes the catabolism of these amino
acids. As(lll) inhibition of KGDH would likewise lead to the
preferential diversion of metabolite intermediates from
TCA carbon flow and instead utilize a-ketoglutarate to form
glutamate, which can be converted to glutamine, ornithine,
arginine and putrescine, as well as lysine although less
directly (Fig. 6). To our knowledge, the only route of D-5-
oxoproline synthesis (increased abundance in As(lll))
involves glutamate in an ATP-depleting futile cycle that
includes y-glutamyl phosphate (Emmett, 2014). We also
note that ornithine decarboxylase activity is enhanced/sta-
bilized by As(lll) in erythroleukemia cells (Flamigni et al.,
1989), rat hepatic cells (Brown et al., 1997) and in Leish-
mania (Haimeur et al., 1999). To the extent that this also
occurs in bacteria such as A. tumefaciens 5A, this would
promote putrescine synthesis, as observed here (Fig. 6).
Increased levels of pyruvate and phosphoenolpyruvate
(PEP in Fig. 6) could contribute toward increased levels of
oxaloacetate (PEP carboxylase or pyruvate carboxylase,
are both encoded in strain 5A’s genome), which can be
used as precursors for the synthesis of lysine, alanine and
cytosine. All of the above scenarios are consistent with a
targeted study concerning As(lll)-treated Rhodococcus
that found significantly reduced enzyme levels of PDH,
KGDH and malate dehydrogenase (Jain et al, 2012),
which corresponded to increased levels of pyruvate, o-
ketoglutarate and oxaloacetate. The consistency of this
study with our observations belies what might be predicted
from proteomics studies that suggest increased levels of
TCA cycle activity (Baker-Austin et al., 2007; Bryan et al.,
2009; Weiss et al., 2009), emphasizing the importance of
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Fig. 4. Representative 'H NMR
spectra of intracellular
metabolites obtained from
As(lIll)-treated cells. (A) Full
spectrum. (B) Close-up of
region 4.7-0.7 ppm (dashed
box in A). Peaks corresponding
to metabolites which
discriminate between control
and arsenic stressed group are
labeled.

T T T T T T
9.0 8.0 7.0 6.0 5.0 4.0

Carbohydrate

B Ribose

Lysine
B-Alanine

Glutamine

\

Glutamate

3.0 2.0 1.0 ppm

Putresine

Valine,
Isoleucine,
Leucine

Alanine

Lactate

T T T T T

4.5 4.0 3.5 3.0 2.5 2.0

integrating metabolomics information with other “omics”
data.

Accumulation of three other metabolite clusters deserve
discussion. If mannitol flow through glycolysis becomes
stymied, a gluconeogenic-type flow to glucose-1-P can
reasonably be envisioned, which then leads directly to
maltose synthesis. Intermediates between mannitol and
glucose-1-P were not observed, but the increased concen-
tration of several maltose variants strengthens the view
that carbon flows in this path under these circumstances.
Carbohydrate synthesis could potentially be viewed as a
carbon storage strategy under these conditions where pos-
sible synthesis of the more normal storage compound,
poly-B-hydroxybutyrate, would be expected to be con-
strained due to reduced levels of its precursor, acetyl-CoA.

The proposed routing of carbon from glycolysis to phe-
nylalanine and tryptophan via the shikimate pathway is
consistent with the above discussion regarding a metabolic
logjam at pyruvate. The lack of MS- or NMR-based evi-
dence of several intermediates clearly introduces some
uncertainty, however, the key end product of this pathway
and immediate precursor to phenylalanine, chorismate,
was observed. Significant increases in both phenylalanine
and tryptophan are consistent with the proposed carbon
flow.

Another consistency among metabolite changes under
the experimental conditions concerns oxypurinol, hypoxan-
thine and xanthine (Fig. 6). Hypoxanthine is the direct
precursor of xanthine, but the xanthine oxidase reaction is
inhibited by arsenite (George and Bray, 1983; Hille et al.,
1983). Oxypurinol is another precursor of hypoxanthine

T T
1.5 1.0 ppm

(Sokol et al., 1998; Boer et al., 2004; Springer et al., 2013)
and it was found by NMR to be increased (Table 2). An
increase in both xanthine oxidase inhibitors is consistent
with the significant decrease in xanthine (Table 2).

As a final point, we comment on the general pattern of
metabolite changes and lack of identification. Non-polar
compounds dominated total MS feature counts (Figs. 1
and 2) as well as statistically significant changes (Fig. 2).
Aside from at least some technical issues that may have
biased metabolite extraction efficiency, this identification
disconnect no doubt also links to the near absence of
arsenical compounds in metabolite databases. Advances
toward structural characterization of compounds contain-
ing arsenic will obviously be an important prerequisite to
allow for efficient identification of such compounds. Numer-
ous arsenolipids have been identified and characterized in
micro- and macro-algae as well as higher marine organ-
isms (Dembitsky and Levitsky, 2004), but progress with
bacteria lags far behind and represents an important topic
for bacteria — arsenic interaction research.

Experimental procedures
Materials and chemicals

Molecular weight cutoff (MWCO) spin filters (100 KDa and 3
KDa) were purchased from Pall Corporation (Port Washing-
ton, NY). Microcentrifuge tubes, NMR tubes and conical tubes
were purchased from VWR (Radnor, PA), Bruker Daltonics
(Billerica, MA) and Thermo-Fisher Sci. (Pittsburgh, PA)
respectively. Disodium hydrogen phosphate, monosodium
phosphate, ammonium acetate, sodium arsenite, sodium chlo-
ride, formic acid (FA), 4,4-dimethyl-4-silapentane-1-sulfonic

© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 19, 710-721
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Table 2. Metabolites identified by NMR. Metabolites tagged by “*”
were also identified by LC-MS.

Fold
Metabolite change p-Value VIP Regulation
2'-Deoxyinosine 1.2 0.06 1.01 up
2-Hydroxy-3-methylvalerate 0.9 0.37 0.50 down
3-Methyl-2-oxovalerate 11 0.18 0.70 up
Acetate 1.0 0.92 0.09 up
L-Alanine 1.3 0.00 141 up
Choline 1.2 0.04 0.95 up
Cytosine* 2.0 0.01 1.18 up
Ethanol 1.0 0.22 0.68
Formate 1.0 0.59 0.26 up
Fumarate 0.8 0.25 0.72 down
Gallate 1.0
Glucose 1.0 0.79 0.03 down
L-Glutamate* 1.3 0.01 1.18 up
Glutamine 3.4 0.00 1.30 up
Glycerol 1.1 0.54 0.36 up
Hypoxanthine* 1.9 0.02 0.93 wup
Imidazole 1.8 0.00 1.35 wup
L-Isoleucine 1.6 0.01 1.07 up
Lactate 2.1 0.00 1.39 wup
L-Leucine 1.8 0.00 1.20 up
L-Lysine* 1.7 0.00 1.34 up
Malate 0.8 0.23 0.71 down
Maltose 1.3 0.36 0.44 up
Mannitol 1.0 0.79 0.07 down
Methanol 1.6 0.47 0.21 up
Methionine 1.2 0.20 0.71 up
NADP* 1.0
Nicotinate 15 0.00 1.37 up
Oxypurinol 3.4 0.01 1.27 up
Phenylalanine* 15 0.02 1.21 up
Putrescine 15 0.00 1.29 wup
D-Ribose 1.4 0.03 111 up
Tyrosine 1.3 0.04 1.04 up
Uracil 1.4 0.05 0.90 up
L-Valine* 2.0 0.00 1.41 up
B-Alanine 15 0.00 144 up

acid (DSS), deuterium oxide (D,O) and all culture medium
components were purchased from Sigma (St. Louis, MO).
HPLC-grade water, acetonitrile (MeCN) and methanol
(MeOH) were purchased from Burdick and Jackson (Morris-
town, NJ) and EMD Chemicals (Gibbstown, NJ) respectively.

Cell culturing

A single colony of A tumefaciens (strain 5A) (Macur et al.,
2004), was picked and grown aerobically for 24 h at 30°C in
50 ml of minimal mannitol ammonium medium (MMNH,)
(Somerville and Kahn, 1983). The cells were centrifuged for
10 min at 3500X g, washed 3X with 20 ml of 0.85% NaCl solu-
tion and re-suspended in fresh MMNH, containing 50 uM Pi.
Aliquots of the stock culture were then used to start ten new
50 ml cultures with a starting ODggo of 0.1 in MMNH, 50 uM Pi
medium. Five of the ten cultures were supplemented with 100
uM As(lll) for arsenic stress testing, while another five cultures
were kept as controls. Each culture was then grown for an

additional 6 h at 30°C, centrifuged for 10 min at 3500x g and
the cell pellet rapidly rinsed twice with 20 ml of ice cold 0.85%
NaCl solution. Cell pellets were re-suspended in the same
saline solution and the optical ODgoo Samples were taken
such that each contained 200 = 5 mg of final pellet biomass.
Additionally, aliquots of each sample were plated MMNH,4
agar to allow for normalization using colony-forming units
(CFU). Samples for metabolite extraction were stored at
—80°C until further use.

Metabolite extraction

Intracellular metabolites for LC-MS and 'H NMR analysis
were extracted similar to that described by Heinemann, Ham-
erly, et al. (2014). In brief, cells were broken using two freeze/
thaw cycles in liquid nitrogen followed by 5 min sonication on
ice. Cells were incubated in a 50% aqueous (v/v) MeOH solu-
tion for 30 min at —20°C and cellular debris removed by
centrifugation at 20 000X g for 15 min at —9°C. Supernatants
were directly transferred to pre-washed 100 KDa MWCO fil-
ters and centrifuged at 13 000X g for 20 min at 4°C. The
MWCO membranes were washed twice with 100 pl of
the 50% MeOH solution and each time centrifuged as above.
The filtrates of each sample were combined and transferred
into pre-washed 3 KDa MWCO filters and the filtration proce-
dure was repeated as described for the 100 KDa MWCO
filters. The final metabolite extracts were dried under reduced
pressure and stored at —80°C before spectroscopic analysis.
Spin filters were washed twice with 50% MeOH solution
before use for sample processing. No significant contamina-
tion from the filter membrane was observed in blank samples
upon treatment with 50% MeOH solution.
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R i
L] L] L) L)

% -4 -2 0 2
PC1 (84.4%)
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Fig. 5. PCA of 'H NMR metabolomics data comparing samples
collected from control (black dots) and arsenic stressed (black
circles) cells. Plot is based on the metabolites listed in Table 2 with
VIP score >1.
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Fig. 6. Model depicting the most parsimonious explanation of influence of As(Ill) on carbon metabolism with mannitol being the initial
substrate. Green text indicates metabolites increased in abundance, blue text indicates some of the metabolites decreased in concentration.
When multiple intermediates are involved between illustrated metabolites, the number of reactions is shown; e.g. X3, with the number of
intermediates identified shown in parentheses. Red dashed vector arrows indicate reactions suggested to be inhibited by As(lll)

(PDH = pyruvate dehydrogenase; KGDH = a-ketoglutarate dehydrogenase). Black dashed vector arrows indicate potential pathways that
involve more than two intermediates, but none of which could be identified in the MS/MS analysis. All reaction steps were derived from KEGG
pathway maps.

LC-MS instrumentation and data acquisition

LC-MS based analysis was conducted on an Agilent 1290
UPLC system coupled to an Agilent 6538 Q-TOF Mass Spec-
trometer (Agilent Technologies, Santa Clara, CA). Two
columns with orthogonal chemistry (polar and non-polar) were
used to separate metabolite molecules before spectroscopic
analysis. For LC-MS (non-polar) analysis, the metabolite
extracts were re-suspended in 50 pl 50% aqueous (v/v)

MeOH and 10 pl of sample was injected into a Zorbax RRHD
Eclipse Plus (150 mm X 2.1 mm; 1.8 um) reverse phase C18
column (Agilent Technologies, (Santa Clara, CA)). Gradient
conditions for metabolite elution were as follows: 0 — 2 min,
2% B; 2—28 min, 2-65% B; 28 —33 min, 65-98% B;
33— 33.01 min, 98-2% B; 33.01-35 min, 2% B, with flow rate
0.7 ml/min and temperature of 50°C, where eluent A was
0.1% aqueous FA and eluent B was 0.1% FA in MeCN. For
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LC-MS (polar) analysis, 10 pl of a 10-fold dilution of metabolite
extract was injected into a Cogent Diamond Hydride HILIC
column (150 mm X 2.1 mm, 4 um, 100 A, Microsolv Technolo-
gy Corporation (Eatontown, NJ)). Gradient conditions for
metabolite elution were as follows: 0 —1 min, 99% B; 1 -3
min, 99% B; 3 — 20 min, 99-69% B; 20 — 22 min, 69-30% B;
22-22.1 min, 30-99% B; 22-25 min, 99% B with the flow rate
0.6 ml/min and temperature of 25°C, were eluent A was
10 mM aqueous CH3;COONH,; and eluent B was 10 mM
CH3COONHj, in 95% MeCN. Mass spectrometry analysis was
conducted in positive ion mode, with a capillary voltage of
3500 V, a fragmenting voltage of 120 V and a skimmer voltage
of 45 V. Drying gas temperature was 350°C with a flow of
12 L/min and the nebulizer set to 55 psi. Spectra were collect-
ed at a rate of 1 spectrum/s over 50-1700 m/z range. For MS/
MS, the scan range was 50-1300 m/z (auto MS/MS) or 50—
800 m/z (targeted MS/MS) with isolation width 4 m/z and an
acquisition rate 1spectrum/s. The collision energy was fixed at
35V in targeted MS/MS mode while a linear voltage gradient
was applied for molecules fragmentation in auto MS/MS
experiment. Data acquisition and spectral analysis were done
using MassHunter (Qualitative Analysis version B.04.00, Agi-
lent Technologies). Samples were run in randomized order
and to evaluate LC-MS system performance, the quality con-
trol (QC) sample (mixture of equal values of all experimental
samples) was run in the beginning, middle and end of the
queue. Variations of retention time, mass accuracy and peak
area of the peaks across all QC samples were determined;
the retention time shift was less than 2 s (C18) and 14 s
(HILIC); the calculated mass error was below 11 ppm (C18)
and 2 ppm (HILIC); the relative standard deviations of peak
areas were below 7% (C18) and 17% (HILIC).

LC-MS data processing, statistical analysis and
metabolite identification

LC-MS raw data files were converted to MZxml format
(MassHunter Qualitative Software, Agilent Technologies
(Santa Clara, CA)), and uploaded to the XCMS online serv-
er (Tautenhahn, Patti, et al., 2012) for spectral features
extraction and alignment. The predefined parameter set
UPLC-Q-TOF was used for data processing with the change
made to minimum and maximum peak width set to 5 s and
20 s for C18 column derived data or 40 s for HILIC column
derived data. Subsequent analysis and visualization of
XCMS data was performed in R 3.0.0 language and environ-
ment for statistical computing and graphics (R Development
Core Team, 2011).

The tables of retention time-aligned m/z ratios of raw molec-
ular feature intensities (Supporting Information 1 and 2) were
normalized to a sample biomass and autoscaled before Princi-
pal Component Analysis (PCA). Plots were generated based
on a correlation matrix using the prcomp function. Only molec-
ular features with fold changes > *=1.5 and p-values <0.05
were further considered as metabolites that changed in con-
centration. Identification of spectral features was achieved
based on three criteria: isotope distribution, retention time
alignment (if standard was available) and MS/MS fragmenta-
tion pattern matching to spectra reported in the Metlin
database (Smith et al., 2005; Tautenhahn, Cho, et al., 2012).

Metabolic pathway mapping was performed using the KEGG
(http://www.genome.jp/kegg) database (Kanehisa and Goto,
2000; Kanehisa et al., 2014) to investigate the metabolic path-
ways displaying differences between control and As(lll)
stressed groups and facilitate biological interpretation.

NMR data acquisition and data processing

For '"H NMR, metabolite extracts were re-suspended in 600
ul of buffer (10 mM NaH,PO4/NasHPO, containing 0.25 mM
DSS in 100% D0, pH 7) and transferred to 5 mm NMR tubes.
NMR spectra were acquired using a 600-MHz (*H Larmor fre-
quency) AVANCE Il solution NMR spectrometer from Bruker
Daltonics (Billerica, MA) equipped with a SampleJet™ auto-
matic sample loading system, a 5 mm triple resonance
("H, "N, '3C) liquid helium-cooled TCI probe (cryoprobeTM),
and Topspin™ software (Bruker version 3.2). One-
dimensional proton NMR spectra were acquired using the
Bruker supplied noesyprid pulse sequence with 256 scans,
using a spectral width of 9600 Hz at 25°C. Free induction
decays were collected into 32K data points, with a dwell time
interval of 52 us amounting to an acquisition time of ~1.7 s,
using a 2 s relaxation recovery delay between acquisitions,
and a mixing time period of 100 msec. Spectral processing
was performed using the Topspin™ software. Each spectrum
was manually phased, baseline corrected and a line broaden-
ing function of 0.5 Hz applied. Metabolite analysis was
performed using the Chenomx NMR software (version 8.0)
(Chenomx, Edmonton, AB, Canada). For metabolite identifica-
tion, the Chenomx 600 MHz, version 9 small molecule library
was used, and NMR spectral patterns fitted for each sample
independently. Metabolite concentrations were established
using the internal calibration standard DSS (at 6 = 0.0 ppm).
Statistical analysis was performed by exporting metabolite
concentrations in micromolar units from Chenomx (in a .csv
format, Supporting Information 3) into MetaboAnalyst (version
3.0, www.metaboanalyst.ca), an on-line server for metabolo-
mics data analysis (Xia et al., 2009; 2012). The data were
normalized using CFU, logqo-transformed and the variance
autoscaled. Statistical analyses namely ttest, fold-change
and volcano plots were calculated. PCA and partial least-
squares discriminant analysis (PLS-DA) was employed to all
samples. In the case of the PLS-DA analysis, the variable
importance in the projection (VIP) value for each metabolite in
the model was calculated and scores of >1.1 used to identify
metabolites important in discriminating between control and
As(lll) stressed groups. The overall quality of the model was
assessed by the goodness-of-fit parameter (R?) and the pre-
dictive ability parameter (@?), calculated using an internal
cross-validation of the data and a leave-one-out validation
method respectively.

Acknowledgements

Funding for this research was provided by the National Natural
Science Foundation of China (31670108) to G.W., and by U.S.
National Science Foundation grants MCB-0817170 and MCB-
1413321 to T.R.M. and B.B. BB also receives support from the
National Institute of General Medical Sciences of the National
Institutes of Health under Award Number P20GM103474. The
Mass Spectrometry Facility at received funding from funding

© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 19, 710-721



from the Murdock Charitable Trust and NIH 5P20RR02437 of
the CoBRE program. The NMR spectra included in this manu-
script were recorded at Montana State University on MSU’s
Bruker DRX 600 NMR spectrometer. Funding for the instru-
ment and corresponding upgrade was provided by the NIH
Shared Instrumentation Grant (SIG) program (grants #
1S10RR13878 and 1S10RR026659 respectively). B.T was
supported in parts with funds provided by the by the Montana
Research Initiative 51040-MUSRI2015-03.

References

Abdrashitova, S.A., Mynbaeva, B.N., Aidarkhanov, B.B., and
llyaletdinov, A.N. (1990) Effect of arsenite on lipid
peroxidation and on activity of antioxidant enzymes in
arsenite-oxidizing microorganisms.  Mikrobiologiya 59:
234-240.

Afzal, M.I., Delaunay, S., Paris, C., Borges, F., Revol-Junelles,
A.M., and Cailliez-Grimal, C. (2012) Identification of meta-
bolic pathways involved in the biosynthesis of flavor com-
pound 3-methylbutanal from leucine catabolism by
Carnobacterium maltaromaticum LMA 28. Int J Food Micro-
biol 157: 332-339.

Andres, J., Arsene-Ploetze, F., Barbe, V., Brochier-Armanet,
C., Cleiss-Arnold, J., Coppee, J.Y., et al. (2013) Life in an
arsenic-containing gold mine: genome and physiology of
the autotrophic arsenite-oxidizing bacterium Rhizobium sp.
NT-26. Genome. Biol Evol 5: 934-953.

Baker-Austin, C., Dopson, M., Wexler, M., Sawers, R.G.,
Stemmler, A., Rosen, B.P.,, and Bond, PL. (2007) Extreme
arsenic resistance by the acidophilic archaeon “Ferroplasma
acidarmanus” Fer1. Extremophiles 11: 425—-434.

Belfiore, C., Ordonez, O.F., and Farias, M.E. (2013) Proteomic
approach of adaptive response to arsenic stress in Exiguo-
bacterium sp. S17, an extremophile strain isolated from a
high-altitude Andean Lake stromatolite. Extremophiles 17:
421-431.

Bergquist, E.R., Fischer, R.J., Sugden, K.D., and Martin, B.D.
(2009) Inhibition by methylated organoarsenicals of the
respiratory 2-oxo-acid dehydrogenases. J Organomet
Chem 694: 973-980.

Boer, D.R., Thapper, A., Brondino, C.D., Romao, M.J., and
Moura, J.J.G. (2004) X-ray crystal structure and EPR spec-
tra of “arsenite-inhibited” Desulfovibriogigas aldehyde dehy-
drogenase: a member of the xanthine oxidase family. J Am
Chem Soc 126: 8614-8615.

Brown, J.L., Kitchin, K.T., and George, M. (1997) Dimethylar-
sinic acid treatment alters six different rat biochemical
parameters: relevance to arsenic carcinogenesis. Teratog.
Carcinog. Mutagen17: 71-84.

Bryan, C.G., Marchal, M., Battaglia-Brunet, F., Kugler, V.,
Lemaitre-Guillier, C., Lievremont, D., et al. (2009) Carbon
and arsenic metabolism in Thiomonas strains: differences
revealed diverse adaptation processes. BMC Microbiol
9: 127.

Carapito, C., Muller, D., Turlin, E., Koechler, S., Danchin, A.,
Van Dorsselaer, A., et al. (2006) Identification of genes and
proteins involved in the pleiotropic response to arsenic
stress in Caenibacter arsenoxydans, a metalloresistant
beta-proteobacterium with an unsequenced genome. Bio-
chimie 88: 595-606.

Altered regulation of metabolic pathways by arsenite 719

Chen, F, Cao, Y., Wei, S., Li, Y., Li, X., Wang, Q., and Wang,
G. (2015) Regulation of arsenite oxidation by the phosphate
two-component system PhoBR in Halomonas sp. HALI.
Front Microbiol 6: 1-9.

Chen, W., Taylor, N.L., Chi, Y., Millar, A.H., Lambers, H., and
Finnegan, PM. (2014) The metabolic acclimation of Arabi-
dopsis thaliana to arsenate is sensitized by the loss of mito-
chondrial lipoamide dehydrogenase2, a key enzyme in
oxidative metabolism. Plant Cell Environ 37: 684—695.

Cleiss-Arnold, J., Koechler, S., Proux, C., Fardeau, M.L.,
Dillies, M.A., Coppee, J.Y., et al. (2010) Temporal transcrip-
tomic response during arsenic stress in Herminiimonas
arsenicoxydans. BMC Genomics 11: 709.

Dembitsky, V.M., and Levitsky, D.O. (2004) Arsenolipids. Prog
Lipid Res 43: 403—448.

Emmett, M. (2014) Acetaminophen toxicity and 5-oxoproline
(pyroglutamic acid): a tale of two cycles, one an ATP-
depleting futile cycle and the other a useful cycle. Clin J Am
Soc Nephrol 9: 191-200.

Flamigni, F., Marmiroli, S., Caldarera, C.M., Guarnieri,
C.A.R.L., and Biochirnica, D. (1989) Effect of sodium arse-
nite on the induction and turnover of ornithine decarboxyl-
ase activity in Erythroleukemia cells. Cell Biochem Funct 7:
213-217.

Ge, Y., Ning, Z., Wang, Y., Zheng, Y., Zhang, C., and Figeys,
D. (2016) Quantitative proteomic analysis of Dunaliella sali-
na upon acute arsenate exposure. Chemosphere 145:
112-118.

George, G.N., and Bray, R.C. (1983) Reaction of arsenite ions
with the molybdenum center of milk xanthine oxidase. Bio-
chemistry 22: 1013-1021.

Gonzalez-Segura, L., MUjica-Jiménez, C., and Munoz-Clares,
R.A. (2009) Reaction of the catalytic cysteine of betaine
aldehyde dehydrogenase from Pseudomonas aeruginosa
with arsenite-BAL and phenylarsine oxide. Chem Biol Inter-
act178: 64—69.

Haimeur, A., Guimond, C., Pilote, S., Mukhopadhyay, R.,
Rosen, B.P, Poulin, R., and Ouellette, M. (1999) Elevated
levels of polyamines and trypanothione resulting from over-
expression of the ornithine decarboxylase gene in arsenite-
resistant Leishmania. Mol Microbiol 34: 726—735.

Hall, L.L., George, S.E., Kohan, M.J., Styblo, M., and
Thomas, D.J. (1997) In vitro methylation of inorganic arse-
nic in mouse intestinal cecum. Toxicol Appl Pharmacol 147:
101-109.

Halter, D., Andres, J., Plewniak, F., Poulain, J., Da Silva, C.,
Arséne-Ploetze, F., and Bertin, PN. (2015) Arsenic hyper
tolerance in the protist Euglena mutabilis is mediated by
specific transporters and functional integrity maintenance
mechanisms. Environ Microbiol 17: 1941-1949.

Heinemann, J., Hamerly, T., Maaty, W.S., Movahed, N,
Steffens, J.D., Reeves, B.D., et al. (2014) Expanding the
paradigm of thiol redox in the thermophilic root of life. Bio-
chim Biophys Acta 1840: 80—-85.

Heinemann, J., Mazurie, A., Tokmina-Lukaszewska, M.,
Beilman, G.J., and Bothner, B. (2014) Application of sup-
port vector machines to metabolomics experiments with
limited replicates. Metabolomics 10: 1121-1128.

Hille, R., Stewart, R.C., Fee, J.A., and Massey, V. (1983) The
interaction of arsenite with xanthine oxidase. J Biol Chem
258: 4849-4856.

© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 19, 710-721



720 M. Tokmina-Lukaszewska et al.

Jain, R., Adhikary, H., Jha, S., Jha, A., and Kumar, G.N.
(2012) Remodulation of central carbon metabolic pathway
in response to arsenite exposure in Rhodococcus sp. strain
NAU-1. Microb Biotechnol 5: 764—772.

Ji, G., and Silver, S. (1992) Reduction of arsenate to arsenite
by the ArsC protein of the arsenic resistance operon of
Staphylococcus aureus plasmid p1258. Proc Natl Acad Sci
USA 89: 9474-9478.

Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J.,
Hudecova, D., et al. (2011) Arsenic: toxicity, oxidative stress
and human disease. J Appl Toxicol 31: 95-107.

Kanehisa, M., and Goto, S. (2000) Kyoto encyclopedia of
genes and genomes. Nucleic Acids Res 28: 27-30.

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi,
M., and Tanabe, M. (2014) Data, information, knowledge
and principle: back to metabolism in KEGG. Nucleic Acids
Res 42: D199-D205.

Kang, Y.S., Bothner, B., Rensing, C., and McDermott, T.R.
(2012) Involvement of RpoN in regulating bacterial arsenite
oxidation. Appl Environ Microbiol 78: 5638—-5645.

Kang, Y.S., Brame, K., Jetter, J., Bothner, B.B., Wang, G.,
Thiyagarajan, S., and McDermott, T.R. (2016) Regulatory
activities of four ArsR proteins in Agrobacterium tumefa-
ciens 5A. Appl Environ Microbiol AEM.00262—-16.

Kang, Y.S., Heinemann, J., Bothner, B., Rensing, C., and
McDermott, T.R. (2012) Integrated co-regulation of bacterial
arsenic and phosphorus metabolisms. Environ Microbiol
14: 3097-3109.

Kashyap, D.R., Botero, L.M., Franck, W.L., Hassett, D.J., and
McDermott, T.R. (2006) Complex regulation of arsenite oxi-
dation in Agrobacterium tumefaciens. J Bacteriol 188:
1081-1088.

Koechler, S., Cleiss-Arnold, J., Proux, C., Sismeiro, O., Dillies,
M.A., Goulhen-Chollet, F., et al. (2010) Multiple controls
affect arsenite oxidase gene expression in Herminiimonas
arsenicoxydans. BMC Microbiol 10: 53.

Li, B., Lin, J., Mi, S., and Lin, J. (2010) Arsenic resistance operon
structure in Leptospirillum ferriphilum and proteomic response
to arsenic stress. Bioresour Technol/101: 9811-9814.

Liu, G., Liu, M., Kim, E.H., Maaty, W.S., Bothner, B., Lei, B.,
et al. (2012) A periplasmic arsenite-binding protein involved
in regulating arsenite oxidation. Environ Microbiol 14:
1624—1634.

Lu, K., Abo, R.P, Schlieper, K.A., Graffam, M.E., Levine, S.,
Wishnok, J.S., et al. (2014) Arsenic exposure perturbs the
gut microbiome and its metabolic profile in mice: an inte-
grated metagenomics and metabolomics analysis. Environ
Health Perspect 122: 284-291.

Macur, R.E., Jackson, C.R., Botero, L.M., McDermott, T.R.,
and Inskeep, W.P. (2004) Bacterial populations associated
with the oxidation and reduction of arsenic in an unsaturat-
ed soil. Environ Sci Technol 38: 104—111.

Mukhopadhyay, R., Rosen, B.P,, Phung, L.T., and Silver, S.
(2002) Microbial arsenic: from geocycles to genes and
enzymes. FEMS Microbiol Rev 26: 311-325.

Muller, D., Liévremont, D., Simeonova, D.D., Hubert, J.C.,
and Lett, M.C. (2003) Arsenite oxidase aox genes from
a metal-resistant B-proteobacterium. J Bacteriol 185:
135-141.

Muller, D., Médigue, C., Koechler, S., Barbe, V., Barakat, M.,
Talla, E., et al. (2007) A tale of two oxidation states:

bacterial colonization of arsenic-rich environments. PLoS
Genet 3: 0518-0530.

Murphy, J.N., and Saltikov, C.W. (2007) The cymA gene,
encoding a tetraheme c-type cytochrome, is required for
arsenate respiration in Shewanella species. J Bacteriol 189:
2283-2290.

Murphy, J.N., and Saltikov, C.W. (2009) The ArsR repressor
mediates arsenite-dependent regulation of arsenate respi-
ration and detoxification operons of Shewanella sp. strain
ANA-3. J Bacteriol 191: 6722—-6731.

Ochi, T. (1997) Arsenic compound-induced increases in gluta-
thione levels in cultured Chinese hamster V79 cells and
mechanisms associated with changes in gamma-
glutamylcysteine synthetase activity, cystine uptake and uti-
lization of cysteine. Arch Toxicol 71: 730-740.

Oremland, R.S., and Stolz, J.F. (2003) The ecology of arsenic.
Science (80-.) 300: 939—-944.

Osborne, FH., and Ehrlich, H.L. (1976) Oxidation of arsenite by
a soil isolate of Alcaligenes. J Appl Bacteriol 42: 295-305.

Pandey, S., Rai, R., and Rai, L.C. (2012) Proteomics com-
bines morphological, physiological and biochemical attrib-
utes to unravel the survival strategy of Anabaena sp.
PCC7120 under arsenic stress. J Proteomics 75: 921-937.

Parvatiyar, K., Alsabbagh, E.M., Ochsner, U.A., Stegemeyer,
M.A., Smulian, A.G., Hwang, S.H., et al. (2005) Global anal-
ysis of cellular factors and responses involved in Pseudo-
monas aeruginosa resistance to arsenite. J Bacteriol 187:
4853-4864.

Phillips, S.E., and Taylor, M.L. (1976) Oxidation of arsenite to
arsenate by Alcaligenes faecalis. Appl Environ Microbiol 32:
392-399.

R Development Core Team (2011) R: a language and environ-
ment for statistical computing. R Found Stat Comput 1:
409.

Reyes, C., Murphy, J.N., and Saltikov, C.W. (2010) Mutational
and gene expression analysis of mtrDEF, omcA and
mirCAB during arsenate and iron reduction in Shewanella
sp. ANA-3. Environ Microbiol 12: 1878-1888.

Rosen, B.P. (2002) Transport and detoxification systems for
transition metals, heavy metals and metalloids in eukaryotic
and prokaryotic microbes. Comparative Biochemistry and
Physiology Part A: Molecular & Integrative Physiology. 133:
pp. 689-693.

Sacheti, P, Patil, R., Dube, A., Bhonsle, H., Thombre, D.,
Marathe, S., et al. (2014) Proteomics of arsenic stress in
the gram-positive organism Exiguobacterium sp. PS NCIM
5463. Appl Microbiol Biotechnol 98: 6761-6773.

Saltikov, C.W., and Newman, D.K. (2003) Genetic identifica-
tion of a respiratory arsenate reductase. Proc Natl Acad Sci
USA 100: 10983-10988.

Sanchez-Riego, A.M., Lopez-Maury, L., and Florencio, F.J.
(2014) Genomic responses to arsenic in the cyanobacteri-
um Synechocystis sp. PCC 6803. PLoS One 9: €96826.

Santini, J.M., Sly, L.I., Schnagl, R.D., and Macy, J.M. (2000) A
new chemolithoautotrophic arsenite-oxidizing bacterium iso-
lated from a gold mine: phylogenetic, physiological, and pre-
liminary biochemical studies. Appl Environ Microbiol 66:
92-97.

Shi, H., Shi, X., and Liu, K.J. (2004) Oxidative mechanism of
arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:
67-78.

© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 19, 710-721



Silver, S., and Phung, L.T. (2005) Genes and enzymes
involved in bacterial oxidation and reduction of inorganic
arsenic. Appl Environ Microbiol 71: 599-608.

Smith, C.A., O’'maille, G., Want, E.J., Qin, C., Trauger, S.A.,
Brandon, T.R., et al. (2005) METLIN: a metabolite mass
spectral database. Ther Drug Monit 27: 747—751.

Sokol, R.J., Devereaux, M.W., and Khandwala, R. (1998)
Effect of oxypurinol, a xanthine oxidase inhibitor, on hepatic
injury in the bile duct-ligated rat. Pediatr Res 44: 397—-401.

Somerville, J.E., and Kahn, M.L. (1983) Cloning of the gluta-
mine synthetase | gene from Rhizobium meliloti. J Bacteriol
156: 168—176.

Springer, J., Tschirner, A., Hartman, K., Von Haehling, S.,
Anker, S.D., and Doehner, W. (2013) The xanthine oxidase
inhibitor oxypurinol reduces cancer cachexia-induced car-
diomyopathy. Int J Cardiol 168: 3527-3531.

Stolz, J.F.,, and Oremland, R.S. (1999) Bacterial respiration of
arsenic and selenium. FEMS Microbiol Rev 23: 615-627.
Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z., Patti, G.J.,
and Siuzdak, G. (2012) An accelerated workflow for untar-
geted metabolomics using the METLIN database. Nat Bio-

technol 30: 826—828.

Tautenhahn, R., Patti, G.J., Rinehart, D., and Siuzdak, G.
(2012) XCMS online: a web-based platform to process
untargeted metabolomic data. Anal Chem 84: 5035-5039.

Thomas, J. A, Chovanec, P, Stolz, J.F, and Basu, P. (2014)
Mapping the protein profile involved in the biotransformation
of organoarsenicals using an arsenic metabolizing bacteri-
um. Metallomics 6: 1958—1969.

Tokmina-Lukaszewska, M., Movahed, N., Lusczek, E.R.,
Mulier, K.E., Beilman, G.J., and Bothner, B. (2014) Transfor-
mation of UPLC-MS data overcomes extreme variability in

Altered regulation of metabolic pathways by arsenite 721

urine concentration and metabolite fold change. Curr
Metabolomics 2: 78-87.

Wang, Q., Qin, D., Zhang, S., Wang, L., Li, J., Rensing, C.,
et al. (2015) Fate of arsenate following arsenite oxidation in
Agrobacterium tumefaciens GW4. Environ Microbiol 17:
1926—-1940.

Weiss, S., Carapito, C., Cleiss, J., Koechler, S., Turlin, E.,
Coppee, J.Y., et al. (2009) Enhanced structural and func-
tional genome elucidation of the arsenite-oxidizing strain
Herminiimonas arsenicoxydans by proteomics data. Biochi-
mie 91: 192-2083.

Xia, J., Mandal, R., Sinelnikov, |.V., Broadhurst, D., and Wishart,
D.S. (2012) MetaboAnalyst 2.0-a comprehensive server for
metabolomic data analysis. Nucleic Acids Res 40: 127—133.

Xia, J., Psychogios, N., Young, N., and Wishart, D.S. (2009)
MetaboAnalyst: a web server for metabolomic data analysis
and interpretation. Nucleic Acids Res 37: 652—660.

Supporting information

Additional Supporting Information may be found in the
online version of this article at the publisher’'s web-site:

Supporting Information 1. The table of retention time-
aligned m/z ratios of raw molecular feature intensities saved
in .xIsx format as C18 XCMS data output.

Supporting Information 2. The table of retention time-
aligned m/z ratios of raw molecular feature intensities saved
in .xlsx format as HILIC XCMS data output.

Supporting Information 3. The table of identified metabo-
lites and their concentrations exported in .csv format from
Chenomx.

© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 19, 710-721



