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Summary

Wide-spread abundance in soil and water, coupled

with high toxicity have put arsenic at the top of the

list of environmental contaminants. Early studies

demonstrated that both concentration and the

valence state of inorganic arsenic (arsenite, As(III) vs.

arsenate As(V)) can be modulated by microbes. Using

genetics, transcriptomic and proteomic techniques,

microbe-arsenic detoxification, respiratory As(V)

reduction and As(III) oxidation have since been exam-

ined. The effect of arsenic exposure on whole-cell

intracellular microbial metabolism, however, has not

been extensively studied. We combined LC-MS and
1H NMR to quantify metabolic changes in Agrobacte-

rium tumefaciens (strain 5A) upon exposure to

sub-lethal concentrations of As(III). Metabolomics

analysis reveals global differences in metabolite con-

centrations between control and As(III) exposure

groups, with significant perturbations to intermedi-

ates shuttling into and cycling within the TCA cycle.

These data are most consistent with the disruption of

two key TCA cycle enzymes, pyruvate dehydroge-

nase and a-ketoglutarate dehydrogenase. Glycolysis

also appeared altered following As(III) stress, with

carbon accumulating as complex saccharides. These

observations suggest that an important consequence

of As(III) contamination in nature will be to alter

microbial carbon metabolism at the microbial com-

munity level and thus has the potential to

foundationally impact all biogeochemical cycles in

the environment.

Introduction

Interest and concomitant progress in understanding

microbe-arsenic interactions have grown substantially over

the past approximate decade. Early physiology and genetic

studies focused on an arsenic detoxification model featur-

ing the ars genes (Mukhopadhyay et al., 2002; Rosen,

2002). In the most general terms, this involves arsenate

[As(V)] accessing the cell cytoplasm via a phosphate

transporter, being reduced by an As(V) reductase (ArsC)

to the more toxic arsenite [As(III)], which is then actively

transported out of the cell by antiporters (ArsB or Acr3).

Important discoveries have followed, illustrating that a dif-

ferent As(V) reductase (ArrBA) could couple As(V)

reduction to anaerobic respiration and energy generation

(Saltikov and Newman, 2003). The arrAB genes and their

regulation, as well as electron transport have since been

described in some detail (Murphy and Saltikov, 2007;

2009; Reyes et al., 2010). Similar progress has been

made regarding As(III) oxidase, which is encoded by aioBA

(Muller et al., 2003), and functions as a detoxification

mechanism (Osborne and Ehrlich, 1976; Phillips and

Taylor, 1976) or to generate energy (Santini et al., 2000;

Wang et al., 2015). This oxidase is regulated by a three

component signal transduction system AioXSR and RpoN

(Kashyap et al., 2006; Koechler et al., 2010; Kang, Both-

ner, et al., 2012; Liu et al., 2012). In addition, elements of

the phosphate stress response (PhoRB) are varyingly

involved depending on the organism (Kang, Heinemann,

et al., 2012; Chen et al., 2015).

Central themes of microbial cellular arsenic responses

have begun to emerge from proteomics and transcriptom-

ics studies (Parvatiyar et al., 2005; Carapito et al., 2006;

Weiss et al., 2009; Cleiss-Arnold et al., 2010; Andres

et al., 2013). Induction of ars, arr and aio genes occurs in

response to As(III) (Kashyap et al., 2006; Cleiss-Arnold

et al., 2010; Andres et al., 2013). However, elements of an
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oxidative stress response are also quite evident in Pseudo-

monas aeruginosa (Parvatiyar et al., 2005), as well as

other bacteria (Abdrashitova et al., 1990; Ji and Silver,

1992) and mammalian systems (e.g., (Hall et al., 1997;

Ochi, 1997; Jomova et al., 2011). While the exact mecha-

nism of how reactive oxygen species (ROS) are generated

in response to As(III) exposure remains speculative (Shi

et al., 2004); it is known that As(III) aggressively attacks

sulfhydryl groups. This is suspected to rapidly inactivate

reduced glutathione, which is a primary antioxidant in cells,

rendering the cell susceptible to damage resulting from

normal levels of ROS generated by aerobic metabolism.

Progress notwithstanding, the specific influence of arsenic

on the microbial cellular metabolome per se has received

only limited attention thus far (Jain et al., 2012) and in com-

plex experimental settings wherein the effects of arsenic

per se may be difficult to parse out (Lu et al., 2014). Herein

we summarize the results of experiments using integrated

MS and 1H-NMR metabolomics approaches to examine

how and to what extent cellular metabolite pools are influ-

enced by bacterial cellular exposure to As(III).

Results

LC-MS analysis of metabolic changes in response to
as(III)

Our previous efforts illuminated how aioSRBA expression

is suppressed by high phosphate (Pi) (Kang, Heinemann,

et al. 2012). Therefore, in this study 50 lM Pi was present

in the growth media to achieve an active growth state, fol-

lowed by transition to a Pi stress condition at

approximately 4 h, then by an additional 2 h to achieve full

induction of the aioBA genes (Kang, Heinemann, et al.,

2012) and ars genes (Kang et al., 2016). It is thus reason-

able to assume that under these growth conditions, full

induction of As(III)-sensitive genes is well underway and

that As(III)-sensitive enzymes are likewise influenced.

Cells were harvested 6 h after exposure to 100 lM As(III)

and metabolites were extracted. The experimental repro-

ducibility for the five biological replicates was good, and

encompassed culturing, cell lysis, metabolite extraction

and analysis. LC-MS conditions specific for polar and non-

polar metabolites were used to ensure significant coverage

of the Agrobacterium tumefaciens metabolome, illustrating

differences for both polar and non-polar fractions after

exposure to As(III) (Fig. 1). Approximately 2300 polar

features were detected in each of the replicates with and

without As(III)-treatment (Fig. 2). Reverse-phase LC

detected twice as many molecules in each sample. An

overall comparison of the extent to which As(III) alters the

cellular metabolite profiles was made using volcano plots.

This revealed that roughly three times more non-polar fea-

tures increased versus decreased in abundance, while

changes in the polar metabolite pool were more balanced

(Fig. 3). From the pool of metabolites that were significant-

ly changed by exposure to As(III) (p-value! 0.05, fold-

change> 1.5), 12 could be identified. These were primarily

carbohydrates and amino acids, with increases ranging

from 1.5- to 8-fold and decreases up to 5-fold (Table 1).

Metabolite profiling using 1H NMR spectroscopy

Metabolite extracts were profiled by recording 1H NMR

spectra on a 600 MHz Bruker AVANCE III NMR spectrom-

eter. A representative one-dimensional spectrum is shown

in Fig. 4. In all NMR spectra, signals originating from mono

and poly saccharides (3.4–4.0 ppm) were highest in inten-

sity. Less intense signals were observed for aliphatic (0.5–

3.4 ppm) and aromatic (6–8 ppm) protons. Based on com-

parison of peak intensity, multiplicity and chemical shifts

with standard compounds observed in the ChenomxTM

600 MHz library, 36 metabolites were identified unambigu-

ously and quantified. The majority of detected metabolites

corresponded to amino acids, sugars and a few organic

acids (Table 2). A comparison of the metabolites concen-

trations between As(III) stressed and control samples

established that 26 of the identified metabolites were

higher in concentration in the As(III) stressed group. Unsu-

pervised PCA analysis was performed as a means of

visualizing the differences between control and As(III)

groups. The resulting score plot showed clear separation

between the two groups, with the control group much less

tightly clustered than the arsenic stressed group (Fig. 5).

This dispersion appears to arise from larger variations in

metabolite concentrations between individual control sam-

ples. This metabolic “scatter” of the control group

compared with the more tightly clustered stressed group

has been seen previously, suggesting a similar response

and narrowing of metabolic space when bacterial cells

experience environmental stress (Heinemann, Mazurie,

et al., 2014; Tokmina-Lukaszewska et al., 2014).

To further analyze the metabolic differences and identify

the metabolites most responsible for the separation

between control and As(III) stressed groups, a supervised

partial least squares discriminant analysis (PLS-DA) was

performed. A model with goodness of fit and cross-

validation predictive ability was determined with good sep-

aration between control and As(III) groups. The variable

influence on projection (VIP) value for each metabolite was

calculated, and metabolites identified with a VIP score-

" 1.1 are presented in Table 2. These included the amino

acids alanine, glutamine, glutamate, leucine, isoleucine,

phenylalanine, valine and b-alanine. Other metabolites

included lactate, nicotinate, oxypurinol, putrescine, cyto-

sine and ribose. 1H NMR-based metabolomics analysis

shared metabolites in common with LC-MS; lactate, ala-

nine, putrescine, ribose and in particular glutamate, were
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found to be major metabolites observed by both

approaches.

Metabolites were mapped onto KEGG metabolite path-

ways to generate potential models of cellular pathways

impacted by As(III) treatment. The metabolite data

reported in Tables 1 and 2 were used to assess carbon

flow beginning with mannitol as the sole carbon source in

the synthetic, minimal medium used for cell culture. In this

pathway analysis, the most parsimonious route of carbon

flow was assumed, with mannitol catabolism entering

glycolysis at the level of fructose-6-P, proceeding on to

the formation of pyruvate and then terminal oxidation via

the decarboxylation reactions of the tricarboxylic acid cycle

(TCA) (Fig. 6). As metabolites were identified and added to

the model, a pattern emerged inferring that carbon flow

through the specific pathways was increased when cells

were exposed to As(III). Specifically, accumulation of vari-

ous metabolites (amino acids in particular) suggested the

formation of “metabolic bottlenecks,” involving reactions

catalyzed by the enzymes pyruvate dehydrogenase and a-
ketoglutarate dehydrogenase. In addition to identifying

Fig. 2. Average number and variation in spectral features detected
by LC-MS. Data represent five biological replicates for control and
As(III)-treated cultures. Two columns were used for LC-MS
analysis, HILIC to capture polar compounds and reverse-phase to
capture non-polar compounds.

Fig. 1. LC-MS analysis of
intracellular metabolites.
A. Total ion chromatogram of
the C18 column (reverse-
phase) illustrating varying peak
intensities of features for
controls cultures (blue trace) as
compared with As(III) treated
cells (red trace).
B. Principal component
analysis of polar metabolites
and (C) non-polar metabolites
from control (blue dots) and
As(III) exposed cultures (red
dots).
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metabolites exhibiting significant changes, the LC-MS data

was examined to determine if the intermediates in the sug-

gested branches could be identified to obtain additional

evidence of carbon flow through these specific pathways

(defined as solid vector arrows in Fig. 6). This was the

case for most, e.g., two of the four intermediates involved

in the synthesis of valine from pyruvate were found, as

were three of the nine intermediates involved in the synthe-

sis of lysine from aspartate. In some cases, intermediates

initiating key pathways could not be identified; however,

pathways were nevertheless suggested based on accumu-

lated evidence of key intermediates. For example, several

maltose derivatives that were identified in the LC-MS spec-

tra, suggesting that carbon originating from carbohydrate

catabolism may be diverted from glycolysis for other cellu-

lar purposes. Similarly, the shikimate pathway used by

microbes for the de novo synthesis of aromatic amino

acids was inferred from the identification of significant lev-

els of phenylalanine and tryptophan, as well as high levels

of chorismate, a key downstream metabolite of this path-

way. However, we could not unambiguously identify any of

the nine intermediates involved in the pyruvate to leucine

biosynthesis pathway, suggesting uncertainty as to wheth-

er this specific pathway is enhanced in As(III) stressed

cells.

Discussion

The studies of microbe-arsenic interactions have pro-

gressed to where there is now a foundational

understanding of how microbes detect and respond to

arsenic. These studies have primarily concerned various

major arsenic redox transformations or resistance mecha-

nisms (Stolz and Oremland, 1999; Rosen, 2002;

Oremland and Stolz, 2003; Silver and Phung, 2005) as

well as non-targeted assessments of arsenic effects at

more global levels using proteomics (Parvatiyar et al.,

2005; Carapito et al., 2006; Muller et al., 2007; Weiss

et al., 2009; Pandey et al., 2012; Andres et al., 2013;

Belfiore et al., 2013; Sacheti et al., 2014; Thomas et al.,

2014; Ge et al., 2016) and transcriptomics (Cleiss-Arnold

et al., 2010; Andres et al., 2013; Sanchez-Riego et al.,

2014; Halter et al., 2015). A central theme that has

emerged from each study is that As(III) exposure induces

bacterial functions directly related to arsenic transforma-

tions or resistance (e.g., arsC, arsB and aioBA.), oxidative

stress response (Parvatiyar et al., 2005) presumably due

to loss of reduced glutathione (e.g., up-regulation of gor,

sod and kat), as well as DNA repair activities (Bryan et al.,

2009; Weiss et al., 2009; Cleiss-Arnold et al., 2010; Li

et al., 2010).

Though complete concordance between transcriptional

and translational change is not expected, this information

is generally informative for the prediction of metabolic

changes, in particular up-regulated functions. However,

with the exception of proteins that recognize As(III) as their

regulatory ligand, interactions between As(III) and protein

thiols has a high probability of protein inactivation. These

interactions are post-translational, cannot be observed at

Fig. 3. MS-based analysis of global perturbation of A. tumefaciens cellular metabolism in response to As(III) exposure. MS features detected
using hydrophilic interaction chromatography are referred to as polar metabolites, whereas features detected using C18 reverse phase
chromatography are referred to as non-polar. Gray vertical lines denote the 22 and 12 fold change designated cut-off. Horizontal gray lines
denote a statistical significance p-value !0.05. Green arrows refer to subset of features exhibiting 1.5- or 2.0-fold change (FC) with a p-value
!0.05.
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the transcriptional level and may not necessarily be detect-

able in a proteomics analysis. As such, increased gene

transcription or protein abundance in reaction to As(III)

exposure may not ultimately result in increased function,

and thus could result in an incomplete understanding of

overall global cellular responses. Complementing tran-

scriptomics and proteomics data with metabolomics

analyses provides a powerful mean to enhance our knowl-

edge of how As(III) impacts cellular functions.

Protein thiols are subject to As(III) inactivation and if

such a residue is critical to enzyme function, this will lead

to interruption of a pathway whose reactions are catalyzed

by such enzymes. The complete or partial inactivation of

an enzyme will result in accumulation of upstream metabo-

lites and depletion of downstream intermediates or end

products. Accumulation of metabolites as a result of

enzyme inactivation could divert carbon flow to other path-

ways, even in the absence of changes in the enzyme

abundance or activity. As expected, a range of enzyme

classes can be inhibited by As(III) (Gonz!alez-Segura et al.,

2009; Jain et al., 2012). Specific examples relevant to the

current study include documented inhibition of pyruvate

dehydrogenase (PDH), a-ketoglutarate dehydrogenase

(KGDH) and branched-chain a-ketoacid dehydrogenase

(BCKDH) enzymes. These enzymes all contain a dihydroli-

poamide dehydrogenase subunit that is sensitive to As(III)

inactivation across organisms (Bergquist et al., 2009; Afzal

et al., 2012; Chen et al., 2014). Inhibition of these specific

enzymes is consistent with the measured increase in

abundance of several metabolites observed in As(III)

exposed A. tumefaciens 5A (Fig. 6). Specifically, As(III)

inhibition of PDH would lead to the accumulation of pyru-

vate, which is the precursor to the formation of lactate,

leucine, isoleucine, alanine and valine. Some of these

compounds are precursors for other metabolites observed

to increase in abundance, such as nicotinate and isonicoti-

nate, although these latter metabolites could also be

synthesized from tryptophan. Preferential accumulation of

the branched-chain amino acids leucine, isoleucine and

valine could be further promoted by As(III) inhibition of

BCKDH which catalyzes the catabolism of these amino

acids. As(III) inhibition of KGDH would likewise lead to the

preferential diversion of metabolite intermediates from

TCA carbon flow and instead utilize a-ketoglutarate to form

glutamate, which can be converted to glutamine, ornithine,

arginine and putrescine, as well as lysine although less

directly (Fig. 6). To our knowledge, the only route of D-5-

oxoproline synthesis (increased abundance in As(III))

involves glutamate in an ATP-depleting futile cycle that

includes g-glutamyl phosphate (Emmett, 2014). We also

note that ornithine decarboxylase activity is enhanced/sta-

bilized by As(III) in erythroleukemia cells (Flamigni et al.,

1989), rat hepatic cells (Brown et al., 1997) and in Leish-

mania (Haimeur et al., 1999). To the extent that this also

occurs in bacteria such as A. tumefaciens 5A, this would

promote putrescine synthesis, as observed here (Fig. 6).

Increased levels of pyruvate and phosphoenolpyruvate

(PEP in Fig. 6) could contribute toward increased levels of

oxaloacetate (PEP carboxylase or pyruvate carboxylase,

are both encoded in strain 5A’s genome), which can be

used as precursors for the synthesis of lysine, alanine and

cytosine. All of the above scenarios are consistent with a

targeted study concerning As(III)-treated Rhodococcus

that found significantly reduced enzyme levels of PDH,

KGDH and malate dehydrogenase (Jain et al., 2012),

which corresponded to increased levels of pyruvate, a-
ketoglutarate and oxaloacetate. The consistency of this

study with our observations belies what might be predicted

from proteomics studies that suggest increased levels of

TCA cycle activity (Baker-Austin et al., 2007; Bryan et al.,

2009; Weiss et al., 2009), emphasizing the importance of

Table 1. Metabolites identified using LC-MS. Metabolites with tenta-
tive assignment are shown in italic. Metabolites with tentative
assignment were missing confirmation based on MS/MS fragmenta-
tion due to insufficient number of generated fragments or indistin-
guishable patterns (isomers).

Metabolite Fold change p-Value Regulation

Betaine 4.6 0.03 Down

Cytosine 2.4 0.04 Up

D-pyroglutamate 1.8 0.00 Up

D-sorbitol 1.5 0.03 Down

Glutamate 1.8 0.00 Up

Glycerophosphocholine 1.6 0.09 Down

Hypoxanthine 8.0 0.15 Up

Isonicotinate 2.4 0.02 Up

Lysine 1.2 >0.2 Up

Maltohexaose 1.1 >0.2 Up

Maltopentaose 1.5 0.04 Up

Maltotetraose 1.9 0.01 Up

Maltotriose 2.1 0.02 Up

Phenylalanine 1.3 >0.2 Up

Proline 1.4 0.20 Down

Tryptophan 1.4 0.16 Up

Xanthine 3.5 0.02 Down

Arginine >0.2

Aspartate >0.2

Chorismate >0.2

Mannose >0.2

Sucrose >0.2

Valine >0.2

(S)22-Acetolactate/3-hydroxy-3-methyl-2-oxobutanoate.
(R)22,3-Dihydroxy-3methylbutanoate.
2-Oxoisovalerate.
(2S)22-Isopropyl-3-oxosuccinate.
Pyruvate.
Nicotinate D-ribonucleoside.
N-Formyl-kynurenine.
Anthranilate.
3-hydroxy-L-kynurenine.
L24-Aspartate semialdehyde.
LL22,6-Diaminopimelate/meso-2,6-diaminoheptanedioate.
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integrating metabolomics information with other “omics”

data.

Accumulation of three other metabolite clusters deserve

discussion. If mannitol flow through glycolysis becomes

stymied, a gluconeogenic-type flow to glucose-1-P can

reasonably be envisioned, which then leads directly to

maltose synthesis. Intermediates between mannitol and

glucose-1-P were not observed, but the increased concen-

tration of several maltose variants strengthens the view

that carbon flows in this path under these circumstances.

Carbohydrate synthesis could potentially be viewed as a

carbon storage strategy under these conditions where pos-

sible synthesis of the more normal storage compound,

poly-b-hydroxybutyrate, would be expected to be con-

strained due to reduced levels of its precursor, acetyl-CoA.

The proposed routing of carbon from glycolysis to phe-

nylalanine and tryptophan via the shikimate pathway is

consistent with the above discussion regarding a metabolic

logjam at pyruvate. The lack of MS- or NMR-based evi-

dence of several intermediates clearly introduces some

uncertainty, however, the key end product of this pathway

and immediate precursor to phenylalanine, chorismate,

was observed. Significant increases in both phenylalanine

and tryptophan are consistent with the proposed carbon

flow.

Another consistency among metabolite changes under

the experimental conditions concerns oxypurinol, hypoxan-

thine and xanthine (Fig. 6). Hypoxanthine is the direct

precursor of xanthine, but the xanthine oxidase reaction is

inhibited by arsenite (George and Bray, 1983; Hille et al.,

1983). Oxypurinol is another precursor of hypoxanthine

(Sokol et al., 1998; Boer et al., 2004; Springer et al., 2013)

and it was found by NMR to be increased (Table 2). An

increase in both xanthine oxidase inhibitors is consistent

with the significant decrease in xanthine (Table 2).

As a final point, we comment on the general pattern of

metabolite changes and lack of identification. Non-polar

compounds dominated total MS feature counts (Figs. 1

and 2) as well as statistically significant changes (Fig. 2).

Aside from at least some technical issues that may have

biased metabolite extraction efficiency, this identification

disconnect no doubt also links to the near absence of

arsenical compounds in metabolite databases. Advances

toward structural characterization of compounds contain-

ing arsenic will obviously be an important prerequisite to

allow for efficient identification of such compounds. Numer-

ous arsenolipids have been identified and characterized in

micro- and macro-algae as well as higher marine organ-

isms (Dembitsky and Levitsky, 2004), but progress with

bacteria lags far behind and represents an important topic

for bacteria – arsenic interaction research.

Experimental procedures

Materials and chemicals

Molecular weight cutoff (MWCO) spin filters (100 KDa and 3
KDa) were purchased from Pall Corporation (Port Washing-
ton, NY). Microcentrifuge tubes, NMR tubes and conical tubes
were purchased from VWR (Radnor, PA), Bruker Daltonics
(Billerica, MA) and Thermo-Fisher Sci. (Pittsburgh, PA)
respectively. Disodium hydrogen phosphate, monosodium
phosphate, ammonium acetate, sodium arsenite, sodium chlo-
ride, formic acid (FA), 4,4-dimethyl-4-silapentane-1-sulfonic

Fig. 4. Representative 1H NMR
spectra of intracellular
metabolites obtained from
As(III)-treated cells. (A) Full
spectrum. (B) Close-up of
region 4.7–0.7 ppm (dashed
box in A). Peaks corresponding
to metabolites which
discriminate between control
and arsenic stressed group are
labeled.
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acid (DSS), deuterium oxide (D2O) and all culture medium
components were purchased from Sigma (St. Louis, MO).
HPLC-grade water, acetonitrile (MeCN) and methanol
(MeOH) were purchased from Burdick and Jackson (Morris-
town, NJ) and EMD Chemicals (Gibbstown, NJ) respectively.

Cell culturing

A single colony of A tumefaciens (strain 5A) (Macur et al.,
2004), was picked and grown aerobically for 24 h at 308C in
50 ml of minimal mannitol ammonium medium (MMNH4)
(Somerville and Kahn, 1983). The cells were centrifuged for
10 min at 35003g, washed 3X with 20 ml of 0.85% NaCl solu-
tion and re-suspended in fresh MMNH4 containing 50 uM Pi.
Aliquots of the stock culture were then used to start ten new
50 ml cultures with a starting OD600 of 0.1 in MMNH4 50 uM Pi
medium. Five of the ten cultures were supplemented with 100
lM As(III) for arsenic stress testing, while another five cultures
were kept as controls. Each culture was then grown for an

additional 6 h at 308C, centrifuged for 10 min at 35003g and
the cell pellet rapidly rinsed twice with 20 ml of ice cold 0.85%
NaCl solution. Cell pellets were re-suspended in the same
saline solution and the optical OD600 samples were taken
such that each contained 2006 5 mg of final pellet biomass.
Additionally, aliquots of each sample were plated MMNH4

agar to allow for normalization using colony-forming units
(CFU). Samples for metabolite extraction were stored at
2808C until further use.

Metabolite extraction

Intracellular metabolites for LC-MS and 1H NMR analysis
were extracted similar to that described by Heinemann, Ham-
erly, et al. (2014). In brief, cells were broken using two freeze/
thaw cycles in liquid nitrogen followed by 5 min sonication on
ice. Cells were incubated in a 50% aqueous (v/v) MeOH solu-
tion for 30 min at 2208C and cellular debris removed by
centrifugation at 20 0003g for 15 min at 298C. Supernatants
were directly transferred to pre-washed 100 KDa MWCO fil-
ters and centrifuged at 13 0003g for 20 min at 48C. The
MWCO membranes were washed twice with 100 ll of
the 50% MeOH solution and each time centrifuged as above.
The filtrates of each sample were combined and transferred
into pre-washed 3 KDa MWCO filters and the filtration proce-
dure was repeated as described for the 100 KDa MWCO
filters. The final metabolite extracts were dried under reduced
pressure and stored at 2808C before spectroscopic analysis.
Spin filters were washed twice with 50% MeOH solution
before use for sample processing. No significant contamina-
tion from the filter membrane was observed in blank samples
upon treatment with 50% MeOH solution.

Table 2. Metabolites identified by NMR. Metabolites tagged by “*”
were also identified by LC-MS.

Metabolite
Fold
change p-Value VIP Regulation

20-Deoxyinosine 1.2 0.06 1.01 up

2-Hydroxy-3-methylvalerate 0.9 0.37 0.50 down

3-Methyl-2-oxovalerate 1.1 0.18 0.70 up

Acetate 1.0 0.92 0.09 up

L-Alanine 1.3 0.00 1.41 up

Choline 1.2 0.04 0.95 up

Cytosine* 2.0 0.01 1.18 up

Ethanol 1.0 0.22 0.68

Formate 1.0 0.59 0.26 up

Fumarate 0.8 0.25 0.72 down

Gallate 1.0

Glucose 1.0 0.79 0.03 down

L-Glutamate* 1.3 0.01 1.18 up

Glutamine 3.4 0.00 1.30 up

Glycerol 1.1 0.54 0.36 up

Hypoxanthine* 1.9 0.02 0.93 up

Imidazole 1.8 0.00 1.35 up

L-Isoleucine 1.6 0.01 1.07 up

Lactate 2.1 0.00 1.39 up

L-Leucine 1.8 0.00 1.20 up

L-Lysine* 1.7 0.00 1.34 up

Malate 0.8 0.23 0.71 down

Maltose 1.3 0.36 0.44 up

Mannitol 1.0 0.79 0.07 down

Methanol 1.6 0.47 0.21 up

Methionine 1.2 0.20 0.71 up

NADP1 1.0

Nicotinate 1.5 0.00 1.37 up

Oxypurinol 3.4 0.01 1.27 up

Phenylalanine* 1.5 0.02 1.21 up

Putrescine 1.5 0.00 1.29 up

D-Ribose 1.4 0.03 1.11 up

Tyrosine 1.3 0.04 1.04 up

Uracil 1.4 0.05 0.90 up

L-Valine* 2.0 0.00 1.41 up

B-Alanine 1.5 0.00 1.44 up

Fig. 5. PCA of 1H NMR metabolomics data comparing samples
collected from control (black dots) and arsenic stressed (black
circles) cells. Plot is based on the metabolites listed in Table 2 with
VIP score >1.
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LC-MS instrumentation and data acquisition

LC-MS based analysis was conducted on an Agilent 1290
UPLC system coupled to an Agilent 6538 Q-TOF Mass Spec-
trometer (Agilent Technologies, Santa Clara, CA). Two
columns with orthogonal chemistry (polar and non-polar) were
used to separate metabolite molecules before spectroscopic
analysis. For LC-MS (non-polar) analysis, the metabolite
extracts were re-suspended in 50 ll 50% aqueous (v/v)

MeOH and 10 ll of sample was injected into a Zorbax RRHD

Eclipse Plus (150 mm 3 2.1 mm; 1.8 lm) reverse phase C18

column (Agilent Technologies, (Santa Clara, CA)). Gradient

conditions for metabolite elution were as follows: 02 2 min,

2% B; 22 28 min, 2–65% B; 282 33 min, 65–98% B;

332 33.01 min, 98–2% B; 33.01–35 min, 2% B, with flow rate

0.7 ml/min and temperature of 508C, where eluent A was

0.1% aqueous FA and eluent B was 0.1% FA in MeCN. For

Fig. 6. Model depicting the most parsimonious explanation of influence of As(III) on carbon metabolism with mannitol being the initial
substrate. Green text indicates metabolites increased in abundance, blue text indicates some of the metabolites decreased in concentration.
When multiple intermediates are involved between illustrated metabolites, the number of reactions is shown; e.g. 33, with the number of
intermediates identified shown in parentheses. Red dashed vector arrows indicate reactions suggested to be inhibited by As(III)
(PDH5 pyruvate dehydrogenase; KGDH5 a-ketoglutarate dehydrogenase). Black dashed vector arrows indicate potential pathways that
involve more than two intermediates, but none of which could be identified in the MS/MS analysis. All reaction steps were derived from KEGG
pathway maps.
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LC-MS (polar) analysis, 10 ll of a 10-fold dilution of metabolite
extract was injected into a Cogent Diamond Hydride HILIC
column (150 mm 3 2.1 mm, 4 lm, 100 Å, Microsolv Technolo-
gy Corporation (Eatontown, NJ)). Gradient conditions for
metabolite elution were as follows: 02 1 min, 99% B; 12 3
min, 99% B; 32 20 min, 99–69% B; 202 22 min, 69–30% B;
22–22.1 min, 30–99% B; 22–25 min, 99% B with the flow rate
0.6 ml/min and temperature of 258C, were eluent A was
10 mM aqueous CH3COONH4 and eluent B was 10 mM
CH3COONH4 in 95% MeCN. Mass spectrometry analysis was
conducted in positive ion mode, with a capillary voltage of
3500 V, a fragmenting voltage of 120 V and a skimmer voltage
of 45 V. Drying gas temperature was 3508C with a flow of
12 L/min and the nebulizer set to 55 psi. Spectra were collect-
ed at a rate of 1 spectrum/s over 50–1700 m/z range. For MS/
MS, the scan range was 50–1300 m/z (auto MS/MS) or 50–
800 m/z (targeted MS/MS) with isolation width 4 m/z and an
acquisition rate 1spectrum/s. The collision energy was fixed at
35 V in targeted MS/MS mode while a linear voltage gradient
was applied for molecules fragmentation in auto MS/MS
experiment. Data acquisition and spectral analysis were done
using MassHunter (Qualitative Analysis version B.04.00, Agi-
lent Technologies). Samples were run in randomized order
and to evaluate LC-MS system performance, the quality con-
trol (QC) sample (mixture of equal values of all experimental
samples) was run in the beginning, middle and end of the
queue. Variations of retention time, mass accuracy and peak
area of the peaks across all QC samples were determined;
the retention time shift was less than 2 s (C18) and 14 s
(HILIC); the calculated mass error was below 11 ppm (C18)
and 2 ppm (HILIC); the relative standard deviations of peak
areas were below 7% (C18) and 17% (HILIC).

LC-MS data processing, statistical analysis and
metabolite identification

LC-MS raw data files were converted to MZxml format
(MassHunter Qualitative Software, Agilent Technologies
(Santa Clara, CA)), and uploaded to the XCMS online serv-
er (Tautenhahn, Patti, et al., 2012) for spectral features
extraction and alignment. The predefined parameter set
UPLC-Q-TOF was used for data processing with the change
made to minimum and maximum peak width set to 5 s and
20 s for C18 column derived data or 40 s for HILIC column
derived data. Subsequent analysis and visualization of
XCMS data was performed in R 3.0.0 language and environ-
ment for statistical computing and graphics (R Development
Core Team, 2011).

The tables of retention time-aligned m/z ratios of raw molec-
ular feature intensities (Supporting Information 1 and 2) were
normalized to a sample biomass and autoscaled before Princi-
pal Component Analysis (PCA). Plots were generated based
on a correlation matrix using the prcomp function. Only molec-
ular features with fold changes>61.5 and p-values <0.05
were further considered as metabolites that changed in con-
centration. Identification of spectral features was achieved
based on three criteria: isotope distribution, retention time
alignment (if standard was available) and MS/MS fragmenta-
tion pattern matching to spectra reported in the Metlin
database (Smith et al., 2005; Tautenhahn, Cho, et al., 2012).

Metabolic pathway mapping was performed using the KEGG
(http://www.genome.jp/kegg) database (Kanehisa and Goto,
2000; Kanehisa et al., 2014) to investigate the metabolic path-
ways displaying differences between control and As(III)
stressed groups and facilitate biological interpretation.

NMR data acquisition and data processing

For 1H NMR, metabolite extracts were re-suspended in 600
ll of buffer (10 mM NaH2PO4/Na2HPO4 containing 0.25 mM
DSS in 100% D2O, pH 7) and transferred to 5 mm NMR tubes.
NMR spectra were acquired using a 600-MHz (1H Larmor fre-
quency) AVANCE III solution NMR spectrometer from Bruker
Daltonics (Billerica, MA) equipped with a SampleJetTM auto-
matic sample loading system, a 5 mm triple resonance
(1H, 15N, 13C) liquid helium-cooled TCI probe (cryoprobeTM),
and TopspinTM software (Bruker version 3.2). One-
dimensional proton NMR spectra were acquired using the
Bruker supplied noesypr1d pulse sequence with 256 scans,
using a spectral width of 9600 Hz at 258C. Free induction
decays were collected into 32K data points, with a dwell time
interval of 52 ls amounting to an acquisition time of #1.7 s,
using a 2 s relaxation recovery delay between acquisitions,
and a mixing time period of 100 msec. Spectral processing
was performed using the TopspinTM software. Each spectrum
was manually phased, baseline corrected and a line broaden-
ing function of 0.5 Hz applied. Metabolite analysis was
performed using the Chenomx NMR software (version 8.0)
(Chenomx, Edmonton, AB, Canada). For metabolite identifica-
tion, the Chenomx 600 MHz, version 9 small molecule library
was used, and NMR spectral patterns fitted for each sample
independently. Metabolite concentrations were established
using the internal calibration standard DSS (at d 5 0.0 ppm).
Statistical analysis was performed by exporting metabolite
concentrations in micromolar units from Chenomx (in a .csv
format, Supporting Information 3) into MetaboAnalyst (version
3.0, www.metaboanalyst.ca), an on-line server for metabolo-
mics data analysis (Xia et al., 2009; 2012). The data were
normalized using CFU, log10-transformed and the variance
autoscaled. Statistical analyses namely t-test, fold-change
and volcano plots were calculated. PCA and partial least-
squares discriminant analysis (PLS-DA) was employed to all
samples. In the case of the PLS-DA analysis, the variable
importance in the projection (VIP) value for each metabolite in
the model was calculated and scores of >1.1 used to identify
metabolites important in discriminating between control and
As(III) stressed groups. The overall quality of the model was
assessed by the goodness-of-fit parameter (R2) and the pre-
dictive ability parameter (Q2), calculated using an internal
cross-validation of the data and a leave-one-out validation
method respectively.

Acknowledgements

Funding for this research was provided by the National Natural
Science Foundation of China (31670108) to G.W., and by U.S.
National Science Foundation grants MCB-0817170 andMCB-
1413321 to T.R.M. and B.B. BB also receives support from the
National Institute of General Medical Sciences of the National
Institutes of Health under Award Number P20GM103474. The
Mass Spectrometry Facility at received funding from funding

718 M. Tokmina-Lukaszewska et al.

VC 2017 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 19, 710–721



from the Murdock Charitable Trust and NIH 5P20RR02437 of
the CoBRE program. The NMR spectra included in this manu-
script were recorded at Montana State University on MSU’s
Bruker DRX 600 NMR spectrometer. Funding for the instru-
ment and corresponding upgrade was provided by the NIH
Shared Instrumentation Grant (SIG) program (grants #
1S10RR13878 and 1S10RR026659 respectively). B.T was
supported in parts with funds provided by the by the Montana
Research Initiative 51040-MUSRI2015-03.

References

Abdrashitova, S.A., Mynbaeva, B.N., Aidarkhanov, B.B., and
Ilyaletdinov, A.N. (1990) Effect of arsenite on lipid
peroxidation and on activity of antioxidant enzymes in
arsenite-oxidizing microorganisms. Mikrobiologiya 59:
234–240.

Afzal, M.I., Delaunay, S., Paris, C., Borges, F., Revol-Junelles,
A.M., and Cailliez-Grimal, C. (2012) Identification of meta-
bolic pathways involved in the biosynthesis of flavor com-
pound 3-methylbutanal from leucine catabolism by
Carnobacterium maltaromaticum LMA 28. Int J Food Micro-
biol 157: 332–339.

Andres, J., Arsene-Ploetze, F., Barbe, V., Brochier-Armanet,
C., Cleiss-Arnold, J., Coppee, J.Y., et al. (2013) Life in an
arsenic-containing gold mine: genome and physiology of
the autotrophic arsenite-oxidizing bacterium Rhizobium sp.
NT-26. Genome. Biol Evol 5: 934–953.

Baker-Austin, C., Dopson, M., Wexler, M., Sawers, R.G.,
Stemmler, A., Rosen, B.P., and Bond, P.L. (2007) Extreme
arsenic resistance by the acidophilic archaeon “Ferroplasma
acidarmanus” Fer1. Extremophiles 11: 425–434.

Belfiore, C., Ordo~nez, O.F., and Far!ıas, M.E. (2013) Proteomic
approach of adaptive response to arsenic stress in Exiguo-
bacterium sp. S17, an extremophile strain isolated from a
high-altitude Andean Lake stromatolite. Extremophiles 17:
421–431.

Bergquist, E.R., Fischer, R.J., Sugden, K.D., and Martin, B.D.
(2009) Inhibition by methylated organoarsenicals of the
respiratory 2-oxo-acid dehydrogenases. J Organomet
Chem 694: 973–980.

Boer, D.R., Thapper, A., Brondino, C.D., Rom~ao, M.J., and
Moura, J.J.G. (2004) X-ray crystal structure and EPR spec-
tra of “arsenite-inhibited” Desulfovibriogigas aldehyde dehy-
drogenase: a member of the xanthine oxidase family. J Am
Chem Soc 126: 8614–8615.

Brown, J.L., Kitchin, K.T., and George, M. (1997) Dimethylar-
sinic acid treatment alters six different rat biochemical
parameters: relevance to arsenic carcinogenesis. Teratog.
Carcinog. Mutagen 17: 71–84.

Bryan, C.G., Marchal, M., Battaglia-Brunet, F., Kugler, V.,
Lemaitre-Guillier, C., Lievremont, D., et al. (2009) Carbon
and arsenic metabolism in Thiomonas strains: differences
revealed diverse adaptation processes. BMC Microbiol
9: 127.

Carapito, C., Muller, D., Turlin, E., Koechler, S., Danchin, A.,
Van Dorsselaer, A., et al. (2006) Identification of genes and
proteins involved in the pleiotropic response to arsenic
stress in Caenibacter arsenoxydans, a metalloresistant
beta-proteobacterium with an unsequenced genome. Bio-
chimie 88: 595–606.

Chen, F., Cao, Y., Wei, S., Li, Y., Li, X., Wang, Q., and Wang,
G. (2015) Regulation of arsenite oxidation by the phosphate
two-component system PhoBR in Halomonas sp. HAL1.
Front Microbiol 6: 1–9.

Chen, W., Taylor, N.L., Chi, Y., Millar, A.H., Lambers, H., and
Finnegan, P.M. (2014) The metabolic acclimation of Arabi-
dopsis thaliana to arsenate is sensitized by the loss of mito-
chondrial lipoamide dehydrogenase2, a key enzyme in
oxidative metabolism. Plant Cell Environ 37: 684–695.

Cleiss-Arnold, J., Koechler, S., Proux, C., Fardeau, M.L.,
Dillies, M.A., Coppee, J.Y., et al. (2010) Temporal transcrip-
tomic response during arsenic stress in Herminiimonas
arsenicoxydans. BMC Genomics 11: 709.

Dembitsky, V.M., and Levitsky, D.O. (2004) Arsenolipids. Prog
Lipid Res 43: 403–448.

Emmett, M. (2014) Acetaminophen toxicity and 5-oxoproline
(pyroglutamic acid): a tale of two cycles, one an ATP-
depleting futile cycle and the other a useful cycle. Clin J Am
Soc Nephrol 9: 191–200.

Flamigni, F., Marmiroli, S., Caldarera, C.M., Guarnieri,
C.A.R.L., and Biochirnica, D. (1989) Effect of sodium arse-
nite on the induction and turnover of ornithine decarboxyl-
ase activity in Erythroleukemia cells. Cell Biochem Funct 7:
213–217.

Ge, Y., Ning, Z., Wang, Y., Zheng, Y., Zhang, C., and Figeys,
D. (2016) Quantitative proteomic analysis of Dunaliella sali-
na upon acute arsenate exposure. Chemosphere 145:
112–118.

George, G.N., and Bray, R.C. (1983) Reaction of arsenite ions
with the molybdenum center of milk xanthine oxidase. Bio-
chemistry 22: 1013–1021.

Gonz!alez-Segura, L., M!ujica-Jim!enez, C., and Mu~noz-Clares,
R.A. (2009) Reaction of the catalytic cysteine of betaine
aldehyde dehydrogenase from Pseudomonas aeruginosa
with arsenite-BAL and phenylarsine oxide. Chem Biol Inter-
act 178: 64–69.

Haimeur, A., Guimond, C., Pilote, S., Mukhopadhyay, R.,
Rosen, B.P., Poulin, R., and Ouellette, M. (1999) Elevated
levels of polyamines and trypanothione resulting from over-
expression of the ornithine decarboxylase gene in arsenite-
resistant Leishmania. Mol Microbiol 34: 726–735.

Hall, L.L., George, S.E., Kohan, M.J., Styblo, M., and
Thomas, D.J. (1997) In vitro methylation of inorganic arse-
nic in mouse intestinal cecum. Toxicol Appl Pharmacol 147:
101–109.

Halter, D., Andres, J., Plewniak, F., Poulain, J., Da Silva, C.,
Arsène-Ploetze, F., and Bertin, P.N. (2015) Arsenic hyper
tolerance in the protist Euglena mutabilis is mediated by
specific transporters and functional integrity maintenance
mechanisms. Environ Microbiol 17: 1941–1949.

Heinemann, J., Hamerly, T., Maaty, W.S., Movahed, N.,
Steffens, J.D., Reeves, B.D., et al. (2014) Expanding the
paradigm of thiol redox in the thermophilic root of life. Bio-
chim Biophys Acta 1840: 80–85.

Heinemann, J., Mazurie, A., Tokmina-Lukaszewska, M.,
Beilman, G.J., and Bothner, B. (2014) Application of sup-
port vector machines to metabolomics experiments with
limited replicates. Metabolomics 10: 1121–1128.

Hille, R., Stewart, R.C., Fee, J.A., and Massey, V. (1983) The
interaction of arsenite with xanthine oxidase. J Biol Chem
258: 4849–4856.

Altered regulation of metabolic pathways by arsenite 719

VC 2017 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 19, 710–721



Jain, R., Adhikary, H., Jha, S., Jha, A., and Kumar, G.N.
(2012) Remodulation of central carbon metabolic pathway
in response to arsenite exposure in Rhodococcus sp. strain
NAU-1. Microb Biotechnol 5: 764–772.

Ji, G., and Silver, S. (1992) Reduction of arsenate to arsenite
by the ArsC protein of the arsenic resistance operon of
Staphylococcus aureus plasmid p1258. Proc Natl Acad Sci
USA 89: 9474–9478.

Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J.,
Hudecova, D., et al. (2011) Arsenic: toxicity, oxidative stress
and human disease. J Appl Toxicol 31: 95–107.

Kanehisa, M., and Goto, S. (2000) Kyoto encyclopedia of
genes and genomes. Nucleic Acids Res 28: 27–30.

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi,
M., and Tanabe, M. (2014) Data, information, knowledge
and principle: back to metabolism in KEGG. Nucleic Acids
Res 42: D199–D205.

Kang, Y.S., Bothner, B., Rensing, C., and McDermott, T.R.
(2012) Involvement of RpoN in regulating bacterial arsenite
oxidation. Appl Environ Microbiol 78: 5638–5645.

Kang, Y.S., Brame, K., Jetter, J., Bothner, B.B., Wang, G.,
Thiyagarajan, S., and McDermott, T.R. (2016) Regulatory
activities of four ArsR proteins in Agrobacterium tumefa-
ciens 5A. Appl Environ Microbiol AEM.00262–16.

Kang, Y.S., Heinemann, J., Bothner, B., Rensing, C., and
McDermott, T.R. (2012) Integrated co-regulation of bacterial
arsenic and phosphorus metabolisms. Environ Microbiol
14: 3097–3109.

Kashyap, D.R., Botero, L.M., Franck, W.L., Hassett, D.J., and
McDermott, T.R. (2006) Complex regulation of arsenite oxi-
dation in Agrobacterium tumefaciens. J Bacteriol 188:
1081–1088.

Koechler, S., Cleiss-Arnold, J., Proux, C., Sismeiro, O., Dillies,
M.A., Goulhen-Chollet, F., et al. (2010) Multiple controls
affect arsenite oxidase gene expression in Herminiimonas
arsenicoxydans. BMC Microbiol 10: 53.

Li, B., Lin, J., Mi, S., and Lin, J. (2010) Arsenic resistance operon
structure in Leptospirillum ferriphilum and proteomic response
to arsenic stress.Bioresour Technol 101: 9811–9814.

Liu, G., Liu, M., Kim, E.H., Maaty, W.S., Bothner, B., Lei, B.,
et al. (2012) A periplasmic arsenite-binding protein involved
in regulating arsenite oxidation. Environ Microbiol 14:
1624–1634.

Lu, K., Abo, R.P., Schlieper, K.A., Graffam, M.E., Levine, S.,
Wishnok, J.S., et al. (2014) Arsenic exposure perturbs the
gut microbiome and its metabolic profile in mice: an inte-
grated metagenomics and metabolomics analysis. Environ
Health Perspect 122: 284–291.

Macur, R.E., Jackson, C.R., Botero, L.M., McDermott, T.R.,
and Inskeep, W.P. (2004) Bacterial populations associated
with the oxidation and reduction of arsenic in an unsaturat-
ed soil. Environ Sci Technol 38: 104–111.

Mukhopadhyay, R., Rosen, B.P., Phung, L.T., and Silver, S.
(2002) Microbial arsenic: from geocycles to genes and
enzymes. FEMS Microbiol Rev 26: 311–325.
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