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Abstract— We study the equilibrium quality in a multi-
commodity selfish routing game with many types of users, where
each user type experiences a different level of uncertainty.
We consider a new model of uncertainty where each user-
type over- or under-estimates their congestion costs by a
multiplicative constant. We present a variety of theoretical
results showing that when users under-estimate their costs,
the network congestion decreases at equilibrium, whereas over-
estimation of costs leads to increased equilibrium congestion.
Motivated by applications in urban transportation networks, we
perform simulations consisting of parking users and through
traffic on synthetic network topologies. Our results strongly
indicate that while users’ perception of network costs can
significantly impact the equilibrium quality, optimism in the
face of uncertainty leads to favorable network conditions.

I. INTRODUCTION

Multi-commodity routing networks that allocate resources

to self-interested users lie at the heart of many systems such

as communication, transportation, and power networks [1]. In

all of these systems, users are inherently heterogeneous not

only in their demands and objectives, but also in their belief

about the state of the system and how they trade-off between

time, money, and risk [2], [3]. Naturally, these private beliefs

influence each user’s decisions and as a consequence, the

total welfare of the overall system. Therefore, understanding

the effects of these heterogeneities is fundamental to char-

acterizing network state and performance.

A motivating example of a routing network, which we use

throughout this paper, is the urban transportation network.

Travelers in road networks simultaneously trade-off between

objectives such as total travel time, road taxes, parking

costs, waiting delays, walking distance and environmental

impact. At the same time, these users tend to possess varying

levels of information and heterogeneous attitudes, and there

is evidence to suggest that the routes adopted depend not

on the true costs but on how they are perceived by users.

For instance, users prefer safer routes over those with high

variance [4], seek to minimize travel time over parking

costs [5], and react adversely to per-mile road taxes [6].

Furthermore, the technological and economic incentives

employed by network operators to tackle congestion may

compound these effects by interacting with user beliefs in a

‘perverse manner’ [7]. For example, to limit the economic

loss arising from urban congestion [8], cities across the world

have introduced a number of solutions including road taxes,
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time-of-day-pricing, and road-side message signs. However,

the dynamic nature of these incentives (e.g., frequent price

updates) and the limited availability of information dispersal

mechanisms may add to users’ uncertainties and asymmetries

in beliefs. Therefore, to truly evaluate the efficacy of such

solutions, it is crucial to understand how these changes

impact the congestion level of the system.

The effect of uncertainties on network equilibrium was

examined in a recent body of work [7], [9]. These uncer-

tainties are reflected through the beliefs of users, where each

user may perceive the network condition to be different than

the ‘true’ conditions. Current results have largely focused

on simple networks (e.g., parallel links) where a fixed per-

centage of the population is endowed with the same level of

uncertainty. Given the complexity in most practical networks,

it is natural to ask how uncertainty (i.e., user beliefs) affects

equilibria when there are many types of users, who are

heterogeneous in their perceptions. Specifically, in this work

we answer the following two questions: (i) how do equilibria

depend on the type and level of uncertainty in networks with

a multitude of users, and (ii) when does uncertainty lead to

an improvement or degradation in equilibrium quality?

To address these questions, we turn to a multi-commodity

selfish routing framework commonly employed by many

disciplines (see, e.g., [10]–[12]). In our model, each user

seeks to route some flow along links connecting two nodes

in a network and faces congestion costs on each link. These

congestion costs are perceived differently by each user in

the network, representing the uncertainties in their beliefs. It

is well-known that even in the presence of perfect informa-

tion (every user knows the exact true cost), strategic behavior

by the users can result in considerably worse congestion

at equilibrium when compared to an optimum routing so-

lution [13]. Against this backdrop, we analyze what happens

when users have imprecise views about the congestion costs.

A surprising outcome arises: in the presence of uncertainty,

if users under-estimate the costs and select routes based

on these perceived costs, the equilibrium quality is better

compared to the full information case. Conversely, if the

users are overly conservative and over-estimate the costs,

the equilibrium quality becomes worse.

A. Contributions

We introduce the notion of type-dependent uncertainty in

multi-commodity routing networks, where the uncertainty of

users belonging to type θ is captured by a single parameter

rθ > 0. Specifically, for each user of type θ, if the true cost

on edge e is given by Ce(x) = aex+be, where x is the total
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population of users on this edge, then their perceived cost is

aex+ rθbe.

We are interested in studying the quality of the equilibrium

routing as well as the socially optimal routing solution, using

social cost as a metric. This quantity denotes the aggregate

cost incurred by all of the users in the network (see (8) for

a formal definition).

We consider two types of uncertainties: pessimism where

users over-estimate the costs (rθ ≥ 1) and optimism where

users under-estimate the costs (rθ ≤ 1), for all types θ.

Under this model of type-based uncertainty in congestion

costs, we have the following contributions:

(a) The social cost of the equilibrium solution where all

users have the same level of uncertainty (rθ = r for

all θ) is always smaller than or equal to the cost of

the equilibrium solution without uncertainty when r ∈
[0.5, 1] and vice-versa when r ≥ 1.

(b) The worst-case ratio of the social cost of the equi-

librium to that of the socially optimal solution (i.e.,

the price of anarchy [13]) is
4r2

min

4rminγ−1
, where rmin =

minθ rθ and γ ≤ 1 is the ratio of the minimum to the

maximum uncertainty over user types.

(c) In systems having users with and without uncertainty,

the routing choices adopted by the uncertain users

always results in an improvement in the costs expe-

rienced by users without uncertainty.

To validate the theoretical results, we present a number of

simulation results. We focus specifically on the application

of parking in urban transportation networks (see, e.g., Fig. 1)

and consider simple networks with two types of users:

through traffic and parking users. We demonstrate the effects

of an uncertain parking population on equilibrium quality.

We show via simulations that optimism improves equilibrium

quality while pessimism degrades it both when uncertainty is

asymmetric across user types and when users face different

levels of uncertainty on different network edges. In the full

version of this paper [19], we show that this behavior persists

even in more realistic urban topologies.

B. Comparison with Other Models of Uncertainties

Our work is closely related to the extensive body of work

on risk-averse selfish routing [14], [15] and pricing tolls in

congestion networks [2], [11]. The former line of research

focuses on the well known mean-standard deviation model

where each individual user selects a path that minimizes a

linear combination of their expected travel time and standard

deviation. While such an objective is desirable from a central

planner’s perspective, experimental studies suggest that in-

dividuals tend to employ simpler heuristics when faced with

uncertainty [16]. Motivated by this, we adopt a multiplicative

model of uncertainty similar to [17], [18].

In regards to the latter line of work, the literature on

computing tolls for heterogeneous users is driven by the

need to implement the optimum routing by adjusting the

toll amount, which is often interpreted as the time–money

tradeoff, on each edge as a function of the congestion. We, on

the other hand, assume that the user beliefs are independent

of the congestion in the network, and aim for a more nuanced

understanding of the dependence of network costs on the

level of uncertainty.

C. Organization

The rest of the paper is structured as follows. In Section II,

we formally introduce our model followed by our main

results in Section III. Section IV presents our simulation

results on transportation networks with parking and routing

users who face different levels of uncertainty. Finally, we

conclude with some discussion and comments on future

directions in Section V.

II. MODEL AND PRELIMINARIES

We consider a non-atomic, multi-commodity selfish rout-

ing game with multiple types of users. Specifically, we

consider a network represented as G = (V, E) where V is

the set of nodes and E is the set of edges. For each edge

e ∈ E , we define a linear cost function

Ce(xe) = aexe + be, (1)

where xe ≥ 0 is the total population (or flow) of users on

that edge and ae, be ≥ 0. One can interpret Ce(·) as the true

cost or expected congestion felt by the users on this edge.

However, due to uncertainty, users may perceive the cost on

each edge e ∈ E to be different from its true cost.

To capture that users may have different perceived un-

certainties, we introduce the notion of type. Specifically, we

consider a finite set of user types T , where each type θ ∈ T
is uniquely defined by the following tuple (sθ, tθ, µθ, rθ).
We assume that µθ > 0 denotes the total population of users

belonging to type θ such that each of these infinitesimal users

seeks to route some flow from its source node sθ ∈ V to the

destination node tθ ∈ V . Moreover, the parameter rθ > 0
captures the beliefs or uncertainties associated with users of

type θ and affects the edge cost in the following way: users

of type θ perceive the cost of edge e ∈ E to be

Ĉθ
e (xe) = aexe + rθbe. (2)

If we interpret be as a price or a tax, then rθ < 1 denotes the

case where users of type θ under-estimate prices compared

to their actual value and rθ > 1 captures situations where

users over-estimate prices or view them adversely compared

to their other costs.

Let Pθ denote the set of all sθ–tθ paths in G where sθ
is the source and tθ is the destination. Formally, let xθ

p ∈ R

be the total flow routed by users of type θ on path p ∈ Pθ.

We define a feasible flow to be a vector x = (xθ
p)θ∈T ,p∈Pθ

such that for all θ ∈ T ,
∑

p∈Pθ
xθ
p = µθ, and xθ

p ≥ 0 for all

paths p ∈ Pθ. Path flows are related to edge flows. Indeed,

let xθ
e ∈ R be the flow on edge e of users of type θ. The

edge and path flow for users of type θ are related by

xθ
e =

∑

p∈Pθ,p∋e x
θ
p (3)

Define the total flow on edge e to be xe =
∑

θ∈T
xθ
e. Then,

in this notation, we can write the path cost in terms of edge
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flow; indeed for any path p in the graph,

Cp(x) =
∑

e∈p Ce(xe) =
∑

e∈p(aexe + be). (4)

Similarly, the perceived path costs are given by

Ĉθ
p(x) =

∑

e∈p(Ĉ
θ
e (xe) =

∑

e∈p aexe + rθbe.) (5)

We define a game instance as the tuple

G = {(V, E), T , (sθ, tθ, µθ, rθ)θ∈T , (Ce)e∈E}. (6)

A simple example of a multi-commodity routing network

that arises in real-world transportation networks is depicted

in Fig. 1. In Section IV, we perform extensive simulations on

this stylistic network and highlight the effect of uncertainty

on network conditions in a more general model where users

experience different uncertainties on each of the edges.

A. Nash Equilibrium Concept and its Efficiency

We assume that the users in the system are self-interested

and route their flow with the goal of minimizing their

individual cost. Therefore, the solution concept of interest in

such a setting is that of a Nash equilibrium, where each user

type routes their flow on minimum cost paths with respect

to their perceived cost functions and the actions of the other

users.

Definition 2.1 (Nash Equilibrium): Given a game in-

stance G, a feasible flow x is said to be a Nash equilibrium

if for every θ ∈ T , for all p ∈ Pθ with positive flow, xθ
p > 0,

Ĉθ
p(x) ≤ Ĉθ

p′(x), ∀ p′ ∈ Pθ. (7)

For the rest of this work, we will assume that all the flows

considered are feasible.

Remark 1 (User Beliefs): In order to employ the classical

notion of Nash equilibrium, we assume that all uncertainty

levels are known by all of the users. That is, a user of type

θ knows the values (rθ′be)e∈E for all θ′ ∈ T . While a

user knowing (rθbe)e∈E within its own type θ may not be

unreasonable, full knowledge of (rθbe)e∈E for all θ ∈ T is

a strong assumption.

This being said, for the types of games we consider, a

number of myopic learning rules1 converge to Nash equilib-

ria independent of the beliefs held by users regarding other

user types. (see, e.g., [20] and references therein).

B. Social Cost and Price of Anarchy

We measure the quality of a solution using its social cost,

which is defined to be the aggregate (true) cost incurred by

all of the users in the system. Formally, the social cost of a

flow x is given by

C(x) =
∑

e∈E
Ce(xe)xe. (8)

The social cost is only measured with respect to the true

congestion costs and does not reflect users’ beliefs.

To capture inefficiencies, we leverage the well-studied

notion of the price of anarchy which is the ratio of the

1By myopic learning rules, we mean rules for iterated play that require
each player to have minimal-to-no knowledge of other players’ cost func-
tions and/or strategies.

social cost of the worst-case Nash equilibrium to that of the

socially optimal solution [12]. Formally, given an instance

G of a multi-commodity routing game belonging to some

class C (a class refers to a set of instances that usually share

some property) suppose that x∗
G is the flow that minimizes

the social cost C(x) and that x̃G is the Nash equilibrium for

the given instance, then the price of anarchy is:

Definition 2.2 (Price of Anarchy): Given a class of in-

stances C, the price of anarchy for this class is

max
G∈C

C(x̃G)

C(x∗
G
)
. (9)

Of course, the price of anarchy is always greater than or

equal to one.

III. MAIN RESULTS

The first step to analyzing the multi-commodity game is

to characterize the Nash equilibria. If the games fall into

the general class of potential games, then the equilibria

have “nice properties” in terms of existence, uniqueness, and

computability [20]. General multi-commodity, selfish routing

games with heterogeneous users, however, do not belong to

the class of potential games unless certain assumptions on

the edge cost structure are met [10].

Due to the fact that we have linear latencies for each type

and the type-dependent uncertainty appears on the be terms

for each edge, all game instances of the form we consider

admit a potential function and hence, there always exists a

Nash equilibrium [10].

Proposition 3.1: A feasible flow x is a Nash equilibrium

for a given instance G of a multi-commodity routing game

if and only if it minimizes the following potential function:

Φr(x) =
∑

e∈E

(

aex
2

e

2
+ be

∑

θ∈T
rθx

θ
e

)

(10)

Moreover, for any two minimizers x,x′, Ce(xe) = Ce(x
′
e)

for every edge e ∈ E .

The proof of the proposition follows from standard argu-

ments pertaining to the minimizer of a convex function and

from the definition of Nash equilibrium as in (7) and we

refer the reader to [20] for more details. The second part

of the proposition indicates that the equilibria are essentially

unique as the cost on every edge is the same across solutions.

With the above proposition in hand, we now derive three

main results on (i) the impact of uncertainty on social cost,

(ii) the impact of uncertainty on players, and (iii) bounds on

the price of anarchy.

A. Effect of Uncertainty on Equilibrium Quality

Our first main result identifies a special case of the

general multi-commodity game for which uncertainty helps

improve equilibrium quality—i.e. decreases the social cost—

whenever users under-estimate costs for every instance and

vice-versa when they over-estimate costs. For a given in-

stance of the multi-commodity routing game, we say that

the users are optimistic if rθ ≤ 1 for all θ ∈ T . Similarly,

the users are pessimistic if rθ ≥ 1 for all user types.

Given an instance G of the multi-commodity routing game,

we define G1 to be the corresponding game instance with no
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uncertainty—that is, G1 has the same graph, cost functions,

and user types as G, yet rθ = 1 for all θ ∈ T .

Theorem 3.2: Consider any given instance G of the multi-

commodity routing game with Nash equilibrium x̃ and cor-

responding game instance G1, having no uncertainty, whose

Nash equilibrium is x
1. Suppose all users experience the

same uncertainty, where rθ = r for all θ ∈ T . Then, the

following hold:

1) C(x̃) ≤ C(x1) if 0.5 ≤ r ≤ 1.

2) C(x̃) ≥ C(x1) if r ≥ 1.

We now sketch the key technique involved—a complete

proof can be found in the full version of this paper [19].

The main idea behind the proof is that the solutions x̃ and

x
1 minimize closely related potential functions, i.e., Φr(x)

and Φ1(x) respectively. This leads us to a derive a sufficient

condition highlighting the ‘direction of flow change’ from x
1

to x̃, namely that (r−1)
∑

e∈E
be(x̃e−x1

e) ≤ 0. The rest of

the proof follows from a case-by-case analysis based on the

value of the uncertainty parameter. The following corollary

identifies a specific level of (optimistic) uncertainty at which

the equilibrium solution is actually optimal.

Corollary 3.3: Given an instance G of the multi-

commodity routing game, let x̃ denote its Nash equilibrium

and x
∗ denote the socially optimal flow. If rθ = 0.5 for all

θ ∈ T , then C(x̃) = C(x∗)—i.e. the equilibrium is socially

optimal.

B. Impact of Uncertain Users on Those without Uncertainty

Now that we have a better understanding of how un-

certainty affects the performance of the entire system as

measured by the social cost, we tackle a more nuanced

question: in systems where only some users are uncertain,

how does their behavior impact the social cost of the

users who do not have uncertainty? This question is of

considerable interest in a number of settings, e.g., in urban

transportation networks, where it is believed that [21]–[24]

inefficient behavior by the parking users (such as cruising or

searching for parking spots) can often cascade into increased

congestion for other drivers leading to a detrimental effect

on the overall congestion cost.

To answer this question, we restrict our attention to a two-

commodity routing game G, where both types of users seek

to route their flow from a common source node s to sink node

t. Moreover, we assume that for the first type θ1, rθ1 = 1.

For the second type θ2, rθ2 is not necessarily 1. We refer

to this as the two-commodity game having users with and

without uncertainty.

We now define some additional notation. Suppose that

x denotes a feasible flow for a given instance of the two-

commodity game with uncertain and full information users,

we use Cθ1(x) =
∑

e∈E
Ce(xe)x

θ1
e to denote the aggregate

cost of users of type θ1. Finally, we also restrict our focus

to series-parallel networks, which denote a popular class of

network topologies in the literature pertaining to network

routing [25], [26]. Informally, a graph is said to be series-

parallel if it does not contain an embedded Wheatstone

network or equivalently if, in the undirected version of this

graph two routes never pass through any edge in opposite

directions. The reader is referred to [26] for a more rigorous

definition.

We present a surprising result in Theorem 3.4: the behavior

under uncertainty by one type of users always decreases the

congestion costs of other types of users who do not face

any uncertainty. This result holds for both optimistic and

pessimistic behavior.

Theorem 3.4: Given an instance G of the two-commodity

game having users with and without uncertainty such that the

graph G is series-parallel, let G1 denote a modified version

of this instance with no uncertainty (i.e. rθ1 = rθ2 = 1). Let

x̃ and x
1 denote the Nash equilibrium for the two instances,

respectively. Then,

Cθ1(x̃) ≤ Cθ1(x1). (11)

The proof of Theorem 3.4 is based on Lemma 3 in [26]

and can be found in the full version [19].

C. Price of Anarchy Under Uncertainty

In Theorem 3.2, we showed that the equilibrium cost

under uncertainty decreases (resp. increases) when users are

optimistic (resp. pessimistic) and all user types have the same

level of uncertainty. This naturally raises the question of

quantifying the improvement (or degradation in equilibrium)

and whether uncertainty helps when the uncertainty parame-

ter can differ between user types. In the following theorem,

we address both of these questions by providing price of

anarchy bounds as a function of the minimum uncertainty in

the system and γ, which is the ratio between the minimum

and maximum uncertainty among user types.

Let rmin = minθ∈T rθ and γ = minθ rθ
maxθ rθ

.

Theorem 3.5: If 1 < 4rminγ, the price of anarchy for

multi-commodity routing games is given by

4r2
min

4rminγ−1
. (12)

We provide the proof of the above theorem in [19].

The above result broadly validates our message that un-

certainty helps equilibrium when users under-estimate their

costs and hurts equilibrium when users over-estimate their

costs. To understand why, let us consider the case of γ = 1—

i.e. the uncertainty is the same across user types. We already

know that in the absence of uncertainty, the price of anarchy

of multi-commodity routing games with linear costs equals
4

3
[13]; this can also be seen by substituting rmin = 1, γ = 1

in (9). We observe that the price of anarchy is strictly smaller

than 4

3
for rmin < 1 and reaches the optimum value of one

at rmin = 0.5 thereby confirming Corollary 3.3.

Similarly, as rmin increases from one, the price of anarchy

also increases nearly linearly. In fact, our price of anarchy

result goes one step beyond Theorem 3.2 as it provides

guarantees even when different user types have different

uncertainty levels. For example, when rmin = 0.6, and

γ = 0.9—i.e. maxθ rθ ≈ 0.67—the price of anarchy

is 1.24, which is still better than the price of anarchy

without uncertainty. Furthermore, the price of anarchy result

reveals a surprising dichotomy: as long as rmin < 1 and
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γ is not too large, for any given instance G of the multi-

commodity routing game, either the equilibrium quality is

already good or uncertainty helps lower congestion by a

significant amount.

IV. NUMERICAL EXAMPLES

o1

b

s t

t2

Garage

o2

On-Street Parking

Fig. 1: A special case of our general multi-commodity

network with two types of users- parking users and through

traffic. All of the network traffic originates at the source

node s. Users belonging to the through traffic simply select a

(minimum-cost) path from s to t and incur only the latencies

on each link. The parking users select between one of two

parking structures: on-street parking (indicated in green) with

additional circling costs and off-street (e.g., parking garage).

In this section, we present our main simulation results on

a stylistic network topology comprising of two types of users

(two commodities)—i.e. through traffic, parking users (types

θ1, θ2, respectively). We consider a more general model of

uncertainty for our simulations, where the parking users have

different uncertainty levels on different parts of the network

and the through traffic does not suffer from uncertainty at all.

We vary the level of uncertainty faced by the parking users,

and observe its effect on the social cost at equilibrium.

In the full version of this paper [19], we present additional

simulations on a more realistic urban network topology that

captures the downtown area in Seattle. Both our stylistic and

realistic network simulations validate the theoretical results

presented in the previous section.

A. Effect of Uncertainty on On-Street vs Garage Parking

Inspired by the work in [21] which provides a framework

for integrating parking into a classical routing game that

abstracts route choices in urban networks, we begin with

a somewhat stylized example of an urban network, depicted

and described in Fig. 1. The users looking for a parking spot

are faced with two options: (i) on-street parking which, as

in reality, is cheaper but leads to larger wait times due to

cruising in search of parking; (ii) an off-street or a private

garage option that is much easier to access (in terms of wait

times) at the expense of a higher price.

To understand the costs faced by the parking users (type

θ2), let Eos be the set of edges in the on-street parking

structure (the green edges in Fig. 1). For parking users

that select the on-street parking option, the cost on edges

e ∈ Eos are of the form Cθ2
e (xe) = Cθ2

e,ℓ(xe) + Cθ2
e,os(xe)

where Cθ2
e,ℓ(xe) = aexe + be is the travel latency and

Cθ2
e,os(xe) = ae,osxe + be,os is the parking cost.

Fig. 1 easily transforms into a two-commodity network

by creating a fake edge ẽ from node o1 to t2, having the

accumulated parking costs from edges Eos—i.e. Cẽ(xẽ) =
∑

e∈Eos
Cθ2

e,os(xe) Then the costs on edges in Eos are re-

defined to only contain the travel latency cost, and this is

the same for both types of users: for e ∈ Eos, Cθ1
e (xe) =

Cθ2
e (xe) = aexe+be. For the off-street parking structure, the

edge, say e′, from o2 to t2 has cost Ce′(xe′) = apgxe′ +bpg .

The uncertainty is only faced by the parking users (and

only on ẽ, e′) who perceive the cost of the two parking

structures to be Ĉθ2
ẽ (xẽ) = aosxẽ + rbos and Ĉθ2

e′ (xe′) =
apgxe′ + rbpg , respectively, for some parameter r > 0. The

through traffic (type θ1) does not suffer from uncertainty

on any of its edges and therefore, rθ1 = 1 on all edges.

Moreover, rθ2 = 1 on all edges in the network except ẽ, e′.

For the simulations, we assume that there is an equal

mass of parking and through traffic users originating at the

source node s. The parameters of the edge cost functions

were selected uniformly at random from a suitable range.

For both on-street and off-street options, the parking costs

were set as follows: (i) The parameter aos was chosen to

be inversely proportional to the number of on-street parking

slots typically available on roads, whereas we set apg = 0,

since garages have a large number of parking slots; (ii) The

parameters bos and bpg equal the price of on-street and garage

parking (respectively) commonly used in cities multiplied

by a constant that captures the trade-off between time and

money.

Fig. 2 shows how the parking users divide themselves

among the on-street and garage option (left plot) and how this

affects uncertainty as r varies (right plot). From the left plot,

we observe that at the social optimum, approximately 51%

of the parking population prefers on-street parking. With no

uncertainty (i.e. when r = 1), at the Nash equilibrium more

parking users (around 80%) gravitate towards the on-street

option leading to higher congestion—that is, even without

uncertainty, the system is inefficient as is expected.

As r decreases—that is, as users become more optimistic

in their beliefs about prices—more users start flocking to the

off-street option as they perceive a multiplicative decrease

in price. The result is an improvement in efficiency. On the

other hand, for users who tend to over-estimate prices (r >

1), the appeal of off-street parking decreases and users move

to on-street options leading to increased congestion and poor

equilibria. The effect of the above behavior on equilibrium

inefficiency is quantified in the right-hand plot in Fig. 2.

V. CONCLUSIONS AND FUTURE WORK

In this work, we considered a multi-commodity selfish

routing game where different types of users face different

levels of uncertainty quantified by a multiplicative parameter

rθ. Broadly classifying the user attitudes as optimistic and

pessimistic, we showed several theoretical and experimental

results highlighting the effect that when users under-estimate
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