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Uncertainty in Multi-Commodity Routing Networks: When does it help?
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Abstract— We study the equilibrium quality in a multi-
commodity selfish routing game with many types of users, where
each user type experiences a different level of uncertainty.
We consider a new model of uncertainty where each user-
type over- or under-estimates their congestion costs by a
multiplicative constant. We present a variety of theoretical
results showing that when users under-estimate their costs,
the network congestion decreases at equilibrium, whereas over-
estimation of costs leads to increased equilibrium congestion.
Motivated by applications in urban transportation networks, we
perform simulations consisting of parking users and through
traffic on synthetic network topologies. Our results strongly
indicate that while users’ perception of network costs can
significantly impact the equilibrium quality, optimism in the
face of uncertainty leads to favorable network conditions.

I. INTRODUCTION

Multi-commodity routing networks that allocate resources
to self-interested users lie at the heart of many systems such
as communication, transportation, and power networks [1]. In
all of these systems, users are inherently heterogeneous not
only in their demands and objectives, but also in their belief
about the state of the system and how they trade-off between
time, money, and risk [2], [3]. Naturally, these private beliefs
influence each user’s decisions and as a consequence, the
total welfare of the overall system. Therefore, understanding
the effects of these heterogeneities is fundamental to char-
acterizing network state and performance.

A motivating example of a routing network, which we use
throughout this paper, is the urban transportation network.
Travelers in road networks simultaneously trade-off between
objectives such as total travel time, road taxes, parking
costs, waiting delays, walking distance and environmental
impact. At the same time, these users tend to possess varying
levels of information and heterogeneous attitudes, and there
is evidence to suggest that the routes adopted depend not
on the true costs but on how they are perceived by users.
For instance, users prefer safer routes over those with high
variance [4], seek to minimize travel time over parking
costs [5], and react adversely to per-mile road taxes [6].

Furthermore, the technological and economic incentives
employed by network operators to tackle congestion may
compound these effects by interacting with user beliefs in a
‘perverse manner’ [7]. For example, to limit the economic
loss arising from urban congestion [8], cities across the world
have introduced a number of solutions including road taxes,
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time-of-day-pricing, and road-side message signs. However,
the dynamic nature of these incentives (e.g., frequent price
updates) and the limited availability of information dispersal
mechanisms may add to users’ uncertainties and asymmetries
in beliefs. Therefore, to truly evaluate the efficacy of such
solutions, it is crucial to understand how these changes
impact the congestion level of the system.

The effect of uncertainties on network equilibrium was
examined in a recent body of work [7], [9]. These uncer-
tainties are reflected through the beliefs of users, where each
user may perceive the network condition to be different than
the ‘true’ conditions. Current results have largely focused
on simple networks (e.g., parallel links) where a fixed per-
centage of the population is endowed with the same level of
uncertainty. Given the complexity in most practical networks,
it is natural to ask how uncertainty (i.e., user beliefs) affects
equilibria when there are many types of users, who are
heterogeneous in their perceptions. Specifically, in this work
we answer the following two questions: (i) how do equilibria
depend on the type and level of uncertainty in networks with
a multitude of users, and (ii) when does uncertainty lead to
an improvement or degradation in equilibrium quality?

To address these questions, we turn to a multi-commodity
selfish routing framework commonly employed by many
disciplines (see, e.g., [10]-[12]). In our model, each user
seeks to route some flow along links connecting two nodes
in a network and faces congestion costs on each link. These
congestion costs are perceived differently by each user in
the network, representing the uncertainties in their beliefs. It
is well-known that even in the presence of perfect informa-
tion (every user knows the exact true cost), strategic behavior
by the users can result in considerably worse congestion
at equilibrium when compared to an optimum routing so-
lution [13]. Against this backdrop, we analyze what happens
when users have imprecise views about the congestion costs.
A surprising outcome arises: in the presence of uncertainty,
if users under-estimate the costs and select routes based
on these perceived costs, the equilibrium quality is better
compared to the full information case. Conversely, if the
users are overly conservative and over-estimate the costs,
the equilibrium quality becomes worse.

A. Contributions

We introduce the notion of type-dependent uncertainty in
multi-commodity routing networks, where the uncertainty of
users belonging to type 6 is captured by a single parameter
rg > 0. Specifically, for each user of type 6, if the true cost
on edge e is given by C,(z) = a.x+be, where x is the total
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population of users on this edge, then their perceived cost is
e + r9be.

We are interested in studying the quality of the equilibrium
routing as well as the socially optimal routing solution, using
social cost as a metric. This quantity denotes the aggregate
cost incurred by all of the users in the network (see (8) for
a formal definition).

We consider two types of uncertainties: pessimism where
users over-estimate the costs (rg > 1) and optimism where
users under-estimate the costs (rg < 1), for all types 6.

Under this model of type-based uncertainty in congestion
costs, we have the following contributions:

(a) The social cost of the equilibrium solution where all
users have the same level of uncertainty (r9 = r for
all 0) is always smaller than or equal to the cost of
the equilibrium solution without uncertainty when r €
[0.5,1] and vice-versa when r > 1.

(b) The worst-case ratio of the social cost of the equi-

librium to that of the socially ogtimal solution (i.e.,

r.
—win_— where rpipn =

the price of anarchy [13]) is 4Tiin7717
ming rg and v < 1 is the ratio of the minimum to the
maximum uncertainty over user types.

(c) In systems having users with and without uncertainty,
the routing choices adopted by the uncertain users
always results in an improvement in the costs expe-
rienced by users without uncertainty.

To validate the theoretical results, we present a number of
simulation results. We focus specifically on the application
of parking in urban transportation networks (see, e.g., Fig. 1)
and consider simple networks with two types of users:
through traffic and parking users. We demonstrate the effects
of an uncertain parking population on equilibrium quality.
We show via simulations that optimism improves equilibrium
quality while pessimism degrades it both when uncertainty is
asymmetric across user types and when users face different
levels of uncertainty on different network edges. In the full
version of this paper [19], we show that this behavior persists
even in more realistic urban topologies.

B. Comparison with Other Models of Uncertainties

Our work is closely related to the extensive body of work
on risk-averse selfish routing [14], [15] and pricing tolls in
congestion networks [2], [11]. The former line of research
focuses on the well known mean-standard deviation model
where each individual user selects a path that minimizes a
linear combination of their expected travel time and standard
deviation. While such an objective is desirable from a central
planner’s perspective, experimental studies suggest that in-
dividuals tend to employ simpler heuristics when faced with
uncertainty [16]. Motivated by this, we adopt a multiplicative
model of uncertainty similar to [17], [18].

In regards to the latter line of work, the literature on
computing tolls for heterogeneous users is driven by the
need to implement the optimum routing by adjusting the
toll amount, which is often interpreted as the time—money
tradeoff, on each edge as a function of the congestion. We, on
the other hand, assume that the user beliefs are independent

of the congestion in the network, and aim for a more nuanced
understanding of the dependence of network costs on the
level of uncertainty.

C. Organization

The rest of the paper is structured as follows. In Section II,
we formally introduce our model followed by our main
results in Section III. Section IV presents our simulation
results on transportation networks with parking and routing
users who face different levels of uncertainty. Finally, we
conclude with some discussion and comments on future
directions in Section V.

II. MODEL AND PRELIMINARIES

We consider a non-atomic, multi-commodity selfish rout-
ing game with multiple types of users. Specifically, we
consider a network represented as G = (V, &) where V is
the set of nodes and £ is the set of edges. For each edge
e € &£, we define a linear cost function

Ce(xe) = QeTe + be, (D

where x. > 0 is the total population (or flow) of users on
that edge and ae,b. > 0. One can interpret C,(-) as the true
cost or expected congestion felt by the users on this edge.
However, due to uncertainty, users may perceive the cost on
each edge e € £ to be different from its true cost.

To capture that users may have different perceived un-
certainties, we introduce the notion of rype. Specifically, we
consider a finite set of user types 7, where each type 6 € T
is uniquely defined by the following tuple (sg,tg, ug,79).
We assume that 19 > 0 denotes the total population of users
belonging to type # such that each of these infinitesimal users
seeks to route some flow from its source node sy € V to the
destination node ty € V. Moreover, the parameter r9 > 0
captures the beliefs or uncertainties associated with users of
type 0 and affects the edge cost in the following way: users
of type 6 perceive the cost of edge e € £ to be

C’g(xe) = QeZe + Tobe. 2)

If we interpret b, as a price or a tax, then ¢ < 1 denotes the
case where users of type 6 under-estimate prices compared
to their actual value and rp > 1 captures situations where
users over-estimate prices or view them adversely compared
to their other costs.

Let Py denote the set of all sg—ty paths in G where sg
is the source and ¢y is the destination. Formally, let xf, cR
be the total flow routed by users of type 6 on path p € Py.
We define a feasible flow to be a vector x = (29)seT pep,
such that for all 0 € T, Y- cp, @b = pg, and zf > 0 for all
paths p € Py. Path flows are related to edge flows. Indeed,
let % € R be the flow on edge e of users of type 0. The
edge and path flow for users of type 6 are related by

6 __ (4
Te = ZpePg,pae Tp (3)

Define the total flow on edge e to be z. = > 5.1 2Y. Then,
in this notation, we can write the path cost in terms of edge
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flow; indeed for any path p in the graph,
Cp(x) = X eep Cel@e) = X cep(@exe + be). 4)

Similarly, the perceived path costs are given by

éz(x) = Zeep(ég(xe> = ZeEp QeTe + Tabe-) )

We define a game instance as the tuple

g= {(Va 8)’ Ta (597 to, 1o, T0)0€Ta (Ce)e€£}~ (6)

A simple example of a multi-commodity routing network
that arises in real-world transportation networks is depicted
in Fig. 1. In Section IV, we perform extensive simulations on
this stylistic network and highlight the effect of uncertainty
on network conditions in a more general model where users
experience different uncertainties on each of the edges.

A. Nash Equilibrium Concept and its Efficiency

We assume that the users in the system are self-interested
and route their flow with the goal of minimizing their
individual cost. Therefore, the solution concept of interest in
such a setting is that of a Nash equilibrium, where each user
type routes their flow on minimum cost paths with respect
to their perceived cost functions and the actions of the other
users.

Definition 2.1 (Nash Equilibrium): Given a game in-
stance G, a feasible flow x is said to be a Nash equilibrium
if for every 6 € T, for all p € Py with positive flow, :cg > 0,

CH(x) < Cp(x), Vp €P (7)

For the rest of this work, we will assume that all the flows
considered are feasible.

Remark 1 (User Beliefs): In order to employ the classical
notion of Nash equilibrium, we assume that all uncertainty
levels are known by all of the users. That is, a user of type
0 knows the values (7¢/b.)ece for all ' € T. While a
user knowing (7pbe)ecs within its own type 6 may not be
unreasonable, full knowledge of (rgb.)ccs for all § € T is
a strong assumption.

This being said, for the types of games we consider, a
number of myopic learning rules' converge to Nash equilib-
ria independent of the beliefs held by users regarding other
user types. (see, e.g., [20] and references therein).

B. Social Cost and Price of Anarchy

We measure the quality of a solution using its social cost,
which is defined to be the aggregate (true) cost incurred by
all of the users in the system. Formally, the social cost of a
flow x is given by

C(x) = Zeeg Ce(ze)Te. ®)

The social cost is only measured with respect to the true
congestion costs and does not reflect users’ beliefs.

To capture inefficiencies, we leverage the well-studied
notion of the price of anarchy which is the ratio of the

'By myopic learning rules, we mean rules for iterated play that require
each player to have minimal-to-no knowledge of other players’ cost func-
tions and/or strategies.

social cost of the worst-case Nash equilibrium to that of the
socially optimal solution [12]. Formally, given an instance
G of a multi-commodity routing game belonging to some
class C (a class refers to a set of instances that usually share
some property) suppose that xg is the flow that minimizes
the social cost C(x) and that X¢ is the Nash equilibrium for
the given instance, then the price of anarchy is:

Definition 2.2 (Price of Anarchy): Given a class of in-
stances C, the price of anarchy for this class is

C(%
max (Xg). 9)
gec C(xg)

Of course, the price of anarchy is always greater than or

equal to one.

III. MAIN RESULTS

The first step to analyzing the multi-commodity game is
to characterize the Nash equilibria. If the games fall into
the general class of potential games, then the equilibria
have “nice properties” in terms of existence, uniqueness, and
computability [20]. General multi-commodity, selfish routing
games with heterogeneous users, however, do not belong to
the class of potential games unless certain assumptions on
the edge cost structure are met [10].

Due to the fact that we have linear latencies for each type
and the type-dependent uncertainty appears on the b, terms
for each edge, all game instances of the form we consider
admit a potential function and hence, there always exists a
Nash equilibrium [10].

Proposition 3.1: A feasible flow x is a Nash equilibrium
for a given instance G of a multi-commodity routing game
if and only if it minimizes the following potential function:

acx?
Qp(x) = e ( 55+ be D per Tel“?)

Moreover, for any two minimizers x,x’, Co(z.) = Co(2))
for every edge e € £.

The proof of the proposition follows from standard argu-
ments pertaining to the minimizer of a convex function and
from the definition of Nash equilibrium as in (7) and we
refer the reader to [20] for more details. The second part
of the proposition indicates that the equilibria are essentially
unique as the cost on every edge is the same across solutions.

With the above proposition in hand, we now derive three
main results on (i) the impact of uncertainty on social cost,
(ii) the impact of uncertainty on players, and (iii) bounds on
the price of anarchy.

(10)

A. Effect of Uncertainty on Equilibrium Quality

Our first main result identifies a special case of the
general multi-commodity game for which uncertainty helps
improve equilibrium quality—i.e. decreases the social cost—
whenever users under-estimate costs for every instance and
vice-versa when they over-estimate costs. For a given in-
stance of the multi-commodity routing game, we say that
the users are optimistic if 7y < 1 for all € 7. Similarly,
the users are pessimistic if ry > 1 for all user types.

Given an instance G of the multi-commodity routing game,
we define G' to be the corresponding game instance with no
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uncertainty—that is, G I has the same graph, cost functions,
and user types as G, yet rg = 1 for all 0 € T.

Theorem 3.2: Consider any given instance G of the multi-
commodity routing game with Nash equilibrium X and cor-
responding game instance G!, having no uncertainty, whose
Nash equilibrium is x!. Suppose all users experience the
same uncertainty, where 79 = r for all § € T. Then, the
following hold:

1) C(x) <C(xY)if0.5<r<1.

2) C(x) >C(x!)ifr > 1.

We now sketch the key technique involved—a complete
proof can be found in the full version of this paper [19].
The main idea behind the proof is that the solutions X and
x! minimize closely related potential functions, i.e., ®,(x)
and @4 (x) respectively. This leads us to a derive a sufficient
condition highlighting the ‘direction of flow change’ from x!
to X, namely that (r —1) 3 ¢ be(Ze — 2}) < 0. The rest of
the proof follows from a case-by-case analysis based on the
value of the uncertainty parameter. The following corollary
identifies a specific level of (optimistic) uncertainty at which
the equilibrium solution is actually optimal.

Corollary 3.3: Given an instance G of the multi-
commodity routing game, let X denote its Nash equilibrium
and x* denote the socially optimal flow. If 7y = 0.5 for all
6 € T, then C(x) = C(x*)—i.e. the equilibrium is socially
optimal.

B. Impact of Uncertain Users on Those without Uncertainty

Now that we have a better understanding of how un-
certainty affects the performance of the entire system as
measured by the social cost, we tackle a more nuanced
question: in systems where only some users are uncertain,
how does their behavior impact the social cost of the
users who do not have uncertainty? This question is of
considerable interest in a number of settings, e.g., in urban
transportation networks, where it is believed that [21]-[24]
inefficient behavior by the parking users (such as cruising or
searching for parking spots) can often cascade into increased
congestion for other drivers leading to a detrimental effect
on the overall congestion cost.

To answer this question, we restrict our attention to a two-
commodity routing game G, where both types of users seek
to route their flow from a common source node s to sink node
t. Moreover, we assume that for the first type 61, 79, = 1.
For the second type 62, rg, is not necessarily 1. We refer
to this as the two-commodity game having users with and
without uncertainty.

We now define some additional notation. Suppose that
x denotes a feasible flow for a given instance of the two-
commodity game with uncertain and full information users,
we use C”' (x) = > ece Celxe)zl to denote the aggregate
cost of users of type 6;. Finally, we also restrict our focus
to series-parallel networks, which denote a popular class of
network topologies in the literature pertaining to network
routing [25], [26]. Informally, a graph is said to be series-
parallel if it does not contain an embedded Wheatstone
network or equivalently if, in the undirected version of this

graph two routes never pass through any edge in opposite
directions. The reader is referred to [26] for a more rigorous
definition.

We present a surprising result in Theorem 3.4: the behavior
under uncertainty by one type of users always decreases the
congestion costs of other types of users who do not face
any uncertainty. This result holds for both optimistic and
pessimistic behavior.

Theorem 3.4: Given an instance G of the two-commodity
game having users with and without uncertainty such that the
graph G is series-parallel, let G* denote a modified version
of this instance with no uncertainty (i.e. 79, = rg, = 1). Let
% and x! denote the Nash equilibrium for the two instances,
respectively. Then,

Cc(x) < Cc(x!). (11)
The proof of Theorem 3.4 is based on Lemma 3 in [26]
and can be found in the full version [19].

C. Price of Anarchy Under Uncertainty

In Theorem 3.2, we showed that the equilibrium cost
under uncertainty decreases (resp. increases) when users are
optimistic (resp. pessimistic) and all user types have the same
level of uncertainty. This naturally raises the question of
quantifying the improvement (or degradation in equilibrium)
and whether uncertainty helps when the uncertainty parame-
ter can differ between user types. In the following theorem,
we address both of these questions by providing price of
anarchy bounds as a function of the minimum uncertainty in
the system and ~y, which is the ratio between the minimum
and maximum uncertainty among user types.

Let rpi, = minge7 g and v = %‘ZTTZ

Theorem 3.5: If 1 < 4rpin7y, the price of anarchy for
multi-commodity routing games is given by

2
frmin (12)
We provide the proof of the above theorem in [19].

The above result broadly validates our message that un-
certainty helps equilibrium when users under-estimate their
costs and hurts equilibrium when users over-estimate their
costs. To understand why, let us consider the case of v = 1—
i.e. the uncertainty is the same across user types. We already
know that in the absence of uncertainty, the price of anarchy
of multi-commodity routing games with linear costs equals
% [13]; this can also be seen by substituting ryy, = 1, 7 =1
in (9). We observe that the price of anarchy is strictly smaller
than % for rmin < 1 and reaches the optimum value of one
at rmin = 0.5 thereby confirming Corollary 3.3.

Similarly, as 7, increases from one, the price of anarchy
also increases nearly linearly. In fact, our price of anarchy
result goes one step beyond Theorem 3.2 as it provides
guarantees even when different user types have different
uncertainty levels. For example, when r,;, = 0.6, and
v = 0.9—i.e. maxgry ~ 0.67—the price of anarchy
is 1.24, which is still better than the price of anarchy
without uncertainty. Furthermore, the price of anarchy result
reveals a surprising dichotomy: as long as rni, < 1 and
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~ is not too large, for any given instance G of the multi-
commodity routing game, either the equilibrium quality is
already good or uncertainty helps lower congestion by a
significant amount.

IV. NUMERICAL EXAMPLES

On-Street Parking

Fig. 1: A special case of our general multi-commodity
network with two types of users- parking users and through
traffic. All of the network traffic originates at the source
node s. Users belonging to the through traffic simply select a
(minimum-cost) path from s to ¢ and incur only the latencies
on each link. The parking users select between one of two
parking structures: on-street parking (indicated in green) with
additional circling costs and off-street (e.g., parking garage).

In this section, we present our main simulation results on
a stylistic network topology comprising of two types of users
(two commodities)—i.e. through traffic, parking users (types
01, 02, respectively). We consider a more general model of
uncertainty for our simulations, where the parking users have
different uncertainty levels on different parts of the network
and the through traffic does not suffer from uncertainty at all.
We vary the level of uncertainty faced by the parking users,
and observe its effect on the social cost at equilibrium.

In the full version of this paper [19], we present additional
simulations on a more realistic urban network topology that
captures the downtown area in Seattle. Both our stylistic and
realistic network simulations validate the theoretical results
presented in the previous section.

A. Effect of Uncertainty on On-Street vs Garage Parking

Inspired by the work in [21] which provides a framework
for integrating parking into a classical routing game that
abstracts route choices in urban networks, we begin with
a somewhat stylized example of an urban network, depicted
and described in Fig. 1. The users looking for a parking spot
are faced with two options: (i) on-street parking which, as
in reality, is cheaper but leads to larger wait times due to
cruising in search of parking; (ii) an off-street or a private
garage option that is much easier to access (in terms of wait
times) at the expense of a higher price.

To understand the costs faced by the parking users (type
02), let £,s be the set of edges in the on-street parking
structure (the green edges in Fig. 1). For parking users
that select the on-street parking option, the cost on edges

e € E, are of the form C%(x.) = C%(x.) + CY,,(x.)
where C’g’}(xe) = a.T, + b, is the travel latency and
Cgfos (Te) = Ge,05%e + beos 18 the parking cost.

Fig. 1 easily transforms into a two-commodity network
by creating a fake edge ¢ from node oy to to, having the
accumulated parking costs from edges &,s—i.e. Cs(zz) =
D ece.. C%, (x.) Then the costs on edges in &, are re-
defined to only contain the travel latency cost, and this is
the same for both types of users: for e € &, Cgl (xe) =
C%(x.) = a.we+be. For the off-street parking structure, the
edge, say €/, from 0, to t3 has cost Cor (Ter) = apgTer +bpg.

The uncertainty is only faced by the parking users (and
only on é,¢’) who perceive the cost of the two parking
structures to be C'? (x5) = apss + rbys and C’g? (Ter) =
ApgTer + Tbyg, respectively, for some parameter r > 0. The
through traffic (type 1) does not suffer from uncertainty
on any of its edges and therefore, rg, = 1 on all edges.
Moreover, 79, = 1 on all edges in the network except €, e’.

For the simulations, we assume that there is an equal
mass of parking and through traffic users originating at the
source node s. The parameters of the edge cost functions
were selected uniformly at random from a suitable range.
For both on-street and off-street options, the parking costs
were set as follows: (i) The parameter a,s was chosen to
be inversely proportional to the number of on-street parking
slots typically available on roads, whereas we set a,, = 0,
since garages have a large number of parking slots; (i) The
parameters b, and b, equal the price of on-street and garage
parking (respectively) commonly used in cities multiplied
by a constant that captures the trade-off between time and
money.

Fig. 2 shows how the parking users divide themselves
among the on-street and garage option (left plot) and how this
affects uncertainty as r varies (right plot). From the left plot,
we observe that at the social optimum, approximately 51%
of the parking population prefers on-street parking. With no
uncertainty (i.e. when r = 1), at the Nash equilibrium more
parking users (around 80%) gravitate towards the on-street
option leading to higher congestion—that is, even without
uncertainty, the system is inefficient as is expected.

As r decreases—that is, as users become more optimistic
in their beliefs about prices—more users start flocking to the
off-street option as they perceive a multiplicative decrease
in price. The result is an improvement in efficiency. On the
other hand, for users who tend to over-estimate prices (r >
1), the appeal of off-street parking decreases and users move
to on-street options leading to increased congestion and poor
equilibria. The effect of the above behavior on equilibrium
inefficiency is quantified in the right-hand plot in Fig. 2.

V. CONCLUSIONS AND FUTURE WORK

In this work, we considered a multi-commodity selfish
routing game where different types of users face different
levels of uncertainty quantified by a multiplicative parameter
ro. Broadly classifying the user attitudes as optimistic and
pessimistic, we showed several theoretical and experimental
results highlighting the effect that when users under-estimate
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Fig. 2: The left plot shows the on-street parking population mass under the social optimum and the Nash equilibrium as r,
the uncertainty parameter, varies. The right plot shows the equilibrium quality as measured by the ratio of the social cost
of the equilibrium solution to that of the optimum for each value of r. As r, the level of uncertainty faced by the parking
users increases, we observe from the left plot more users move towards on-street parking, which in turn affects the social
cost as seen from the right plot. Particularly, when 0.5 < r < 1, the users under-estimate prices leading to a decrease in
social cost as more users choose the garage option. On the other hand, for » > 1, users view the garage option adversely,
which leads to more congestion. For a sufficiently large r, all of the parking users end up using the on-street option and the
social cost saturates around r = 1.4 with further increase in uncertainty having no effect on equilibrium cost.

their network costs, equilibrium quality tends to improve and
vice-versa when users over-estimate the costs.

Although, we focused on linear congestion cost functions
in this work, we remark that all of our results extend
naturally to polynomial cost functions of the form C,(z.) =
a.z.%+b, albeit with different price of anarchy bounds [19].
Finally, on a somewhat abstract note, the central message of
this paper that ‘optimism in the face of uncertainty leads to
near-optimal solutions’ bears thematic similarities to the pop-
ular Upper-Confidence Bound (UCB) algorithm [27] used for
Multi-Armed Bandit problems. It would be interesting to see
if this connection could be exploited to show similar bounds
on equilibrium in routing games with learning.

REFERENCES

[1] A. Parekh and J. Walrand, Sharing Network Resources, R. Srikant, Ed.
Morgan and Claypool, 2014.

[2] S. Stidham Jr., “Pricing and congestion management in a network with
heterogeneous users,” IEEE Trans. Automat. Contr., vol. 49, no. 6, pp.
976-981, 2004.

[3] 1. Stupia, L. Sanguinetti, G. Bacci, and L. Vandendorpe, “Power
control in networks with heterogeneous users: A quasi-variational
inequality approach,” IEEE Trans. Signal Processing, vol. 63, no. 21,
pp. 5691-5705, 2015.

[4] C. Chen, A. Skabardonis, and P. Varaiya, “Travel-time reliability as a
measure of service,” Transportation Research Record: J. Transporta-
tion Research Board, no. 1855, pp. 74-79, 2003.

[5] G. Pierce and D. Shoup, “Getting the prices right: an evaluation of
pricing parking by demand in san francisco,” J. American Planning
Association, vol. 79, no. 1, pp. 67-81, 2013.

[6] B. Schaller, “New york city’s congestion pricing experience and im-
plications for road pricing acceptance in the united states,” Transport
Policy, vol. 17, no. 4, pp. 266-273, 2010.

[71 P. N. Brown and J. R. Marden, “Fundamental limits of locally-
computed incentives in network routing,” in Proc. American Control
Conf., 2017, pp. 5263-5268.

[8] D. Schrank, B. Eisele, T. Lomax, and J. Bak, “2015 urban mobility
scorecard,” Texas A&M Transportation Institute, 2015.

[91 M. Wu, J. Liu, and S. Amin, “Informational aspects in a class of

bayesian congestion games,” in Proc. American Control Conf., 2017,

pp. 3650-3657.

F. Farokhi, W. Krichene, A. M. Bayen, and K. H. Johansson, “A het-

erogeneous routing game,” in Proc. 51st Annual Allerton Conf. Com-

munication, Control, and Computing, 2013, pp. 448-455.

[10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[20]

[27]

6558

L. Fleischer, K. Jain, and M. Mahdian, “Tolls for heterogeneous selfish
users in multicommodity networks and generalized congestion games,”
in Proc. 45th Symp. Found. Comput. Sci., 2004, pp. 277-285.

T. Roughgarden, “Routing games,” in Algorithmic game theory. Cam-
bridge University Press New York, 2007, ch. 18, pp. 459-484.

T. Roughgarden and E. Tardos, “How bad is selfish routing?” J. ACM,
vol. 49, no. 2, pp. 236259, 2002.

D. Fotakis, D. Kalimeris, and T. Lianeas, “Improving selfish routing
for risk-averse players,” in Proc. 11th Inter. Conf. Web and Internet
Economics, 2015, pp. 328-342.

E. Nikolova and N. E. S. Moses, “The burden of risk aversion in
mean-risk selfish routing,” in Proc. Sixteenth ACM Conf. Economics
and Computation, 2015, pp. 489-506.

A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuris-
tics and biases,” in Utility, probability, and human decision making.
Springer, 1975, pp. 141-162.

M. Mavronicolas, I. Milchtaich, B. Monien, and K. Tiemann, “Conges-
tion games with player-specific constants,” in Proc. 32nd Intl. Symp.
Math. Found. Comput. Sci., 2007, pp. 633-644.

R. Meir and D. C. Parkes, “Congestion games with distance-based
strict uncertainty,” in Proc. 29th AAAI Conference on Artificial Intel-
ligence, 2015, pp. 986-992.

S. Sekar, L. Zheng, L. J. Ratliff, and B. Zhang, “Uncertainty in multi-
commodity routing networks: When does it help?” arXiv:1709.08441
[es.GT], 2017.

D. Monderer and L. S. Shapley, “Potential games,” Games and
economic behavior, vol. 14, no. 1, pp. 124-143, 1996.

D. Calderone, E. Mazumdar, L. J. Ratliff, and S. S. Sastry, “Under-
standing the impact of parking on urban mobility via routing games
on queue-flow networks,” in Proc. IEEE 55th Conference on Decision
and Control, 2016, pp. 7605-7610.

C. Dowling, T. Fiez, L. Ratliff, and B. Zhang, “How much urban traffic
is searching for parking?” arXiv:1702.06156, 2017.

D. Shoup and H. Campbell, “Gone parkin’,” The New York Times,
vol. 29, 2007.

L. J. Ratliff, C. Dowling, E. Mazumdar, and B. Zhang, “To observe
or not to observe: Queuing game framework for urban parking,” in
Proc. 55th IEEE Conf. Decision and Control, 2016, pp. 5286-5291.
D. Acemoglu and A. E. Ozdaglar, “Competition in parallel-serial
networks,” IEEE J. Selected Areas in Communications, vol. 25, no. 6,
pp. 1180-1192, 2007.

1. Milchtaich, “Network topology and the efficiency of equilibrium,”
Games and Economic Behavior, vol. 57, no. 2, pp. 321-346, 2006.
P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235-256, 2002.



