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Trust Assessment in Vehicular Social Network
based on Three-Valued Subjective Logic
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Abstract—Trustworthiness in vehicular network plays a vital
role in facilitating data sharing among vehicles, to achieve
better driving safety and convenience. Without trustworthiness
assessment, a vehicle may not be able to trust other vehicles,
and therefore simply drop the data shared from others, to
avoid potential driving dangers. This problem was traditionally
approached by protecting data security, however, the study of
the trustworthiness of data generators (vehicles) is unfortunately
omitted. We envision the existences of a vehicular social network
on road, wherein vehicles exchanging data between each other are
considered socially connected. Leveraging the trust propagation
and fusion within a vehicular social network, the trustworthiness
of individual vehicles can be accurately assessed. We adopt
the three-valued subjective logic model to study trust between
vehicles, and propose a holistic solution to trust assessment in
vehicular social networks. The proposed solution enables objec-
tive and subjective trust assessment of vehicles, in a distributed
manner. Simulation results indicate that the proposed solution
offers a more accurate trust assessment and a quicker assessing
time.

Index Terms—Trust assessment, vehicular social network,
three-valued subjective logic, community division, distributed
algorithm.

I. INTRODUCTION

THe current transportation system is going through a
revolution with the rapid development of connected and

autonomous vehicle (CAV) technologies [1], enabled by the
new sensor advancements and wireless communication tech-
niques. According to the recent report released by Cisco [2],
400 million gigabytes of data will be generated by current
passenger vehicles, if they are interconnected via wireless
technologies. Notably, most of these data are generated by
sensors on CAVs. Unlike existing intelligent transportation
systems that heavily rely on roadside infrastructures (e.g.,
camera, Doppler radar, embedded sensors), CAVs provide
more accurate and timely information, e.g., traffic volume and
road conditions, within a larger area. By utilizing the data
shared from other vehicles, a vehicle is able to broaden its
sensing range and has a better perception about its surrounding
environment.

Because data are collected by individual vehicles, equipped
with various types of sensors and data processing algo-
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rithms, the trustworthiness of data cannot be guaranteed. In
other words, untrustworthy information may be generated and
exchanged between vehicles and/or roadside infrastructures.
Information trustworthiness is different from security as even
a vehicle under strong security protection can still generate
untrustworthy information, e.g., due to hardware or software
defects. Without the knowledge about the trustworthiness of
data exchanged from other vehicles, a vehicle may have to
drop the data as it is too risky to blindly trust the received data.
As the safety of connected vehicular systems largely depends
on trustworthy data sharing, it is critical to enable a vehicle
to assess in real time the trustworthiness of other vehicles, as
well as their generated data.

A. Proposed Approach

Existing research on trustworthy vehicular systems mainly
focuses security, i.e., guaranteeing a vehicular system’s con-
fidentiality, integrity, and authentication. However, it is not
clear how to assess the trustworthiness of the data and/or
the data generators (vehicles). To tackle this problem, we
treat the event of sharing data between vehicles as a social
interaction (between them), and model a vehicular network as
a social network. Within this network, vehicles are considered
to be “socially” connected if and only if they exchanged data
between each other. Based on the quality and quantity of their
interactions, vehicles are able to evaluate the trustworthiness of
each other. When a vehicle receives data from another vehicle,
it evaluates the trustworthiness of the data by comparing
them to its own sensing results. The vehicle tends to trust
those providing similar sensing data, while distrust others.
As such, an trust opinion is formed, which is called the
direct trust/opinion as it is derived from the direct interactions
between vehicles. If a vehicle does not directly interact with
another vehicle, it will leverage its own social connections to
infer the (indirect) trust of that vehicle.

Given a vehicular social network, we first assume the
network is static, i.e., the topology are not changing, and
propose the OpinionWalk algorithm to infer the indirect trust
between vehicles. In the OpinionWalk algorithm, we use an
opinion matrix to represent the topology of a vehicular social
network. Each entry in the opinion matrix indicates a direct
relation between two vehicles, if they exchanged data between
each other. Here, we adopt the three-valued subjective logic
(3VSL) to model the trust between vehicles [3]. Then, a set of
matrix-like operations are designed, i.e., the traditional multi-
plication and summation operations in matrix multiplication
are replaced by the discounting and combining operations
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on trust relations. The discounting and combining operations
were defined in the 3VSL model, and used to model trust
propagation and fusion in a social network. Based on these
operations, OpinionWalk starts from a vehicle and searches its
social network to infer the trustworthiness of other vehicles,
in an iterative manner.

One of the major challenges faced in vehicular networks
is the dynamic network topology due to the rapid changes in
vehicular speeds. Similarly, the interactions between vehicles
occur only when they encounter with each other on the road.
As a matter of fact, the highly dynamic nature of a vehicular
social network poses both challenges and opportunities to trust
assessment of vehicles. It becomes an undesirable difficulty
in trust assessment as trust assessment algorithms need to be
re-executed, whenever a change occurs within the network.
On the other hand, as a vehicle encounters and interacts with
more vehicles, it has the opportunity to connect to some
very trustworthy ones, thus receiving more trustworthy and
valuable information from them. Based on the data sent from
the trustworthy ones, a vehicle can accurately estimate its
own trustworthiness. With an accurate self-evaluation, the
vehicle is able to better estimate the trustworthiness of other
(untrustworthy) vehicles. As vehicles usually move on regular
routes, e.g., commuters usually drive between their homes and
offices, those with similar routes could be grouped into one
community as they frequently interact with each other. The
size of a community is usually much smaller than that of the
entire vehicular social network, therefore, trust assessment can
be done within communities to reduce the trust computation
overhead. We propose both static and dynamic trust computa-
tion mechanisms to deal with the trust assessment problem in
vehicular networks.

B. Key Contributions

The key contributions of this paper are concluded as follows.
We consider the data exchange between vehicles as a form
of interaction and construct a vehicular social network to
reflect the social relations/connections among vehicles. For a
vehicular social network, we design the OpinionWalk algo-
rithm to accurately assess the subjective trust of individual
vehicles, leveraging the three-valued subjective logic (3VSL)
trust model. By investigating the quality of data exchanged
among vehicles, we design a mechanism to conduct the
objective trust assessment, which is proven to be more ac-
curate than subjective trust assessment. Finally, we treat ve-
hicles in groups/communities and propose a solution to intra-
community and inter-community trust assessments. Simulation
results demonstrate the accuracy and efficiency of the proposed
solution.

The paper is organized as follows. In Section II, the back-
ground and preliminaries are presented. Based on the three-
valued subjective logic model, the OpinionWalk algorithm is
introduced in Section III. To deal with the dynamics of a
vehicular social network, a dynamic trust assessment method
is proposed in Section IV. The proposed holistic solution is
validated and evaluated in Section V. Section VI gives the
related work on vehicular social network and trust assessment

in online social networks. Finally, Section VII concludes the
work.

II. PRELIMINARIES

A. 3VSL Trust Model

Three-Valued Subjective Logic (3VSL) model was intro-
duced to accurately model interpersonal trust between users in
online social networks, and it was proven to be applicable in
social networks with arbitrate typologies [3]. The 3VSL model
is adapted in this paper to capture the trust relations between
vehicles. Trust between vehicles is built upon the interactions
between them, e.g., when they exchange data between each
other. Given that vehicle i receives data from vehicle j and
tries to evaluate j’s trust, we call vehicle i as the trustor, j as
the trustee, and the evaluating process as the trust assessment.
Given trustor i and trustee j, i’s opinion about j’s trust can be
represented as

ωi j = (bi j, di j, ni j, ei j),

where bi j + di j + ni j + ei j = 1. Here, bi j, di j, ni j represent the
posterior probabilities that the data generated from vehicle
j are trustworthy, untrustworthy, or uncertain, from vehicle
i’s perspective. ei j , on the other hand, represents the prior
probability that the data are trustworthy, untrustworthy or
uncertain.

Specifically, given the amount of trustworthy, untrustworthy,
or uncertain data observations generated from vehicle as r , s
and o, we have 

bi j =
ri j

ri j + si j + oi j + 3
di j =

si j
ri j + si j + oi j + 3

ni j =
oi j

ri j + si j + oi j + 3
ei j = 3

ri j + si j + oi j + 3

.

Note that ωi j only represents i’s subjective opinion about j’s
trust, which is different from j’s objective trust, which will be
introduced later. The values of ri j, si j and oi j are determined by
the quality and quantity of interactions between vehicles i and
j. For example, if vehicle j shares 7 pieces of information to
vehicle i. If i determines that 3 pieces of them are trustworthy,
2 pieces are not trustworthy, and 2 piece is uncertain, then ri j =
3, si j = 2, and oi j = 2. Here, ei j represents prior uncertainty,
which always comes from 3 prior observations for trustworthy,
not trustworthy and uncertain, respectively. As a result, we
have bi j = 0.4, di j = 0.3, and ji j = 0.3. Notably, the same 10
pieces of data might be viewed differently by another vehicle,
due to the subjectivity of trust.

If vehicles i and j has no interaction, then i holds an
uncertain opinion about j’s trust, ωi j = O. The uncertain
opinion O is defined as (0, 0, 0, 1), indicating r = s = o = 0,
i.e., a trustor is totally uncertain about a trustee’s trust. In other
words, his trust is based on the 3 prior observations only.

Although i has no direct opinion on j, it might derive an
indirect opinion on j, e.g., via others’ recommendations. We
use Ωi j to denote i’s indirect opinion on j. It is well-known
that trust can propagate and fuse within social networks [4]. To
model trust propagation and fusion in online social networks,
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3VSL defines the discounting and combining operations as fol-
lows. The discounting operation ∆(ωis, ωs j) is used to compute
i’s opinion about j’s trust, based on s’s recommendation on j,
where s is a mutual friend between i and j. The discounting
operation yields a new indirect opinion Ωi j where

bi j = bisbs j
di j = bisds j
ni j = 1 − bi j − di j − es j
ei j = ei j

.

The combining operation Θ(ω′i j, ω
′′
i j) is used to fuse i’s two

opinions on j’s trust. The combining operation generates a
new opinion Ωi j where

bi j =
e′′i jb

′
i j + e′i jb

′′
i j

e′i j + e′′i j − e′i je
′′
i j

di j =
e′′i jd

′
i j + e′i jd

′′
i j

e′i j + e′′i j − e′i je
′′
i j

ni j =
e′′i jn

′
i j + e′i jn

′′
i j

e′i j + e′′i j − e′i je
′′
i j

ei j =
e′i je

′′
i j

e′i j + e′′i j − e′i je
′′
i j

.

B. Trust Assessment in Vehicular Social Network

A vehicular social network is modeled as a directed graph
G(V, E) where a vertex i ∈ V represents a vehicle, and an edge
e(i, j) indicates that vehicle i receives data from vehicle j [5].
By checking whether the received data is trustworthy, vehicle
i is able to derive its own opinion about j’s trust, denoted as
ωi j . As such, a trust vehicular social network can be formed,
denoted as G(V, E, ω), in which the weight of edge e(i, j) is
denoted as ωi j .

[a]
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Fig. 1. Data sharing among vehicles fosters the construction of a local
vehicular social network.

As shown in Fig. 1(a), let’s assume four vehicles i, j, k, l are
within the communication range of each other. For the sake of
better representation, the communication range of each vehicle
is not shown in this figure. The circles in the figure represent
the sensing ranges of individual vehicles, which is much
smaller than the communication range. We assume vehicle i is
the trustor and it tries to compute the trust of all other vehicles.
To do so, it needs to evaluate the trustworthiness of the sensing
data shared by other vehicles. As such, vehicle i will build a
social network to record its connections to other vehicles, as
shown in Fig. 1(b). The weight of each edge is derived from
evaluating the trustworthiness of the sensing data sent from
corresponding vehicles, which will be discussed later.

For any vehicle on road, if it receives information from
others, it needs to quickly decide whether the sender is trust-
worthy. If the information is shared from a trustworthy vehicle,
it will fuse the received data into its decision making module;
otherwise, it will simply discard the data. The problem of
trust assessment in a vehicular social network can then be
formulated as follows. Given a trust vehicular social network
G(V, E, ω), ∀ i and j, s.t. i, j ∈ V , ∃ at least one path from
i to j, how to compute i’s trust in users { j ∈ V, j , i}. The
proposed problem can be solved in two steps. In the first step,
a static graph G(V, E,w) is assumed and the OpinionWalk
algorithm is proposed to address this problem. In the second
step, the graph G(V, E,w) is dynamic as vehicles move on
road, so we propose a dynamic trust assessment algorithm to
tackle the problem.

III. STATIC TRUST ASSESSMENT

Assuming graph G(V, E,w) is static, we design the Opin-
ionWalk algorithm1 to compute a vehicle i’s trust in all other
vehicles within its social network. The OpinionWalk algorithm
is essentially a breadth first search (BFS) based algorithm that
computes the trust of all other vehicles that are indirectly
connected to i. In the extreme case where vehicle i is directly
connected to only one vehicle and indirectly connected to all
other vehicles, the OpinionWalk algorithm needs to search the
entire network, represented by graph G(V, E,w), to compute
i’s trust in all other vehicles. Apparently, OpinionWalk is
slow for trust assessment in this case; therefore, we propose
to divide vehicles into communities and apply OpinionWalk
in each community to speed up the trust assessment (in
Section IV).

Given a vehicular social network G(V, E,w) where |V | = n,
OpinionWalk represents G as an opinion matrix

M =


ω11 ω12 ... ω1n
ω21 ω22 · · · · · ·

· · · · · · · · · · · ·

ωn1 · · · · · · ωnn

 ,
where an element ωi j (i, j ≤ n) denotes vehicle i’s direct
opinion on j’s trust. If vehicle i has no direct interaction with
j, we use O to denote the opinion ωi j = O.

From the trustor i’s perspective, its opinions on the trust of
all other vehicles are stored in the individual opinion vector

Y (k)i =
[
Ω
(k)
i1 ,Ω

(k)
i2 , · · · ,Ω

(k)
i j , · · · ,Ω

(k)
in

]T
,

where Ω(k)i j denotes i’s opinion on j’s trust, after OpinionWalk
algorithm “walks” k levels on the graph G. The individual
opinion vector is initialized as

Ω
(1)
i j =

{
ωi j, if vehicles i and j have interactions
O, otherwise .

As such, when OpinionWalk searches the graph G, the indi-
vidual opinion vector is updated as follows.

Y (k)i = MT � Y (k−1)
i . (1)

1The preliminary version of the OpinionWalk algorithm was published in
IEEE INFOCOM 2017 [6]
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A. Operations in OpinionWalk

Before we detail the operations defined in Eq. 1, let’s
introduce the intuition of operator � in Fig. 2. In the figure,
OpinionWalk starts from vehicle i and searches i’s social
network level by level. Suppose OpinionWalk is currently
searching the (k − 1)-th level, and it finds a set of vehicles
that are (k − 1)-hop away from i. Among these vehicles, we
assume m of them directly connect to j, i.e., j is k-hop away
from i. We label them as s1, s2, · · · , sm.

j

ms

i …

1
s

2
s

smj


s2j


s1j


Fig. 2. Illustration of the principle of the � operator in OpinionWalk.

When OpinionWalk moves to the next level, i.e., the k-th
level, it updates i’s opinion on j to

Θ

(
∆(Ω

(k−1)
is1

, ωs1 j), · · · ,∆(Ω
(k−1)
ism

, ωsm j)

)
,

where Θ and ∆ are the combining and discounting operations,
defined in 3VSL [3]. The formula essentially combines all m
indirect opinions computed from discounting ωsl j by Ωisl , for
all possible l = 1, 2, · · · ,m. It is proven that equation2 can be
further generalized into

Θ

(
∆(Ω

(k−1)
i1 , ω1j), · · · ,∆(Ω

(k−1)
in , ωnj)

)
. (2)

It is possible that Ω(k−1)
i j , O, i.e., OpinionWalk already

obtains i’s opinion on j’s trust in the previous search(es). Then,
i’s opinion on j will be replaced with Ω(k)i j . In other words,

only the opinions Ω(k−1)
is for ωs j , O are used in updating the

individual opinion vector.
Based on the updating process, we can use a matrix-like

operation to formalize Eq. 1, where the operator � “multiplies”
matrix M and vector Y (k−1)

i to yield a new vector Y (k)i as
follows.

Y (k)i = MT � Y (k−1)
i

=


Θ

(
∆(Ω

(k−1)
i1 , ω11), · · · ,∆(Ω

(k−1)
in , ωn1)

)
,

Θ

(
∆(Ω

(k−1)
i1 , ω12), · · · ,∆(Ω

(k−1)
in , ωn2)

)
,

· · ·

Θ

(
∆(Ω

(k−1)
i1 , ω1n), · · · ,∆(Ω

(k−1)
in , ωnn)

)


=
[
Ω
(k)
i1 ,Ω

(k)
i2 , · · · ,Ω

(k)
i j , · · · ,Ω

(k)
in

]T
.

2The equation here is generalized for better presentation; however, when it
is implemented, only m opinions are considered.

As shown in Fig. 3, the function of � is analogous to the
multiplication between a matrix and a vector. The difference

1 2,  ...  j j nj  
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Fig. 3. A diagrammatic overview of the � operation in OpinionWalk.

lies in the summation and multiplication operations are re-
placed with the combining and discounting operations defined
in 3VSL, respectively.

Let’s look at the element Ω(k)i j in Y (k)i where i , j. It is
computed by “multiplying” vectors

[
ω1j, ω2j, · · · , ωnj

]
and[

Ω
(k−1)
i1 ,Ω

(k−1)
i2 , · · · ,Ω

(k−1)
in

]T
. It is worth mentioning that the

opinion matrix M can be used by any vehicle to compute its
opinion about the trust of all other vehicles in the network.
However, every single trustor needs an individual opinion
vector to store its own opinion about the trust of all others.

B. OpinionWalk Algorithm

Algorithm 1 OpinionWalk(G, i, H)
Require: A directed graph G with a trustor i and the maxi-

mum searching level H.
Ensure: i’s opinion j where j , i.

1: Initialize M and Y (1)i based on G
2: k ← 1
3: while k < H do
4: k ← k + 1
5: for all columns cj ∈ M s.t. j , i do
6: Ω

(k)
i j ← O

7: for all direct opinions ωs j ∈ cj s.t. ωs j , O do
8: Ω

(k−1)
is ← Y (k−1)

i [s]
9: if Ω(k−1)

is , O then
10: Ω

(k)
i j ← Θ(Ω

(k)
i j ,∆(Ω

(k−1)
is , ωs j))

11: end if
12: end for
13: Y (k)i [ j] ← Ω

(k)
i j

14: end for
15: end while
16: return Y (k)i

The pseudo-code of OpinionWalk algorithm is shown in
Algorithm 1. In the algorithm, line 3 controls how many
hops OpinionWalk will “walk” in the network. Lines 5-14
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update the indirect opinion Ωi j iteratively. Line 5 considers
all vehicles, other than vehicle i, as the trustees. Lines 7-12
combine all opinions derived from ωs j , O. Line 8 obtains i’s
indirect opinion on one of the predecessors of j, e.g., s. If this
opinion already exists, i discounts s’s opinion on j to update
Ω
(k)
i j at line 9. Otherwise, it checks another predecessor. Line

10 combines all opinions that are computed from ωs j , O.
Note that line 10 essentially combines opinions one by one,
so Ω(k)i j equals to

Θ(∆(Ω
(k−1)
i1 , ω1j), · · · ,Θ(∆(Ω

(k−1)
in−1 , ωn−1j),∆(Ω

(k−1)
in , ωnj))).

Because the combining operation is associative [3], the above
equation is the same as Eq. 2. After processing all vehicles
connecting to j, at line 13, the newly computed Ωi j is used
to update the corresponding element in the individual opinion
vector Yi . When i’s opinions on all possible j’s are updated,
at line 14, OpinionWalk moves to the next level. Finally, the
vector Y (k)i will contain i’s opinions about the trust of all other
vehicles.

In the OpinionWalk algorithm, there are two nested loops,
and the number of iterations in each loop is O(n), so the time
complexity of the nested loops is O(n2). The parameter H
indicates the maximum searching depth in the graph, which
is usually a constant number, so the OpinionWalk’s time
complexity becomes O(n2).

IV. DYNAMIC TRUST ASSESSMENT

As vehicles move on road, not only the topology but also
the weights of edges in a vehicular social network frequently
change. Therefore, it is essential to design a trust assessment
mechanism that handles the dynamics of a vehicular social
network. In this section, we first show how a single vehicle
assesses the trust of another vehicle, if they exchanged data
between each other. Then, we leverage the OpinionWalk
algorithm to compute the trust of vehicles that have no direct
interactions. To achieve efficient indirect trust assessment,
vehicles are divided into communities, and the OpinionWalk
algorithm is only applied in individual communities to achieve
intra-community and inter-community trust assessments.

A. Direct Trust Assessment

Given two vehicles i and j, let’s assume there exists an
overlapping area xi j between their sensing zones. We assume
there are mi j objects in the area xi j . The object here refers
to anything that is detectable by a vehicle’s sensors. It could
be a vehicle, a pedestrian, a cyclist, or a road sign. In the
following, we will illustrate how a vehicle conducts subjective
and objective trust assessments of another vehicle, based on
its own sensing data.

1) Direct Subjective Trust Assessment: For an object in xi j ,
it could be detected by vehicle i with a certain probability,
denoted as pi . The probability can be assumed to follow a
Gaussian distribution, i.e., pi ∼ N(bi, σ2

i ), where bi and σi

denote the mean and standard deviation. Here, bi indicates the
probability that vehicle i is trustworthy, in terms of detecting
objects.

As vehicles i and j sense the objects from different locations
and/or angles, they may or may not agree upon their sensing
results. For example, an object may be detected as a pedestrian
by i but a cyclist by j. We use ri j and si j to denote the numbers
of objects that i and j agree and disagree upon, respectively.
As such, vehicle i builds its own opinion about the trust of
j, regarding to j’s ability of detecting objects. We denote this
opinion as ωi j = (bi j, di j, 0, ei j) where

bi j =
ri j

ri j + si j + 3
di j =

si j
ri j + si j + 3

.

ei j =
3

ri j + si j + 3

(3)

As vehicle j uses the same numbers rji = ri j and sji = si j to
compute vehicle i’s trustworthiness, we have ωi j = ωji .

From opinion ωi j = (bi j, di j, 0, ei j), we can calculate the
expected belief of the opinion as [7]

E(ωi j) =
r · c + 0.5(r + s)(1 − c)

r + s
, (4)

where c is used to measure the certainty of a probability
density function

c =
1
2

∫ 1

0

������ xr (1 − xs)∫ 1
0 xr (1 − x)sdx

− 1

������ dx. (5)

Here, the expected belief E(ωi j) represents i’s subjective
trust in j. By checking the sensing data sent from j, vehicle i
is able to compute the subjective trust of j. Because the trust
is generated from vehicles exchanging sensing data to each
other, we call it direct subjective trust.

2) Direct Objective Trust Assessment: A vehicle (trustor)
forms a subjective trust opinion of another vehicle (trustee),
based on the difference between their sensing data, so the
opinion may not accurately reflect the trustee vehicle’s objec-
tive trust. In other words, a subjective opinion only tells how
different a trustor and a trustee is, it cannot be directly used
as the trustee’s trustworthiness. In this section, we introduce a
mechanism to dynamically estimate a vehicle’s objective trust.

As shown in the Fig. 1(b), among vehicle i’s neighbors, we
first identify the pair of vehicles whose direct trust values are
above a certain threshold t∗. In the figure, vehicle i has the
following trust opinions: ωi j , ωik , and ωjk . If there are enough
neighbors, i can always find these vehicles. Assume vehicles j
and k are one pair of these nodes, and they make independent
observations of the objects in xjk , we have{

rjk = mjk

(
pjpk + (1 − pj)(1 − pk)

)
sjk = mjk − rjk

, (6)

where mjk is the total number of objects observed by both
vehicles j and k.

For autonomous driving vehicles, we assume their proba-
bility of successfully detecting objects are greater than 50%.
According to the literature, the probability ranges from 60%
to 90% [8], depending on the types of sensors and processing
algorithms. If pj and pk are within [60%, 90%], we know
the value of

(
pjpk + (1 − pj)(1 − pk)

)
increases as pj and pk
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increase. In other words, if E(ωjk) is larger than t∗, it means(
pjpk + (1 − pj)(1 − pk)

)
is greater than a certain value, so

does the pj and pk . As such, the chosen vehicles j and k tend
to be more trustworthy than the other neighbors.

In this case, vehicle i will leverage ωi j , ωik , and ωjk

to estimate its own trustworthiness. For the pair of chosen
vehicles j and k, we use p′j and p′

k
to denote the estimated

values of pj and pk . Assuming p′j = p′
k
, from Eq. 6, we

can obtain the estimated probability p′j (or p′
k
). Based on the

estimated p′j , i will obtain an estimated p′i from ωi j , using
Eq. 6. Similarly, based on p′

k
, i can get another estimated

p′i from ωik . Taking the average of obtained p′i’s, we obtain a
more accurate estimation of pi . The same procedure applies to
all i’s neighbors whose trust values are greater than t∗. Taking
the average of all estimated results, we have an estimation of
the probability pi . The estimated probability p′i is treated as
the objective trustworthiness of vehicle i.

Suppose vehicle i wants to evaluate the trustworthiness of
vehicle j, it needs to consider three different cases. In the first
case, vehicle j already derived its own estimated probability
p′j , then vehicle i simply adopts this probability as j’s trust.
Because p′j is actually vehicle j’s objective trust, it should be
more accurate than i’s subjective opinion on j’s trust. In the
second case, vehicle i may have interactions with j, i.e., ωi j

is not empty, but j does not know its own objective trust. In
this case, i may obtain an estimation about its own objective
trust pi and then derive an estimation of the objective trust of
j. Last but not the least, if vehicle i has no interaction with j,
it can only rely on its neighbors’ recommendation to derive a
subjective opinion of j’s trust. In this case, the OpinionWalk
algorithm discussed in the previous section will be applied and
the computed E(Ωi j) is considered j’s trust.

In the first case, direct subjective trust assessment only
considers the number of observed objects, not the number of
vehicles in the network, so its time complexity is O(1). In
the second case, a vehicle needs to check the trust of all its
neighbors, so the time complexity could be as big as O(n).
In the third case, as OpinionWalk algorithm is executed to
compute a vehicle’s trust, so the time complexity is O(n2).
Overall, the time complexity of the proposed dynamic trust
assessment mechanism is O(n2).

B. Community-Based Trust Assessment

Although direct interactions could facilitate the trust assess-
ment between vehicles, it is possible that two vehicle have no
interactions. Due to the large number of vehicles on road, it is
expensive to maintain the network information of a vehicular
social network on a central server [9]. This is because vehicles
need to frequently upload network changes to the server and
the changes must be distributed to all vehicles in real time. It is
more practical that vehicles record local/individual social net-
works on themselves, by keeping track of the data exchanged
among them. As a result, only a small-size local vehicular
social network is maintained on each vehicle. When vehicles
encounter on road, their local social network information,
as well as their sensing data, will be shared between each
other. In the following subsections, we will explain how local

vehicular social networks are maintained on vehicles and how
to leverage them to conduct trust assessment in a vehicular
social network.

1) Community Detection: Most social networks can be
divided into several communities, based on the social con-
nections among users. This phenomenon is also observed in
vehicular social networks. For example, vehicles usually move
within a certain area along several commonly driven routes;
therefore, these vehicles are more likely to meet each other
frequently. A “community” of a vehicular social network can
be described as a group of vehicles that have more connections
between each other but fewer connections to the vehicles in
other groups. Given a vehicular social network G(V, E), we
can derive a few sub-graphs/communities, denoted as g(Vi, Ei).

There are many community detection algorithms that iden-
tify non-overlapping communities in a graph. For most of these
algorithms, prior information such as the number and size of
communities are needed. However, these information may not
be available to individual vehicles. Without these information,
we adopt the asynchronous label propagation algorithm [10].
This algorithm can detect communities in a linear time,
without knowing the number and size of communities.

Each sub-graph identified by the algorithm is called a com-
munity. Within each community, there are strong connections
among vehicles, while the connections to vehicles in other
communities are weaker. Let’s assume node/vehicle A is a
member of community g(V1, E1). Then, A needs to keep an
opinion matrix M1 to reflect the social connections between
all nodes in V1. It is worth mentioning that nodes in V1 might
also have direct connections to nodes in other communities,
we call these connections as out-connections. For these out-
connections, the corresponding trust opinions will also be
kept in M1. As M1 is a group of trust opinions, it will be
used to compute the trust between intra-community and inter-
community vehicles. On each vehicle, a time stamp is also
recorded for each opinion in the matrix to indicate the time
instance when the corresponding opinion was created. As a
vehicle belongs to only one community, we need to consider
the trust computation of inter- and intra-community vehicles.

2) Intra-Community Trust Assessment: Intra-community
vehicles will update their social trust networks when the meet,
by exchanging their trust opinion matrices. The new matrix
on each vehicle needs to reserve the trust network information
from both of them. If the information of one edge are different,
from the trust matrices provided by these two vehicles, the
most-recently opinion will be kept, according to the time stamp
information. After the interaction, these two vehicles will have
the same trust opinion matrix.

Let’s assume vehicles A and C are in the same community
but A has only a subjective opinion about the trust of C.
Vehicle A needs to search its local social network, or the
community where it resides, to find all possible paths from
A to C to compute the indirect trust between A and C. If we
denote these paths as a set r , it will be a subset of all the paths
from A to C in the global social network. Here, we use r to
estimate the indirect trust of C, from A’s perspective.

As show in Fig. 4, we can see that the paths in R1 and
R2 are derived from A’s local trust opinion matrix and they
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D
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Route from A to C:
R1: A-C , A-B-C
R2: A-F-C , A-B-E-C
R3: A-B-E-D-C , A-F-E-C

B

Fig. 4. Possible paths between intra-community nodes.

are all in r . Although the paths in R2 involve nodes from
other communities, e.g., node F in community 3, the paths
can be obtained since A records all its out-connections in its
trust opinion matrix. The paths in R3, however, will be lost in
trust computation as the trust opinions ωFE, ωED will not be
available to A. We note that all paths in R3 have more than
three hops from A to C. Based on our previous study [4],
paths longer than two hops would not significantly affect trust
assessment. In addition, due to fact that nodes tend to strongly
connect to intra-community nodes, the out-connections and
paths like R3 are not common in practice.

Notably, it is possible that A cannot always has an accurate
assessment on C based of its direct observation. For example,
A’s sensors are not working properly, or the data collected by
A are noisy or not statistically enough. As a result, A needs
to take others’ assessments into considerations. Therefore, it
makes sense that A also needs to assess the indirect trust
path(s) between itself and C.

3) Inter-Community Trust Assessment: Similar to the intra-
community trust assessment, it is possible to conduct inter-
community trust assessment between two vehicles that belong
to two different communities. The difference here is that,
instead of using only one trust opinion matrix, two opinion
matrices from two communities are needed in trust assessment.
When two inter-community vehicles encounter with each
other, they will exchange data as well as the trust opinion
matrices corresponding to their local social networks. As two
vehicles come from different communities, we use r to denote
the possible paths that are derived from the two trust opinion
matrices. From these paths, the indirect trust between these
two vehicles can be obtained.

Let’s assume vehicle A is a member of community C1 and D
is from community C2. As show in Fig. 5, not only the paths
connecting communities C1 and C2 but also that involving
node E from community C3 will be considered in the trust
computation. As a result, the paths in R1 and R2 will be
used to compute A’s opinion about D’s trust, given A and
D are from different communities. Some paths like R3 will

community 3

community 1A

F

C

community 2

D

E
Route from A to D:
R1: A-D , A-C-D
R2: A-B-E-D
R3: A-B-E-F-D

B

Fig. 5. Possible paths between two inter-community nodes.

not be detected by checking the trust opinion matrices for
communities C1 and C2, because it requires the connection
information ωEF that is not available to either A or C. As we
know, the path like R3 must be longer than three hops and
the trust opinion derived from a long path usually has minor
affect on trust assessment. Therefore, the path R3 is ignored
in the trust assessment process.

4) Dynamics of Community: Vehicles may join into differ-
ent communities at different times for various reasons. For ex-
ample, a vehicle driven by a professor will be a member of the
community composed of vehicles driven by other professors
in a university during weekdays. The vehicle might, however,
join into the community of drivers who often play golfs in
the weekends. Therefore, some vehicles may switch between
different communities. In other words, vehicles should change
its home community to which it belongs, when necessary.

Let’s assume vehicle A is in community C1 and it re-
ceives a piece of data from another vehicle in community
C2. We denote C1 as node A’s home community and C2
the foreign community. A vehicle may have more than one
foreign communities but only one home community. Here,
we are interested in how to dynamically adjust a vehicle’s
home community to facilitate accurate trust assessment. In
the above example, vehicle A will take a four-step procedure
to determine its home community. First, A finds all nodes
it connects to in its current home community C1, which is
denoted as Nh

A
where N stands for the neighboring nodes of

A. Second, A will find all nodes it connects to in its foreign
community C2, denoted as N f

A
. Third, A needs to know which

vehicle(s) it recently frequently interact with, i.e., it records
the vehicles it connects to, no matter they are from A’s home
community or foreign community, within a certain time period
of t. The set of nodes is denoted as N t

A
. All vehicles in N t

A
must have derive a new trust opinion of A recently. Fourth, the
following opinions will be identified, i.e., ωABi (Bi is a vehicle
in Nh

A
∧ N t

A
) and ωAB j (Bj is in N f

A
∧ N t

A
). These opinions

will be combined and compared to determine whether A is
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associated with C1 or C2 ��{ωABi }
����{ωAB j }
��, (7)

where | · | stands for the cardinality of a set. If the ratio is
smaller than a certain value, it implies A is not as connected
to C1 as it to C2, so A’s home community needs to be changed
to C2 in this case. As a result, the opinion matrix for C2 will
be kept and maintained on A and shared with other vehicles
when it encounters with in the future. Otherwise, A will keep
its current home community.

If the ratio is smaller, it means A recently interacted with
more vehicles from C2. As a result, vehicles in C2 will update
their opinions about A’s trust in their trust opinion matrices.
On the other hand, vehicles in community C1 will not receive
any data from A. Their opinions about A’s trust becomes
stale and will be eventually removed from their trust opinion
matrices. That means vehicle A will finally disappear from
C1 and join C2. As the community-based trust assessment
explores vehicle’s trustworthiness in individual communities,
the time complexity here will be O(n2).

V. EXPERIMENT AND EVALUATION

For static trust assessment where network topology does not
change, we evaluated the performance of OpinionWalk in our
previous work [6]. For dynamic trust assessment, we simulate
a vehicular network where vehicles exchange data and conduct
trustworthiness assessment of each other. The accuracy of
the proposed trust assessment mechanism is evaluated in the
simulations.

A. Dynamic Trust Assessment

1) Simulations of VSN: To understand the performance of
the dynamic trust assessment in a vehicular social network,
we develop a simulator that supports data exchanging and
trust assessments among vehicles. In the simulator, we ran-
domly deploy 100 vehicles within a 1000x1000 m2 area.
The sensing accuracy of a vehicle is simulated to follow a
Gaussian distribution, i.e., G1 ∼ N(µ, σ2) where µ = 0.9 and
σ2 = 0.1. In other words, different vehicles have different
sensing accuracies. To evaluate whether the proposed solution
is able to detect untrustworthy vehicles, we also randomly
set 10 vehicles with a lower sensing accuracy (µ = 0.3)
in the simulations. Those vehicles may generate incorrect
sensing data due to several reasons, e.g., fault sensors, malware
infection, incorrect calibration, etc. We take a snapshot of all
vehicles in the simulation and show them in Fig. 6. The graph
in the figure is essentially a vehicular social network where
vehicles are connected if they encountered and exchanged
data between each other. We use different colors to depict
the objective trust of vehicles, i.e., darker the node’s color,
higher the trustworthiness. Similarly, the expected belief of
the subjective opinion between two nodes is also indicated by
different gray levels. Darker the edge means higher the trust-
worthiness (between two nodes). To simulate the movement of
vehicles, we adopt the random waypoint model. Based on the
model, a vehicle randomly selects a point in each simulation

step and moves to that point in the next step. Although other
mobility models, e.g., the car following model, may provide a
more accurate simulation of vehicles’ movement, we believe
similar results will be obtained.
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Fig. 6. A snapshot of the vehicular social network in simulations.

In the simulations, we set the communication range of
a vehicle as 5m. Once a vehicle is in the communication
range of another one, an interaction occurs and an edge is
added/updated in their local social networks. As a vehicle can
only verify the data it received, based on its own observation,
there will be errors in its trust assessment. Based on G1, a
vehicle’s sensing accuracy can be obtained. We use b to denote
this accuracy value. When a vehicle generates sensing data,
we assume the accuracy of the data also follows a Gaussian
distribution, G2 ∼ N(b, σ2

1 ) where σ2
1 = 0.001. With Eq. 6,

the vehicle can build a subjective opinion about the trust of
another vehicle. If these two vehicles never meet before or
their previous interactions are too old to be useful, we will add
a new edge with the computed subjective opinion into the trust
opinion matrices on these vehicles. Otherwise, the computed
subjective opinion will be combined with the existing opinion
in the trust opinion matrices to derive a new one.

2) Accuracy of Objective Trust Assessment: In the section,
we periodically measure the errors of direct objective trust
assessment of every vehicle in the network. The estimated
objective trust value is compared with the ground truth, i.e.,
the sensing accuracy of each vehicle, then the absolute errors
are plotted in Fig. 7. In the figure, we also show the number
of edges within the underlying vehicular social network when
the simulation time increases from 0 to 25, 000s. We can see
that when more interactions occurred among vehicles, more
edges are added into the network, offering opportunities for
accurate objective trust assessment. Therefore, the average
error of estimated objective trust becomes smaller and smaller.
In the figure, we find the error of objective trust assessment
becomes stable after 4000s, when 3500 edges are added into
the network.

However, as mentioned above, the estimated objective trust
value is not the sensing accuracy of a vehicle. This is because
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Fig. 7. Average error of objective trustworthiness assessment.

the estimated value will be impacted by the variance of G2.
It is worth mentioning that once σ2 is larger than a certain
value, the estimated error may become larger as the network
evolves.
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Fig. 8. Error of subjective and objective trustworthiness assessment.

As discussed in Section IV, a vehicle is able to estimate
the trustworthiness of another vehicle in three different cases.
In case 1, a trustor vehicle derives its own trustworthiness
if it has more than two trustworthy neighbors. In case 2, the
trustor and trustee vehicles exchanged data between each other,
and the trustor vehicle can make a good estimation about
the objective trustworthiness of the trustee vehicle. In case
3, the trustor and trustee vehicles have no interaction and
only subjective trust of the trustee vehicle can be obtained.
In this case, the OpinionWalk algorithm is used to estimate
the subjective trust of all vehicles in the trustor vehicle’s local
social network. As shown in Fig. 8, we found the interactions
between vehicles play a vital role in trust assessment as they
enable more accurate objective trust estimation (case 1 and 2),
compared to the subjective trust assessment (case 3).

3) Impact of Community Division: In this section, we
divide vehicles into three communities in the simulations,
as shown in Fig. 9. The trustworthiness of vehicles and
the trust relations between vehicles are also indicated by
different colors, i.e., darker the color, higher the trust. In the
simulations, three groups of vehicles move within three non-
overlapping regions.
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Fig. 9. A snapshot of the vehicular social network composed of three non-
overlapping communities.

Particularly, we configure the vehicle’s mobility model as
follows: a vehicle connects to another intra-community vehicle
with a probability of 0.2, and to an inter-community vehicle
with a probability of 0.02. To simulate the cases when a
vehicle moves from a community to another one, we allow
a vehicle to leave its home community to join in another one
with the probability of 0.01. As a result, we denote the global
vehicular social network as G and the local social network in
a community as g. Given a vehicular social network, no matter
it is in G or g, we are able conduct trust assessment of vehicles
in the network. The difference is that some edges/connections
between vehicles in G may disappear in g, which may cause
errors in trust estimation. However, the loss of some edges
in g offers a better system performance and scalability. In
Fig. 10, we compare the error of trust assessment when
community division is enabled. As we can see, the errors of
trust assessment in cases 1 and 2 are similar, when G and g

are used. The error is about 5% larger in case 3, if g is used
to assess trust, instead of G. This is because the loss of some
important paths in computing the subjective trustworthiness of
a trustee vehicle may affect the trust assessment results.

Although the community division technique causes a loss
in trust assessment, it substantially reduces the time needed
for trust assessment. Here, we are only interested in the
case 3 where a trustor vehicle tries to assess the subjective
indirect trust of the trustee vehicles, based on other vehicles’
recommendations. As shown in Fig. 11, we set the number of
vehicles in each community as 60 and increase the number of
communities to 3, 5, 8, and 12. As a result, the total number of
vehicles increases to 180, 300, 480, and 720, respectively. As
we can see, with the increase of the number of communities,
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Fig. 10. Error of trustworthiness assessment with community division.

the average execution time for trust assessment drastically
increases. On the other hand, if trust assessment is conducted
within communities, the average execution time of trust as-
sessment slowly increases.
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Fig. 11. Execution times of trust assessment w/ and w/o community division.

VI. RELATED WORK

Although Public Key Infrastructure (PKI) secures and au-
thenticates vehicles in vehicular networks [11], it offers only
the identification of vehicles but not the trustworthiness of data
exchanged among vehicles [12].

A. Vehicular Social Network

Traditional research on vehicular network focuses mainly on
efficient data communications [13]–[17] and location privacy
protection [18]–[20], however, there is not adequate study on
information trustworthiness in a vehicular network. Recently, a
social network approach to study information trustworthiness
in vehicular ad hoc network (VANETs) has attracted lots

of attentions [21], [22]. The basic idea is to leverage how
human perceive trustworthiness in received information to
achieve trustworthy information sharing between vehicles. It
worth mentioning that social trust has already been applied
in the wireless network domains. For example, social trust
is applied in cellular network to facilitate energy efficient
collaboration for video distribution among mobile users [23].
Most recently, the trust relationships between participants are
considered to achieve better data privacy protection in mobile
crowd-sensing [24]. These research efforts implies social trust
plays a vital role in data sharing among mobile devices, and it
is critical to study the trust issue in vehicular social networks.

The terminology vehicular social network (VSN) was first
introduced in [25] where VSN connects drivers who are phys-
ically close to each others, enabling them to take advantage
of their close proximity to form a tightly-coupled, ad-hoc, and
virtual world. In such a social network, vehicles can form a
number of small communities that mirror and facilitate real-
world interactions. VSN will become a popular mobile social
network primarily because it directly takes advantage of the
physical locality patterns of vehicles to enhance opportunities
of socialization among vehicles. In weekdays, most people
spend hours on commuting between their homes and offices;
in weekends, people usually drive on regular routes, e.g.
grocery shopping in particular stores. If people travel along
similar routes at similar times on every day, it is possible
to construct a periodic virtual social network among them.
The interactions between them, e.g. sharing information and
notifying warnings, will create the opportunity of learning
trust relationship between vehicles and then make trustworthy
information sharing in VSN possible [26].

Although trust is an extremely important concept in human’s
life, unfortunately, there is no formal definition of trust. How-
ever, most researchers agree that trust is “the willingness of
accepting vulnerability or risk based on expectations regarding
another person’s behavior [27].” According to this definition,
there were some efforts on trust managements in vehicular
networks [28]–[30], which studied information announcement
schemes for VANET based on reputation systems. A message
is considered reliable if the sender has a sufficiently high
reputation [30]. Trust in VSN is different from trust in online
social networks as the entities in VSN are not humans but vehi-
cles/computers. Moreover, trust within VSN is not the same as
trust in multi-agent systems [31], [32] where no explicit social
structures exist between agents. The fundamental question of
trust in VSN remaining unaddressed is: how should a vehicle
trust the information sent by others [5].

B. Trust Assessment in Social Networks
Approaches to trust assessment in OSNs can be roughly

divided into two broad categories, based upon how trust is
modeled. Assuming trust is a real number, researchers studied
how to compute relative trust [33], [34] and absolute trust [35],
[36] in an OSN. On the other hand, trust can be modeled as
a statistical distribution [3], [37]–[40], so more accurate trust
assessments are realized.

In the first category, relative trust is first studied in peer-
to-peer file-sharing networks [33]. Authors in [33] proposed



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

the EigenTrust algorithm that starts from a peer and searches
for trustworthy peers based on the following rules. It moves
from a peer to another with the probability that is proportional
to the other peer’s trust score, i.e., higher the trust score,
higher the moving probability. Therefore, EigenTrust will
more likely reach trustworthy peers than untrustworthy ones.
Later on, the relative trust of web pages is investigated in [34]
to identify spam pages. The TrustRank algorithm proposed
in [34] again employs random walk on the network to rank
the trustworthiness of web pages. These algorithms, however,
only generate trust rankings instead of absolute trust values of
peers/pages.

Unlike EigenTrust, MoleTrust [35] proposes a method to
compute the trustworthiness of a particular user in a person-
alized way. While walking through the network, MoleTrust
only considers incoming edges with trust scores greater than
0.6 and ignores the others. A user’s trust score is computed
by averaging all accepted incoming edges weighted by the
trust scores of the users from whom the edges orientate.
Similarly, TidalTrust [36] recursively searches the network
with a weighted average approach. The difference between
TidalTrust and MoleTrust is that TidalTrust uses only the
path(s) with the highest trust score(s), however, MoleTrust
considers all paths, as long as the trust score of each edge
along the paths is greater than 0.6. Recently, the evolution
or dynamics of trust in OSNs is studied in FluidRating [41].
FluidRating uses fluid dynamics theory to understand the
evolution of trust in OSNs.

In the second category, trust is modeled as a statistical dis-
tribution, e.g., in subjective logic [37], [38], CertProp [39] and
three-valued subjective logic [3]. In this way, trust propagation
and fusion are treated as the multiplication and summation
of statistical distributions. Comparing to solutions in the first
category, these works achieve a higher accuracy in trust as-
sessments. However, they have difficulty in handling complex
networks due to the limitations identified in [3]. To enable
trust assessment over large-scale networks, the AssessTrust
algorithm is proposed in [3]. A major limitation of AssessTrust
is that it is designed to compute the trustworthiness of one
trustee and thus is very slow and inefficient.

VII. CONCLUSIONS

Considering the social connections among vehicles allows
one to investigate the trustworthiness of individual vehicles,
based on the strength of their connections. Frequent and high-
quality interactions between vehicles usually indicate strong
trust relations, while the trust relations among vehicles aid the
subjective indirect trust assessment. To improve the system
performance, we further design a community based technique
to support intra- and inter-community trust assessment. The
distributed solution to trust assessment in a vehicular social
network is found to be effective and efficient in simulations.
The resulting trust assessment error is as low as 0.025 and
the time needed for trust assessment slowly increases as the
number of vehicles increases in the network. We will use
real-world vehicle trace files and commercial simulators, e.g.,
SUMO, to further evaluate the performance of the proposed
solution in the future.
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