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Abstract
While Generative Adversarial Networks (GANs)
have demonstrated promising performance on
multiple vision tasks, their learning dynamics are
not yet well understood, both in theory and in
practice. To address this issue, we study GAN
dynamics in a simple yet rich parametric model
that exhibits several of the common problematic
convergence behaviors such as vanishing gradi-
ents, mode collapse, and diverging or oscillatory
behavior. In spite of the non-convex nature of our
model, we are able to perform a rigorous theo-
retical analysis of its convergence behavior. Our
analysis reveals an interesting dichotomy: a GAN
with an optimal discriminator provably converges,
while first order approximations of the discrimi-
nator steps lead to unstable GAN dynamics and
mode collapse. Our result suggests that using first
order discriminator steps (the de-facto standard in
most existing GAN setups) might be one of the
factors that makes GAN training challenging in
practice.

1. Introduction
Generative Adversarial Networks (GANs) have recently
been proposed as a novel framework for learning generative
models (Goodfellow et al., 2014). In a nutshell, the key idea
of GANs is to learn both the generative model and the loss
function at the same time. The resulting training dynamics
are usually described as a game between a generator (the
generative model) and a discriminator (the loss function).
The goal of the generator is to produce realistic samples that
fool the discriminator, while the discriminator is trained to
distinguish between the true training data and samples from
the generator. GANs have shown promising results on a
variety of tasks, and there is now a large body of work that
explores the power of this framework (Goodfellow, 2017).

Unfortunately, reliably training GANs is a challenging prob-
1MIT. Correspondence to: Jerry Li <jerryzli@mit.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

lem that often hinders further research and applicability in
this area. Practitioners have encountered a variety of ob-
stacles in this context such as vanishing gradients, mode
collapse, and diverging or oscillatory behavior (Goodfel-
low, 2017). At the same time, the theoretical underpinnings
of GAN dynamics are not yet well understood. To date,
there were no convergence proofs for GAN models, even in
very simple settings. As a result, the root cause of frequent
failures of GAN dynamics in practice remains unclear.

In this paper, we take a first step towards a principled un-
derstanding of GAN dynamics. Our general methodology
is to propose and examine a problem setup that exhibits all
common failure cases of GAN dynamics while remaining
sufficiently simple to allow for a rigorous analysis. Con-
cretely, we introduce and study the GMM-GAN: a variant
of GAN dynamics that captures learning a mixture of two
univariate Gaussians. We first show experimentally that
standard gradient dynamics of the GMM-GAN often fail to
converge due to mode collapse or oscillatory behavior. In-
terestingly, this also holds for techniques that were recently
proposed to improve GAN training such as unrolled GANs
(Metz et al., 2017). In contrast, we then show that GAN
dynamics with an optimal discriminator do converge, both
experimentally and provably. To the best of our knowledge,
our theoretical analysis of the GMM-GAN is the first global
convergence proof for parametric and non-trivial GAN dy-
namics.

Our results show a clear dichotomy between the dynamics
arising from applying simultaneous gradient descent and
the one that is able to use an optimal discriminator. The
GAN with optimal discriminator provably converges from
(essentially) any starting point. On the other hand, the simul-
taneous gradient GAN empirically often fails to converge,
even when the discriminator is allowed many more gradient
steps than the generator. These findings go against the com-
mon wisdom that first order methods are sufficiently strong
for all deep learning applications. By carefully inspecting
our models, we are able to pinpoint some of the causes of
this, and we highlight a phenomena we call discriminator
collapse which often causes first order methods to fail in
our setting.
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2. Generative Adversarial Dynamics
Generative adversarial networks are commonly described
as a two player game (Goodfellow et al., 2014). Given a
true distribution P , a set of generators G = {Gu, u 2 U},
a set of discriminators D = {Dv, v 2 V}, and a monotone
measuring function m : R ! R, the objective of GAN
training is to find a generator u in

argmin
u2U

max
v2V

Ex⇠P [m(Dv(x))]+Ex⇠Gu [m(1�Dv(x))] .

(1)
In other words, the game is between two players called the
generator and discriminator, respectively. The goal of the
discriminator is to distinguish between samples from the
generator and the true distribution. The goal of the generator
is to fool the discriminator by generating samples that are
similar to the data distribution.

By varying the choice of the measuring function and the
set of discriminators, one can capture a wide variety of loss
functions. Typical choices that have been previously stud-
ied include the KL divergence and the Wasserstein distance
(Goodfellow et al., 2014; Arjovsky et al., 2017). This for-
mulation can also encode other common objectives: most
notably, as we will show, the total variation distance.

To optimize the objective (1), the most common approaches
are variants of simultaneous gradient descent on the gen-
erator u and the discriminator v. But despite its attractive
theoretical grounding, GAN training is plagued by a variety
of issues in practice. Two major problems are mode col-
lapse and vanishing gradients. Mode collapse corresponds
to situations in which the generator only learns a subset (a
few modes) of the true distribution P (Goodfellow, 2017;
Arora & Zhang, 2018). For instance, a GAN trained on
an image modeling task would only produce variations of
a small number of images. Vanishing gradients (Arjovsky
et al., 2017; Arjovsky & Bottou, 2017; Arora et al., 2017)
are, on the other hand, a failure case where the generator
updates become vanishingly small, thus making the GAN
dynamics not converge to a satisfying solution. Despite
many proposed explanations and approaches to solve the
vanishing gradient problem, it is still often observed in prac-
tice (Goodfellow, 2017).

2.1. Towards a principled understanding of GAN
dynamics

GANs provide a powerful framework for generative mod-
eling. However, there is a large gap between the theory
and practice of GANs. Specifically, to the best of the au-
thors’ knowledge, all theoretical studies of GAN dynamics
for parametric models simply consider global optima and
stationary points of the dynamics, and there has been no
rigorous study of the actual GAN dynamics. In practice,
GANs are always optimized using first order methods, and

the current theory of GANs cannot tell us whether or not
these methods converge to a meaningful solution. This
raises a natural question, also posed as an open problem in
(Goodfellow, 2017):

Our theoretical understanding of GANs is still fairly poor. In
particular, to the best of the authors’ knowledge, all existing
analyzes of GAN dynamics for parametric models simply
consider global optima and stationary points of the dynam-
ics. There has been no rigorous study of the actual GAN
dynamics, except studying it in the immediate neighborhood
of such stationary points (Nagarajan & Kolter, 2017). This
raises a natural question:

Can we understand the convergence behavior of GANs?

This question is difficult to tackle for many reasons. One
of them is the non-convexity of the GAN objective/loss
function, and of the generator and discriminator sets. An-
other one is that, in practice, GANs are always optimized
using first order methods. That is, instead of following the
“ideal” dynamics that has both the generator and discrimina-
tor always perform the optimal update, we just approximate
such updates by a sequence of gradient steps. This is moti-
vated by the fact that computing such optimal updates is, in
general, algorithmically intractable, and adds an additional
layer of complexity to the problem.

In this paper, we want to change this state of affairs and
initiate the study of GAN dynamics from an algorithmic
perspective. Specifically, we pursue the following question:

What is the impact of using first order approximation on the
convergence of GAN dynamics?

Concretely, we focus on analyzing the difference between
two GAN dynamics: a “first order” dynamics, in which
both the generator and discriminator use first order updates;
and an “optimal discriminator” dynamics, in which only
the generator uses first order updates but the discriminator
always makes an optimal update. Even the latter, simpler
dynamics has proven to be challenging to understand. Even
the question of whether using the optimal discriminator up-
dates is the right approach has already received considerable
attention. In particular, (Arjovsky & Bottou, 2017) present
theoretical evidence that using the optimal discriminator at
each step may not be desirable in certain settings (although
these settings are very different to the one we consider in
this paper).

We approach our goal by defining a simple GAN model
whose dynamics, on one hand, captures many of the diffi-
culties of real-world GANs but, on the other hand, is still
simple enough to make analysis possible. We then rigor-
ously study our questions in the context of this model. Our
intention is to make the resulting understanding be the first
step towards crystallizing a more general picture.
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3. A Simple Model for Studying GAN
Dynamics

Perhaps a tempting starting place for coming up with a sim-
ple but meaningful set of GAN dynamics is to consider the
generators being univariate Gaussians with fixed variance.
Indeed, in the supplementary material we give a short proof
that simple GAN dynamics always converge for this class
of generators. However, it seems that this class of distri-
butions is insufficiently expressive to exhibit many of the
phenomena such as mode collapse mentioned above. In
particular, the distributions in this class are all unimodal,
and it is unclear what mode collapse would even mean in
this context.

Generators. The above considerations motivate us to
make our model slightly more complicated. We assume
that the true distribution and the generator distributions are
all mixtures of two univariate Gaussians with unit variance,
and uniform mixing weights. Formally, our generator set is
G, where

G =

⇢
1

2
N (µ1, 1) +

1

2
N (µ2, 1) | µ1, µ2 2 R

�
. (2)

For any µ 2 R2, we let Gµ(x) denote the distribution in
G with means at µ1 and µ2. While this is a simple change
compared to a single Gaussian case, it makes a large differ-
ence in the behavior of the dynamics. In particular, many of
the pathologies present in real-world GAN training begin to
appear.

Loss function. While GANs are usually viewed as a gen-
erative framework, they can also be viewed as a general
method for density estimation. We want to set up learning
an unknown generator Gµ⇤ 2 G as a generative adversarial
dynamics. To this end, we must first define the loss function
for the density estimation problem. A well-studied goal
in this setting is to recover Gµ⇤(x) in total variation (also
known as L1 or statistical) distance, where the total varia-
tion distance between two distributions P,Q is defined as

dTV(P,Q) =
1

2

Z

⌦
|P (x)�Q(x)|dx = max

A
P (A)�Q(A) ,

(3)
where the maximum is taken over all measurable events A.

Such finding the best-fit distribution in total variation dis-
tance can indeed be naturally phrased as generative adver-
sarial dynamics. Unfortunately, for arbitrary distributions,
this is algorithmically problematic, simply because the set
of discriminators one would need is intractable to optimize
over.

However, for distributions that are structurally simple, like
mixtures of Gaussians, it turns out we can consider a much

simpler set of discriminators. In Appendix A.1 in the supple-
mentary material, motivated by connections to VC theory,
we show that for two generators Gµ1 , Gµ2 2 G, we have

dTV(Gµ1 , Gµ2) = max
E=I1[I2

Gµ1(E)�Gµ2(E) , (4)

where the maxima is taken over two disjoint intervals
I1, I2 ✓ R. In other words, instead of considering the
difference of measure between the two generatorsGµ1 , Gµ2

on arbitrary events, we may restrict our attention to unions
of two disjoint intervals in R. This is a special case of a
well-studied distance measure known as the Ak-distance,
for k = 2 (Devroye & Lugosi, 2012; Chan et al., 2014).
Moreover, this class of subsets has a simple parametric
description.

Discriminators. Now, the above discussion motivates our
definition of discriminators to be

D = {I[`1,r1] + I[`2,r2] |`, r 2 R2 s.t. `1  r1  `2  r2} .
(5)

In other words, the set of discriminators is taken to be the
set of indicator functions of sets which can be expressed as
a union of at most two disjoint intervals. With this defini-
tion, finding the best fit in total variation distance to some
unknown Gµ⇤ 2 G is equivalent to finding bµ minimizing

bµ = argmin
µ

max
`,r

L(µ, `, r) , where

L(µ, `, r) = Ex⇠Gµ⇤ [D(x)] + Ex⇠Gµ [1�D(x)] (6)

is a smooth function of all three parameters (see the supple-
mentary material for details).

Dynamics. The objective in (6) is easily amenable to
optimization at parameter level. A natural approach for
optimizing this function would be to define G(bµ) =
max`,r L(bµ, `, r), and to perform (stochastic) gradient de-
scent on this function. This corresponds to, at each step,
finding the the optimal discriminator, and updating the cur-
rent bµ in that direction. We call these dynamics the optimal
discriminator dynamics. Formally, given bµ(0) and a stepsize
⌘g, and a true distribution Gµ⇤ 2 G, the optimal discrim-
inator dynamics for Gµ⇤ ,G,D starting at bµ(0) are given
iteratively as

`(t), r(t) = argmax
`,r

L(bµ(t), `, r) , (7)

bµ(t+1) = bµ(t) � ⌘grµL(bµ(t), `(t), r(t)) , (8)

where the maximum is taken over `, r which induce two
disjoint intervals.

For more complicated generators and discriminators such
as neural networks, these dynamics are computationally
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difficult to perform. Therefore, instead of the updates as in
(8), one resorts to simultaneous gradient iterations on the
generator and discriminator. These dynamics are called the
first order dynamics. Formally, given bµ(0), `(0), r(0) and a
stepsize ⌘g, ⌘d, and a true distribution Gµ⇤ 2 G, the first
order dynamics for Gµ⇤ ,G,D starting at bµ(0) are specified
as

bµ(t+1) = bµ(t) � ⌘grµL(bµ(t), `(t), r(t)) (9)

r(t+1) = r(t) + ⌘drrL(bµ(t), `(t), r(t)) (10)

`(t+1) = `(t) + ⌘dr`L(bµ(t), `(t), r(t)) . (11)

Even for our relatively simple setting, the first order dy-
namics can exhibit a variety of behaviors, depending on the
starting conditions of the generators and discriminators. In
particular, in Figure 1, we see that depending on the ini-
tialization, the dynamics can either converge to optimality,
exhibit a primitive form of mode collapse, where the two
generators collapse into a single generator, or converge to
the wrong value, because the gradients vanish. This provides
empirical justification for our model, and shows that these
dynamics are complicated enough to model the complex
behaviors which real-world GANs exhibit. Moreover, as we
show in Section 5 below, these behaviors are not just due to
very specific pathological initial conditions: indeed, when
given random initial conditions, the first order dynamics
still more often than not fail to converge.

Parametrization We note here that there could be sev-
eral potential GAN dynamics to consider here. Each one
resulting from slightly different parametrization of the total
variation distance. For instance, a completely equivalent
way to define the total variation distance is

dTV(P,Q) = max
A

|P (A)�Q(A)| , (12)

which does not change the value of the variational distance,
but does change the induced dynamics. We do not focus
on these induced dynamics in this paper since they do not
exactly fit within the traditional GAN framework, i.e. it is
not of the form (1) (see Appendix B). Nevertheless, it is
an interesting set of dynamics and it is a natural question
whether similar phenomena occur in these dynamics. In Ap-
pendix B, we show the the optimal discriminator dynamics
are unchanged, and the induced first order dynamics have
qualitatively similar behavior to the ones we consider in this
paper. This also suggests that the phenomena we exhibit
might be more fundamental.

4. Optimal Discriminator vs. First Order
Dynamics

We now describe our results in more detail. We first consider
the dynamics induced by the optimal discriminator. Our

main theoretical result is1:

Theorem 4.1. Fix � > 0 sufficiently small and C > 0. Let
µ⇤ 2 R2 so that |µ⇤

i |  C, and |µ⇤
1 � µ⇤

2| � �. Then, for
all initial points bµ(0) so that |bµ(0)

i |  C for all i and so that
|bµ(0)

1 � bµ(0)
2 | � �, if we let ⌘ = poly(1/�, e�C2

) and T =

poly(1/�, e�C2

), then if bµ(T ) is specified by the optimal
discriminator dynamics, we have dTV(Gµ⇤ , Gbµ(T ))  �.

In other words, if the µ⇤ are bounded by a constant, and
not too close together, then in time which is polynomial in
the inverse of the desired accuracy � and e�C2

, where C
is a bound on how far apart the µ⇤ and bµ are, the optimal
discriminator dynamics converge to the ground truth in total
variation distance. Note that the dependence on e�C2

is
necessary, as if the bµ and µ⇤ are initially very far apart, then
the initial gradients for the bµ will necessarily be of this scale
as well.

On the other hand, we provide simulation results that demon-
strate that first order updates, or more complicated heuristics
such as unrolling, all fail to consistently converge to the true
distribution, even under the same sorts of conditions as in
Theorem 4.1. In Figure 1, we gave some specific examples
where the first order dynamics fail to converge. In Section 5
we show that this sort of divergence is common, even with
random initializations for the discriminators. In particular,
the probability of convergence is generally much lower than
1, for both the regular GAN dynamics, and unrolling. In
general, we believe that this phenomena should occur for
any natural first order dynamics for the generator. In par-
ticular, one barrier we observed for any such dynamics is
something we call discriminator collapse, that we describe
in Section 6. We do not provide a proof of convergence
for the first order dynamics, but we remark that in light of
our simulation results, this is simply because the first order
dynamics do not converge.

4.1. Analyzing the Optimal Discriminator Dynamics

We provide now a high level overview of the proof of Theo-
rem 4.1. The key element we will need in our proof is the
ability to quantify the progress our updates make on con-
verging towards the optimal solution. This is particularly
challenging as our objective function is neither convex nor
smooth. The following lemma is our main tool for achieving
that. Roughly stated, it says that for any Lipschitz function,

1We actually analyze a minor variation on the optimal discrimi-
nator dynamics. In particular, we do not rule out the existence of a
measure zero set on which the dynamics are ill-behaved. Thus, we
will analyze the optimal discriminator dynamics after adding an ar-
bitrarily small amount of Gaussian noise. It is clear that by taking
this noise to be sufficiently small (say exponentially small) then
we avoid this pathological set with probability 1, and moreover the
noise does not otherwise affect the convergence analysis at all. For
simplicity, we will ignore this issue for the rest of the paper.



On the Limitations of First-Order Approximation in GAN Dynamics

(a) Converging behavior (b) Mode collapse and oscillation

(c) Optimal discriminator (d) Vanishing gradient

Figure 1. A selection of different GAN behaviors. In all plots the true distribution was Gµ⇤ with µ⇤ = (�0.5, 0.5), and step size was
taken to be 0.1. The solid lines represent the two coordinates of bµ, and the dotted lines represent the discriminator intervals. In order:
(a) first order dynamics with initial conditions that converge to the true distribution. (b) First order dynamics with initial conditions
that exhibit wild oscillation before mode collapse. (c) Optimal discriminator dynamics. (d) First order dynamics that exhibit vanishing
gradients and converge to the wrong distribution. Observe that the optimal discriminator dynamics converge, and then the discriminator
varies wildly, because the objective function is not differentiable at optimality. Despite this it remains roughly at optimality from step to
step.

even if it is non-convex and non-smooth, as long as the
change in its derivative is smaller in magnitude than the
value of the derivative, gradient descent makes progress on
the function value. Note that this condition is much weaker
than typical assumptions used to analyze gradient descent.

Lemma 4.2. Let g : Rk ! R be a Lipschitz function that
is differentiable at some fixed x 2 Rk. For some ⌘ > 0,
let x0 = x � ⌘rf(x). Suppose there exists c < 1 so that
almost all v 2 L(x, x0), where L(x, y) denotes the line
between x and y, g is differentiable, and moreover, we have
krg(x) � rg(v)k2  ckrg(x)k2. Then g(x0) � g(x) 
�⌘(1� c)krg(x)k22 .

Here, we will use the convention that µ⇤
1  µ⇤

2, and dur-
ing the analysis, we will always assume for simplicity of
notation that bµ1  bµ2. Also, in what follows, let f(bµ) =
fµ⇤(bµ) = dTV(Gbµ, Gµ⇤) and F (bµ, x) = Gµ⇤(x)�Gbµ(x)
be the objective function and the difference of the PDFs
between the true distribution and the generator, respectively.

For any � > 0, define the sets

Rect(�) = {bµ : |bµi � µ⇤
j | < � for some i, j}

Opt(�) = {bµ : |bµi � µ⇤
i | < � for all i} .

to be the set of parameter values which have at least one
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parameter which is not too far from optimality, and the set
of parameter values so that all parameter values are close.
We also letB(C) denote the box of sidelength C around the
origin, and we let Sep(�) = {v 2 R2 : |v1 � v2| > �} be
the set of parameter vectors which are not too close together.

Our main work lies within a set of lemmas which allow us
to instantiate the bounds in Lemma 4.2. We first show a pair
of lemmas which show that, explicitly excluding bad cases
such as mode collapse, our dynamics satisfy the conditions
of Lemma 4.2. We do so by establishing a strong (in fact,
nearly constant) lower bound on the gradient when we are
fairly away from optimality (Lemma 4.3). Then, we show
a relatively weak bound on the smoothness of the function
(Lemma 4.4), but which is sufficiently strong in combination
with Lemma 4.3 to satisfy Lemma 4.2. Finally, we rule out
the pathological cases we explicitly excluded earlier, such as
mode collapse or divergent behavior (Lemmas 4.5 and 4.6).
Putting all these together appropriately yields the desired
statement. Our first lemma is a lower bound on the gradient
value:
Lemma 4.3. Fix C � 1 � � � � > 0. Suppose bµ 62
Rect(0), and suppose µ⇤, bµ 2 B(C) and µ⇤ 2 Sep(�), bµ 2
Sep(�). There is someK = ⌦(1) · (�e�C2

/C)O(1) so that
krfµ⇤(bµ)k2 � K.

The above lemma statement is slightly surprising at first
glance. It says that the gradient is never 0, which would
suggest there are no local optima at all. To reconcile this,
one should note that the gradient is not continuous (defined)
everywhere.

The second lemma states a bound on the smoothness of the
function:
Lemma 4.4. Fix C � 1 and � � � > 0 so that � is suffi-
ciently small. Let µ⇤, bµ, bµ0 be such thatL(bµ, bµ0)\Opt(�) =
?, µ⇤ 2 Sep(�), bµ0, bµ 2 Sep(�), and µ⇤, bµ, bµ0 2 B(C).
Let K = ⌦(1) · (�e�C2

/C)O(1) be the K for which
Lemma 4.3 holds with those parameters. If we have
kbµ0�bµk2  ⌦(1) ·(�e�C2

/C)O(1) for appropriate choices
of constants on the RHS, we get

krfµ⇤(bµ0)�rfµ⇤(bµ)k2  K/2  krfµ⇤(bµ)k2/2.

These two lemmas almost suffice to prove progress as in
Lemma 4.2, however, there is a major caveat. Specifically,
Lemma 4.4 needs to assume that bµ and bµ0 are sufficiently
well-separated, and that they are bounded. While the bµi

start out separated and bounded, it is not clear that it does
not mode collapse or diverge off to infinity. However, we
are able to rule these sorts of behaviors out. Formally:
Lemma 4.5 (No mode collapse). Fix � > 0, and let � be
sufficiently small. Let ⌘  �/C for some C large. Suppose
µ⇤ 2 Sep(�). Then, if bµ 2 Sep(�), and bµ0 = bµ�⌘rfµ⇤(bµ),
we have bµ0 2 Sep(�).

Lemma 4.6 (No diverging to infinity). Let C > 0 be suf-
ficiently large, and let ⌘ > 0 be sufficiently small. Sup-
pose µ⇤ 2 B(C), and bµ 2 B(2C). Then, if we let
bµ0 = bµ� ⌘rfµ⇤(bµ), then bµ0 2 B(2C).

Together, these four lemmas together suffice to prove The-
orem 4.1 by setting parameters appropriately. We refer
the reader to the supplementary material for more details
including the proofs.

5. Experiments
To illustrate more conclusively that the phenomena demon-
strated in Figure 1 are not particularly rare, and that first
order dynamics do often fail to converge, we also con-
ducted the following heatmap experiments. We set µ⇤ =
(�0.5, 0.5) as in Figure 1. We then set a grid for the bµ, so
that each coordinate is allowed to vary from �1 to 1. For
each of these grid points, we randomly chose a set of initial
discriminator intervals, and ran the first order dynamics for
3000 iterations, with constant stepsize 0.3. We then repeated
this 120 times for each grid point, and plotted the proba-
bility that the generator converged to the truth, where we
say the generator converged to the truth if the TV distance
between the generator and optimality is < 0.1. The choice
of these parameters was somewhat arbitrary, however, we
did not observe any qualitative difference in the results by
varying these numbers, and so we only report results for
these parameters. We also did the same thing for the opti-
mal discriminator dynamics, and for unrolled discriminator
dynamics with 5 unrolling steps, as described in (Metz et al.,
2017), which attempt to match the optimal discriminator
dynamics.

The results of the experiment are given in Figure 2. We
see that all three methods fail when we initialize the two
generator means to be the same. This makes sense, since in
that regime, the generator starts out mode collapsed and it is
impossible for it to un-“mode collapse”, so it cannot fit the
true distribution well. Ignoring this pathology, we see that
the optimal discriminator otherwise always converges to the
ground truth, as our theory predicts. On the other hand, both
regular first order dynamics and unrolled dynamics often
times fail, although unrolled dynamics do succeed more
often than regular first order dynamics. This suggests that
the pathologies in Figure 1 are not so rare, and that these
first order methods are quite often unable to emulate optimal
discriminator dynamics.

6. Why do first order methods get stuck?
As discussed above, our simple GAN dynamics are able
to capture the same undesired behaviors that more sophis-
ticated GANs exhibit. In addition to these behaviors, our
dynamics enables us to discern another degenerate behavior
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Figure 2. Heatmap of success probability for random discriminator initialization for regular GAN training, unrolled GAN training, and
optimal discriminator dynamics.

(a) Initial Configuration (b) Optimal Discriminator for Initial Configuration

(c) After 1000 Discriminator Steps

(d) After 1000 Simultaneous

Generator and Discriminator Steps

(e) After 1000 Simultaneous

Generator and Discriminator

Steps with 100x Unrolling

Figure 3. Example of Discriminator Collapse. The initial configuration has µ⇤ = {�2, 2}, bµ = {�1, 2.5}, left discriminator [�1, 0.2],
and right discriminator [�1, 2.5]. The (multiplicative) step size used to generate (c), (d), and (e) was 0.3.

which does not seem to have previously been observed in the
literature. We call this behavior discriminator collapse. At a
high level, this phenomenon is when the local optimization
landscape around the current discriminator encourages it
to make updates which decrease its representational power.
We view understanding the exact nature of discriminator
collapse in more general settings and interesting research
problem to explore further.

We explain this phenomenon using language specific to our
GMM-GAN dynamics. In our dynamics, discriminator col-
lapse occurs when a discriminator interval which originally
had finite width is forced by the dynamics to have its width
converge to 0. This happens whenever this interval lies en-
tirely in a region where the generator PDF is much larger
than the discriminator PDF. We will shortly argue why this

is undesirable.

In Figure 3, we show an example of discriminator collapse
in our dynamics. Each plot in the figure shows the true
PDF minus the PDF of the generators, where the regions
covered by the discriminator are shaded. Plot (a) shows the
initial configuration of our example. Notice that the leftmost
discriminator interval lies entirely in a region for which the
true PDF minus the generators’ PDF is negative. Since the
discriminator is incentivized to only have mass on regions
where the difference is positive, the first order dynamics will
cause the discriminator interval to collapse to have length
zero if it is in a negative region. We see in Plot (c) that
this discriminator collapses if we run many discriminator
steps for this fixed generator. In particular, these steps do
not converge to the globally optimal discriminator shown in
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Plot (b).

This collapse also occurs when we run the dynamics. In
Plots (d) and (e), we see that after running the first order
dynamics – or even unrolled dynamics – for many iterations,
eventually both discriminators collapse. When a discrimi-
nator interval has length zero, it can never uncollapse, and
moreover, its contribution to the gradient of the generator
is zero. Thus these dynamics will never converge to the
ground truth.

7. Related Work
GANs have received a tremendous amount of attention over
the past two years (Goodfellow, 2017). Hence we only
compare our results to the most closely related papers here.

The recent paper (Arora et al., 2017) studies generaliza-
tion aspects of GANs and the existence of equilibria in the
two-player game. In contrast, our paper focuses on the
dynamics of GAN training. We provide the first rigorous
proof of global convergence and show that a GAN with an
optimal discriminator always converges to an approximate
equilibrium.

One recently proposed method for improving the conver-
gence of GAN dynamics is the unrolled GAN (Metz et al.,
2017). The paper proposes to “unroll” multiple discrimina-
tor gradient steps in the generator loss function. The authors
argue that this improves the GAN dynamics by bringing the
discriminator closer to an optimal discriminator response.
Our experiments show that this is not a perfect approxima-
tion: the unrolled GAN still fails to converge in multiple
initial configurations (however, it does converge more often
than a “vanilla” one-step discriminator).

The authors of (Arjovsky & Bottou, 2017) also take a theo-
retical view on GANs. They identify two important proper-
ties of GAN dynamics: (i) Absolute continuity of the popu-
lation distribution, and (ii) overlapping support between the
population and generator distribution. If these conditions do
not hold, they show that the GAN dynamics fail to converge
in some settings. However, they do not prove that the GAN
dynamics do converge under such assumptions. We take
a complementary view: we give a convergence proof for
a concrete GAN dynamics. Moreover, our model shows
that absolute continuity and support overlap are not the only
important aspects in GAN dynamics: although our distribu-
tions clearly satisfy both of their conditions, the first-order
dynamics still fail to converge.

The paper (Nagarajan & Kolter, 2017) studies the stability
of equilibria in GAN training. In contrast to our work, the
results focus on local stability while we establish global
convergence results. Moreover, their theorems rely on fairly
strong assumptions. While the authors give a concrete

model for which these assumptions are satisfied (the lin-
ear quadratic Gaussian GAN), the corresponding target and
generator distributions are unimodal. Hence this model can-
not exhibit mode collapse. We propose the GMM-GAN
specifically because it is rich enough to exhibit mode col-
lapse.

The recent work (Grnarova et al., 2018) views GAN training
through the lens of online learning. The paper gives results
for the game-theoretic minimax formulation based on re-
sults from online learning. The authors give results that go
beyond the convex-concave setting, but do not address gen-
eralization questions. Moreover, their algorithm is not based
on gradient descent (in contrast to essentially all practical
GAN training) and relies on an oracle for minimizing the
highly non-convex generator loss. This viewpoint is comple-
mentary to our approach. We establish results for learning
the unknown distribution and analyze the commonly used
gradient descent approach for learning GANs.

8. Conclusions
We haven taken a step towards a principled understanding
of GAN dynamics. We define a simple yet rich model of
GAN training and prove convergence of the corresponding
dynamics. To the best of our knowledge, our work is the
first to establish global convergence guarantees for a para-
metric GAN. We find an interesting dichotomy: If we take
optimal discriminator steps, the training dynamics provably
converge. In contrast, we show experimentally that the dy-
namics often fail if we take first order discriminator steps.
We believe that our results provide new insights into GAN
training and point towards a rich algorithmic landscape to
be explored in order to further understand GAN dynamics.
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