Automatic Dependency Management
for Scientific Applications on Clusters

Ben Tovar, Nicholas Hazekamp, Nathaniel Kremer-Herman, and Douglas Thain
{btovar,nhazekam, nkremerh, dthain}@nd.edu
Department of Computer Science and Engineering
University of Notre Dame

Abstract—Software installation remains a challenge in scien-
tific computing. End users require custom software stacks that
are not provided through commodity channels. The resulting
effort needed to install software delays research in the first place,
and creates friction for moving applications to new resources
and new users. Ideally, end-users should be able to manage their
own software stacks without requiring administrator privileges.
To that end, we describe VC3-Builder, a tool for deploying
software environments automatically on clusters. Its primary
application comes in cloud and opportunistic computing, where
deployment must be performed in batch as a side effect of job
execution. VC3-Builder uses workflow technologies as a means
of exploiting cluster resources for building in a portable way. We
demonstrate the use of VC3-Builder on three applications with
complex dependencies: MAKER, Octave, and CVMEFS, building
and running on three different cluster facilities in sequential,
parallel, and distributed modes.

1. INTRODUCTION

Software installation and management remains a significant
challenge for researchers who are the end-users of computing
facilities ranging from small personal clusters to national
leadership computing facilities. Historically, software instal-
lation has been seen as the domain of the professional system
administrator, who selects the most appropriate combination of
tools for a given facility and user. Of course, end-users can ask
for additional software to be installed, but this only happens
within the limited administrator time and effort available.

End users do have the basic permissions available to build,
install, and execute software in their home directories, but even
highly skilled users may struggle to install a complex software
package. One package may depend implicitly on many others,
which must first be installed and configured, sometimes in
peculiar ways. An effort to install one simple piece of software
may unexpectedly turn into a day long march to discover
dependencies. Unfortunately, the complex set of steps may be
forgotten as soon as the task is complete, so the details must
be re-discovered if the same software is required in another
facility or by another user.

Of course, this problem is largely solved in the limited
universe of personal computers. Widely used tools like yum
and apt install software from a repository of carefully vetted
and confirmed packages designed to work together in a given
operating system. Each package is designed to install in a fixed
system location and requires root privileges to do so. This is
insufficient in the context of a shared facility, where end-users

are unprivileged, and multiple incompatible versions may need
to exist simultaneously.

To address this problem, we present VC3-Builder, a user-
level system for managing software dependencies across mul-
tiple clusters. VC3-Builder shares some elements of design
with recent systems such as Nix [8] and Spack [10], but it
is more suited for rapid deployment by exploiting pre-existing
software where available and using the resources of the cluster
itself to perform parallel and distributed builds.

We demonstrate VC3-Builder by several case studies of
complex applications that present a challenge for users to build
and deploy manually: the MAKER bioinformatics pipeline, the
CVMES distributed filesystem, and the Octave mathematics
system. Each of these is shown to build and execute in reason-
able time on several campus clusters and XSEDE resources,
using the VC3-Builder capability to perform distributed builds
and package the results for reproducibility and archival.

VC3-Builder is the first component of a larger project titled
“VC3: Virtual Clusters for Community Computation”. The
VC3 effort will enable unprivileged end-users to provision
virtual clusters across existing computing resources using only
standard user-level privileges. This involves multiple issues in-
cluding resource selection, dynamic provisioning, middleware
deployment, and more. The ability to quickly deploy software
stacks at user-level is one element underlying the larger VC3
project.

II. OBJECTIVES

These considerations drive the design of VC3-Builder:

1) No special privileges. Many software packages and
build tools require administrator access to install, even
if the software does not inherently require it. While
obtaining root access on a single machine may be
possible in some cases, it requires manual interactions
through administrative channels and is not practical to
expect at all computing facilities. Instead, we assume
that users wish to install software using ordinary user
accounts available through ordinary means. Software
that inherently requires root privileges, such as kernel
drivers or low level performance monitors are outside
the scope of this work.

2) Batch context. Our aim is to enable the easy execution
of a large number of jobs in a batch context, where
interaction with the user is not desirable. Software

3)

4)

5)

6)

installation must operate as a reliable preliminary step to
job execution, and then reliably clean up afterwards, so
as not to create a garbage collection problem. Likewise,
if a large number of jobs start simultaneously on a given
cluster, the build process should not itself become a
performance bottleneck in the system. Software deploy-
ment should be a hands-free, automatic part of workload
execution.

Lightweight bootstrap. An installation tool must have
an absolute minimum set of dependencies, so that itself
may be installed without creating a dependency manage-
ment problem for the end-user. Of course, every software
has some sort of dependency, if only for a given CPU or
interpreter. Such dependencies must be widely known,
easily discovered, and trivially provided.

Dynamic composition. The set of dependencies needed
may change from minute to minute, and incompatible
dependencies may be needed simultaneously by different
jobs. For example, Python 2 and Python 3 are mutually
incompatible but may be needed simultaneously. To
permit this, dependencies must be installed in a way that
allows each to be selected individually at runtime. This
is most easily accomplished by putting each software
and version in a distinct directory, rather than the historic
Unix practice of installing everything in /usr/bin.
Efficient cluster utilization. Large cluster facilities have
implied constraints upon utilization that are necessary
to ensure that usage is properly accounted, and all users
have access to sufficient resources. For example, it is
generally discouraged to place long-running intensive
tasks on a cluster head node; large complex builds
should be performed on the cluster itself, if possible.
Likewise, parallel filesystems are suitable for distribut-
ing large amounts of data, but can suffer when used for
distributed synchronization or metadata-heavy loads.
Technology independence. Today, a variety of virtual
infrastructures are under development, experimentation,
and use. Virtual machine monitors, container technolo-
gies (Docker [17], Singularity [15], Shifter [7]), and
operating facilities such as namespaces and control
groups are in wide use as of this writing. However, these
did not exist just a few years ago, and we fully expect
that new technologies will be popular a few years hence.
We aim to rely on simple, perennial abstractions (such as
packages, filesystems, search paths) that can be deployed
within these technologies if desired, but not tie the user
down to a single technology.

openssl
v1.0.2

perl-ve3-modules
v0.1.0

python sqlite3 pere perl
v2.7.12 v3.13.0 v8.39.0 v5.24.0
ncbi-blast
v2.2.28

Fig. 1. Dependency graph for ncbi-blast.

III. OVERVIEW

From the end-user perspective, VC3-Builder is invoked as
a command line tool which states the desired dependencies.
The builder will perform whatever work is necessary to
deliver those dependencies, then start a shell with the software
activated. For example, to run NCBI BLAST:

o

% vc3-builder —--require ncbi-blast:2.2.28

VC3-Builder evaluates and (if necessary) downloads and
installs the set of dependencies required, represented internally
as a graph (shown in Figure 1).

The user is presented with a new shell running in a sandbox
directory, with the desired software present in the search path:

% which blastall

% blastall --help
blastall 2.2.18

% exit

In a batch context, the user would give one command line
combining VC3-Builder with the desired job to run:

o)

% vc3-builder —--require ncbi-blast \
-— blastall

This permits VC3-Builder to be easily submitted as a
standalone job to a batch system or other similar middleware.
When the job begins to execute, the necessary environment is
created, the contained command is run, and then the sandbox
and its associated resources are freed.

Recipes Upstream Sources

Sealed
: Package
create :
Task CI
Services |:| |:| D
Cache Install Task destroy ! Remote Task
' Tree Sandbox : Tree Sandbox
subset

Fig. 2. VC3-Builder Architecture. In the simplest case, the builder works by first fetching recipes for the desired packages explicitly mentioned on the
command line and their dependencies. Each package not found natively is built and installed into a local install tree. Before running a task, a sandbox is
created, dependencies are imported, and services are started. When the task ends, services are stopped and the sandbox destroyed. Alternatively, the necessary
recipes and packages can be collected together into a standalone package which can be copied, built on a node without network access, or preserved for

reproducibility purposes.

"charm": [

{
"version":"v6.007.01",
"sources": [

{

"type":"generic",

"files":["charm-6.7.1l.tar.gz" 1,
"recipe": [
"tar -C ${VC3_PREFIX} -xpf charm-6...",

"cd ${VC3_PREFIX}",

"env MPICXX=mpicxx ./build charm++ ..."

}
1s
"dependencies": {
"openmpi":["v1.010"]

by

"environment_variables": [
{
"name" :"PATH",
"value":
"$VC3_ROOT_CHARM/mpi-linux-x86_64/bin",
"absolute":1

Fig. 3. Sample Recipe for Charm++

IV. ARCHITECTURE

Figure 2 shows the overall components of VC3-Builder.

To facilitate bootsrapping, VC3-Builder is designed to have
as few dependencies as possible. The tool is written in
Perl; although this is not the most modern of languages, it
is nearly universally installed on Unix-like machines, and
does not suffer the language compatibility problems of more
recent languages like Python. All Perl libraries used by VC3-
Builder are incorporated into a single standalone file using

App:FatPacker which can, if necessary, be compiled into
a native, static executable!.

A global master repository contains a set of package recipes
expressed in JSON. An example is shown in Figure 3. Each
recipe indicates the source packages, build commands, import
procedure, and dependencies of a given software page. For
each software package requested, a recipe and its dependencies
are located and constructed into a dependency graph.

Then, for each dependency in the graph, VC3-Builder
checks to see if the package is already available natively.
For example, the desired compiler may already be found in
/usr/bin/gcc. If not, then the necessary source packages
are downloaded from upstream sources into a cache directory.
Each package is built and installed into the install tree which
is by default in the user’s home directory.

Finally, the builder creates a temporary sandbox directory
to run the job, starts a new shell, and imports each package
into the environment by setting the appropriate environment
variables indicated in the recipe, typically the PATH and
the LD_LIBRARY_PATH or other variables specific to the
package. The desired task is executed, and then the sandbox
and its environment are discarded.

Several alternate modes of operation are available:

Sterile Build. Relying on local software installation can
sometimes result in unexpected behavior, if local modifica-
tions are not reflected in the version information returned by
tools. A sterile build will ignore all local software, build all
dependencies from scratch, and include only the install tree in
the user’s environment.

'We achieve this the musl C with

staticperl [16].

using library [3] together

Package Graph

Workflow Graph

Cluster Nodes

File
System

Target Cluster

Fig. 4. Distributed Build Sequence. To accelerate a build on a cluster, the builder transforms the dependency graph into a graph of tasks executable by a
workflow manager. The workflow manager then dispatches independent tasks to the cluster through the usual batch system. Each task consists of an invocation
of the basic builder process, to build one package from its immediate dependencies, leaving results in the shared file system.

Sealed Package. Rather than build and install the packages,
VC3-Builder can instead download the source packages and
subset of recipes needed, and collect them together into
a sealed package which is completely self-contained. This
package can be used in place of an online repository for
future builds, facilitating builds on cluster nodes or other
machines without network access. It can also be used to
facilitate archival for scientific reproducibility needs.

Shared Installations. To avoid the likely common case of
duplicated downloads and installations, the user may configure
a list of locations for the download cache and the install tree.
All entries, except the last, in each list are used read-only.
This allows the user to exploit software already downloaded
or installed by an administrator or other collaborating user,
while still building up their own private install tree.

V. CLUSTER CONSIDERATIONS

Consider the situation of a user who wishes to execute a
large number of jobs across one or more clusters. The jobs may
be submitted by hand from a user logged into the head node,
or they could be delivered to the cluster via some external
middleware that manages both clusters. Either way, a naive
application of VC3-Builder in this context may result in some
undesirable outcomes for both the user and the owners of
the system. We consider several cases and the appropriate
remedies.

One approach is for the user to submit every single job as
a separate invocation of ve3-builder wrapped around the
payload job. While this could technically function correctly,
it would be inefficient in several different ways. The most
obvious is that every single node would be performing an
identical and independent built, which could be a significant
waste of valuable computing resources. Even if the build were
relatively fast, each job would independently download up-
stream sources, which could overload local network capacity,
or be seen as a denial-of-service attack against the source.

A tempting remedy for this situation would be to develop
a sort of coordinated build in which each node performing
a build first checks for prebuilt directories and downloaded
packages in a shared filesystem, and then only attempts to

build whatever components are outstanding. Of course, file
locks, sentinel files or similar other measures would have
to be used to provide mutual exclusion for activities in
progress. While this would work in principle for a distributed
filesystem that provides precise consistency semantics, large
parallel filesystems are notorious for having weak consistency
semantics designed to support high throughput data movement,
rather than distributed synchronization.

Instead, an external approach to synchronization is likely
to be more robust. Instead of performing a build at each
individual node, we can carry out the build once on the
head node, deploying the various packages into the shared
filesystem. We call this a sequential build if a single build job
runs at once, and a parallel build if multiple build jobs run on
different codes in the head node. Once the build is complete,
then the individual jobs can run using the shared installation.
In this case, we must still prefix each job with ve3-builder
so as to verify the presence of the needed packages and import
the necessary environment.

However, this introduces a new problem. A common policy
of computing centers is to prohibit intensive computing activ-
ities on the head nodes, which are shared by a large number
of users. A particularly complicated build can conceivably run
for more than an hour while placing a significant CPU load on
the head node and metadata traffic on the shared filesystem.

Instead, we can push the load out to the cluster (where
it belongs) by running the builds as jobs in the local batch
system; we call this a distributed build. Independent builds can
run concurrently on different nodes, within the constraints of
package dependencies. Rather than create this capability from
scratch, we can express it in terms of a known problem by
causing VC3-Builder to emit a workflow describing the steps
to be carried out, and passing the execution to a workflow
manager. This process is shown in Figure 4.

In this case, we use the Makeflow [6] workflow manager,
which accepts workflow specifications in the form of the
traditional Make language, where each task to be executed
is a build of a single package by recursively invoking VC3-
Builder. To handle the common case where a cluster node
may not have access to the outside network, the “parent”

builder extracts only the necessary recipes and packages and
passes them directly to the “child” builder which then operates
without network access.

One problem remains: the workflow software itself must be
delivered to the cluster for execution. Once again, we reduce
this to a known problem using VC3-Builder to build Makeflow
itself before generating the distributed build.

VI. PRESERVING WORKFLOWS

A related use case is the problem of dependency man-
agement for scientific workflows. As used today, a scientific
workflow is a way of encoding a large graph of tasks and data
that, combined together, comprise a large parallel program that
runs across a cluster. Workflows are widely used in fields such
as astronomy [14], bioinformatics [11], earth science [12], and
more.

Most workflow languages do a good job of capturing the
structure of a workflow, but not the software environment
necessary to run that workflow. For example, the Makeflow
Examples Archive [18] is typical in that it captures a number
of workflow graphs which can be browsed and manipulated.
However, to actually run the workflows requires that the user
manually download and install the software invoked by each
job, which is a time-consuming and error-prone process.

Instead, we can complete the description of a workflow
by annotating it with sufficient information to reconstruct the
software on demand. For example, suppose that we preserved
the BLAST software in a sealed package of recipes and
sources, along with the workflow that uses it. Then, the
entire workflow can then be bootstrapped in three steps:
(1) VC3-Builder builds Makeflow using local resources. (2)
VC3-Builder invokes Makeflow to build BLAST from online
repositories or a sealed package. (3) VC3-Builder invokes
Makeflow to execute the BLAST workflow. Figure 5 depicts
these steps.

VII. CASE STUDIES

We present results of installing three complex software
installations, which build dependency graphs, builder recipe
dependencies, and time execution graphs are presented in
Table I.

« MAKER is a genome annotation pipeline used in the
bioinformatics community. As a pipeline, it depends on
several external programs, with MAKER itself written
in Perl. In total, an installation of MAKER consists of
39 dependencies. Even if administration privileges are
available, many of these dependencies do not have rpms
or similar available. Further, some dependencies cannot
be freely distributed as they have restrictive licensing.
For these dependencies, VC3-Builder ask the user to
manually download the sources before continuing.

e Octave is an environment and programming language
to perform numerical computations, a popular and free
alternative to Matlab. As a numerical computation tool,
it depends on libraries such as LAPACK to perform

Sealed

C’ Package
L1010 | BrasT

[VC3-Builder]
{ l
[Makeflow Makeflow
. .- "' e
% - - P
- d L
-
Y=
1. Build Makeflow)
locally L v ~
2. Build BLAST
on cluster
via Makeflow 3. Run BLAST
workflow on cluster
via Makeflow
Building makeflow and getting sources: 1 job, 20s

Building BLAST dependencies (distributed):
Running the user workflow (distributed):

9 jobs, 11m
5079 jobs, 86m

Fig. 5. Bootstrapping a BLAST Workflow. To bootstrap a preserved work-
flow, VC3-Builder reads the sealed package, builds Makeflow locally, uses
Makeflow to build the scientific application, then uses Makeflow to carry out
the workflow using the application.

linear algebra computations, and fftw for discrete Fourier
transforms.

e CVMFS is a read-only filesystem used by the High
Energy Physics community to deliver software. CVMFS
is originally designed as a FUSE kernel module by
which remote mount points are accessed using HTTP.
As a kernel module, it cannot be installed by regular
users, which would limit the computational resources
available. One solution is to use parrot [19], a user-
level system call interposition agent, which can redirect
1/0O operations according to several drivers to emulate
unavailable filesystems. When VC3-Builder is required
to install CVMFS, first it checks if access is already
available (e.g., access at /cvmfs/), and if not, it builds
parrot and executes a shell wrapped in parrot so that paths
starting with /cvmfs become available.

MAKER Octave CVMFS

Build Jobs 39 15 17
Upstream Sources 27 16 16
Size of Sources 758M 98M 171M
Size of Install 4.2G 1.2G 1.1G

We tested the installation on three different sites: University
of Notre Dame CRC, PSC Bridges, and Comet. The resources
at the Center for Research Computing (CRC) at University of
Notre Dame are available opportunistically when they are not
being used by their owners via HTCondor [20]. HTCondor

==
——ee———

(a) MAKER Package Graph

(b) Octave Package Graph

(c) CVMEFS Package Graph

Fig. 6. Example Applications. Three example applications constructed using the builder. MAKER is a complex pipeline of multiple extant bioinformatics
applications, commonly used together via an MPI driver program. CVMFS is a user-level global-scale filesystem used widely in the high energy physics
community for software distribution. Octave is a widely used symbolic mathematics toolkit.

MAKER
Build Workflow

,’\“‘\&\{ \-~!\
~.§>\\\\"\/

Octave
Build Workflow

Parrot-CVMFS
Build Workflow

MAKER Octave Parrot-CVMFS
Cluster Build Cluster Build Cluster Build
40 T T T Te =T = 16 = =T = T 18 T 7
8 30 --" 1 3 12t ! R 2 B e
- - |- - —
2 20 F ,' Complete = = = | 2 8l - Complete = = = | S 12 - = = 7 Complete = = =
2 Running 2 - - Running =—— 2 s - -~ Running
@ 10 - " 7 a 4 % T o N
0 Il | SN " L 0 Il Il Il L 0 Il Il - |
0 5 10 15 20 25 30 35 40 45 0 10 20 30 40 50 60 70 80 0 5 10 15 20 25 30 35 40
Time (min) Time (min) Time (min)
TABLE I

THREE CASE STUDIES. THE GRAPHS SHOWN ARE THE WORKFLOWS EXECUTED, ENCODING THE DEPENDENCIES SHOWS IN FIG.6. A GREEN CIRCLE
REPRESENTS A SOFTWARE RECIPE, AND A BLUE RECTANGLE AN INSTALLATION DIRECTORY. THE TIME GRAPHS SHOW THE NUMBER OF CONCURRENT
JOBS FOR A DISTRIBUTED INSTALLATION.

is a workload management system that is able to harness
otherwise idle workstations. The Pittsburgh Supercomputing
Center (PSC) Bridges is a supercomputer with more than
800 nodes which is available through the XSEDE portal [21].
Comet, also available through XSEDE, is a hybrid computer
cluster with more than 1,900 nodes available. Both Bridges
and Comet use SLURM [22] as their scheduling system.

Installation was done following three configurations:

« Sequential. A single package installed at a time.

« Parallel. Packages are installed concurrently as depen-
dencies permit, in a single multicore machine.

« Distributed. Packages are installed concurrently as de-
pendencies permit, on different computational nodes on
the cluster using the batch system.

In the three configurations, no single package installation
uses more than 4 cores at a time.

A summary of our results is presented in Table II. At Notre
Dame we ran each of the cases in sequential and parallel on a
front end machine, and distributed was run using HTCondor.
Running on the batch system was slower than the other two
options as jobs needed to wait to be scheduled, and further,
jobs would sometimes be suspended given particular policies
for HTCondor at Notre Dame. While slower, using the batch
scheduler is much friendlier to the system, as computational
heavy tasks are discouraged and often forbidden, at the front-
end machines.

As a comparison, observe the results on Comet with the
distributed configuration using SLURM, where jobs did not
spend much time on the queue and were not suspended while
running. The running times are comparable to running in
parallel in the front end. Of note, we were not able to install
Octave using the front end, as the resources needed for such
computation were not available. Finally, with Bridges, actual

MAKER

site Notre Dame [Comet Bridges

mode sequential | parallel | distributed | parallel | distributed | parallel [distributed

time 00hS6m 00h17m 00h42m 00h29m 00h27m 00h23m 00h52m

concurrency 1 17 15 15 16 17 15
Octave

site Notre Dame [Comet [Bridges

mode sequential | parallel | distributed | parallel | distributed | parallel [distributed

time 00hS1m 00h30m 01h14m — 00h33m 00h35m 01h30m

concurrency 1 5 6 — 6 5 5
CVMFS

site Notre Dame [Comet [Bridges

mode sequential | parallel | distributed | parallel | distributed | parallel [distributed

time 00h32m 00h14m 00h40m 00h20m 00h26m 00h18m 00h31m

concurrency 1 8 8 8 8 8 8

TABLE 1II

RESULTS ACROSS THREE DIFFERENT SITES. VC3-BUILDER WAS USED TO INSTALL MAKER, OCTAVE, AND CVMFS AT NOTRE DAME, XSEDE COMET,
AND XSEDE BRIDGES. SEQUENTIAL AND PARALLEL (FE) MODES WHERE EXECUTED UNIQUELY AT THE RESPECTIVE FRONT-ENDS, WHILE HTCONDOR
AND SLURM USE THE RESPECTIVE BATCH SYSTEM. THE TIME ROW INDICATES THE OVERALL COMPILATION TIME, AND THE CONCURRENCY ROW
INDICATES THE MAXIMUM NUMBER OF INDIVIDUAL SOFTWARE PACKAGES COMPILING AT THE SAME TIME.

execution of jobs was comparable to Comet, but the jobs had
slowdowns as they spent more time waiting in queue (we used
the RM—shared queue, which gives partial nodes, but schedules
faster).

VIII. REPRODUCIBILITY

To reproduce the builds described on this paper, you can
obtain a copy of the builder executable with:?

% wget https://raw.githubusercontent.com/
vc3-project/ve3-builder/
clusterp/vc3-builder

Assuming that the builder executable is in the current
directory, the sequential builds can be reproduced with:

$./vc3-builder --require octave
% octave —--help

% exit

$./vc3-builder --require maker
% maker --help

% exit

$./vc3-builder —--require cvmfs

o

ls /cvmfs/cms.cern.ch

exit

oe

To generate a local parallel build of Octave (similarly for
maker and cvmfs):

3

> ./vc3-builder —--require octave\
—-parallel my-build --parallel-mode local

For Condor, SGE, or SLURM, -Tlocal should be re-
placed with ~Tcondor, -Tsge, or —Tslurm, respectively.
IX. RELATED WORK

There have been multiple efforts dealing with software

dependency installation. Tools such as yum and apt allow

2The full development files can be obtained from our git repository:
https://github.com/vc3-project/vce3-builder.

a system administrator to install dependencies from a curated
repository. This repository may have conflicting versions of
software, but in the end, only a consistent set of packages
may be installed in the system. Such packages then become
available to all the users of the system. Installation is straight-
forward but depends on having administrator privileges, and
the existence of rpm or deb packages, which are often not
available in scientific software.

There are approaches that allow conflicting versions, such
as Nix [8], Spack [10], Oinstall [9], conda [5], and Gob-
oLinux [1]. The general idea is to install a particular version
of a package in its own directory, rather than /usr or
/usr/local. After installation, the packages are incor-
porated into the execution environment through the use of
symbolic links and environment variables. The VC3-Builder
follows a similar approach.

The Nix [8] system has a strict model for the management
of dependencies, which allows it to provide strong functional
guarantees. Software recipes are written in a custom functional
language. Nix tries to be as distinct from the host system
as possible, even compiling a version of a C compiler as
part of its bootstrap process. This is because the installation
destination not only depends on checksums of the recipes and
dependencies, but also takes into account the version of the
compiler used. This allows the sharing of whole swaths of
binaries across systems, if they share the same installation
prefix. While Nix recipes provide strong guarantees across
different configurations of systems and versions, the objectives
of VC3-Builder are more modest, as it focus on describing a
set of versions known to execute a particular workflow, using
the building chain already in a system.

In this regard, VC3-Builder is more similar to Spack [10].
Spack is a tool borne from the HPC community, in which
recipes are written in Python, and that uses known building
chains of common Linux distributions used in HPC, such as

RedHat or Centos. Spack developers have taken particular
care in designing recipes that take the best advantage of the
compilers available, with packages having different installation
flavors to be as flexible as possible. In order to do this, Spack
resolves particular installations as late as possible. In contrast,
VC3-Builder resolves all packages to be installed beforehand,
as it is needed by the parallel installations. The conda[5]
system takes a similar approach, but its distribution is not
lightweight, which limits its deployment as part of a batch
job.

GoboLinux is a Linux distribution which aims to create
a more logical and modular representation of the underlying
filesystem. To accomodate the more modular representation of
GoboLinux, specialized recipes are written to ensure programs
install correctly. GoboLinux can be installed within another
Linux distribution in Rootless mode. Rootless mode [1] places
all software installed by GoboLinux within the user’s home
directory. We can view Rootless GoboLinux as a different
way to implement our goal since a researcher could use a
GoboLinux space as a sandboxed environment to install all
their software at user-level. However, the user would need
to handle the dependencies of their software rather than
having that happen automatically. Gentoo Linux has a mode
similar to Rootless GoboLinux which allows the user to install
Gentoo packages via the package manager Portage, without
root permissions, in the userspace. This project is called Prefix
[13], and it is set up by a bootstrapping script which sets up
the Prefixed Portage. Like Rootless GoboLinux, Prefix allows
the user to set up a sandboxed environment and run recipes
to compile their needed software.

Regarding distributed compilation, distcc[4] allows C and
C++ program to be compiled across machines without the need
of a shared filesystem. The machines need to be running a
distcc daemon to be able to receive units of work. distcc itself
is a frontend to a compiler, and it is designed with C/C++
in mind. For example, in its initial implementation, only the
output of the preprocessor was sent to remote compilation.
In contrast, VC3-Builder does require a shared filesystem, but
does not require a local daemon, and it is not limited to C/C++
packages.

Container technology has recently become a popular method
of virtualizing an environment. When compared to virtual
machines, containers are more lightweight at the cost of using
the same underlying kernel as the host. Containers construct
their environment from an image file which contains the code,
system libraries, and settings to run the contained software.
Docker [17] and Singularity [15] are two popular container
technologies which approach the virtualization process some-
what differently. On face value, we would think a container
would be an ideal solution to our problem. However, Docker
does not satisfy two important aspects of our use case which
VC3-Builder addresses. First, Docker requires root access to
install and run the underlying Docker daemon process, and
second, the image has to be constructed in some way, even
when rpm or deb files are not available. In contrast, Singularity
does not require a daemon process, but it does need a setuid

executable to create images.

Homebrew is a specialized package manager for MacOS.
The purpose of it is to help install dependencies in MacOS
which is similar to the purpose of VC3-Builder. Homebrew
allows users to create their own packages. However, it assumes
root privileges in order to install software which we avoid
using VC3-Builder.

The Oinstall (Zero Install) [9] tool provides a decentralized
software installation system which can install software and
its dependencies at the user-level much like VC3-Builder. It
reads an XML specification for the desired software which
specifies the dependencies needed before the software can be
installed. Once the dependencies are installed through Oinstall,
it will then install the software. By default, all software
installed through Oinstall is placed in a cache for the user.
System-wide access can also be provided by installing to a
different location. To effectively use Oinstall, there needs to
be a large network of developers to provide online download
pages with the Oinstall XML specification for their software.
VC3-Builder addresses similar goals as Oinstall, however we
have focused on making VC3-Builder well-suited for cloud
scientific applications without much user interaction.

So far we have considered only building from source. In
our case, the major challenge for binary distributions is that
an executable may not be relocatable (i.e., it has a hard-coded
path). This is greatly ameliorated by using true statically linked
binaries, such as the ones provided by the Minos project [2].
This project not only provides binaries for hundreds of Linux
packages, but also the recipes to manually build them.

X. CONCLUSIONS

This paper presents VC3-Builder, a user-level system for
managing software dependencies across multiple clusters.
With VC3-Builder, we aim to help with some of the more
difficult social dynamics of scientific software operation. In
particular, a user may be able to experiment with complex
software stacks, or with unusual compiler flags, without af-
fecting a system administrator. Once the user has created a
working configuration (i.e., a set of recipes), they can share
that configuration with the system administrator, who now has
a concrete object to evaluate before applying any changes to
the overall system. Conversely, a system administrator may
communicate the working configuration to a user, such that a
workload can be ported between sites. In developing further
components of VC3: Virtual Clusters for Community Compu-
tation, we have found VC3-Builder to be a valuable in-house
tool to share working configurations among the collaborators,
as no two setups are the same (some do not have Docker, some
do not have root access, etc.). We believe VC3-Builder has a
wide applicability for scientific applications on cloud systems.

REFERENCES

] Gobolinux. https://gobolinux.org.

] Minos: portable binaries for linux. http://s.minos.io.
[3] musl libc. https://www.musl-libc.org/.

] distcc. https://github.com/distcc/distce, 2007.

] conda. https://conda.io, 2012.

[6]

[11]

[12]

[13
[14

[15]
[16]

[17

[18
[19

[20

[21]

[22]

M. Albrecht, P. Donnelly, P. Bui, and D. Thain. Makeflow: A Portable
Abstraction for Data Intensive Computing on Clusters, Clouds, and
Grids. In Workshop on Scalable Workflow Enactment Engines and
Technologies (SWEET) at ACM SIGMOD, 2012.

D. Bahls. Evaluating shifter for hpc applications. In Cray User Group
Conference Proceedings, 2016.

E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and policy-free
system for software deployment. In I8th Large Installation System
Administration Conference (LISA ’04), pages 79-92, 2004.

B. Eicher and T. Leonard. Zeroinstall. https://Oinstall.net.

T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, and S. Futral. The spack package manager: Bringing order
to hpc software chaos. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC 15, pages 40:1-40:12, New York, NY, USA, 2015. ACM.

J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team. Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences. Genome Biol,
11(8):R86, 2010.

R. Graves, T. H. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve,
C. Kesselman, P. Maechling, G. Mehta, K. Milner, D. Okaya, P. Small,
and K. Vahi. Cybershake: A physics-based seismic hazard model for
southern california. Pure and Applied Geophysics, 168(3):367-381,
2011.

F. Groffen, G. Amadio, M. Haubenwaller, B. Xu, and J. Callen. Prefix.
J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity,
E. Deelman, C. Kesselman, G. Singh, M.-H. Su, T. A. Prince, and
R. Williams. Montage: a grid portal and software toolkit for science-
grade astronomical image mosaicking. Int. J. Comput. Sci. Eng.,
4(2):73-87, July 2009.

G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity: Scientific
containers for mobility of compute. PLOS ONE, 12(5):1-20, 05 2017.
M. Lehmann. Staticperl. http://search.cpan.org/dist/ App-Staticperl/,
2015.

D. Merkel. Docker: Lightweight linux containers for consistent devel-
opment and deployment. Linux J., 2014(239), Mar. 2014.

D. Thain and N. Hazekamp. Makeflow examples, 2017.

D. Thain and M. Livny. Parrot: Transparent User-Level Middleware for
Data Intensive Computing. In Workshop on Adaptive Grid Middleware
at PACT, 2003.

D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in
Practice: The Condor Experience. Concurrency and Computation:
Practice and Experience, 17(2-4):323-356, 2005.

J. Towns, T. Cockerill, M. Dahan, 1. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, et al. Xsede:
accelerating scientific discovery. Computing in Science & Engineering,
16(5):62-74, 2014.

A. B. Yoo, M. A. Jette, and M. Grondona. SLURM: Simple Linux Utility
for Resource Management, pages 44-60. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

