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Resource-Efficient Common Randomness and Secret-Key
Schemes
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Abstract

We study common randomness where two parties have access to i.i.d. samples from a known
random source, and wish to generate a shared random key using limited (or no) communica-
tion with the largest possible probability of agreement. This problem is at the core of secret
key generation in cryptography, with connections to communication under uncertainty and
locality sensitive hashing. We take the approach of treating correlated sources as a critical
resource, and ask whether common randomness can be generated resource-efficiently.

We consider two notable sources in this setup arising from correlated bits and correlated
Gaussians. We design the first explicit schemes that use only a polynomial number of samples
(in the key length) so that the players can generate shared keys that agree with constant
probability using optimal communication. The best previously known schemes were both
non-constructive and used an exponential number of samples. In the amortized setting, we
characterize the largest achievable ratio of key length to communication in terms of the external
and internal information costs, two well-studied quantities in theoretical computer science. In
the relaxed setting where the two parties merely wish to improve the correlation between the
generated keys of length k, we show that there are no interactive protocols using o(k) bits
of communication having agreement probability even as small as 2−o(k). For the related
communication problem where the players wish to compute a joint function f of their inputs
using i.i.d. samples from a known source, we give a zero-communication protocol using 2O(c)

bits where c is the interactive randomized public-coin communication complexity of f. This
matches the lower bound shown previously while the best previously known upper bound
was doubly exponential in c.

Our schemes reveal a new connection between common randomness and unbiased error-
correcting codes, e.g., dual-BCH codes and their analogues in Euclidean space.
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1 Introduction

Common randomness plays a fundamental role in various problems of cryptography and infor-
mation theory. We study this problem in the basic two-party communication setting in which
Alice and Bob wish to agree on a (random) key by drawing i.i.d. samples from a known
source such as correlated bits or correlated Gaussians. If we further require that an eaves-
dropper, upon seeing the communication only, gains no information about the shared key,
then this defines a secret key scheme. This information-theoretic approach to security was in-
troduced in the seminal works of Mauer [Mau93] and Ahlswede and Csiszár [AC93]. Both
common randomness and secret-key generation have been extensively studied in information
theory [AC98, CN00, GK73, Wyn75, CN04, ZC11, Tya13, LCV15, LCV16]. Common randomness
has applications to identification capacity [AD89] and hardware-based procedures for extract-
ing a unique random ID from process variations [LLG+05, SHO08, YLH+09] that can be used in
authentication [LLG+05, SD07].

Randomness is a powerful tool as well in the algorithm designer’s arsenal. Shared keys
(aka public randomness) are used crucially in the design of efficient communication protocols
with immediate applications to diverse problems in streaming, sketching, data structures and
property testing. Common randomness is thus a natural model for studying how shared keys
can be generated in settings where it is not available directly [MO04, MOR+06, BM11, CMN14,
CGMS14, GR16]. In this paper, we take the approach of treating correlated sources as a critical
algorithmic resource, and ask whether common randomness can be generated efficiently.1

For −1 6 ρ 6 1, we say that (X,Y) ∼ DSBS(ρ) (doubly symmetric binary source) if X,Y are both
uniform over {±1} and their correlation (and covariance) E[XY] = ρ (i.e., a binary symmetric channel

with uniform input). We say that (X,Y) ∼ BGS(ρ) (bivariate Gaussian source) if X,Y ∼ N(0, 1), the
standard normal distribution, and their correlation is again ρ.

Bogdanov and Mossel [BM11] gave a common randomness scheme for DSBS(ρ) with zero-

communication to generate k-bit keys that agree with probability 2−
1−ρ
1+ρ ·k, up to lower order

inverse poly(k, 1− ρ) factors (which we suppress henceforth). Using the hypercontractive prop-
erties of the noise operator [Bon70, Bec75], they also proved the “converse” that the bound for
agreement (probability) is essentially the best possible. In followup work, Guruswami and Rad-
hakrishnan [GR16] recently gave a one-way scheme that achieves an optimal tradeoff between
communication and agreement.2 Note that a simple scheme in which Alice just sends her input
requires k−Oρ(1) bits of communication for constant agreement. In contrast, their scheme can
guarantee the same agreement using only (1− ρ2) · k bits of communication. This is a nontrivial
amortized bound since for ρ > 0, the ratio of entropy to communication (=1/(1− ρ2)) is strictly
bounded away from 1 as k → ∞. On the other hand, the above schemes are non-explicit (i.e.,
proved using the probabilistic method) and use an exponential number of samples in k. Bogdanov
and Mossel [BM11] asked whether an explicit and efficient scheme can be designed, motivating
the definition below.

We say that a common randomness scheme to generate k-bit keys (with k as input) is resource-

efficient, if it (i) is explicitly defined, (ii) uses poly(k) samples, (iii) has constant agreement prob-
ability, and (iv) achieves an amortized ratio of entropy to communication bounded away from
1. We give the first efficient scheme for correlated bits and Gaussians, answering the question
of [BM11].

1Notably, the schemes that we design can also be easily transformed into secret key schemes, as shown later.
2They also use hypercontractivity to prove the converse, which extends to other sources including BGS(ρ).
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Theorem 1. There exist resource-efficient one-way common randomness schemes for DSBS(ρ) and BGS(ρ)

using (1−ρ2) ·k bits of communication. For zero-communication, there exist explicit schemes for DSBS(ρ)

and BGS(ρ) using poly(k) samples with agreement probability 2−
1−ρ
1+ρ ·k, up to polynomial factors.

More generally, we obtain one-way schemes with optimal tradeoff between communication
and agreement, matching [GR16], while using only poly(k) samples. Below is the formal state-
ment.

Theorem 2. Let 0 < ρ < 1 and 0 6 δ 6
√

1−ρ
1+ρ be arbitrary. Set ϕ = ρ+ δ

√

1− ρ2. Then there exist

explicit one-way common randomness schemes for DSBS(ρ) and BGS(ρ) using poly(k) samples such that:

1. the entropy of the key is at least k− o(k);3

2. the agreement probability is at least 2−δ2k, up to polynomial factors; and

3. the communication is O((1−ϕ2) · k) bits.

We point out that our schemes are resource efficient but computationally inefficient. One repre-
sentative challenge that arises here is in decoding dual-BCH codes, which are an explicit algebraic
family of error-correcting codes, from a very large number of errors.

The above schemes follow a template that generalizes the approach taken by [BM11,GR16]. It
relies on a carefully constructed codebook C ⊆ Rn of size 2k, where n is the number of samples.
Alice outputs the codeword in C with the largest projection while Bob does the same on a subcode
of C based on Alice’s message. The analysis of the template reduces it to the problem of obtaining
good tail bounds on the joint distribution induced by these projections. For BGS(ρ), we use a
codebook consisting of an explicitly defined large family of nearly-orthogonal vectors in Rn due
to Tao [Tao13], who showed their near-orthogonality property using the Weil bound for curves.
The novel part of the analysis involves getting precise conditional probability tail bounds on
trivariate Gaussians induced by the projections, whose covariance matrix has a special structure.
Standard methods only give asymptotic bounds on such tails which is inadequate in the low-
communication regime. Here, the best possible agreement is exponentially small in k. Our
analysis determines the exact constant in the exponent by carefully evaluating the underlying
triple integrals.

The resource-efficient scheme for DSBS(ρ) is based on Dual-BCH codes that can be seen as
an F2-analogue of Tao’s construction. The Weil bound for curves implies that dual-BCH codes
are “unbiased”, in the sense that any two distinct codewords are at distance ≈ n/2 (with n being
the block length)4. Analogous to the Gaussian case, the analysis involves getting precise bounds
on the (conditional) tail probabilities of various correlated binomial sums. Since n = poly(k),
we cannot handle these binomial sums using the (two-dimensional) Berry-Esseen theorem, since
the incurred additive error of 1/

√
n would overwhelm target agreement. Moreover, crude con-

centration and anti-concentration bounds cannot be used since they do not determine the exact
constant in the exponent. We directly handle these correlated binomial sums, which turns out to
involve some tedious calculations related to the binary entropy function.

Interactive Common Randomness and Information Complexity. Ahlswede and Csiszár [AC93,
AC98] studied common randomness in their seminal work using an amortized communication
model. They defined it as the maximum achievable ratio a/c, such that for every large enough

3We follow [GR16] who actually consider the min-entropy of Alice’s output, which is justifiable on technical
grounds.

4For more on unbiased codes, we refer the reader to the work of Kopparty and Saraf [KS13].
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number of samples n, Alice and Bob can agree on a key of a ·n bits using c ·n bits of communi-
cation, where the agreement probability tends to 1 (as n tends to infinity). This more stringent
linear relationship between the quantities is not obeyed by our explicit schemes. For one-way
communication, they characterized this ratio in terms of the Strong Data Processing Constant of
the source, which is intimately related to its hypercontractive properties [AG76,AGKN13]. More
recently, Liu, Cuff and Verdu [LCV15,LCV16,Liu16] extended this beyond one-way communica-
tion. In particular, [Liu16] derives the “rate region” for r-round amortized common randomness.

In this work, we show that r-round amortized common randomness can be alternatively
characterized in terms of two well-studied notions in theoretical computer science: the internal

and external information costs of communication protocols. Recall that the internal information
cost [BJKS04,BBCR13] of a two-party randomized protocol is the total amount of information that
each of the two players learns about the other player’s input, whereas its external information
cost [CSWY01] is the amount of information that an external observer learns about the inputs
(see Section 5 for formal definitions). These measures have been extensively studied within the
context of communication complexity. While being interesting measures in their own rights, they
have also been the central tool in tackling direct-sum problems, with numerous applications, e.g.,
in data streams and distributed computation.

Theorem 3 (Informal Statement). Given an arbitrary distribution µ, let Γr denote the supremum over all

r-round randomized protocols P of the ratio of the external information cost to the internal information cost

of P with respect to µ. Then, for r-round amortized common randomness, Γr equals the largest achievable

ratio H/R such that using µ as the source, for every large enough n, Alice and Bob, can agree on a key of

H ·n−O(1) bits with probability 1− on(1) using r rounds and R ·n+O(1) bits of communication.

For the proof, we use a direct-sum approach, a classical staple of information complexity
arguments. Our setup is slightly different from the known direct-sum results because we need
to lower bound the internal information cost of the n-input protocol as well as upper bound
its external information cost (which is non-standard) simultaneously. The essential ingredients
are the same: embed the input on a judiciously chosen coordinate but the argument works an
round-by-round basis so as to keep the mutual information expressions intact. To prove the other
direction, we use the rate region of [LCV16, Liu16] to get a lower bound on Γr.

Finally, we outline various settings where common randomness plays an important role.

Secret Key Generation: While secret key generation requires common randomness, in the amor-
tized setting they are known to imply each other [LCV16, Liu16]: the rate pair (H,R), using the
notation of Theorem 3, is achievable for common randomness if and only if (H− R,R) is achiev-
able for secret key generation. In particular, using the Strong Data Processing Constant for
DSBS(ρ), the rate ratio H/R = 1/(1− ρ2) is achievable for common randomness and the rate ratio
ρ2/(1− ρ2) for secret key generation, but using non-explicit schemes. Our resource-efficient but
non-amortized schemes given in Theorem 1 can be easily transformed into secret key schemes.
See Remark 8.

General Sources: Theorem 2 also implies an explicit scheme for an arbitrary source µ in terms of
its maximal correlation ρ(µ) [Hir35, Geb41, Rén59]. For (X,Y) ∼ µ, recall that ρ(µ) := sup E F(X)G(Y)

over all real-valued functions F and G with E F(X) = EG(Y) = 0 and Var F(X) = VarG(Y) = 1. This
uses the idea (implicit in [Wit75]) that given i.i.d. samples from any source of maximal correlation
ρ, there is a explicit strategy via CLT that allows Alice and Bob to use these samples in order to
generate standard ρ-correlated Gaussians. The resulting scheme however is not resource-efficient.
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Correlated Randomness Generation: In this relaxation proposed by [CGMS14], Alice and Bob
are given access to DSBS(ρ) and wish to generate k bits that are jointly distributed i.i.d. according
to DSBS(ρ ′) where ρ < ρ ′? Note that the ρ ′ = 1 corresponds to the the common randomness setup
studied above. We partially answer a question of [CGMS14] that even a modest improvement in
the correlation requires substantial communication. Let ε ′ log(1/ǫ ′) ≪ ε < 1

2 be fixed. We show
that for Alice and Bob to produce k samples according to DSBS(1− 2ε ′) using DSBS(1− 2ε) as
the source requires Ω(ε · k) bits of communication (even for interactive protocols and even when
the agreement probability is as small as 2−o(k)). See Appendix C for a detailed description.

Communication with Imperfect Shared Randomness: In this framework [BGI14,CGMS14] (see
also [GKS16]), Alice and Bob wish to compute a joint function of their inputs and have access to
i.i.d samples from a known source. For example, with DSBS(ρ) this setup interpolates between
the well-studied public randomness (ρ = 1) and private randomness (ρ = 0) models. Communi-
cation complexity lower bounds for imperfect shared randomness give one approach to rule out
low-communication common randomness schemes. In particular, [BGI14] exhibit a (partial) func-
tion whose zero-communication complexity using DSBS(ρ) for all ρ < 1 is exponentially larger
than the one using public randomness. We prove that this separation is tight. We show a stronger
result that every function having interactive communication c bits using public randomness has
a zero-communication protocol with 2O(c) bits using DSBS(ρ) for every ρ < 1. This answers a
question of Sudan [Sud14]. See Appendix D for a detailed description.

Locality Sensitive Hashing (LSH): A surprising “universality” feature of our schemes (as well
as previous ones) for DSBS(ρ) and BGS(ρ) using zero-communication is that their definition is
oblivious to ρ; only the analysis for every fixed ρ shows that they have near-optimal agreement.
This has a close resemblance to schemes used in LSH. Indeed, we show that our common ran-
domness scheme leads to an improvement in the “ρ̄-parameter” [IM98] that governs one aspect
of the performance of an LSH scheme. While this is mathematically interesting, we caution the
reader that this does not lead to better nearest-neighbor data structures since the improvement
is only qualitatively better and our scheme is computationally inefficient. See Appendix E.

Organization. Section 2 describes the template used for the one-way schemes and sets up the
structure of the analysis. Section 3 and Section 4 describe the schemes for BGS(ρ) and DSBS(ρ)

and their analysis. In Section 5, we show the connection between amortized common randomness
and information complexity. In Section 6, we conclude with some very intriguing open questions.

1.1 Preliminaries

Notation. For a tuple U = (U1,U2, . . . ,Un), let Uj
i := (Ui,Ui+1, . . . ,Uj), when 1 6 i 6 j 6 n,

and empty otherwise; we may drop the subscript when i = 1. For a distribution µ, let µ⊗n be
obtained by taking i.i.d. samples (X1,Y1), . . . , (Xn,Yn) from µ. Abusing notation, we say that
(Xn,Yn) ∼ µ⊗n. Let denote the standard inner product and let ‖·‖ denote the Euclidean norm
over R. For any positive integer n, let [n] := {1, . . . ,n}. Let a . b denote a 6 Cb for some positive
global constant C.

Bivariate Gaussians. Let (X,Y) ∼ BGS(ρ). Let Q(t) := Pr[X > t] denote the Gaussian tail probabil-
ity and L(t,ϕ; ρ) := Pr

[

X > t,Y > ϕt] denote the (asymmetric) orthant probability. In Appendix A,
we prove the following, which also uses some seemingly new properties of Q(t).

4



Proposition 4. Let t, δ > 0. Set ϕ := ρ+ δ
√

1− ρ2 and λ0 :=

√

2
π . Then:

(a)
e−t2/2

t+ λ0
. Q(t) .

e−t2/2

t+ 1/λ0
6 e−t2/2; (b)

Q(t)δ
2

δt+ λ0
. Q(δt) . Q(t)δ

2

(t+ λ0)
c2

;

(c) L(t,ϕ; ρ) > Q(t)Q(δt); and (d) Q(t) 6 Q(δt) 6 Q(t)δ
2

, if δ 6 1

Proposition 5 (Elliptical symmetry). For v,w ∈ Rn with unit norms, (v X,w Y) ∼ BGS
(

ρ(v w)
)

.

2 Template One-Way Scheme and its Analysis

The one-way schemes (including zero-communication as a special case) have the following tem-
plate. Let µ denote the source on R × R. Alice and Bob will generate n iid samples from µ and
use them to output k bit keys. This is achieved by the players using a special codebook C of 2k

points in Rn where each codeword has a k-bit encoding. For c > 1, the players also agree on a
coloring χ of C using 2c colors such that each color class has size at most |C| · 2−c + 1. In addition,
let ⋄ denote an auxiliary color. Thus, each color can be specified using c+ 1 bits. For the special
case of zero-communication, we assume wlog that all codewords are colored ⋄ and we set c = 0.

Let t and s be parameters that govern the achievable min-entropy and agreement probability.
Let κA and κB be mappings such that κA(X) and κB(Y) are each uniformly distributed over {0, 1}k.

Algorithm 1 One-way scheme for source µ
1: procedure CR(k;µ) ⊲ Generate k-bit common random key using source µ.
2: Let (Xn,Yn) ∼ µ⊗n. Let X := Xn and Y := Yn. ⊲ Alice gets X and Bob gets Y.
3: if ∃ unique v ∈ C such that v X > t then Alice outputs v and sends χ(v).
4: else Alice outputs κA(X) and sends ⋄.

5: Bob receives the color τ.
6: if ∃ unique w ∈ C such that χ(w) = τ and v Y > s then Bob outputs w.
7: else Bob outputs κB(Y).

The pseudocode is given in Algorithm 1. For the analysis, define the following quantities:

1. Univariate tail: U := max
v∈C

Pr[v X > t]; 2. Bivariate tail: B := min
v∈C

Pr[v X > t, v Y > s]

3. Conditional trivariate tails:

(a) TA := max
v6=w∈C

Pr[w X > t | v X > t, v Y > s] and (b) TB := max
v6=w∈C

Pr[w Y > s | v X > t, v Y > s]

Theorem 6. The min-entropy of the basic scheme is at least − log(U+ 2−k). Assume that |C| · TA 6 1
4

and |C| · TB 6 1
4 · 2c. Then the probability of agreement is at least 1

2 |C| ·B.

Proof. If Alice outputs a ∈ {0, 1}k then either there exists a unique v ∈ C whose encoding is a. This
happens with probability at most Pr[v X > t] 6 U. Otherwise, κA(X) = a which happens with
probability 2−k. The min-entropy guarantee follows.

For the agreement, fix v ∈ C. Define event Ev := Av ∧ Bv ∧Cv where Av := {v X > t∧ v Y > s},
Bv := {∃w 6= v : w X > t}, and Cv := {∃w 6= v : χ(v) = χ(w)∧w Y > s}.

5



Note that the event Ev ensures that both players output the encoding of v. By the union
bound:

Pr[Ev] > Pr[Av] ·
(

1− Pr[Bv ∨Cv | Av]
)

> Pr[Av] ·
(

1−
∑

w 6=v

Pr[w X > t | Av] −
∑

w 6=v

1{χ(w) = χ(v)} · Pr[w Y > s | Av]
)

> B
(

1− |C| · TA − |C| · 2−c · TB

)

> 1
2B,

where the last two inequalities follow from the definition of B and T and then invoking the
premise of the lemma. Thus the agreement probability is at least

∑
v Pr[Ev] > 1

2 |C| ·B.

As an illustration, we present an explicit one-way scheme for the BGS(ρ) using an exponential
number of samples. Let k be a large enough constant and let n = 2k. Let C consist of the n
standard basis vectors

{
ei : i ∈ [n]

}
in Rn. Choose t > 0 so that the Gaussian tail probability

Q(t) = 1
4 · 2−k. Let ρ 6 ϕ 6 1 be arbitrary and set s = ϕt. (Choose ϕ = 1 for zero-communication.)

For the analysis, note that for each i, we have ei X = Xi and ei Y = Yi. Therefore Pr[Xi > t] =

Q(t) and so by Theorem 6, the min-entropy of Alice’s output is at least − log(Q(t) + 2−k) > k− 1.
We now analyze the agreement probability. To bound the bivariate tail, first by Proposi-

tion 4 (a), we have t = Θ(
√
k). Let δ satisfy ϕ = ρ+ δ

√

1− ρ2. Observe that 0 6 δ 6 1. Apply-
ing Proposition 4 (b,c), we obtain:

B = min
i∈[n]

Pr[Xi > t,Yi > ϕt] = L(t,ϕ; ρ) &
Q(t)1+δ2

δt+Θ(1)
&

Q(t)1+δ2

δ
√
k+Θ(1)

(1)

For i 6= j, the trivariate tail probability Pr[Xj > t | Xi > t,Yi > ϕt] = Pr[Xj > t] = Q(t), by
independence of components of (X,Y). Similarly, Pr[Yj > ϕt | Xi > t,Yi > ϕt] = Q(ϕt). Therefore:

TA 6 Q(t) and TB 6 Q(ϕt) (2)

Now Q(t) = 1
4 · 2−k, so |C| · TA 6 1

4 . Next, Q(ϕt) 6 Q(t)ϕ
2 , using Proposition 4 (d). Therefore,

TB 6 Q(t)ϕ
2 . If we choose c > (1−ϕ2)(k+ 2), then it can be verified that |C| · TB 6 1

4 · 2c. This
ensures that the conditions of Theorem 6 for agreement are satisfied.

By Theorem 6, the agreement probability is 1
2 |C| ·B & 2−δ2k/(δ

√
k+Θ(1)) and the scheme uses

O((1−ϕ2)k) bits of communication. In particular, set ϕ = ρ and δ = 0; we obtain an explicit
one-way scheme with constant probability and O((1− ρ2)k) bits of communication.

3 Efficient Scheme for BGS(ρ)

In this section, we give a resource-efficient one-way scheme for BGS(ρ) with optimal communi-
cation (1− ρ2)k bits. More generally, the tradeoff between the communication and agreement
probability is similar to the one obtained with the scheme presented in 2.

The analysis of the template given previously suggests the following scheme to reduce the
sample complexity to k = poly(n): use a codebook such that the projections are only 3-wise in-
dependent. Unfortunately, this does not work since a multivariate Gaussian distribution is com-
pletely characterized by its first and second moments, so even pairwise independence would im-
ply full independence! Instead, we use a codebook consisting of an explicitly defined large fam-
ily of nearly-orthogonal vectors in Rn due to Tao [Tao13], who showed their near-orthogonality
property using the Weil bound for curves.

6



Let p be a prime number and n = 2 · p. We identify Rn with the complex vector space V of
functions from Fp to C, where C denotes the complex plane. Thus v ∈ V will also denote an
element of Rn. With this identification, we have v w = Re

(∑
x∈Fp

v(x)w(x)
)

for v,w ∈ V.
Let d be a positive integer. Let ω := e2πi/p denote the p-th root of unity. For every a ∈ Fd

p,
let va ∈ V be defined as va(x) = 1√

p ·ωadx
d+···+a1x. We set C := {va : a ∈ Fd

p}. Note that the all
elements of C have unit norm. The Weil bound for curves then implies that for every a 6= b ∈ Fd

p,
we have that |va vb| 6 (d− 1)/

√
p [Wei48] (for a recent exposition see [KL11]).

Choose d = o(n1/4/
√

logn) and k = d · log(n/2) in Tao’s construction. We use the same
parameters t, s, ϕ and δ for Algorithm 1 as in the previous scheme described in Section 2.

By elliptical symmetry (Proposition 5), (v X, v Y) ∼ BGS(ρ), for every v ∈ C. Therefore the
bounds in Section 2 for the univariate and bivariate tails (see eq. (1)) also hold here. The key
difference is in the analysis of the trivariate probabilities because we no longer have indepen-
dence amongst the various pairs (v X, v Y). This requires a new analysis of the conditional tails
involving trivariate Gaussians whose covariances have a special structure. Below, we show that
a slightly weaker bound than eq. (2): TA 6 Q(t) · (1+ on(1)) and TB 6 Q(ϕt) · (1+ on(1)). Nev-
ertheless, we can apply the same argument following eq. (2) in Section 2 which implies again
that: (a) the min-entropy at least k− 1; (b) the agreement probability is & 2−δ2k/(δ

√
k+Θ(1)); and

(c) the communication is O((1−ϕ2)k) bits. In particular, with ϕ = ρ and δ = 0; we obtain the
main result of this section, namely a resource-efficient one-way scheme using O((1− ρ2) · k) bits
of communication.

It remains to prove that TA 6 Q(t) · (1+ on(1)) and TB 6 Q(ϕt) · (1+ on(1)). Fix v 6= w ∈ C.
The construction ensures that |v w| 6 θ with θ = (d − 1)/

√
p = O(k/(

√
n · logn)). For k =

o(n1/4 ·
√

logn), we have θ = on(1).
Now observe that (w X, v X, v Y) can be written as a linear transform on (X,Y), so jointly

they have the trivariate Gaussian distribution, Their joint distribution is fully given by the first
two moments. By stability, the marginals are standard normal and by elliptical symmetry, the
covariances can be calculated as (i) E[(w X)(v X)] = w v 6 θ, (ii) E[(v X)(v Y)] = ρ, and (iii)
E[(w X)(v Y)] = ρ(w v) 6 ρθ. Observe that (w Y, v Y, v X) is also trivariate with an identical
mean and covariance matrix.

Lemma 7. Let (U,V ,W) be a trivariate Gaussian with standard normal marginals and covariances

E[UV] = σ, E[VW] = ρ, and E[UW] = σρ. Let r, r ′ > 0. Then for all b > 1:

Pr[U > r | V > r,W > r ′] 6 Q

(

1− bσ√
1− σ2

r

)

+
Q(br)

Pr[V > r,W > r ′]

Proof. We have:

Pr[U > r | V > r,W > r ′] =
Pr[U > r,V > r,W > r ′]

Pr[V > r,W > r ′]
(3)

For the numerator, we split the range of V into two intervals:

Pr[U > r,V > r,W > r ′] = Pr[U > r, r < V 6 br,W > r ′] + Pr[U > r,V > br,W > r ′]

The second term is at most Pr[V > br] = Q(br). For the first term, note that the covariance
structure implies that U and W are independent conditioned on V , so we can write U = σV +√
1− σ2Z. where Z ∼ N(0, 1) is independent of (V ,W). The event {U > r} can be rewritten as

{
Z > r−σV√

1−σ2

}
which under the assumption {V 6 br} implies that {Z > ar} where a := 1−bσ√

1−σ2
. By

independence:

Pr[U > r, r < V 6 br,W > r ′] 6 Pr[Z > ar]Pr[r < V 6 br,W > r ′] 6 Q(ar)Pr[V > r,W > r ′]
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Substituting these bounds in eq. (3) finishes the proof.

Apply Lemma 7 to the triples (w X, v X, v Y) with r := t, r ′ := ϕt and (w Y, v Y, v X) with
r := ϕt, r ′ := t. In both cases, σ := v w 6 θ. Since Q(·) is decreasing:

Pr[w X > t | v X > t, v Y > ϕt] 6 Q

(

1− bθ√
1− θ2

t

)

+
Q(bt)

L(t,ϕ; ρ)
, ∀b > 1 (4)

Pr[w Y > ϕt | v Y > ϕt, v X > t] 6 Q

(

1− bθ√
1− θ2

ϕt

)

+
Q(bϕt)

L(t,ϕ; ρ)
, ∀b > 1 (5)

Set b := 2/φ. By Proposition 4 (a), Q(bϕt) . e−b2ϕ2t2/2 = e−2t2 and Q(t) & e−t2/2/(t + λ0).
Because t = Θ(

√
k), for large enough k, we have Q(bϕt) . Q(t)3e−t2/2(t+ λ0)

3 = Q(t)3on(1).
Using this bound and Proposition 4 (c,d), we obtain:

Q(bt) 6 Q(bϕt) 6 Q(t)3 · on(1) 6 L(t,ϕ; ρ)Q(t) · on(1) 6 L(t,ϕ; ρ)Q(ϕt) · on(1)

Thus the second term in eq. (4) (resp. eq. (5)) is at most Q(t) · on(1) (resp. Q(ϕt) · on(1)).
For the first terms in the right side of eq. (4) and eq. (5), let a := 1−bθ√

1−θ2
. Note that a 6 1.

Now Q(at) 6 Q(t)a
2 by Proposition 4 (d). We calculate 1 − a2 =

(2b−(1+b2)θ

1−θ2

)

θ 6 4bθ, since
θ ≪ 2b/(1 + b2). For the choice of d we have kbθ = on(1). Thus Q(at)/Q(t) 6 Q(t)a

2−1 .
2k(1−a2) 6 24kbθ = 2on(1) = 1+ on(1).

By Lemma 21, Q(at)/Q(t) is increasing in t, so Q(aϕt)/Q(ϕt) 6 Q(at)/Q(t) 6 Q(at)/Q(t) =

1+ on(1). Thus the first term in eq. (4) (resp. eq. (5)) is at most Q(t) · (1+ on(1)) (resp. Q(ϕt) · (1+
on(1))). Combine the above bounds for the two terms in eqs. (4) and (5) to complete the analysis.
This completes the proofs of Theorem 1 and Theorem 2 for the BGS source.

Remark 8. We modify the above resource-efficient scheme that uses c = (1− ρ2) · k bits of communication

to generate secret keys. Assume wlog that codewords within the same color class are encoded with the same

prefix of c bits. Now Alice just outputs the k− c = ρ2 · k-bit suffix of her output. We briefly sketch the

analysis as follows. Using the min-entropy property as well as a similar lower bound on the probability

that Alice outputs a particular key (which essentially follows from the same bounds on bivariate tails used

above) it can be shown that the communicated bits are nearly uniform as well and that the suffix of the

output is nearly uncorrelated with the prefix. This ensures the secrecy of the key from the eavesdropper.

4 Efficient Scheme for DSBS(ρ)

We give a resource-efficient one-way scheme for DSBS(ρ) with optimal communication (1−ρ2) ·k
using the template of Algorithm 1. It is based on dual-BCH codes which can be seen as finite
field analogues of the nearly-orthogonal vectors used in Section 3. It is more natural here but
still equivalent to work with {0, 1}n instead of {±1}n and the Hamming distance ∆ instead of
inner-product.

Let CdBCH = CdBCH(d,m) be the dual-BCH code with parameters m = log(n+ 1) and d being
any polynomial in n that satisfies d = o(n1/4/

√

logn). Then, |CdBCH| = 2k where k = d · log(n+1)
is a polynomial in n. Let C be an arbitrary subset of CdBCH of size 2k′

= 2k/(γ ·n) where γ > 0 is
a sufficiently large absolute constant to be chosen later on. We denote C = {va : a ∈ {0, 1}k′

}. We
set r , n/2− t

√
n/2 where t > 0 satisfies Q(t) = (1/4) · 2−k. Similar to before, let ρ 6 ϕ 6 1 so that

the communication is O((1−ϕ2)k) bits. Recall that δ satisfies ϕ = ρ+ δ
√

1− ρ2.
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In the following, we prove the appropriate uni-, bi- and trivariate tail bounds for the scheme.
These are stated in Proposition 9 and Lemmas 10 and 11. The proof follows the same structure
that was used for BGS(ρ). It requires some bounds on binomial sums proved in Appendix B.
By incorporating them into Theorem 6, we obtain the desired performance of the scheme. Let
(X,Y) ∼ DSBS(ρ)⊗n.

Proposition 9. For any u ∈ R (possibly depending on n), Pr[|wt(X) −n/2| > u
√
n/2] 6 poly(n) ·Q(u).

Lemma 10. For every a ∈ {0, 1}k′
: Pr[∆(va,X) 6 r,∆(va,Y) 6 r ′] > 1

Θ(n2)
· 2−k · 2−k·δ2

.

Proof. Follows from Proposition 23 and Proposition 25.

Lemma 11. Let v, v ′ ∈ {0, 1}n satisfy |∆(v, v ′) −n/2| 6 θ ·n/2, where θ = O(k/(
√
n · logn)). Then:

Pr[∆(v ′,X) 6 r | ∆(v,X) 6 r,∆(v,Y) 6 r ′] 6 O(n) ·Q(t)

Pr[∆(v ′,Y) 6 r ′ | ∆(v,X) 6 r,∆(v,Y) 6 r ′] 6 O(n) ·Q((1−ϕ)t)

Proof. Let ℓ , n/2 − θ · n/2. Without loss of generality, we assume that v = 0n is the all-zeros
vector and that v ′ = 1ℓ0n−ℓ. Then,

Pr[∆(v ′,X) 6 r | ∆(v,X) 6 r,∆(v,Y) 6 r ′]

= Pr[∆(v ′,X) 6 r | wt(X) 6 r, wt(Y) 6 r ′]

=
Pr[∆(v ′,X) 6 r, wt(X) 6 r, wt(Y) 6 r ′]

Pr[wt(X) 6 r, wt(Y) 6 r ′]

=
1

Pr[wt(X) 6 r, wt(Y) 6 r ′]
·

r∑

r1=0

r∑

r2=0

r ′
∑

r3=0

Pr[∆(v ′,X) = r1, wt(X) = r2, wt(Y) = r3]

=
1

Pr[wt(X) 6 r, wt(Y) 6 r ′]

( r∑

r2=0

r ′
∑

r3=0

Pr[wt(X) = r2, wt(Y) = r3]

·
r∑

r1=0

Pr[∆(v ′,X) = r1 | wt(X) = r2, wt(Y) = r3]

)

=
1

Pr[wt(X) 6 r, wt(Y) 6 r ′]
·

r∑

r2=0

r ′
∑

r3=0

Pr[wt(X) = r2, wt(Y) = r3] ·
r∑

r1=0

Pr[∆(v ′,X) = r1 | wt(X) = r2]

=
1

Pr[wt(X) 6 r, wt(Y) 6 r ′]
·

r∑

r2=0

r ′
∑

r3=0

Pr[wt(X) = r2, wt(Y) = r3] · Pr[∆(v ′,X) 6 r | wt(X) = r2], (6)

where the penultimate equality follows from the fact that ∆(v ′,X) − wt(X) − wt(Y) is a Markov
chain.
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For every non-negative integer t2 satisfying t2 = o(n1/4) and θ · t · t2 = on(1), we have that

Pr[∆(v ′,X) 6 r | wt(X) = n/2− t2
√
n/2]

=

amax∑

a=0

ψ(a)

(A)

6 (amax + 1) ·ψ(amax)

(B)

6 O(n) ·Θ
(

1√
n

)

· e− t2

2

(C)

6 O(n) ·Q(t), (7)

where (A) follows from Proposition 26, (B) from Proposition 27 and the fact that θ = on(1),
and (C) from Proposition 4 (a) and the facts that t = Θ(

√
k) and k 6 n. Note that by assumption

θ = O(k/(
√
n · logn)). Thus, for any k = o(n1/4 ·

√

logn), there exists a function ν(t,θ) = ωn(1)

satisfying ν(t,θ) = on(min(n1/4, 1/(t · θ))) and

Θ(n2) · 2k+k·δ2 · exp(−ν(t,θ)2) 6 Q(t). (8)

We fix such a function ν(t,θ) and set τ(t,θ) , n/2− ν(t,θ)
√
n/2. Equation (6) now becomes:

Pr[∆(v ′,X) 6 r | ∆(v,X) 6 r,∆(v,Y) 6 r ′] =
1

Pr[wt(X) 6 r, wt(Y) 6 r ′]
· (α+β), (9)

where

α ,
r∑

r2=τ(t,θ)

r ′
∑

r3=0

Pr[wt(X) = r2, wt(Y) = r3] · Pr[∆(v ′,X) 6 r | wt(X) = r2],

and

β ,
τ(t,θ)∑

r2=0

r ′
∑

r3=0

Pr[wt(X) = r2, wt(Y) = r3] · Pr[∆(v ′,X) 6 r | wt(X) = r2].

Using eq. (7) and the fact that ν(t,θ) = o(min(n1/4, 1/(t · θ))), we get that

α 6
r∑

r2=τ(t,θ)

r ′
∑

r3=0

Pr[wt(X) = r2, wt(Y) = r3] ·O(n) ·Q(t) 6 O(n) ·Q(t) · Pr[wt(X) 6 r, wt(Y) 6 r ′].

(10)
We also have that

β 6
τ(t,θ)∑

r2=0

r ′
∑

r3=0

Pr[wt(X) = r2, wt(Y) = r3] 6 Pr[wt(X) 6 τ(t,θ)] 6 exp(−ν(t,θ)2), (11)

where the last inequality uses the fact that ν(t,θ) = ωn(1) and follows from Proposition 9

and Proposition 4 (a). Combining eq. (9), eq. (10) and eq. (11), we get that

Pr[∆(v ′,X) 6 r | ∆(v,X) 6 r,∆(v,Y) 6 r ′] 6 O(n) ·Q(t) +
exp(−ν(t,θ)2)

Pr[wt(X) 6 r, wt(Y) 6 r ′]

6 O(n) ·Q(t) +Θ(n2) · 2k · 2−k·δ2 · exp(−ν(t,θ)2)

6 O(n) ·Q(t),
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where the second inequality follows from Proposition 23 and Proposition 25, and the third in-
equality follows from the fact that ν(t,θ) satisfies eq. (8). This completes the proof of the first
part of the lemma. The proof of the second part follows along the same lines.

We note that the above bounds imply the desired result for agreement probabilities up to
1/poly(k). The result also holds for constant agreement probability. The main idea is to combine
the constant agreement scheme for the Gaussian source along with a multi-dimensional Berry-
Esseen Theorem (e.g., Theorem 67 of [MORS10]).5 The details are deferred to a future version.

5 Information Complexity and Common Randomness

In this section, we show an intimate relationship between the achievable regions for amortized
common randomness generation and the internal and external information costs of communica-
tion protocols, two well-studied notions in theoretical computer science. We say that (H,R1,R2)
is r-achievable for a distribution µ if for every ε > 0 there exists an r-round common randomness
scheme Π with (Xn,Yn) ∼ µ⊗n as inputs, for some n = n(ε), where n→ ∞ as ε→ 0, such that the
following holds: let Mt denote the message sent in round t in Π, and let KA (resp. KB) denote
the output of Alice (resp. Bob). Then (1)

∑
t oddH(Mt) 6 (R1+ ε)n, (2)

∑
t evenH(Mt) 6 (R2+ ε)n,

(3) H(KA),H(KB) > (H− ε)n and (4) KA and KB both belong to a domain of size cn for some
absolute constant c independent of ε and n. (The min-entropy guarantee in our basic definition
is stronger than the combination of parts (3) and (4).)

Definition 12. Let P be a two-player randomized communication protocol with both public and
private coins and let Rpub denote the public randomness. With a slight abuse in notation, given
(X,Y) ∼ µ, let P also denote the transcript of the protocol on input (X,Y). Define the follow-
ing measures for the protocol with respect to µ: (i) the external information cost ICext(P) equals
I(X,Y;P | Rpub); (ii) the marginal internal information cost ICint

A (P) for Alice equals I(X;P | YRpub) and
analogously ICint

B (P) = I(Y;P | XRpub) for Bob. The (total) internal information cost equals the sum
of the two marginal costs.

We now characterize the achievable region for a fixed source distribution µ in terms of internal
and external information costs of protocols with respect to µ.

Converse. We extend the ideas present in several works, e.g. [Kas85,AC98,LCV16]. We need the
following direct-sum property (Lemma 14 below) for information costs of randomized protocols
that we crucially use in our analysis. This property differs from the known direct-sum results in
that it simultaneously bounds the internal and external information costs of the single-coordinate
protocol. Its proof uses the following tool.

Proposition 13 ( [AC98, Lemma 4.1]). Let S, T ,Xn,Yn be arbitrary random variables. Then:

I(Xn;S | T ) − I(Yn;S | T ) =

n∑

j=1

I(Xj;S | Xj−1Ynj+1T ) − I(Yj;S | Xj−1Ynj+1T ).

5Since we are dealing with constant error probabilities, the additive error from the Berry-Esseen theorem is negli-
gible.
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Proof. We have by telescoping:

I(Xn;S | T ) − I(Yn;S | T ) =

n∑

j=1

I(XjYnj+1;S | T ) − I(Xj−1Ynj ;S | T ). (12)

By the chain rule for mutual information, for each j ∈ [n], we have that

I(XjYnj+1;S | T ) = I(Xj−1Ynj+1;S | T ) + I(Xj;S | Xj−1Ynj+1T )

and
I(Xj−1Ynj ;S | T ) = I(Xj−1Ynj+1;S | T ) + I(Yj;S | Xj−1Ynj+1T )

The proposition now follows by substituting the last two equations in Equation (12).

Lemma 14 (Direct sum). Fix a distribution µ and an r-round randomized protocol Π with inputs

(Xn,Yn) ∼ µ⊗n. Then there exists an r-round randomized protocol P with inputs (X,Y) ∼ µ such that (a)

ICint
A (Π) = n · ICint

A (P), (b) ICint
B (Π) = n · ICint

B (P), and (c) ICext(Π) 6 n · ICext(P).

Proof. For ease of presentation we suppress the public randomness of Π in the expressions ap-
pearing in the proof below. Let Mt be the message sent in Π during round t ∈ [r]; set Mr+1 := ∅.
We will be using the following properties of Π:

I. For every odd t 6 r, I(Yn;Mt | XnMt−1) = I(Xn;Mt+1 | YnMt) = 0.

II. For all j ∈ [n] and odd t 6 r, I(Yj;Mt | XjYnj+1M
t−1) = I(Xj;Mt+1 | Xj−1Ynj M

t) = 0. This can
also be shown, see, e.g., [Kas85, Eqns. 3.10–3.13].

We present the argument for the marginal internal information cost for Alice; a similar argu-
ment can be carried out for Bob’s case as well. Observe that:

ICint
A (Π) = I(Xn;Mr | Yn) =

∑

t6r

I(Xn;Mt | YnMt−1) =
∑

t odd

I(Xn;Mt | YnMt−1), (13)

by part (I) above. Fix an odd t in the above sum. Again by part (I) above:

I(Xn;Mt |Mt−1) = I(XnYn;Mt |Mt−1) = I(Yn;Mt |Mt−1) + I(Xn;Mt | YnMt−1), (14)

and therefore,

I(Xn;Mt | YnMt−1) = I(Xn;Mt |Mt−1) − I(Yn;Mt |Mt−1)

(a)
=

n∑

j=1

I(Xj;Mt | Xj−1Ynj+1M
t−1) − I(Yj;Mt | Xj−1Ynj+1M

t−1)

=

n∑

j=1

I(Xj;Mt | YjX
j−1Ynj+1M

t−1)

=

n∑

j=1

I(Xj;MtMt+1 | YjX
j−1Ynj+1M

t−1) (15)
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where (a) follows from Proposition 13, and each of the last two equalities follows from the chain
rule and by invoking part (II). We now substitute eq. (15) in eq. (13), and sum over all odd t.

ICint
A (Π) = I(Xn;Mr | Yn) =

∑

t odd

n∑

j=1

I(Xj;MtMt+1 | YjX
j−1Ynj+1M

t−1)

=

n∑

j=1

I(Xj;Mr | YjX
j−1Ynj+1) = n · I(XJ;Mr | YJX

J−1YnJ+1J),

(16)

using the chain rule and then defining J to be uniform over [n] and independent of all the other
random variables. Similarly for Bob:

ICint
B (Π) = n · I(YJ;Mr | XJX

J−1YnJ+1J). (17)

We claim that the right side of eqs. (16) and (17) are respectively the marginal internal information
costs for Alice and Bob in some protocol P with inputs (X,Y) ∼ µ. Specifically, on input pair (X,Y),
the protocol P simulates the protocol Π by settting XJ := X and YJ := Y, and associating the public
randomness with J, XJ−1, and YnJ+1. Part (II) above ensures that the messages in protocol P can
be generated by the players using private randomness.

It remains to bound the external information cost of P. Observe that ICext(P) equals

I(XJ,YJ;Mr | XJ−1YnJ+1J) = I(YJ;M
r | XJ−1YnJ+1J) + I(XJ;Mr | YJX

J−1YnJ+1J). (18)

The second term in eq. (18) above equals 1
n · I(Xn;Mr | Yn) via eq. (16). For the first term, using

the independence of coordinates,

I(YJ;Mr | XJ−1YnJ+1J) = I(YJ;M
rXJ−1 | YnJ+1J) > I(YJ;M

r | YnJ+1J) =
1
n · I(Yn;Mr),

where we expand over J and use the chain rule. Combining the bounds for the two terms, we
conclude:

n · ICext(P) > I(Yn;Mr) + I(Xn;Mr | Yn) = I(XnYn;Mr) = ICext(Π).

Theorem 15. If a tuple (H,R1,R2) is r-achievable then for every ε > 0 there exists a randomized r-round

protocol whose marginal internal information cost for Alice (resp. Bob) with respect to the distribution µ

is at most R1 +O(ε) + 1/n (resp. R2 +O(ε) + 1/n) and whose external information cost is at least H− ε.

Proof. Fix ε > 0. Let n be such that there is an r-round protocol for common randomness gen-
eration Π on inputs (Xn,Yn) ∼ µ⊗n. Let Mt denote the message sent in round t in Π. Let KA

(resp. KB) denote the output of Alice (resp. Bob). We have (1)
∑

t oddH(Mt) 6 (R1 + ε)n, (2)
∑

t evenH(Mt) 6 (R2 + ε)n, (3) H(KA),H(KB) 6 (H − ε)n and (4) KA and KB both belong to a
domain of size cn for some absolute constant c (independent of ǫ and n).

Consider the case where r is odd (the other case can be handled similarly) and define a new
protocol Π ′ where Alice also sends KA to Bob along with the last message. The number of
rounds is still r. Applying Lemma 14, there exists an r-round randomized protocol P with inputs
(X,Y) ∼ µ such that ICint

A (Π ′) = n · ICint
A (P) and ICint

B (Π ′) = n · ICint
B (P). Now since Π ′ depends only

on Xn and Yn, we have that ICint
A (Π ′) = I(Xn;MrKA | Yn) = I(Xn;Mr | Yn) + I(Xn;KA | YnMr).

Because Xn ⊥Mt | YnMt−1 for each even round t, by the chain rule, the first term equals
∑

t

I(Xn;Mt | YnMt−1) =
∑

t odd

I(Xn;Mt | YnMt−1) 6
∑

t odd

H(Mt) 6 (R1 + ε)n.
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The second term is at most H(KA | YnMr). Now KB is determined by Yn and Mr and Pr[KA 6=
KB] 6 ε, so by Fano’s inequality, H(KA | YnMr) 6 εcn+ 1. Therefore, ICint

A (P) 6 R1+ ε(1+ c)+ 1/n.
For Bob, the analysis is similar and even simpler because his messages are unchanged (from Π

to Π ′) so ICint
B (P) 6 R2 + ε. (The bound stated in the lemma is weaker because Fano’s inequality

is used when r is even.) Finally, apply Lemma 14 to bound the external information cost of P as

n · ICext(P) > ICext(Π ′) = I(XnYn;MrKA) = H(MrKA) −H(MrKA | XnYn) = H(MrKA).

But H(MrKA) > H(KA) > (H− ε)n, so the desired bound follows.

Achievability. In [LCV16], a sufficient condition using Markov chains on auxiliary random
variables is given the existence of an interactive common randomness scheme. To fulfill this
condition, their construction uses a random encoding argument. We connect these conditions to
the existence of an r-round communication protocol with the appropriate information costs.

Proposition 16 ( [LCV16]). Let (X,Y) ∼ µ. Suppose there exist auxiliary random variables U1,U2, . . . ,Ur

for some r in some joint probability space with X and Y where the marginal distribution of (X,Y) is µ sat-

isfying the following:

1. For every odd t, Y ⊥ Ut | XU
t−1 and for every even t, X ⊥ Ut+1 | YUt.

2.
∑

t odd I(X;Ut | U
t−1) +

∑
t even I(Y;Ut | U

t−1) > H.

3.
∑

t odd I(X;Ut | U
t−1) −

∑
t odd I(Y;Ut | U

t−1) 6 R1.

4.
∑

t even I(Y;Ut | U
t−1) −

∑
t even I(X;Ut | U

t−1) 6 R2.

Then, there exists an r-round interactive common randomness generation scheme Π(Xn,Yn) using n i.i.d.

samples as input where Alice sends at most R1n bits, Bob sends at most R2n bits and the entropy of their

output is at least Hn bits where the agreement probability tends to 1 as n→ ∞.

Theorem 17. If there exists a r-round randomized protocol with inputs (X,Y) ∼ µ whose marginal internal

information cost for Alice (resp. Bob) is at most R1 (resp. R2) and whose external information cost is at

least H, then (H,R1,R2) is r-achievable.

Proof. Let P be a randomized protocol with inputs (X,Y) ∼ µ whose marginal internal information
cost for Alice (resp. Bob) is at most R1 (resp. R2) and whose external information cost is at least
H. Without loss of generality, we assume that P uses no public randomness. For every t ∈ [r], we
let Ut denote the message sent in P during round r. We claim that the Ut’s satisfy the conditions
in Proposition 16. First, note that the conditional independencies given in part 1 of Proposition 16

are equivalent to the message structure of an r-round randomized protocol, and are thus satisfied
by the Ut’s.

For every odd t, by part 1, I(Y;Ut | XU
t−1) = 0, so

I(X;Ut | U
t−1) = I(XY;Ut | U

t−1) = I(Y;Ut | U
t−1) + I(X;Ut | YU

t−1).

Therefore, I(X;Ut | YU
t−1) = I(X;Ut | U

t−1) − I(Y;Ut | Ut−1). By the chain rule,

ICint
A (P) = I(X;Ur | Y) =

∑

t

I(X;Ut | YU
t−1) =

∑

t odd

I(X;Ut | U
t−1) − I(Y;Ut | U

t−1) 6 R1,
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via part 1 where we used I(X;Ut | YUt−1) = 0 for every even t. Using the given assumption that
ICint

A (P) 6 R1, we deduce that the Ut’s satisfy part 3 of Proposition 16. A similar argument using
the given assumption that ICint

B (P) 6 R2 implies that the Ut’s satisfy part 4 of Proposition 16.
Applying a similar reasoning, we also obtain that:

∑

t odd

I(X;Ut | U
t−1) +

∑

t even

I(Y;Ut | U
t−1) =

∑

t odd

I(XY;Ut | U
t−1) +

∑

t even

I(XY;Ut | U
t−1)

= I(XY;Ur)

= ICext(P).

The given assumption that ICext(P) > H now implies that the Ut’s satisfy part 2 of Proposition 16.
Therefore, we conclude that (H,R1,R2) is r-achievable.

Combining Theorem 15 and Theorem 17, we obtain the the formal version of Theorem 3.

Theorem 18. Let Γr denote the supremum over all r-round randomized protocols Π of the ratio of the

external information cost to the internal information cost of Π with respect to µ. Then, Γr equals the

supremum of H/(R1 + R2) such that (H,R1,R2) is r-achievable for µ.

6 Conclusion and Open Questions

The most important open question raised in this work is to obtain computationally efficient
schemes for common randomness. In particular, is there a resource-efficient scheme that also
has time complexity poly(k)? For our schemes, it not at all clear how to implement the de-
coding phase time-efficiently (either over F2 or in Euclidean space). In fact, even the slightly
sub-exponential time algorithm of [KS13] for decoding dual-BCH codes falls short of working
for the error radii that are needed to achieve near-optimal agreement probability!

The sample complexity n = o(k4) of our explicit schemes is polynomial but still far from the
linear non-explicit sample schemes arising from amortized common randomness. The Kabatjanskii-
Levenstein bound (cf. [Tao13]) implies that no nearly-orthogonal families of vectors (including
the one we used) will achieve a linear sample complexity in our setup. Can we rule out linear
sample schemes altogether? One challenge is that such a proof cannot solely rely on hypercon-
tractivity because they “tensorize” and are thus oblivious to the number n of used samples.

Our one-way scheme for general sources with maximal correlation ρ is explicit but not sample-
efficient because it uses the CLT to reduce the problem to BGS(ρ). Moreover, the tradeoff between
communication and agreement is stated in terms of ρ, whereas the best known negative results
are in terms of hypercontractivity. [AGKN13] give an example of a source separating its maximal
correlation from its Strong Data Processing Constant, which is intimately related to its hypercon-
tractive properties. Can such a source be used to prove that the tradeoff stated in Theorem 2 is
not tight for general sources?

A characterization of amortized correlated randomness would be interesting even for one-way
as it would generalize the notion of the Strong Data Processing Constant.

Finally, our paper shows that tools used in common randomness could also be useful for
Locality Sensitive Hashing. Can one establish a formal connection between these two areas?
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A Properties of Bivariate Gaussian Distribution

Proposition 19 (Elliptical symmetry, Proposition 5 restated). Let (X,Y) ∼ BGS(ρ)⊗n and v,w ∈ Rn

have unit norm. (v X,w Y) ∼ BGS
(

ρ(v w)
)

.

Proof. Since (v X,w Y) is a linear transform of (X,Y) it has the bivariate Gaussian distribution.
Thus, we only need to determine the first and second moments. Since v and w have unit-norm,
by stability, the marginals are standard normal. Finally, we verify that their covariance is ρ(v w).

E[v Xw Y] =

n∑

i,j=1

v(i)w(j) · E[Xi · Yj] = ρ
n∑

i=1

v(i)w(i) = ρ(v w)

A.1 Tail bounds for Gaussians

The following bounds are well-known; using Duembgen’s approach [Due10], we prove them
below to make it self-contained. Let λ(t) := φ(t)

Q(t)
denote the inverse Mills ratio, i.e the ratio of the

density function to the tail probability of a standard normal random variable. Let λ0 := λ(0) =
√

2
π .

Lemma 20. For all t > 0, max{t, λ20 · t+ λ0} 6 λ(t) 6 t+ min{1/t, λ0}. Equality holds only at t = 0.

Proof. For all t > 0 and any function α : R+ → R+ such that limt→∞ α(t) = ∞, let

fα(t) :=
φ(t)

α(t)
−Q(t),

so that limt→∞ fα(t) = 0. Observing that Q ′(t) = −φ(t) and φ ′(t) = −tφ(t), we have:

∂fα

∂t
=
φ(t)

α(t)2

(

α(t)2 − t · α(t) −α ′(t)
)

Thus, the sign of the partial derivative is determined by gα(t) := α(t)2 − t ·α(t) −α ′(t).

1. α(t) = t + 1/t: In this case, gα(t) = 2/t2 > 0. Therefore, fα(t) is strictly increasing in t;
together with fα(0) = −1

2 and limt→∞ fα(t) = 0, it follows that that fα(t) < 0 for all t > 0.

2. α(t) = t+ λ0: In this case, gα(t) = λ0t+ λ20 − 1 is linear in t. Set d := (1− λ20)/λ0 > 0, and it
follows that gα(t) < 0 for 0 6 t < d and gα(t) > 0 for t > d. Therefore, fα(t) is decreasing in
t over [0,d] and increasing in t over [d,∞); the endpoint conditions imply that fα(t) 6 0 for
all t > 0 with equality only at t = 0.

3. α(t) = t: In this case, gα(t) = −1 so fα(t) is strictly decreasing in t. Now limt→0 fα(t) = ∞

therefore fα(t) > 0 for all t > 0.

4. α(t) = λ20 · t+ λ0: In this case, gα(t) is quadratic in t with a zero constant term. Set d :=
2λ2

0−1

λ0(1−λ0)
> 0 and an easy calculation shows that gα(t) > 0 for 0 6 t < d and gα(t) 6 0 for

t > d. An analogous argument implies that fα(t) > 0 for all t > 0 with equality only at
t = 0.
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We now show two interesting properties of the tail probability function. These seem to be
new as far as we know.

Lemma 21. The function Q(t)1/t
2

is increasing in t for t > 0. For every fixed 0 6 a 6 1, the function

Q(at)/Q(t) is increasing in t for t > 0.

Proof. We use the basic identities (lnQ(t)) ′ = −λ(t) and λ ′(t) = λ(t)2 − tλ(t).
For the first property, it suffices to show that the function f(t) := 1

t2
· lnQ(t) is increasing in t

for t > 0. We have:
df

dt
= −

tλ(t) + 2 ln(Q(t))

t3
.

Let u(t) := tλ(t) + 2 ln(Q(t)) and observe that u ′(t) = λ(t)(t · λ(t) − t2 − 1) < 0 by Lemma 20. Thus
f ′(t) > 0 and f(t) is increasing in t.

For the second property, it suffices to show that the function g(t,a) := lnQ(at) − lnQ(t) for
each fixed 0 6 a 6 1 is increasing in t for t > 0. We have:

∂g

∂t
= λ(t) − a · λ(at)

At t = 0 the right side equals 0 and for t > 0 we will show that λ(t) > a · λ(bt). This would imply
the desired property that g(t,a) is increasing in t. Multiplying both sides by t, we need to show
that t · λ(t) > at · λ(at), that is, the function h(x) := x · λ(x) is an increasing function of x for x > 0.
This holds because h ′(x) = λ(x)(1− x2 + xλ(x)) > 0 by Lemma 20.

We are ready to prove Proposition 4.

Proposition 22 (Proposition 4 restated). Let t, δ > 0. Set η := ρ+ δ
√

1− ρ2 and λ0 :=

√

2
π . Then:

(a)
e−t2/2

t+ λ0
. Q(t) .

e−t2/2

t+ 1/λ0
6 e−t2/2; (b)

Q(t)δ
2

δt+ λ0
. Q(δt) . Q(t)δ

2

(t+ λ0)
c2

;

(c) L(t,η; ρ) > Q(t)Q(δt); and (d) Q(t) 6 Q(δt) 6 Q(t)δ
2

, if δ 6 1

Proof. Substituting the definition of λ(t) in Lemma 20 and simplifying the expression, we ob-
tain (a). Applying these bounds appropriately on both sides of (b) proves that inequality as
well.

Next, let (X,Y) ∼ BGS(ρ) so that L(t,η; ρ) = Pr
[

X > t,Y > ηt]. When ρ = 1, we have X = Y with
probability 1 so L(t,η; ρ) = Q(t), implying (c) trivially. Therefore, let ρ < 1.

Now Y = ρX+
√

1− ρ2Z where Z ∼ N(0, 1) is independent of (X,Y). Observe:

Pr[X > t,Y > ηt] = Pr[X > t, ρX+
√

1− ρ2Z > ηt]

> Pr[X > t, ρt+
√

1− ρ2Z > ηt]

= Pr[X > t,Z > δt] (valid, because ρ < 1)

= Q(t) ·Q(δt),

proving (c). For the last inequality, because δ 6 1, we have Q(t) 6 Q(δt), and the latter can be
bounded from above using the first property in Lemma 21, which implies (d).

21



B Non-Asymptotic Bounds on Correlated Binomials

We let h(·) denote the binary entropy function.

Fact 1. Stirling’s approximation of the factorial implies that for every integers 0 < ℓ < m, we have
that

(

m

ℓ

)

= Θ

(
√

m

ℓ · (m− ℓ)

)

· 2−m·h( ℓ
m ).

Fact 2 (Taylor approximation of binary entropy function). For every x ∈ [0, 1], we have that

h(1/2− x/2) = 1−
1

2 ln 2
x2 −O(x4).

We now prove Proposition 9.

Proof of Proposition 9. We have that

Pr
X∈R{0,1}n

[wt(X) 6 n/2− u
√
n/2]

=

n/2−u
√
n/2∑

i=0

(

n

i

)

· 2−n

(A)

6 n · 2−n ·
(

n

n/2− u
√
n/2

)

= n · 2−n ·Θ
(
√

n

(n/2− u
√
n/2) · (n/2+ u√n/2)

)

· 2n·h
(

n/2−u
√
n/2

n

)

(B)

6 O(n) · 2−n · 2n·(1− u2

2·ln2·n )

= O(n) · e−u2

2

(C)

6 O(n2) ·Q(u),

where (A) follows from Fact 1, (B) from Fact 2, and (C) from Proposition 4 (a). Since the
distribution of wt(X) is symmetric around n/2, the other case follows as well.

We point out that in the statement of Proposition 9 we made no effort to optimize the mul-
tiplicative function of n since that would not be consequential for our purposes. Recall that
r := n/2− t

√
n/2.

Proposition 23. For any k = o(
√
n), we have that

Pr
X∈R{0,1}n

[wt(X) 6 r] >
1

Θ(
√
n)

·Q(t).
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Proof. We have that

Pr
X∈R{0,1}n

[wt(X) 6 r] =
r∑

i=0

(

n

i

)

· 2−n

> 2−n ·
(

n

r

)

= 2−n ·Θ
(
√

n

r · (n− r)

)

· 2n·h
(

n/2−t
√
n/2

n

)

> 2−n · 1

Θ(
√
n)

· 2n·h
(

n/2−t
√
n/2

n

)

= 2−n · 1

Θ(
√
n)

· 2n·
(

1− t2

2·ln2·n−O
(

t4

n2

))

=
1

Θ(
√
n)

· e− t2

2

>
1

Θ(
√
n)

·Q(t),

where the second equality follows from Fact 1, the third equality follows from Fact 2, the fourth
equality uses the assumption that k = o(

√
n) and the fact that t = Θ(

√
k), and the last inequality

follows from Proposition 4 (a).

Lemma 24. Fix ǫ ∈ (0, 0.5]. For positive every α such that α3 ·m = om(1), we have that

Pr[Bin(m, ǫ) = (ǫ+α) ·m] > Θ

(

1√
m

)

· e−
m·α2

2·ǫ·(1−ǫ) ,

and simiarly,

Pr[Bin(m, ǫ) = (ǫ−α) ·m] > Θ

(

1√
m

)

· e−
m·α2

2·ǫ·(1−ǫ) .

Proof. Stirling’s approximation of the factorial implies that for every integers 0 < ℓ < m, we have
that

(

m

ℓ

)

= Θ

(
√

m

ℓ · (m− ℓ)

)

· 2m·h( ℓ
m ). (19)

Applying Equation (19) with ℓ , (ǫ+α) ·m, we get that
(

m

(ǫ+α) ·m

)

> Θ

(

1√
m

)

· 2m·h(ǫ+α).

Thus,

Pr[Bin(m, ǫ) = (ǫ+α) ·m] =

(

m

(ǫ+α) ·m

)

· ǫ(ǫ+α)·m · (1− ǫ)m−(ǫ+α)·m

> Θ

(

1√
m

)

· 2m·h(ǫ+α) · 2m·(−h(ǫ)+α·log( ǫ
1−ǫ ))

= Θ

(

1√
m

)

· 2m·
(

h(ǫ+α)−h(ǫ)+α·log( ǫ
1−ǫ )

)

.

Note that that for every ǫ > 0,
h ′(ǫ) = − log

( ǫ

1− ǫ

)

,
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and
h ′′(ǫ) = −

1

ln 2 · ǫ · (1− ǫ) .

Taylor expanding h(ǫ+α) around ǫ > 0, we get that

h(ǫ+α) = h(ǫ) + h ′(ǫ) ·α+
h ′′(ǫ) · α2

2
±Oǫ(α

3)

= h(ǫ) −α · log
( ǫ

1− ǫ

)

−
α2

2 · ln 2 · ǫ · (1− ǫ) ±Oǫ(α
3).

Thus, we get that

Pr[Bin(m, ǫ) = (ǫ+α) ·m] > Θ

(

1√
m

)

· 2m·
(

− α2

2·ln2·ǫ·(1−ǫ)
±Oǫ(α

3)
)

= Θ

(

1√
m

)

· e−
m·α2

2·ǫ·(1−ǫ) ,

where the last equality uses the given assumption that α3 ·m = om(1). The proof of the second
part of the lemma follows along the same line with α being replaced by −α.

Proposition 25. Fix ǫ ∈ (0, 0.5]. For every n = ω(k3), we have that

Pr
(X,Y)∼DSBS(1−2ǫ)⊗n

[Y ∈ Ball(0, r ′)|X ∈ Ball(0, r)] > Θ
(

1

n1.5

)

· 2−δ2k,

where Ball(0, r) denotes the Hamming ball of radius r centered around the all-zeros vector.

Proof. We start by showing that if A ∼ Bin(ǫ,n/2+ t
√
n/2) and B ∼ Bin(ǫ,n/2− t

√
n/2) are inde-

pendent random variables, then

Pr[A 6 B+ r ′ − r] > Θ

(

1

n

)

· e− t2δ2

2 . (20)

To prove Equation (20), note that

Pr[A 6 B+ r ′ − r] > Pr[A =
ǫ ·n+ 0.5ηt

√
n

2
,B =

ǫ ·n− 0.5ηt
√
n

2
]

= Pr[A =
ǫ ·n+ 0.5ηt

√
n

2
] · Pr[B =

ǫ ·n− 0.5ηt
√
n

2
]

Applying Lemma 24 with m = n/2+ t
√
n/2 and α = −ǫt+0.5ηt√

n+t
, we get that

Pr[A =
ǫ ·n+ 0.5ηt

√
n

2
] > Θ

(

1√
n

)

· e−
(ǫ−0.5η)2·t2
4·ǫ·(1−ǫ) .

Similarly, applying Lemma 24 with m = n/2− t
√
n/2 and α = ǫt−0.5ηt√

n−t
, we get that

Pr[B =
ǫ ·n− 0.5ηt

√
n

2
] > Θ

(

1√
n

)

· e−
(ǫ−0.5η)2·t2
4·ǫ·(1−ǫ) .
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Note that when applying Lemma 24, we have used the assumption that n = ω(k3) and the fact
that t = Θ(

√
k). Thus, we get that

Pr[A 6 B+ r ′ − r] > Θ

(

1

n

)

· e−
t2

4·ǫ·(1−ǫ)
·
(

(ǫ−0.5η)2+(ǫ−0.5η)2
)

= Θ

(

1

n

)

· e−
t2

8·ǫ·(1−ǫ)
·(2ǫ−η)2

= Θ

(

1

n

)

· e− t2δ2

2 ,

where the last equality follows from the fact that n = ω(t4), which in particular follows from the
assumption that n = Ω(k3) and the fact that t = Θ(

√
k). Equation (20) now implies that

Pr
(X,Y)∼DSBS(1−2ǫ)⊗n

[Y ∈ Ball(0, r ′)|wt(X) = r] > Θ

(

1

n

)

· 2−δ2k,

where wt(X) denotes the Hamming weight of X. The statement of Proposition 25 now follows
from the fact that

Pr
X∈R{0,1}n

[wt(X) = r|X ∈ Ball(0, r)] > Θ
(

1√
n

)

,

which itself uses the fact that r 6 n/2.

In order to prove Lemma 11, we will need the following propositions.

Proposition 26. Let t2 > 0 and amax , n · (1+ θ)/4− (t+ t2) ·
√
n/4. For every a ∈ {0, 1, . . . ,amax},

let

ψ(a) ,

(

n·(1+θ)/2
a

)

·
( n·(1−θ)/2

n/2−t2
√
n/2−a

)

(

n
n/2−t2

√
n/2

) .

Then, ψ(a) is monotonically increasing in a.

Proof. Let a ∈ {1, . . . ,amax}. Then,

ψ(a)

ψ(a− 1)
=

(n/2 · (1+ θ) + 1− a) · (n/2− t2 ·
√
n/2+ 1− a)

a · (t2 ·
√
n/2− θ ·n/2+ a) .

This implies that ψ(a) > ψ(a− 1) if and only if

a 6
(n/2 · (1+ θ) + 1) · (n/2− t2 ·

√
n/2+ 1)

n+ 2
,

which is satisfied by all a ∈ {0, 1, . . . ,amax} (for large enough n).

Proposition 27. Assume that t = o(n1/4), t2 = o(n1/4) and θ · t · t2 = on(1). Then,

ψ(amax) 6 Θ

(

1√
n

)

· e− t2

2 .

Proof. By Fact 1, we have that

(

n · (1+ θ)/2
amax

)

= Θ

(

√

n · (1+ θ)/2
amax · (n · (1+ θ)/2− amax)

)

· 2−n· (1+θ)
2 ·h

(

amax
n·(1+θ)/2

)

= Θ

(

1√
n

)

· 2−n· (1+θ)
2 ·h

(

1
2−

(t+t2)

2·(1+θ)·
√
n

)

(21)
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(where the second equality uses the assumptions that t = o(
√
n), t2 = o(

√
n) and θ = on(1)),

(

n · (1− θ)/2
n/2− t2

√
n/2− amax

)

= Θ

(

√

n(1− θ)/2

(n2 −
t2

√
n

2 − amax)(
t2

√
n

2 − nθ
2 + amax)

)

2
−n

(1−θ)
2 h

(

n/2−t2
√
n/2−amax

n·(1−θ)/2

)

= Θ

(

1√
n

)

· 2−n· (1−θ)
2 ·h

(

1
2−

(t2−t)

2·(1−θ)·
√
n

)

(22)

and
(

n

n/2− t2
√
n/2

)

= Θ

(
√

n

(n/2− t2
√
n/2) · (n/2+ t2

√
n/2)

)

· 2−n·h
(

n/2−t2
√
n/2

n

)

= Θ

(

1√
n

)

· 2−n·h
(

1
2−

t2
2·
√
n

)

, (23)

where the second equality uses the assumption that t2 = o(
√
n). Combining Equation (21),

Equation (22) and Equation (23), we get that

ψ(amax) = Θ

(

1√
n

)

· 2
−n·

(

(1+θ)
2 ·h

(

1
2−

(t+t2)

2·(1+θ)·
√
n

)

+
(1−θ)

2 ·h
(

1
2−

(t2−t)

2·(1−θ)·
√
n

)

−h
(

1
2−

t2
2·
√
n

)

)

. (24)

By Fact 2, we have that

(1+ θ)

2
· h

(1

2
−

(t+ t2)

2 · (1+ θ) · √n
)

+
(1− θ)

2
· h

(1

2
−

(t2 − t)

2 · (1− θ) · √n
)

− h
(1

2
−

t2

2 · √n
)

=
(1+ θ)

2

(

1−
(t+ t2)

2

2 ln 2 · (1+ θ)2n
)

+
(1− θ)

2

(

1−
(t− t2)

2

2 ln 2 · (1− θ)2n
)

−
(

1−
t22

2 ln 2 ·n
)

±O
((t+ t2)

4

n2

)

=
t2

2 ln 2 ·n +
(θ2 · t2 − 4 · θ · t · t2 + 2 · θ2 · t22)

4 ln 2 ·n ±O
((t+ t2)

4

n2

)

, (25)

where the second equality above uses the fact that θ 6 1. Plugging Equation (25) back in Equa-
tion (24), we get that

ψ(amax) = Θ

(

1√
n

)

· 2− t2

2 ln2
−

(θ2·t2−4·θ·t·t2+2·θ2·t2
2
)

4 ln 2
±O

(

(t+t2)
4

n

)

6 Θ

(

1√
n

)

· 2− t2

2 ln 2

= Θ

(

1√
n

)

· e− t2

2 ,

where the inequality uses the assumptions that t = o(n1/4), t2 = o(n1/4) and θ · t · t2 = on(1).
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C Correlated Randomness Generation

We first recall that Canonne et al. [CGMS14] – using the converse bound of [BM11] – showed
that for any ǫ > 0, if Alice and Bob are given access to i.i.d. samples from DSBS(1− 2ǫ), then,
perfectly agreeing on k random bits requires Ωǫ(k) bits of communication even in the two-way
model. They also raised the following intriguing question: “What if their goal is only to generate
more correlated bits than they start with? What is possible here and what are the limits?”

We partially answer this question and show that for any ǫ > 0 and ǫ ′ ≫ ǫ · log(1/ǫ), if Alice
and Bob are given access to i.i.d. samples from DSBS(1−2ǫ ′), then, generating k random samples
from DSBS(1− 2ǫ) requires Ωǫ,ǫ ′(k) bits of communication.

Definition 28 (Correlated Randomness Generation). In the CorrelatedRandomnessγ,ǫ ′,α,k prob-
lem, Alice and Bob are given access to i.i.d. samples from a known source/distribution µ. Their
goal is to for Alice to output wA ∈ {0, 1}k and for Bob to output wB ∈ {0, 1}k, that satisfy the
following properties: (i) Pr[∆(wA,wB) 6 ǫ ′k] > γ; (ii) H∞(wA) > α · k; and (iii) H∞(wB) > α · k.

We point out that one can alternatively define Correlated Randomness Generation in terms
of coming close, say in total variation distance, to DSBS(1− 2ε ′)⊗k. The results in this section
apply to this variant as well. This is because of the next lemma which can be proved by a simple
Chernoff bound and which says that if Alice and Bob are given access to i.i.d. samples from
DSBS(1− 2ǫ ′), then they can generate two length-k binary strings that lie in a Hamming ball of
radius ≈ ǫ ′ · k with high probability.

Lemma 29. Fix 0 < δ < ǫ ′ and let DSBS(1− 2(ǫ ′ − δ)) be the source. Then, there is a non-interactive

protocol solving CorrelatedRandomnessγ,ǫ ′ ,α,k with γ = 1− exp(−(ǫ ′ − δ)2 · k) and α = 1.

We are now ready to state the main result.

Theorem 30 (Interactive Correlated Randomness Generation). Any interactive protocol solving

CorrelatedRandomnessγ,ǫ ′ ,α,k for the source DSBS(1− 2(ǫ ′− δ)) with h(ǫ ′) 6 4 ·ǫ · (1−ǫ) ·α/(1+Ω(1))

should communicate at least Ω(ǫ ·α · k) −O(log(1/γ)) bits.

Theorem 31 says that non-interactively generating two strings with min-entropy k and that lie
in a Hamming ball of radius ≈ ǫ ′ · k cannot be done with success probability 2−oǫ(k) when Alice
and Bob are given access to i.i.d. samples from DSBS(1− 2ǫ) with ǫ = ω(ǫ ′ · log(1/ǫ ′)).

Theorem 31 (Non-Interactive Correlated Randomness Generation). There is no non-interactive pro-

tocol solving CorrelatedRandomnessγ,ǫ ′ ,α,k for the source DSBS(1− 2ǫ) with h(ǫ ′) 6 4 · ǫ · (1− ǫ) ·α and

γ > 2−νk where

ν = α · [
√

1− h(ǫ ′)/α− (1− 2ǫ)]2

4 · ǫ · (1− ǫ) .

Consequently, whenever h(ǫ ′) 6 4 · ǫ · (1− ǫ) · α/(1+Ω(1)), there is no non-interactive protocol solving

CorrelatedRandomnessγ,ǫ ′ ,α,k given i.i.d. access to DSBS(1− 2ǫ) with γ > 2−Ω(ǫ·α·k).

We point out that getting the tight bounds in Theorem 30 and Theorem 31 remains a very
interesting open question. In order to prove Theorem 30 and Theorem 31, we next introduce a
“list” version of Common Randomness which is implicit in several of the known converse results
for Common Randomness Generation.
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Definition 32 (List Common Randomness Generation). In the ListCommonRandomnesskγ,b prob-
lem, Alice and Bob are given access to i.i.d. samples from a known distribution µ over pairs of
random variables. Their goal is for Alice to output an element wA and for Bob to output a list
LB (over the same universe), such that (i) Pr[wA ∈ LB] > γ; (ii) Hmin(wA) > k; and (iii) |LB| 6 b.

We prove the following converse results for List Common Randomness Generation both in
the non-interactive and two-way communication models:

Theorem 33 (Non-Interactive List Common Randomness Generation). There is no non-interactive

protocol solving ListCommonRandomnesskγ,b for the source DSBS(1− 2ǫ) with (logb)/k 6 4 · ǫ · (1− ǫ)
and with γ > 2−νk where

ν =
[
√

1− (logb)/k− (1− 2ǫ)]2

4 · ǫ · (1− ǫ) .

Consequently, whenever (logb)/k 6 4 · ǫ · (1− ǫ)/(1+Ω(1)), there is no non-interactive protocol solving

ListCommonRandomnesskγ,b with γ > 2−Ω(ǫ·k).

Proof. The proof is very similar to that of the converse result of [GR16]. Let Π be a protocol
solving ListCommonRandomnesskγ,b. Let X be Alice’s input and wA , f(X) be her output, and let
Y be Bob’s input and LB , (g1(Y),g2(Y), . . . ,gb(Y)) be his output. Here, (X,Y) ∼ DSBS(1− 2ǫ)⊗n,
and f, g1, g2, . . . , gb are functions mapping {0, 1}n to {0, 1}k. For every y ∈ {0, 1}n and z ∈ {0, 1}k,
denote β(z|y) , Pr[f(X) = z|Y = y]. The success probability of the protocol Π is given by

Pr[wA ∈ LB] = Pr[f(X) ∈ {g1(Y),g2(Y), . . . ,gb(Y)}]

= Ey[Pr[f(X) ∈ LB(y) | Y = y]

= Ey[
∑

z∈LB(y)

β(z|y)]

6 Ey[(
∑

z∈LB(y)

β(z|y)q)1/q] · b1−1/q

6 Ey[(
∑

z

β(z|y)q)1/q] · b1−1/q

6 (Ey[
∑

z

β(z|y)q])1/q · b1−1/q

= (
∑

z

Ey[β(z|y)
q])1/q · b1−1/q,

where the first inequality follows from Holder’s inequality and the last inequality follows from
the fact that the function x 7→ x1/q for non-negative x is concave for every q > 1. Consider the
function hz : {0, 1}n → {0, 1} given by hz(X) = 1[f(X) = z] for all X ∈ {0, 1}n. Hypercontractivity
then implies that

Ey[β(z|y)
q])1/q = Ey[E[hz(X) | Y = y]q]

= ‖E[hz(X) | Y]‖qq
6 ‖hz‖qp
= (Exhz(x))

q/p

= Pr[f(X) = z]q/p.
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Thus, the success probability of Π satisfies

Pr[wA ∈ LB] 6 (
∑

z

Pr[f(X) = z]q/p)1/q · b1−1/q

= (
∑

z

Pr[f(X) = z]q/p−1 · Pr[f(X) = z])1/q · b1−1/q

6 (2−k·(q
p−1) ·

∑

z

Pr[f(X) = z])1/q · b1−1/q

= 2−k·(q/p−1)· 1q · b1−1/q,

where the inequality above follows from the fact that wA has min-entropy at least k bits. Setting
p = 1+ (1− 2 · ǫ)2 · δ and q = 1+ δ and optimizing for δ, we get that

γ 6 2−k· [−
√
s+

√
1−(logb)/k]2

1−s ,

where s = (1− 2ǫ)2 is the Strong Data Processing Constant of the DSBS(1− 2ǫ) source, and where
the above bound holds assuming that (logb)/k 6 1− s. The theorem statement now follows.

We point out that Theorem 33 implies a lower bound on the 1-way communication complexity
of List Common Randomness Generation (by essentially increasing the list size by a factor of
2c where c is the communication from Alice to Bob). It turns out that, by adapting a reduction
of [CGMS14], one can also use Theorem 33 to get a lower bound on the interactive communication
complexity of List Common Randomness Generation, which we state next.

Theorem 34 (Interactive List Common Randomness Generation). Let DSBS(1− 2ǫ) be the source.

Then, any interactive protocol solving ListCommonRandomnesskγ,b with (logb)/k 6 4 · ǫ · (1− ǫ) should

communicate at least

k · [
√

1− (logb)/k− (1− 2ǫ)]2

8 · ǫ · (1− ǫ) −
3

2
log(1/γ) −O(1) bits.

Consequently, whenever (logb)/k 6 4 · ǫ · (1− ǫ)/(1+Ω(1)), any interactive protocol solving

ListCommonRandomnesskγ,b should communicate at least Ω(ǫ · k) −O(log 1/γ) bits.

Proof. The proof will combine Theorem 33 with the approach of [CGMS14] for getting lower
bounds on interactive Common Randomness Generation using lower bounds on non-interactive

Common Randomness Generation.
Let Π be an interactive protocol solving ListCommonRandomnesskγ,b with (logb)/k 6 (1 −

s)/(1 +Ω(1)). Let X denote Alice’s input and Y denote Bob’s input. Consider now the non-
interactive protocol Π where on input pair (X,Y):

1. Alice samples Y ′ from the conditional distribution of µ given X, and she outputs the element
that she would have output in the execution of Π on (X,Y ′).

2. Bob samples X ′ from the conditional distribution of µ given Y, and he outputs the list that
he would have output in the execution of Π on (X ′,Y).

Note that the non-inteactive protocol Π ′ satisfies the property that the min-entropy of Alice’s
output is at least k (since it is exactly equal to the min-entropy of Alice’s output under Π). We
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next show that the success probability of the protocol Π ′ is at least Ω(γ3 · 2−2·c) where c is the
two-way communication complexity of Π. Using Theorem 33, this would imply that

c > k · [
√

1− (logb)/k− (1− 2ǫ)]2

8 · ǫ · (1− ǫ) −
3

2
log(1/γ) −O(1),

which implies the desired statement. We now lower-bound the success probability of Π ′. Let
PX(t) denote the probability over Y ′ conditioned on X that Π(X,Y ′) is equal to the transcript t.
Similarly, let QY(t) denote the probability over X ′ conditioned on Y that Π(X ′,Y) is equal to the
transcript t. Let G be the set of all input pairs (X,Y) such that, in the execution of Π(X,Y), Alice’s
output element belongs to Bob’s output list. Then, the success probability of Π is equal to

γ =
∑

(X,Y)∈G

µ(X,Y).

We say that a transcript t is unlikely for X if PX(t) < (γ/4) · 2−c. Similarly, we say that a transcript
t is unlikely for Y if QY(t) < (γ/4) · 2−c. Let B be the set of all input-pairs (X,Y) such that the
transcript Π(X,Y) is either unlikely for X or unlikely for Y. Note that

∑

(X,Y): Π(X,Y) unlikely for X

µ(X,Y) =
∑

X

∑

t unlikely for X

∑

Y: Π(X,Y)=t

µ(X,Y)

=
∑

X

µ(X) ·
∑

t unlikely for X

PX(t)

<
∑

X

µ(X) ·
∑

t unlikely for X

γ

4
· 2−c

<
γ

4
. (26)

An identical argument shows that
∑

(X,Y): Π(X,Y) unlikely for Y

µ(X,Y) <
γ

4
. (27)

Combining Equation (26) and Equation (27), we get that
∑

(X,Y)∈B

µ(X,Y) <
γ

2
.

The success probability of Π ′ can now be lower-bounded by
∑

(X,Y)∈G

µ(X,Y) · PX(Π(X,Y)) ·QY(Π(X,Y)) >
∑

(X,Y)∈G\B

µ(X,Y) · PX(Π(X,Y)) ·QY(Π(X,Y))

>
∑

(X,Y)∈G\B

µ(X,Y) · γ
2

16
· 2−2·c

=
γ2

16
· 2−2·c ·

(

∑

(X,Y)∈G

µ(X,Y) −
∑

(X,Y)∈B

µ(X,Y)
)

>
γ3

32
· 2−2·c,

as desired.
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We note that Theorem 33 and Theorem 34 also hold with the same bounds when the source
is BGS(1− 2ε) instead of DSBS(1− 2ε). We now show how Theorem 33 implies Theorem 31, and
how Theorem 34 implies Theorem 30.

Proof of Theorem 31. Given a protocol Π for CorrelatedRandomnessγ,ǫ ′,α,k, we give a protocol Π ′

for ListCommonRandomnessα·k
γ,b with b 6 2h(ǫ ′)·k as follows:

1. If wA is the output of Alice under the protocol Π, then she also outputs wA under the
protocol Π ′.

2. If wB is the output of Bob under the protocol Π, then he outputs the list LB , Ball(wB, ǫ ′ · k)
under the protocol Π ′.

Theorem 31 now follows from Theorem 33 and the fact that |Ball(wa, ǫ ′ · k)| 6 2h(ǫ ′)·k.

Proof of Theorem 30. The proof is identical to that of Theorem 31 except that we use Theorem 34

instead of Theorem 33.
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D Communication with Imperfect Shared Randomness

We start by stating the most general result for this problem that applies to many sources of
randomness including DSBS(ρ).

Theorem 35. Let ρ ∈ (0, 1] and µ be any source of randomness with maximal correlation ρ. Every

(possibly partial) function f with (1/3)-error two-way communication c bits with perfect randomness has

δ-error zero-communication communication with µ-randomness at most 2O(c) · log(1/δ)/ρ2 bits for every

δ > 0.

We point out that the above theorem yields DSBS(ρ) as a special case because of the fact (due
to [Wit75]) that the maximal correlation of DSBS(ρ) is equal to ρ.

In order to prove Theorem 35, we will give a zero-communication protocol with µ-randomness
(where µ is any source of randomness with maximal correlation ρ) solving the following prob-
lem which is equivalent to “sketching ℓ2-norms on the unit sphere.” This problem was studied
by [CGMS14] to prove a 1-way (instead of a zero-communication) analogue of Theorem 35.

Definition 36 (GapInnerProductnr,s). Let −1 6 s < r 6 1 be known to Alice and Bob. Alice is also
given a unit vector u ∈ Rn and Bob is given a unit vector v in Rn. The goal is for Alice and Bob
to distinguish the case where u v > r from the case where u v 6 s.

The next lemma shows that GapInnerProduct is complete for functions with low interactive
communication complexity.

Lemma 37 ( [CGMS14]). Let f be a (possibly partial) two-party function f : {0, 1}2·n → {0, 1}, such that

f has (1/3)-error two-way communication complexity c bits with perfect randomness. Then, there exists

a function ℓ(n) ∈ N along with mappings gA : {0, 1}n → {± 1√
ℓ(n)

}ℓ(n) and gB : {0, 1}n → {± 1√
ℓ(n)

}ℓ(n)

such that

1. If f(x,y) = 0, then (gA(x),gB(y)) is a NO instance of GapInnerProductℓ(n)
2
3 ·2−k−1, 13 ·2−k−1

. Namely,

gA(x) gB(y) 6
1
3 · 2−k − 1.

2. If f(x,y) = 1, then (gA(x),gB(y)) is a YES instance of GapInnerProductℓ(n)
2
3 ·2−k−1, 13 ·2−k−1

. Namely,

gA(x) gB(y) >
2
3 · 2−k − 1.

The following theorem gives a zero-communication protocol with µ-randomness for GapIn-
nerProduct (where µ is any source with maximal correlation ρ). It matches the performance of
the one-way protocol of [CGMS14].

Theorem 38 (zero-communication protocol for GapInnerProductnr,s). Let ρ ∈ (0, 1] and −1 6 s <

r 6 1 be given, and let µ be any source of randomness with maximal correlation ρ. There is a zero-

communication protocol using µ-randomness that solves GapInnerProductnr,s using O( 1
ρ2(r−s)2

) bits of

communication.

We point out that Theorem 38 gives a protocol for sketching ℓ2-norms using imperfectly shared
randomness, which might be of independent interest. Theorem 35 now follows by combining
Lemma 37 and Theorem 38. In the rest of this section, we prove Theorem 38. First, we recall the
following observation of [Wit75] which can be used to convert any source µ of randomness with
maximal correlation ρ to BGS(ρ).
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Proposition 39 ( [Wit75]). Let µ be a source of randomness with maximal correlation ρ. Given access to

i.i.d. samples from µ, Alice and Bob can (without interaction) generate i.i.d. samples from BGS(ρ).

Proposition 39 follows from the definition of maximal correlation and from the two-dimensional
Central Limit Theorem. We also recall the following well-known fact.

Fact 3 (Sheppard’s formula [She99]). If (X,Y) ∼ BGS(ρ) then Pr[Sign(X) 6= Sign(Y)] =
arccos(ρ)

π .

The following lemma is based on the well-known hyperplane rounding technique.

Lemma 40. Let δ > 0 and γ < 0 be given, and let t = O(log(1/δ)/γ2) be large enough. Let Alice be given

(X1,X2, . . . ,Xt) ∈ Rt and Bob be given (Y1,Y2, . . . ,Yt) ∈ Rt where (Xi,Yi) ∼ BGS(η) independently over

i ∈ [t]. Then, there is a deterministic zero-communication protocol that distinguishes the case where η > 0
from the case where η 6 γ using O(1/γ2) bits of communication, and with probability at least 1− δ (where

the probability is over (X1,X2, . . . ,Xt) and (Y1,Y2, . . . ,Yt)).

Proof. For every i ∈ [t], Alice computes X̃i = Sign(Xi) and sends the t bits X̃1, X̃2, . . . , X̃t to the
referee. Similarly, Bob computes Ỹi = Sign(Yi) for each i ∈ [t], and sends the t bits Ỹ1, Ỹ2, . . . , Ỹt to
the referee. Let τ = (arccos(γ)/π− 1/2)/2. The referee computes the Hamming distance ∆(X̃, Ỹ)
and declares that η > 0 if ∆(X̃, Ỹ) 6 τ, and declares that η 6 γ otherwise. Note that if η > 0, then
for each i ∈ [t],

Pr[Sign(Xi) 6= Sign(Yi)] =
arccos(η)

π
6

arccos(0)
π

=
1

2
. (28)

On the other hand, if η 6 γ, then for each i ∈ [t],

Pr[Sign(Xi) 6= Sign(Yi)] =
arccos(η)

π
>

arccos(γ)
π

=
1

2
−Θ(γ) −O(γ3), (29)

where the last equality follows from the Taylor series approximation of arccos(x) around x = 0.
The proof now follows by combining Equations (28) and (29) and an application of the Chernoff
bound.

We are now ready to prove Theorem 38.

Proof of Theorem 38. Alice is given u ∈ Rn and Bob is given v ∈ Rn such that ‖u‖2 = ‖v‖2 =

1. They are also given access to i.i.d. samples from a source µ of randomness with maximal
correlation ρ. Using Proposition 39, Alice and Bob can (without interaction) generate arbitrarily
many i.i.d. samples from BGS(ρ). We first assume that r = 0. We will handle the more general
case at the end of the proof. Set γ = ρ · s and let t = O(log(1/δ)/γ2) be as in the statement of
Lemma 40. Draw t i.i.d vectors (X(1),Y(1)), (X(2),Y(2)), . . . , (X(t),Y(t)) each from BGS(ρ)⊗n. Then,
by elliptical symmetry, we get that independently over i ∈ [t], (u X(i), v Y(i)) ∼ BGS(ρ(u v)).
Lemma 40 now implies a zero-communication protocol that distinguish the case where u v〉 > 0
from the case where u v 6 s, using O( 1

ρ2(r−s)2
) bits of communication.

We now handle the case where r is not necessarily equal to 0. First, note that without loss
of generality, we can assume that r > 0. This is because if r < 0, then Alice can negate each
coordinate in her input vector which would preserve its ℓ2 norm and replace r by −s > 0 and s
by −r > 0. Let N , n · (1+ r). Bob will construct a vector u ′ ∈ RN, and Alice will construct a
vector v ′ ∈ RN, such that ‖u ′‖2 = ‖v ′‖2 = 1, and:

1. If u v > r, then u ′ v ′ > 0.
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2. If u v 6 s, then u ′ v ′ 6 s−r
1+r = −Θ(r− s).

To do so, Alice sets u ′
i = ui ·

√

n/N for every i ∈ [n] and u ′
i = +1/

√
N for all i ∈ {n+ 1, . . . ,N}. On

the other side, Bob sets v ′i = vi ·
√

n/N for all i ∈ [n] and v ′i = −1/
√
N for all i ∈ {n+ 1, . . . ,N}.
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E LSH and Common Randomness

An important parameter that governs the performance of an LSH hash family H is given by
its ρ̄(H) parameter [IM98]. Let 0 6 α 6 1 and c > 1. Loosely speaking, if the hash fam-
ily ensures that points at relative distance at most α collide with probability at least p1 while
points at relative distance at least cα collide with probability at most p2, then ρ̄(H,α, c) 6
log(1/p1)/ log(1/p2). Smaller values of ρ̄(H,α, c) can potentially lead to improvements in the
data structure performance. For the Hamming cube {0, 1}d, there is a trivial scheme H0 such that
ρ̄(H0) 6 log(1/(1−α))/ log(1/(1− cα)) → 1/c as α→ 0.

We show that the zero-communication common randomness schemes considered here and in
previous works [BM11, GR16] imply an LSH scheme with a strictly better ρ̄ parameter. This is
perhaps not surprising since the best strategy for a universal scheme is to map close-by points
to the same output in order to achieve high-agreement probability, but to ensure high entropy it
must map far-away points to different outputs.

Recall that in the trivial scheme H0 the hash function just outputs the bit at a random co-
ordinate in [d]. When the relative distance between the two points is ε, this is tantamount
to producing a single sample from DSBS(1 − 2ε). Thus the trivial LSH scheme is also a triv-
ial common randomness scheme using one sample from DSBS(1 − 2ε). If we use k samples,
i.e. take k independent hash functions, and use the trivial scheme we obtain an agreement
pρ :=

(

1+ρ
2

)k. Let f0(ρ) = log(1/pρ)/k = log(2/(1+ ρ). In contrast, if we use the mapping given by
the common randomness scheme then for this hash family (call it H1), the analogous expression
equals fcr(ρ) := (1 − ρ)/(1 + ρ) +O(log(k)/k. For large k we can ignore the lower order term.
So let fcr(ρ) = (1− ρ)/(1 + ρ). To show that ρ̄(H2) is better we need to show for ρ > ρ ′ that
fcr(ρ)/fcr(ρ

′) 6 f(ρ)/f(ρ ′). That is, f(ρ)/fcr(ρ) is an increasing function in [0, 1]. This can be veri-
fied analytically. In fact it is always strictly increasing so the bound for the CR scheme is strictly
better than the trivial one.
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