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ABSTRACT
The optic nerve transmits visual information to the brain as trains
of discrete events, a low-power, low-bandwidth communication
channel also exploited by silicon retina cameras. Extracting high-
fidelity visual input from retinal event trains is thus a key challenge
for both computational neuroscience and neuromorphic engineer-
ing. Here, we investigate whether sparse coding can enable the
reconstruction of high-fidelity images and video from retinal event
trains. Our approach is analogous to compressive sensing, in which
only a random subset of pixels are transmitted and the missing
information is estimated via inference. We employed a variant of
the Locally Competitive Algorithm to infer sparse representations
from retinal event trains, using a dictionary of convolutional fea-
tures optimized via stochastic gradient descent and trained in an
unsupervised manner using a local Hebbian learning rule with
momentum.

We used an anatomically realistic retinal model with stochastic
graded release from cones and bipolar cells to encode thumbnail
images as spike trains arising from ON and OFF retinal ganglion
cells. The spikes from each model ganglion cell were summed over a
32msec timewindow, yielding a noisy rate-coded image. Analogous
to how the primary visual cortex is postulated to infer features
from noisy spike trains arising from the optic nerve, we inferred
a higher-fidelity sparse reconstruction from the noisy rate-coded
image using a convolutional dictionary trained on the original
CIFAR10 database.

To investigatewhether a similar approachworks on non-stochastic
data, we demonstrate that the same procedure can be used to recon-
struct high-frequency video from the asynchronous events arising

from a silicon retina camera moving through a laboratory environ-
ment.
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1 INTRODUCTION
In the vertebrate central nervous system, spike trains play a fun-
damental role as the primary communication mechanism used to
represent and transmit information. Understanding how biological
neurons learn to infer high-fidelity image content from asynchro-
nous spike trains is thus a fundamental goal of computational neu-
roscience research. The vertebrate retina provides a particularly
accessible example of spike train encoding in the central nervous
system. Incident light is focused onto a 2D array of photo-receptors
where it is transduced into electrochemical signals via a process
that can be formally described by realistic computational models
[24]. Employing graded (non-spiking) stochastic release, bipolar
cells relay the output of photoreceptor terminals to retinal ganglion
cells (RGCs), whose axons comprise the optic nerve. The retina
does not simply map light intensity into spikes, however. Rather,
the retina consists of two major processing layers that implement a
variety of spatiotemporal filtering operations and correspondingly
there exist a variety of RGC subtypes which transmit different types
of visual information [5, 21, 25]. By exploiting such heterogeneity,
spikes arising from RGCs are thought to provide a rich source of
information about the visual world to the brain. However, due to
stochastic release at bipolar cell synapses and other sources of noise,
RGC spike trains are often quite noisy, especially when interpreted
as a rate code in which visual information is represented by the
total number of spikes in a given interval [9]. On the other hand, it
has also been shown that RGCs convey information about spatially
and temporally complex stimuli in the relative timing of RGC spikes
[9, 14, 23]. Here, we utilize a previously described retinal model
that seeks to explain synchronous, stimulus-selective oscillations
between RGCs [10, 12, 16]. In particular, we consider how simple
cells in the primary visual cortex use learned dictionaries optimized
for sparse coding [17] to infer high-fidelity image content from
noisy retinal spike trains.
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Sparse coding accounts for a variety of experimentally measured
linear and non-linear response properties of V1 simple cells [30]
and can be implemented in a biologically-plausible manner in terms
of lateral inhibition [22]. Algorithmically, sparse coding employs an
overcomplete set of non-orthogonal basis functions (feature vectors)
to infer a sparse combination of non-zero activation coefficients
that most accurately reconstruct each input image. Most relevant
for the present study, sparse coding provides a powerful technique
for image denoising [7] . Because sparse coding seeks to reconstruct
a given image using a small number of previously learned features,
added Gaussian or white noise tends to be ignored compared to
the original image content. Given that images reconstructed from a
rate-coded retinal spike trains are typically noisy, we hypothesized
that sparse coding could be used to infer higher-fidelity images
from noisy retinal spike trains.

But how to interpret the retinal code? Interpreted as a simple rate
code, we can reconstruct noisy retinal images simply by summing
all of the spikes from each RGC in a given time interval. Indeed,
the initial results presented here assume a simple rate code for
interpreting the spikes arising from model RGCs in response to
static thumbnail images. But what about the above cited evidence
that significant visual information is also encoded in the relative
timing of RGC spikes? As there does not yet exist a consensus
retinal model that accounts for all aspects of spike timing among
RGCs in response to natural video and corresponding experimental
data is difficult to obtain, we instead use event trains generated by
a silicon retina camera. Analogous to the vertebrate retina, silicon
retina cameras also represent and transmit information as trains of
discrete events produced whenever the absolute value of the local
pixel intensity changes by more than a threshold amount. Here,
we use a biologically-plausible implementation of sparse coding
to reconstruct visual stimuli from silicon retina event trains as a
surrogate for the temporally structured spikes trains generated
by RGCs in response to spatially and temporally complex stimuli
[2, 18].

Silicon retinal cameras are also useful imaging devices that ad-
dress some of the key limitations of conventional video cameras.
The best state-of-the-art artificial vision devices still suffer from
limitations imposed by their frame-based operation, in which visual
information is acquired as a series of image frames recorded at a
predetermined frame rate. However, things happen between frames
and information gets lost. In fact, comparing the performance of
biological vision systems to the best state-of-the-art camera, frames
do not appear to be a very efficient or useful form of encoding
visual information. The second drawback of frame-based visual
information operation is redundancy. Each recorded frame conveys
the information from all pixels, regardless of whether this infor-
mation has not changed since the last frame had been acquired.
Biological vision systems do not know the concept of a frame, they
are controlled and driven by events happening within the scene.
Inspired by biological vision systems, silicon retina cameras em-
ploy the frameless concept of biological vision to artificial imaging
systems. Instead of recording the acquisition of visual information
that controlled only limited an array of pixel regardless of whether
no changed in the array, it transfers the decision making responsi-
bility to the single pixel to handle its own information individually.
Silicon retina only record the events when a small or large pixel

Figure 1: Illustration of the retinal decoding problem. Spikes
arising fromON and OFF retinal ganglion cells (RGCs) must
be converted back into an image.[11]

intensity has changed within the scene in view which are more
efficient and consume less power than comparable digital systems
[20]. Thus, there is strong motivation to develop techniques for
inferring high-fidelity video from the discrete events generated by
a silicon retina camera.

A recent approach to reconstructing high-fidelity images from
retinal spike trains used a linear decoder based on measured RGCs
kernels followed by a deep neural network to further enhance the
image [19]. However, the reconstructed images lose many details
compared with the original natural images. The present study is
also related to the concept of compressive sensing. Given only a
random or fixed subset of pixels as input, sparse coding can identify
the minimal set of generators that explains the observed pixels and
infer from them the missing pixel values [3, 6, 26, 29].

In this work we apply compressive sensing based sparse coding
approaches to enable the reconstruction of high-fidelity images and
video from retinal event trains.We employed a variant of the Locally
Competitive Algorithm to infer sparse representations from retinal
event trains, using a dictionary of convolutional features optimized
via stochastic gradient descent and trained in an unsupervised man-
ner using a local Hebbian learning rule with momentum. First, We
report that a higher-fidelity sparse reconstruction is inferred from
the noisy rate-coded image (The summed spikes from ganglion
cell model over a 32 msec time window) by using a convolutional
dictionary trained on the original CIFAR10 database. Additionally,
we were able to estimate high frame rate video from a low-power,
low-bandwidth silicon retina camera by training a dictionary of
convolutional spatiotemporal features for simultaneously recon-
structing differences of video frames (recorded at 22HZ and 5.56Hz)
as well as discrete events generated by the silicon retina (binned at
484Hz and 278Hz).
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2 EVENT TRAIN SOURCES
We used two sources of event-based of data streams generated
in response to visual stimuli. The Retinal Ganglion Cell model
produced spike events corresponding to both ON and OFF ganglion
cells when fed images from the CIFAR10 database. The Silicon
Retinamodel encodes video as two streams of discrete binary events,
corresponding to supra-threshold increases and decreases in local
pixel intensity, respectively.

2.1 Retinal Model
Descriptions of an earlier Matlab based retinal model for generat-
ing spiking activity from ON ganglion cells have been published
previously [8, 11, 13]. The retinal model used here, implemented
in PetaVision [1], added OFF ganglion cells and included gap junc-
tion coupling between the ON and OFF small amacrine cells (mak-
ing them effectively bistratified) but was otherwise anatomically
identical (an input file for executing the retinal model and which
documents all model parameters is available at: [27]). The sparse
reconstruction pipeline architecture is illustrated in Figure 2. Gray-
scale CIFAR10 images were fed to the cone layer, producing output
consisting of ON and OFF ganglion cell spike trains. A sparse cod-
ing model (available here: [28]), also implemented in PetaVision,
was used to infer the reconstruction of high-fidelity ON and OFF
images from the sum of the noisy ON and OFF ganglion cell spike
trains.

2.2 Silicon Retina
The silicon retina camera is a form of imaging technology inspired
by biological vision [15]. It only measures and transmits event data
when the value of a pixel’s intensity changes beyond a predefined
threshold. The resulting video resembles images run through an
edge detection algorithm. This is because intensity changes tend
to mostly occur at the edges. This sensitivity to object boundaries
allows the silicon retina camera to capture very fast dynamic events
with relatively small bandwidth.

The pipeline architecture for sparse reconstruction of events
from a silicon retina camera is illustrated in Figure 4. The original
silicon retina positive and negative spike events are first produced
by a low-power, low-bandwidth silicon retina camera. A sparse cod-
ing model is then used to simultaneously reconstruct higher frame
rate video from the original silicon retina positive and negative
events by training a linked dictionary of convolutional spatiotem-
poral features for reconstructing silicon retina event trains and
static features for reconstructing differences of video frames.

3 SPARSE CODING
Given an overcomplete basis, sparse coding algorithms seek to iden-
tify the minimal set of generators that most accurately reconstruct
each input image. In neural terms, each neuron is a generator that
adds its associated feature vector to the reconstructed image with
an amplitude equal to its activation. For any particular input image,
the optimal sparse representation is given by the vector of neural
activations that minimizes both image reconstruction error and
the number of neurons with non-zero activity. Formally, finding a
sparse representation involves finding a minimum of the following

cost function:

E( −→I ,ϕ, −→a ) = min
{−→a , ϕ }

[
1
2
| |−→I − ϕ ∗ −→a | |2 + λ | |−→a | |1

]
, (1)

In Eq. (1),
−→
I is an image unrolled into a vector, and ϕ is a dictionary

of feature kernels that are convolved with the sparse representation
−→a . The factor λ is a tradeoff parameter; larger λ values encourage
greater sparsity (fewer non-zero coefficients) at the cost of greater
reconstruction error. Both the sparse representation −→a and the
dictionary of feature kernels ϕ can be determined by a variety of
standard optimization methods.

Our approach to compute a sparse representation for a given in-
put image is based on a convolutional generalization of a rectifying
Locally Competitive Algorithm (LCA) [4]. Once a sparse represen-
tation for a given input image has been found, the basis elements
associated with non-zero activation coefficients are adapted accord-
ing to a local Hebbian learning rule (with a momentum term for
faster convergence) that further reduces the remaining reconstruc-
tion error. Starting with random basis elements, dictionary learning
was performed via Stochastic Gradient Descent (SGD). This training
procedure can learn to factor a complex, high-dimensional natural
image into an overcomplete set of basis vectors that capture the
high-dimensional correlations in the data.

4 APPROACH
In this section we apply compressive sensing based sparse coding
approaches to enable the reconstruction of higher fidelity images
from model retinal spike trains.

4.1 Sparse Decoder
Our spike train decoder is based on combining sparse coding with
ideas from compressive sensing [3, 6].

The architecture is illustrated in Figure 3, where the input layer
(top left) is the sum of ON and OFF spike trains. The Reconstructed
Image (bottom left) is generated by a sum of feature vectors drawn
from an over-complete, non-orthogonal dictionary (bottom right)
weighted by a sparse set of non-zero activation coefficients corre-
sponding to the activation of neurons in the V1 layer (top right). V1
activity is driven by the difference (Residual) between the noisy in-
put image (Sum of Spikes) and the Reconstructed Image convolved
with the transpose of each feature vector, the results of which drive
changes in the values of activation coefficients, resulting in a new
Reconstructed Image, a new residual error, and so on.

This iterative process is guaranteed to settle into a local min-
ima of a characteristic energy function that minimizes the least-
squares residual reconstruction error while simultaneously min-
imizing non-zero activation coefficients (basis elements) used in
the reconstruction. Once a sparse representation for a given noisy
input image has been found, the basis elements associated with
non-zero activation coefficients are adapted according to a local
Hebbian learning rule (usually modified with a momentum term)
that further reduces the remaining reconstruction error relative to
the original image. Starting with random basis elements, the above
procedure can learn to factor a complex, high-dimensional input
stream, such as natural image patches, into an overcomplete set of
basis vectors that capture the high-dimensional correlations in the
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Figure 2: Sparse Reconstruction Pipeline.

Figure 3: Sparse retinal ganglion cell spike train decoder.We

use a convolutional dictionary to infer sparse representa-

tions of images constructed the difference of sumsofONand

OFF ganglion cell spike trains. The dictionarywas trained to

minimize the difference the sparse reconstructions of Sum

of Spikes input and the original CIFAR10 gray-scale image,

in order to promote higher-fidelity sparse reconstructions

from the noisy rate-coded images [29] (The summed spikes

from ganglion cell model over a 32 msec time window).

data. Here, sparse coding of retinal spikes trains produced higher
fidelity reconstructed images.

4.2 Silicon Retina Decoder

The architecture is illustrated in Figure 5, where the input layers
(left) are the silicon retina positive and negative event streams. The
Residual is the error between the original and the reconstructions
of the silicon retina positive and negative event streams. The Re-
constructed Images are sparse reconstructed silicon retina positive

Figure 4: Pipeline for sparse reconstruction of events from a

silicon retina camera. Positive and negative events are pro-

duced by a low-power, low-bandwidth silicon retina cam-

era. A sparse decoder is used to simultaneously reconstruct

higher frame rate video from the silicon retina positive and

negative events by training a linked dictionary of convolu-

tional spatiotemporal features and static dictionary based

on differences of video frames.

and negative event trains, obtained from sparse linear combina-
tions of spatiotemporal features drawn from an over-complete, non-
orthogonal dictionary. Spatiotemporal feature vectors are weighted
using a sparse set of non-zero activation coefficients corresponding
to the activity of neurons in the V1 layer.

Wewere able to estimate high frame rate video from a low-power,
low-bandwidth silicon retina camera by training a dictionary of
convolutional spatiotemporal features for simultaneously recon-
structing differences of video frames (recorded at 22HZ and 5.56Hz)
as well as discrete events generated by the silicon retina (binned at
484Hz and 278Hz).

5 CONCLUSION

In this work we apply sparse coding to enable the reconstruction
of high-fidelity images and video from retinal event trains. We
employed a variant of the Locally Competitive Algorithm to infer
sparse representations from retinal event trains, using a dictionary
of convolutional features optimized via stochastic gradient descent
and trained in an unsupervised manner using a local Hebbian learn-
ing rule with momentum. We report that a higher-fidelity sparse
reconstruction is inferred from the noisy rate-coded image (The
summed spikes from ganglion cell model over a 32 msec time win-
dow) by using a convolutional dictionary trained so as to better
approximate the original CIFAR10 images given the sparse repre-
sentation of the noisy rate coded images. Additionally, we were able
to estimate high frame rate video from a low-power, low-bandwidth
silicon retina camera by training a dictionary of convolutional spa-
tiotemporal features for simultaneously reconstructing differences
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Figure 5: Sparse Silicon Retina Decoder. We use a convo-
lutional spatiotemporal dictionary trained on positive and
negative events generated by a silicon retina camera linked
with a static convolutional dictionary trained on differences
of conventional video frames to reconstruct high frame rate
(484Hz) sparse video from the original video (22Hz).

of video frames (recorded at 22HZ and 5.56Hz) as well as discrete
events generated by the silicon retina (binned at 484Hz and 278Hz).
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