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energy usage and over 80% of greenhouse gas emissions, with the largest portion of such consumption (more than 

40%) and emissions coming from the built environment [2]. Because 90% of urban buildings are estimated to be 

energy inefficient and up to 30% of a building’s energy consumption is wasted, urban buildings represent a 

tremendous opportunity to enhance the sustainability of cities [3].   

Extensive academic and industrial efforts have been undertaken to develop energy conservation measures within 

individual buildings (e.g., demand driven heating/cooling control). However, a key challenge to enhancing the 

energy efficiency of urban buildings is the inaccuracy in energy performance prediction models. Current 

performance models fail to account for the inter-building energy dynamics and interdependencies that can have a 

substantial impact on the energy use of urban buildings. Without accurate performance characterization and 

prediction, designers and engineers struggle to assess the energy, environmental, and economic implications of their 

early-stage design and retrofit decisions thus failing to shape a building’s energy usage for its entire lifecycle. This 

challenge is further exacerbated as adjacent buildings and the overall urban area become increasingly energy 

intensive, resulting in further substantial energy, environmental, and monetary impacts. 

Rapid development of new sensing technologies and emerging smart city initiatives have led to an explosion of 

structured and unstructured data streams describing buildings and their urban environments. The proliferation of 

such data provides an opportunity to enhance the accuracy and robustness of urban building energy models. This 

paper aims to understand the gaps of current urban scale energy simulation and proposes a new Data-driven Urban 

Energy Simulation (DUE-S) workflow capable of accurately predicting the energy performance of urban buildings 

across multiple spatial scales within a city. 

2. Key Factors in Urban Energy Simulation 

2.1. Urban context 

Building energy models (e.g., EnergyPlus, DOE2, etc.) (1) take inputted building geometries and abstract them to 

a network of connected nodes, (2) create heat balance equations for all nodes across each time step of a virtual year, 

and (3) solve those equations simultaneously, using a large number of assumed non-geometric building parameters 

to calculate a building’s energy consumption. However, because there are a large number of nodes and equations to 

solve, simulating the performance of hundreds of buildings across a city is too computationally expensive [4]. 

Efforts have been made to simplify this process by instead individually simulating a diverse subset of buildings and 

scaling up those results to an urban level by multiplying each individual output by the number of similar buildings 

[5] or by a floor area-weighted function [6]. However, in reducing the computational requirement of modeling an 

entire city, the model can no longer capture the “urban context” of surrounding buildings. Urban context refers to 

the considerations an energy engineer must make regarding a building’s external surroundings from both the 

physical and built environments. This includes shading, thermal transfer and balance, fluid dynamics and urban heat 

island effects [7] - all of which can dramatically impact the energy demands of an urban building. 

Ongoing research to quantify urban context is primarily focused on modeling microclimatic factors alongside 

existing simulation software. Several studies, for example, are quantifying the impact of radiation exchange with 

building energy consumption - some also including the heat and mass transfer phenomena associated with it. ENVI-

met, for example, a three-dimensional microclimate model, has been integrated into EnergyPlus in order to quantify 

the interactive effects of CFD and thermodynamics on building energy consumption [8]. Other architecturally based 

tools such as the Urban Modeling Interface (UMI) are focused on modeling conditions such as shading and urban 

heat island effects in the context of urban planning [9]. While emerging tools incorporate some aspects of building 

interdependencies in energy performance models, previous research is limited in its ability to comprehensively 

capture all the influences of the urban context due to the time- and resource-intensive process of simultaneously 

simulating each individual building and their associated mutual impacts. 

2.2. Multi-scale calibration and performance 

Current building energy simulation practices generally focus on single scale (e.g., individual building level) 

energy modeling [10] and multiple calibrations within a single building [11]. Little work to date simultaneously 
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achieves accurate energy simulation results beyond a single spatial scale (e.g., community scale), which, however, is 

of great importance for evaluating and improving the energy performance of urban buildings. For example, building 

scale accuracy can represent the energy implications of building operations and subsequently guide facility 

management and retrofitting for energy efficiency; community scale accuracy can reveal the energy consequences of 

urban system interactions and assist the optimization of energy use across a building portfolio; urban scale accuracy 

can provide insights on the overall energy performance of an urban area and support decision-making regarding 

sustainable zoning and other planning guidelines that impact a city’s morphology. In addition, different scales of 

simulations are closely associated with each other. Even if the focus of an analysis is on a single scale, energy 

simulation of other scales is necessary for comprehensive analysis that ensures design and energy management 

decision-making accounts for impacts from outside the particular building of study. However, achieving high 

accuracy at one scale does not necessarily guarantee high accuracy at another [12], especially when the analyzed 

buildings have heterogeneous thermal properties (e.g., different window-wall ratios), inter-building system 

connections (e.g., district heating system), and functional relations (e.g., an occupant network). Moreover, obtaining 

high accuracies at multiple scales becomes increasingly difficult as the complexity increases exponentially – often 

resulting from nonlinear and dynamic interactions and interdependencies of thermal balances, geometric impacts, 

fluid dynamics, occupant network, and system responses in urban buildings. Therefore, a method to accurately 

predict energy consumption on increasingly large geographic areas is critical to understanding these factors. 

2.3. Model inputs and assumptions 

As discussed previously, only if an energy performance model is accurate at different scales is it reliable and 

useful to evaluate and support the energy conservation measures for urban buildings. Simulation is a context-related 

process, and results from uncalibrated models tend to deviate significantly (up to 90%) from actual energy use [13], 

making calibration indispensable before any practical use can be made of the model. Energy model calibration is an 

inverse approximation because of the need for determining values of inputs to reconcile the simulation outputs to the 

measured energy data. It is also over-parameterized because of the large number of independent and interdependent 

input parameters and assumptions to be specified, given the relatively limited and variant information and evidence 

available to determine these inputs. The inverse and over-parameterized characteristics of calibration directly result 

in the uncertainty in these input parameters and misassumption of thermal processes, which are the main sources of 

building energy simulation discrepancies [14]. In order to overcome these issues, engineering methods have been 

developed to iteratively adjust input parameters and assumptions based on audit data [15] until the discrepancies 

between simulated results match the measurements are within the ranges regulated by standards [16,17]. Since the 

availability of audit data differs building by building, the hierarchy of audit data has been generated, by which the 

higher-level data is considered more reliable than the lower ones for determining the input parameters and 

assumptions [18]. However, such methods follow the trial-and-error principle and as a result the performance of an 

energy model depends largely on ad-hoc audit data and subjective engineering judgment [19].  

Other research efforts have focused on statistical methods that apply multivariable analysis to find the 

relationships between audit data and actual energy use [20,21]. The audit data can either be static (e.g. window-wall 

ratio) or dynamic (e.g., zone temperature). The relationships are the mathematical projections that do not necessarily 

have physical explanations. Once the relationships are established, they can be used to ingest new audit data and 

output corresponding energy use. This type of method is computationally efficient and can provide for more 

accurate energy simulation [22]. However, accurately accounting for relationships requires retraining if any change 

is made to the building (e.g., additions) or its building systems (e.g., HVAC control strategies). More importantly, 

since the statistical relationships are constructed on a building-to-building basis, they are sometimes overspecialized 

and may not be generalized to other buildings, making it is impossible to mix the heterogeneous relationships for 

large-scale urban building energy models. 

Unfortunately, no generally accepted method is able to effectively determine the input parameters and 

assumptions at the individual building scale because each building is unique, and building energy simulation has 

variant simulation requirements, variant available building information, variant human-building interactions, and 

variant levels of knowledge of modelers. Urban scale building energy simulation – the extension of individual 

building simulation – is significantly influenced by inter-building interactions and interconnections and thus 
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consumption and indoor environmental quality on not only their building, but surrounding ones as well, resulting in 

collective energy, emissions, and monetary savings. And finally, as data is being increasingly used in the planning of 

newer, smarter cities, this model can employ data from existing cities to optimize building energy use and help 

inform key decisions that enable our cities to transition to a more sustainable energy future. 
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