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Abstract

Urban building energy models are emerging tools meant to analyze and understand the energy performance of multiple buildings
within a dense urban area. However, accurate performance prediction of these models remains a challenge because of their
inability to account for the inter-building energy dynamics and interdependencies in an urban area. This paper analyzes the
literature to highlight the limitations of current urban scale energy simulation models and proposes a new Data-driven Urban
Energy Simulation (DUE-S) workflow capable of capturing inter-building effects on a building’s energy usage. Specifically,
DUE-S combines a data-driven machine learning model with a traditional physics-based energy simulation to enable more
accurate simulation results on multiple scales (single building, community, urban). More accurate and robust energy performance
characterization and simulations of urban buildings could provide valuable insight on early-stage building design, building
conservation and portfolio management, and urban energy efficiency policy-making crucial to helping our cities transition to a
more sustainable energy future.
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1. Introduction

The world is rapidly urbanizing. Over 50% of the world population now resides in cities, and the number is
expected to increase to 67% (90% for the United States) by 2050 [1]. Cities account for over 75% of all primary
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energy usage and over 80% of greenhouse gas emissions, with the largest portion of such consumption (more than
40%) and emissions coming from the built environment [2]. Because 90% of urban buildings are estimated to be
energy inefficient and up to 30% of a building’s energy consumption is wasted, urban buildings represent a
tremendous opportunity to enhance the sustainability of cities [3].

Extensive academic and industrial efforts have been undertaken to develop energy conservation measures within
individual buildings (e.g., demand driven heating/cooling control). However, a key challenge to enhancing the
energy efficiency of urban buildings is the inaccuracy in energy performance prediction models. Current
performance models fail to account for the inter-building energy dynamics and interdependencies that can have a
substantial impact on the energy use of urban buildings. Without accurate performance characterization and
prediction, designers and engineers struggle to assess the energy, environmental, and economic implications of their
early-stage design and retrofit decisions thus failing to shape a building’s energy usage for its entire lifecycle. This
challenge is further exacerbated as adjacent buildings and the overall urban area become increasingly energy
intensive, resulting in further substantial energy, environmental, and monetary impacts.

Rapid development of new sensing technologies and emerging smart city initiatives have led to an explosion of
structured and unstructured data streams describing buildings and their urban environments. The proliferation of
such data provides an opportunity to enhance the accuracy and robustness of urban building energy models. This
paper aims to understand the gaps of current urban scale energy simulation and proposes a new Data-driven Urban
Energy Simulation (DUE-S) workflow capable of accurately predicting the energy performance of urban buildings
across multiple spatial scales within a city.

2. Key Factors in Urban Energy Simulation
2.1. Urban context

Building energy models (e.g., EnergyPlus, DOE2, etc.) (1) take inputted building geometries and abstract them to
a network of connected nodes, (2) create heat balance equations for all nodes across each time step of a virtual year,
and (3) solve those equations simultaneously, using a large number of assumed non-geometric building parameters
to calculate a building’s energy consumption. However, because there are a large number of nodes and equations to
solve, simulating the performance of hundreds of buildings across a city is too computationally expensive [4].
Efforts have been made to simplify this process by instead individually simulating a diverse subset of buildings and
scaling up those results to an urban level by multiplying each individual output by the number of similar buildings
[5] or by a floor area-weighted function [6]. However, in reducing the computational requirement of modeling an
entire city, the model can no longer capture the “urban context” of surrounding buildings. Urban context refers to
the considerations an energy engineer must make regarding a building’s external surroundings from both the
physical and built environments. This includes shading, thermal transfer and balance, fluid dynamics and urban heat
island effects [7] - all of which can dramatically impact the energy demands of an urban building.

Ongoing research to quantify urban context is primarily focused on modeling microclimatic factors alongside
existing simulation software. Several studies, for example, are quantifying the impact of radiation exchange with
building energy consumption - some also including the heat and mass transfer phenomena associated with it. ENVI-
met, for example, a three-dimensional microclimate model, has been integrated into EnergyPlus in order to quantify
the interactive effects of CFD and thermodynamics on building energy consumption [8]. Other architecturally based
tools such as the Urban Modeling Interface (UMI) are focused on modeling conditions such as shading and urban
heat island effects in the context of urban planning [9]. While emerging tools incorporate some aspects of building
interdependencies in energy performance models, previous research is limited in its ability to comprehensively
capture all the influences of the urban context due to the time- and resource-intensive process of simultaneously
simulating each individual building and their associated mutual impacts.

2.2. Multi-scale calibration and performance

Current building energy simulation practices generally focus on single scale (e.g., individual building level)
energy modeling [10] and multiple calibrations within a single building [11]. Little work to date simultaneously
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achieves accurate energy simulation results beyond a single spatial scale (e.g., community scale), which, however, is
of great importance for evaluating and improving the energy performance of urban buildings. For example, building
scale accuracy can represent the energy implications of building operations and subsequently guide facility
management and retrofitting for energy efficiency; community scale accuracy can reveal the energy consequences of
urban system interactions and assist the optimization of energy use across a building portfolio; urban scale accuracy
can provide insights on the overall energy performance of an urban area and support decision-making regarding
sustainable zoning and other planning guidelines that impact a city’s morphology. In addition, different scales of
simulations are closely associated with each other. Even if the focus of an analysis is on a single scale, energy
simulation of other scales is necessary for comprehensive analysis that ensures design and energy management
decision-making accounts for impacts from outside the particular building of study. However, achieving high
accuracy at one scale does not necessarily guarantee high accuracy at another [12], especially when the analyzed
buildings have heterogeneous thermal properties (e.g., different window-wall ratios), inter-building system
connections (e.g., district heating system), and functional relations (e.g., an occupant network). Moreover, obtaining
high accuracies at multiple scales becomes increasingly difficult as the complexity increases exponentially — often
resulting from nonlinear and dynamic interactions and interdependencies of thermal balances, geometric impacts,
fluid dynamics, occupant network, and system responses in urban buildings. Therefore, a method to accurately
predict energy consumption on increasingly large geographic areas is critical to understanding these factors.

2.3. Model inputs and assumptions

As discussed previously, only if an energy performance model is accurate at different scales is it reliable and
useful to evaluate and support the energy conservation measures for urban buildings. Simulation is a context-related
process, and results from uncalibrated models tend to deviate significantly (up to 90%) from actual energy use [13],
making calibration indispensable before any practical use can be made of the model. Energy model calibration is an
inverse approximation because of the need for determining values of inputs to reconcile the simulation outputs to the
measured energy data. It is also over-parameterized because of the large number of independent and interdependent
input parameters and assumptions to be specified, given the relatively limited and variant information and evidence
available to determine these inputs. The inverse and over-parameterized characteristics of calibration directly result
in the uncertainty in these input parameters and misassumption of thermal processes, which are the main sources of
building energy simulation discrepancies [14]. In order to overcome these issues, engineering methods have been
developed to iteratively adjust input parameters and assumptions based on audit data [15] until the discrepancies
between simulated results match the measurements are within the ranges regulated by standards [16,17]. Since the
availability of audit data differs building by building, the hierarchy of audit data has been generated, by which the
higher-level data is considered more reliable than the lower ones for determining the input parameters and
assumptions [18]. However, such methods follow the trial-and-error principle and as a result the performance of an
energy model depends largely on ad-hoc audit data and subjective engineering judgment [19].

Other research efforts have focused on statistical methods that apply multivariable analysis to find the
relationships between audit data and actual energy use [20,21]. The audit data can either be static (e.g. window-wall
ratio) or dynamic (e.g., zone temperature). The relationships are the mathematical projections that do not necessarily
have physical explanations. Once the relationships are established, they can be used to ingest new audit data and
output corresponding energy use. This type of method is computationally efficient and can provide for more
accurate energy simulation [22]. However, accurately accounting for relationships requires retraining if any change
is made to the building (e.g., additions) or its building systems (e.g., HVAC control strategies). More importantly,
since the statistical relationships are constructed on a building-to-building basis, they are sometimes overspecialized
and may not be generalized to other buildings, making it is impossible to mix the heterogeneous relationships for
large-scale urban building energy models.

Unfortunately, no generally accepted method is able to effectively determine the input parameters and
assumptions at the individual building scale because each building is unique, and building energy simulation has
variant simulation requirements, variant available building information, variant human-building interactions, and
variant levels of knowledge of modelers. Urban scale building energy simulation — the extension of individual
building simulation — is significantly influenced by inter-building interactions and interconnections and thus
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contains much more complicated energy dynamics and uncertainties. As a result, previous work has been limited in
its ability to incorporate such inter-building effects into the process of determining energy model input parameters
and assumptions.

3. Data-driven Urban Energy Simulation (DUE-S)

Data has yet to be well integrated in generating urban scale building energy models. Simulation engines largely
rely on thermodynamic calculations rather than real data to predict hourly energy usage and rarely captures the
influence of urban context in the final result. As a result, the addition of machine learning to existing energy
simulation workflows could result in more accurate, robust and scalable urban energy simulations by employing
computational intelligence to learn the hidden and complex dynamics between urban buildings. Our proposed
modeling workflow, DUE-S (Fig. 1), leverages emerging machine learning capabilities to capture the influence of

the urban context on energy consumption on multiple spatial scales.
Energy Simulation Model Network Model

Hidden

. X Define spatial hicrarchies
interdependencies

“2.5D”
Building Geometries

Simulated Actual

energy use

energy use . o
&y Initiate multi-layer network

™Y
Climate Files

Set initial hyperparameters for
network

Tune network model using
DOE Commercial supervised learning

Reference Building Inputs

Validate network

Fig. 1. Proposed DUE-S modeling workflow. Phase 1 uses information from existing data sources to create an energy simulation. In Phase 2,
machine learning is employed to learn the energy use dynamics between buildings and their surrounding urban environment.

3.1. Thermal Models

Traditional building energy models are comprised of three primary inputs [23]:
e weather data
e geometric inputs
e non-geometric parameters

As mentioned prior, energy simulation is often over-parameterized and requires an infeasible amount of time and
resources to complete on a larger, urban scale. The first phase of this hybrid simulation model is generating
simplified energy simulation models for individual buildings in the urban study area.

In our proposed thermal model, we merge tax parcel and building GIS shapefiles, commonplace in many
citywide GIS databases, with associated building heights information (e.g., satellite LiDAR data) to construct the
“2.5D” massing model via SketchUp - Google’s 3D modeling software. Using the SketchUp plugin, OpenStudio, we
import these geometries into the EnergyPlus thermal simulation along with climate data corresponding to the
geographic area of study. To generate the non-geometric properties, the building stock is classified by use type and
age of construction. Using these classes, we define input parameters based on the U.S. Department of Energy’s
Commercial Reference Building Models [24]. The DOE and several of its national laboratories used national data
from the 2003 Commercial Building Energy Consumption Survey (CBECS) to determine an average mix of
representative buildings. These reference models include 16 building types for 3 different construction periods and
represent about 70% of the US commercial building stock. Each of these models is available as a ZIP file with
detailed spreadsheets of plug and process loads, construction assemblies, operating schedules, and systems. Other
input parameters that are not specified by the reference models will be given default values. Once all inputs for each
building are defined in EnergyPlus, the energy usage for each building in our urban study area will be
simulated. We stress here that the goal of these thermal models is to capture the basic energy usage dynamics of
each building and the output (i.e., simulated energy usage) will be utilized as an input in subsequent steps of our
proposed modeling workflow. As a result, high accuracy and calibration is not required at this stage.
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3.2. Network-based Machine Learning Model

The simulated energy usage signatures and ground truth (measured) energy data for all buildings in the urban
study area will be fed into a network-based machine learning model to learn the hidden energy connections and
interdependencies between buildings at multiple scales (e.g., individual building scale, community scale, and urban
scale). There are five steps to the network-based machine learning model:

1. Define the hierarchies of scales that satisfy the requirements of the final urban energy model. For
example, the Urban scale is made up of Communities I, 2, and 3, where each community (e.g.,
Community 2) is made up individual Buildings A, B, C, and D (Fig. 2). The hierarchies determine the
structure of inputs (simulated energy use) and outputs (measured energy use);

2. Initiate a network with multiple layers to build an improved feature space for connecting the inputs and
outputs. The different layers will learn different orders of features that represent the non-linear and joint
influences as well as the interconnections of inter-building energy use;

3. Set initial values to the hyper-parameters of the network and renormalize activations at each layer in
order to keep the balanced learning across all layers;

4. Tune the entire network using supervised training, and determine the hyper-parameters including
network structure, size of filters, weightings, connectivity between layers, and activation functions
through iterative performance evaluation;

5. Validate the network to avoid overfitting. Cross-validation is applied by separating the data into
segments. Some segments will be used to train the network, and the remaining ones will be used to
verify if the network can successfully process the simulated results. The network’s ability to quantify the
influences of changes in one building on the energy usage of adjacent buildings will also be tested.

Various types of network-based machine learning methods (e.g., convolutional neural network, belief network,
reinforcement network, recurrent neural network, etc.) will all be evaluated, and the pros and cons will be compared
to determine the most appropriate network-based method.

Urban Level Community Level “C2" Building Level “B”

Fig. 2. Hierarchy for accurately quantifying energy use on different spatial scales. Urban scale energy use will analyze the relationships (hashed
arrows) between Communities C1, C2, and C3 — each of which are comprised of relationships (hashed arrows) between individual buildings.

4. Conclusion and future work

As a result of shortcomings in urban scale energy simulation, this paper proposes a data-driven urban energy
simulation (DUE-S) workflow that combines the computational power of a data-driven machine learning network
model with the advanced thermodynamic modeling of traditional building energy simulation. Current models can
only simulate buildings on an individual level and, therefore, their ability to evaluate the performance of a larger
urban area is limited. Our review of the literature highlights the significant opportunity that exists to create more
accurate multi-scale urban energy models if emerging machine learning models are integrated into the current
energy simulation workflow. Future work aims to further develop, test and validate using empirical data from a case
study city and compare our results to existing simulation methods.

By accurately simulating the energy usage of buildings across a city, policymakers and utility companies can
better forecast energy loads and identify opportunities for energy efficiency and energy management (e.g., retrofits,
load shifting) across a community or city. Designers and building operators can understand the effects of energy
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consumption and indoor environmental quality on not only their building, but surrounding ones as well, resulting in
collective energy, emissions, and monetary savings. And finally, as data is being increasingly used in the planning of
newer, smarter cities, this model can employ data from existing cities to optimize building energy use and help
inform key decisions that enable our cities to transition to a more sustainable energy future.
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