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• Introduces the need for urban building energy modeling and current approaches.

• Proposes a DUE-S framework that integrates machine learning and simulation methods.

• DUE-S models urban energy use on multiple spatial and temporal scales.

• Evaluates the DUE-S framework on case study of 22 dense urban buildings.

• Achieves acceptable prediction accuracies at an urban scale.
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A B S T R A C T

The world is rapidly urbanizing, and the energy intensive built environment is becoming increasingly re-
sponsible for the world’s energy consumption and associated environmental emissions. As a result, significant
efforts have been put forth to develop methods that can accurately model and characterize building energy
consumption in cities. These models aim to utilize physics-based building energy simulations, reduced-order
calculations and statistical learning methods to assess the energy performance of buildings within a dense urban
area. However, current urban building energy models are limited in their ability to account for the inter-building
energy dynamics and urban microclimate factors that can have a substantial impact on building energy use. To
overcome these limitations, this paper proposes a novel Data-driven Urban Energy Simulation (DUE-S) frame-
work that integrates a network-based machine learning algorithm (ResNet) with engineering simulation to better
understand how buildings consume energy on multiple temporal (hourly, daily, monthly) and spatial scales in a
city (single building, block, urban). We validate the proposed DUE-S framework on a proof of concept case study
of 22 densely located university buildings in California, USA. Our results indicate that the DUE-S framework is
able to accurately predict urban scale energy consumption at hourly, daily and monthly intervals. Moreover, our
results also demonstrate that the integration of data-driven and engineering simulation approaches can partially
capture the inter-building energy dynamics and impacts of the urban context and merits future work to explore
how they can be improved to predict sub-urban scale energy predictions (single building, block). In the end,
successfully predicting and modeling the energy performance of urban buildings has the potential to inform the
decision-making of a wide variety of urban sustainability stakeholders including architects, engineers and pol-
icymakers.

1. Introduction

The world is rapidly urbanizing. Over 50% of the world’s population
now resides in cities, and the number is expected to increase to 67% by
2050 [1]. Cities account for over 75% of all primary energy use and
over 80% of greenhouse gas emissions, with the largest portion of such

consumption (more than 40%) and related emissions coming from the
built environment [2,3]. As a result, urban buildings represent a tre-
mendous opportunity to enhance the energy sustainability of cities.
According to recent estimates, as much as 90% of urban buildings are
energy efficient, and up to 30% of an individual building’s energy
consumption is wasted [4].
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Extensive academic and industrial efforts have been undertaken to
develop energy conservation measures within individual buildings
(e.g., demand driven heating/cooling controls). However, building
energy use is significantly affected by other buildings (e.g., shading
impacts heating and natural lighting) and microclimate factors (e.g.,
changes in wind patterns impact heat transfer and cooling loads). A key
challenge in enhancing the energy efficiency of buildings in dense
urban areas is the lack of accurate energy performance prediction
models that consider this urban context. Current building energy
models are limited in their ability to account for the inter-building
energy dynamics and interdependencies that can have dynamic and
non-linear impacts on the energy use of urban buildings. Without ac-
curate performance characterization and prediction, designers and en-
gineers struggle to assess the energy, environmenta, and economic
implications of their early-stage design and retrofit decisions, thus
failing to shape a building’s energy use for its entire lifecycle. This
challenge is further exacerbated by adjacent buildings and the overall
urban area becoming increasingly energy intensive resulting in sub-
stantial energy, environmental and monetary impacts [5–7].

Rapid growth in new sensing technologies and emerging smart city
initiatives has led to an explosion of structured and unstructured data
streams describing buildings and their surrounding urban environment.
Simultaneously, the field of artificial intelligence is quickly developing
new machine learning models that harness these new data streams to
predict and characterize a wide range of physical phenomeno a within
cities (e.g., air pollution dynamics [8], traffic flow [9] and energy use
[10]). The primary objective of this paper is to introduce a novel Data-
driven Urban Energy Simulation (DUE-S) framework that aims to
bridge the gap between traditional engineering-based energy simula-
tion models and emerging data-driven machine learning models1. We
postulate that by integrating the two methods we can take the first step
towards accurately characterizing the energy performance of urban
buildings at multiple temporal (e.g., hourly, daily, monthly) and spatial
(e.g., single building, block, urban) scales. These accurate character-
izations can then help facilitate the assessment of design and retrofit
decisions. The rest of the paper is organized as follows: Section 2 pre-
sents an overview of existing work on urban energy modeling and
discusses the main gaps; Section 3 introduces the methodology of DUE-
S that integrates a residual network machine learning model with en-
gineering simulation to better understand how buildings consume en-
ergy on multiple temporal and spatial scales; Section 4 proposes the
setup of a case study with 22 densely located university buildings in
southern California, USA, and the measures used to validate the per-
formance of DUE-S framework; Section 5 discusses the case study re-
sults; Section 6 outlines the limitations and future work; and Section 7
concludes the paper.

2. Background

Urban energy modeling is the virtual representation and reproduc-
tion of the energy performance for buildings located in an urban area.
Generally, urban energy modeling aims to capture the urban context by
simulating energy dynamics at multiple spatial and temporal scales. In
this section, we provide a brief review of the existing literature on
urban energy modeling: the surrounding urban context, multi-scale
performance, and calibration. Finally, in order to contextualize our
proposed model within the existing body of work we also provide a
review of how emerging data-driven methods have been applied to the
energy modeling problem setting.

2.1. Urban context

Energy is primarily consumed in buildings to smooth thermal loads
(e.g., add or remove sensible and latent heat to achieve thermal balance
with conduction, convection and radiation from outside and inside the
building) and power loads (e.g., power lighting system, air handling
equipment, computers, and other devices used by occupants). These
loads are significantly influenced by the building’s urban context
through effects from neighboring buildings, vegetation and other urban
systems [11–13]. For example, a building’s outside temperature could
be abnormally high due to urban heat island effects [14,15]. As the sun
moves, the surrounding urban built environment may cast shadows and
shadings that in turn impact a building’s energy use [16]. Because air
dynamically flows around and within buildings, wind is another key
element that determines the rate of building heat transfer (e.g., con-
vection), humidity, cooling and ventilation loads [17]. Wind speed and
direction change drastically due to urban context, as nearby buildings
and trees can influence wind patterns. Previous research indicates that
fluid dynamics in an urban area should be included in energy modeling
as it can have a substantial impact [18]. Furthermore, urban buildings
can be served by district energy systems such as heating networks [19],
district cooling plants [20] and energy hubs [21], making the energy
use of one building highly interdependent on surrounding buildings.
Lastly, the dynamics that occur in networks of building occupants can
also impact urban energy use as connections and interactions among
occupants have been found to vary the heating/cooling loads [22,23],
lighting loads [24] and plug loads [25] across buildings.

Engineering simulation programs (e.g., EnergyPlus, DOE2, IES-VE)
reproduce the physical energy processes of buildings by: (1) taking
inputted building geometries and abstracting them to a network of
connected nodes, (2) creating heat balance equations for all nodes
across each hour of a virtual year and (3) solving those equations within
each time step, using many assumed non-geometric building para-
meters to calculate a building’s energy consumption. However, because
there are a large number of nodes to model and equations to solve,
simulating the performance of hundreds of buildings across a city at
once is both time intensive and computationally expensive [26]. Efforts
have been made to simplify this modeling process. Specifically, the
geometries can be extracted from GIS (Geographic Information Sys-
tems) [27,28], CityGML [29], BIM (Building Information Modeling)
[30], CAD (Computer Aided Design) [31] or digital images [32]. Ad-
ditionally, non-geometric properties (e.g., building and construction
material, operation schedules, HVAC systems) have been assumed
based on “archetypes”—templates representing groups of buildings
with similar properties—to reduce the number of input variables
[26,30]. In order to define “archetypes,” buildings are divided into
groups based on properties like shape and age where buildings within
each group are considered identical. While highly productive in redu-
cing the amount of input variables into an energy simulation model, the
characterization of “archetypes” is often ad-hoc and depends greatly on
the availability of data [13]. As a result, it is often difficult to evaluate
the reliability and authenticity of the results. New “hourglass” ap-
proaches [33,34] have begun to address some of the shortcomings of
archetype-based models as they combine reductive archetype models
with a re-diversification process in order to add stochastic variations to
individual buildings and re-introduce diversity lost in the reductive
archetype process. Moreover, reduced-order methods have also been
developed to model urban energy use, including electrical circuit ana-
logy based on resister-capacitor networks [35], energy demand calcu-
lations based on quasi-static monthly energy balance [36], degree-day
estimations based on heat transfer coefficient [33], steady-state
methods based on energy balance equations [19], thermal shoebox
models based on insolation analysis and clustering [31] and reduced-
complexity models based on simplified state space methods [37].
However, such reduced-order methods often require large over-
simplifications (e.g., a building is modeled as single thermal zone) [31]

1 The short version of the paper was presented at ICAE2017, Aug 21–24, Cardiff, UK.
This paper is a substantial extension of the short version of the conference paper.
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and require making several strong assumptions (e.g., the heating set
point is constant) [19].

Ongoing research to quantify the impact urban context has on
building energy use has been primarily focused on modeling microcli-
matic factors alongside simulation. Several studies have quantified the
effects radiation exchange has on building energy consumption. For
example, ENVI-met, a three-dimensional microclimate model, has been
integrated into EnergyPlus in order to quantify the interactive effects of
CFD (Computational Fluid Dynamics) and thermodynamics on building
energy consumption [38,39]. Other tools such as the Urban Modeling
Interface (UMI) are focused on modeling conditions such as shading and
urban heat island effects in addition to energy use within the context of
urban planning [40]. So while new tools [16,41] are emerging that
begin to incorporate some aspects of building interdependencies in
dense urban areas and model the impact of energy retrofits, there re-
mains a significant opportunity to develop new approaches to com-
prehensively capture all the influences of the urban context in building
energy modeling.

2.2. Multi-scale performance

Accurately characterizing and modeling the energy performance of
urban buildings on multiple scales is integral to gaining a comprehen-
sive picture of the impact of early-stage design decisions and energy
efficiency retrofit solutions. For example, insights from accurate
building scale models can inform building operations and energy effi-
cient building management [42]. Block scale modeling can reveal in-
sights on how design changes (e.g., proposed building heights and or-
ientation) impact solar shading on other buildings and facilitate block
scale optimization of energy use [11]. Urban scale modeling can sup-
port decision-making regarding sustainable zoning and other planning
guidelines that impact a city’s overall morphology and subsequent en-
ergy use [43]. As a result, in order to maximize the use cases and fa-
cilitate more holistic sustainability and energy decision-making, it is
integral that urban energy performance simulations are accurate on
multiple scales.

Engineering modeling methods are powerful at simulating a single
building with a standalone HVAC system [44] but fail when applied
beyond a single building [45]. Even co-simulation, like the coupling of
EnergyPlus and Modelica [20], faces difficulty in generating reliable
simulation results at multiple scales. Similarly, reduced-order modeling
methods are limited to the scale at which they are built and are not
extensible to other scales. In order to overcome this issue, various
methods for scaling single building simulations have been developed.
These scaling methods include: using a single aggregated building to
represent all individual buildings in a district [46], multiplying energy
use of a single building by the number of buildings per archetype [26],
scaling up results of an individual building model by a floor area
weighting function [47] or adding up the energy use of individual
buildings to represent the larger scale energy use [19]. While such
scaling methods have enabled some modeling and characterization of
urban energy use, they struggle to achieve highly accurate results at
multiple scales simultaneously in a single comprehensive model. Even
the prevailing bottom-up methods using a set of calibrated and vali-
dated archetypes [48] have limited capability to model energy use
accurately at multiple scales as the numbers, characterization and re-
presentativeness of archetypes differ dramatically across scales.

Previous work [49] has shown that the high accuracy of an energy
model at one scale does not guarantee high accuracy at others as the
impacts of urban context are highly variable across scales, especially
when the microclimate varies spatiotemporally. Obtaining high -
modeling accuracy at multiple scales simultaneously becomes increas-
ingly difficult as the complexity exponentially increases due to the
nonlinear interactions and interdependencies from thermal equili-
brium, geometry, fluid dynamics, occupant networks and system re-
sponses within urban buildings. While previous work has demonstrated

positive results at both district and building scales [19,50], such models
have limited predictive ability to quantitatively estimate the impacts
that design and/or retrofit changes in one building (e.g., new HVAC
control strategy) have on the energy use of surrounding buildings. As a
result, this paper aims to build upon previous work by proposing and
validating an urban energy modeling framework that is capable of
modeling energy performance at multiple scales (single building, block,
urban).

2.3. Energy modeling calibration

Simulation is a context-related process, and results from un-
calibrated models can deviate significantly (up to 90%) from actual
energy use [51,52] – making calibration indispensable before any
practical use can be made of the results. Urban energy modeling cali-
bration is an inverse approximation as it requires the reconciling of
simulation outputs with measured energy data. It is often over-
parameterized due to the large number of independent and inter-
dependent input parameters and assumptions that must be specified.
Because the inverse and over-parameterized characteristics of calibra-
tion could be naturally associated with misassumptions of building
energy dynamics, they are some of the main drivers of uncertainty in
the energy modeling process [53]. In order to overcome these issues,
researchers [54,55] have utilized an iterative process to adjust input
parameters and assumptions based on available data during the mod-
eling process until the discrepancies between simulated results and
measurements are within the ranges regulated by practice standards
[56,57]. This genre of methods follows the trial-and-error principle or
Bayesian update that requires significant time and effort as the per-
formance of the energy model depends largely on ad-hoc data avail-
ability and subjective engineering judgment [58,59]. Another type of
calibration focuses on applying statistical analysis to find the relation-
ships between input parameters and actual energy use during the
modeling process [60,61]. The input parameters can either be static
(e.g., window-wall ratio) or dynamic (e.g., zone temperature). While
this approach is computationally efficient and can enhance the accu-
racy of energy simulation models that consider the urban context [62],
retraining with additional ground truth data is required if any changes
are made to a building (e.g., building envelope retrofits), building
system (e.g., HVAC control upgrades) or the surrounding urban en-
vironment (e.g., new buildings). More importantly, since the statistical
relationships are constructed on a building-to-building basis and uti-
lized to adjust simulation inputs, they can be overspecialized and may
lack generalizability to other buildings and urban areas, and thus limit
their applicability for modeling urban energy use at multiple scales.

2.4. Emerging data-driven approaches to urban energy modeling

The advent of smart meters and open data initiatives across major
cities has made energy data available in varying spatial and temporal
resolutions. This data availability combined with the rapid develop-
ment of new data-driven machine learning models has spawned the use
of computational intelligence to find hidden patterns of urban building
energy use. As a result, these emerging data-driven energy models are
able to achieve high degrees of accuracy and quantify the impacts of
various energy covariates, such as building characteristics, weather,
spatial patterns or use types [63]. Common models utilized in previous
work to predict building energy consumption include multiple linear
regression models [64], support vector regression [65], decision trees
[66] and artificial neural networks [67]. Specifically, support vector
regressions are kernel-based algorithms that excel when solving non-
linear problems and have been applied to model the energy use of
multi-family residential buildings [10]. Decision trees are a subset of
flexible algorithms that divide features into weighted branches to make
predictions [66], and artificial neural networks are non-linear models
that use interconnected neurons and activation functions to relate
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input, hidden and output layers of information [67]. Tso and Yao [68]
compare the performance of decision trees, neural networks and mul-
tiple linear regression models to predict residential energy consumption
in summer and winter seasons and find that both decision trees and
neural networks perform well in this task. Unfortunately, the majority
of these studies focuses exclusively on creating models to predict in-
dividual building energy use and have yet to explore how such methods
extend to the urban context.

Recent work that has evaluated building energy use at the urban
scale has been largely done for benchmarking or energy mapping
purposes [69]. Clustering methods are used to divide large groups of
buildings into sub-groups based on common features in order to eval-
uate them against a baseline building level [70]. Artificial neural net-
works have also been used on the multi-building scale to evaluate the
energy consumption of schools and office buildings [71,72]. And while
one study was able to apply ordinary least squares, random forest and
support vector machines to predict building energy use with public data
provided by energy disclosure policies, its results were limited because
the temporal granularity of the data was only provided at the annual
scale [73]. However, there is now increasing popularity for employing
complex deep learning-based models that can take better advantage of
the vast amounts of available data and improved computational power
of GPUs and CPUs. Deep learning is the process of training neural
networks, which are able to take a set of input features and figure out
functions that map them to labeled predictions. Neural networks are
modeled similarly to how neurons input, process and output informa-
tion in the brain through a hierarchy of hidden layers. They are trained
to perform a specific function by using a non-linear activation function
to calibrate the weights of connections between neurons, also called
“nodes,” with the goal of minimizing a loss function, typically through
gradient descent [74]. Deep learning has previously been applied to a
wide variety of fields related to the urban built environment including
forecasting solar and wind consumption [75], predicting traffic flows
[76] and forecasting building energy consumption [77]. Specifically,
convolutional neural networks (CNNs), which are characterized by
their locally connected layers, have been used to represent the spatio-
temporal nature of traffic flow [76]. CNNs have also been applied to
individual building energy forecasting because of their ability to re-
present time series data in a grid topology [77]. In addition to CNNs,
recurrent neural networks (RNNs) are also popular for time series
forecasting because they use previous predictions as additional inputs
for future ones. This type of model, for example, has been used to
forecast wind speed for a network of wind stations [75].

While purely data-driven approaches are able to model the statis-
tical relationships between building energy use and characteristics
[67], they rely too much on the mathematical patterns in available data

without considering any underlying physics of building thermal and
energy systems. Therefore, pure data-driven approaches lack the ability
to accurately estimate the energy implications of early-stage design or
new retrofits to buildings (e.g., installation of a new window material)
that are not included in the training dataset. Since buildings in an urban
area could have hundreds of possible design and/or retrofit changes, it
is impossible to have a robust dataset for training an algorithm that
encapsulates all potential options. As a result, this paper aims to bridge
the gap between emerging data-driven machine learning and en-
gineering energy simulation methods by proposing a Data-driven Urban
Energy Simulation framework (DUE-S). DUE-S aims to integrate en-
gineering simulation models with new data-driven machine learning
models to enable the exploration of potential early design decisions and
energy conservation measures while capturing the non-linear and
complex interactions of the urban context. It is this novel integration of
engineering and data-driven methods that we postulate enables the
DUE-S model to accurately characterize and model the energy perfor-
mance of buildings at multiple spatial and temporal scales. Further-
more, we clarify that our objective is not to propose an alternative for
calibration of energy simulation model inputs with new data streams
but to utilize a data-driven approach that learns the complex relation-
ships and patterns of urban building energy use.

3. Methodology

In this section, we describe the mechanics of the DUE-S model—a
two-step process that aims to integrate engineering-based and data-
driven approaches, as shown in Fig. 1. This first step is to build baseline
energy simulation models with an appropriate level of detail based on
analysis of the tradeoffs between the modeling objective and avail-
ability of data (Step 1). The desired output of this step is periodic time
series data for each building that captures its basic energy processes and
use patterns. Subsequently, these time series become the structured
data inputs to the residual network (ResNet) machine learning model
(Step 2), where we use the machine learning algorithm to learn the
relationships between the simulated and actual metered energy data for
each building. The final output of the DUE-S model is an integrated
urban energy model that can be utilized to predict and characterize the
performance of buildings at multiple temporal and spatial scales.

3.1. Step 1: Baseline energy simulation models

Energy simulation is often over-parameterized and, if generated on
a larger, urban scale, requires an infeasible amount of time and re-
sources to accurately complete. The data available to create model in-
puts for each individual building varies drastically from building to

Fig. 1. Proposed DUE-S modeling framework. Step 1 uses information from existing data sources to create individual building energy simulations. Step 2 employs a
residual network model (ResNet) to predict the metered energy use by learning the uncertainties of the building energy simulations and their surrounding urban
environment.
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building due to numerous factors ranging from the time period in which
it was built to privacy concerns. As a result, it is important that a
consistent level of detail across an entire target urban area should be
determined for developing baseline energy simulation models in Step 1
of our proposed DUE-S framework. In order to do this, we first must
determine the required level of detail and generate energy simulation
models with at least this level of detail for each building in the urban
study area.

In general, there is a tradeoff between the level of detail needed for
an energy simulation and the resources needed to acquire the required
supporting data. Specifically, the level of detail is associated with a
model’s performance and uncertainty. A higher level of detail could
result in more accurate simulation results, however, could also require
more precise building-related data. Different purposes of urban energy
modeling require different levels of uncertainties from model input
(e.g., the design of a new building envelope does not need detailed
occupancy schedules as the building has not been occupied yet). The
energy modeling objective is the critical value to determine the
minimum level of detail (red arrow in Fig. 2). Details below the critical
value are required at minimum to be actual in order to build the
baseline energy models. On the other hand, the data access required to
construct such details also needs to be considered. The scale of data
availability regulated is represented in Fig. 2, where lower-level data is
considered less reliable than higher-level data for determining input
parameters and assumptions but is easier to collect [78]. The critical
value (green arrow in Fig. 2) indicates the minimum level of data that is
easily accessible to modelers (green zone in Fig. 2). As a result, the
shaded grey region in Fig. 2 represents the model input determination
that weighs the tradeoff between the level of detail required for the
modeling objective (e.g., retrofit analysis, pre-design phase) and the
availability of data (e.g., GIS shapefiles, sensor-based data) for devel-
oping models.

To be clear, the exact locations of critical values for the level of
detail (red arrow in Fig. 2) and for data access (green arrow in Fig. 2)
vary case by case, thus the final level of generalization of the energy
model can differ. In this paper, it is assumed the objective of our urban
energy model is to test the impacts of geometric designs and physical
efficiency retrofits on building energy use in a dense urban area. Based
on the analysis of tradeoffs between the level of detail input and data
access, the baseline energy simulation models require the inputs of the
following data primarily collected from publicly available datasets:
weather, building shape, building height and number of floors. To
model a site’s climatic conditions, energy simulations often rely on
Typical Meteorological Year (TMY) datasets, which contain the “most
average” hourly weather information for a site, including variables such
as dry bulb temperature, relative humidity, solar radiation and wind
speed [79]. However, with the increasing availability of historical

weather data at the hourly interval [80], this can be substituted in place
of a more generalized TMY file.

We use the building GIS shapefiles available from local municipal
websites to construct building geometries. The data structure normally
contains fields on building IDs, height, elevation and roofline area. By
merging this information with the shapefiles in SketchUp, simplified
massing models—often referred to as “2.5-D” models—can be con-
structed for each building to understand its area and orientation. The
buildings can be further divided into floors using either additional in-
formation or calculations based on standard floor-to-floor height.
Finally, the non-geometric building properties, which include the
building’s systems, schedules and internal constructions, must be de-
fined. Since these fields are above the critical value of level of detail
defined by our model’s objective, we define input parameters based on
the U.S. Department of Energy’s (DOE) Commercial Reference Building
models [81]. The DOE and several of its national laboratories used
national data from the 2003 Commercial Building Energy Consumption
Survey (CBECS) to determine an average mix of representative build-
ings. These reference models include 16 building types for 3 different
construction periods and represent about 60% of the U.S. commercial
building stock. Each of these models is available as a ZIP file with de-
tailed spreadsheets of plug and process loads, construction assemblies,
operating schedules and systems. In the case that certain non-geometric
parameters are available for a specific urban area per open data in-
itiatives, they can be used in place of the more generalized Commercial
Reference Building inputs. Other input parameters that are not speci-
fied by the reference models or publically available datasets are given
default values by engineering simulation tools like EnergyPlus. We
acknowledge that different simulation programs (i.e., IES-VE, DOE-2,
ESP-r) use varied default values as input parameters and rely on varied
assumptions about thermal dynamics and energy processes to create an
energy model. Theoretically, modeling the same building in two sepa-
rate energy simulation programs would result in different results.
However, this won’t impact the overall performance of DUE-S, as the
goal of first step in DUE-S is only to capture the baseline energy usage
dynamics of each building based on the tradeoffs between the modeling
objective and data availability (see Fig. 2). The second step of DUE-S
and its residual network, discussed subsequently in Section 3.2, will
further capture the remaining uncertainties about the generalized in-
puts and the impacts of urban context. As a result, DUE-S is agnostic to
the simulation programs used to create the underlying baseline energy
models.

Once all data primary inputs for weather, geometry and non-geo-
metric parameters are ready [82], multi-zone thermal models are cre-
ated using OpenStudio, the EnergyPlus plugin for SketchUp. The 2.5-D
massing models are constructed and divided into a pre-determined
number of floors. Each floor is further divided into core and perimeter

Fig. 2. Determination of model input based on the tradeoffs between the level of detail and data access.
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thermal zones, per ASHRAE 90.1 Annex G [83]. Each building is as-
signed an archetype (one type of U.S. Commercial Reference Building
model) based on building age and use type. Finally, each individual
building is simulated in EnergyPlus, resulting in an output of an IDF file
and a time series of 15-min interval electricity use. We stress that the
goal of these energy simulation models is to control their uncertainties
from input parameters by analyzing the tradeoffs between the modeling
objective and data availability, in order to capture the basic energy use
dynamics of each building. The outputs (i.e., simulated energy use) of
this step will then serve as inputs for the second step of the DUE-S
modeling workflow: the residual network machine learning model.

3.2. Step 2: Residual network machine learning model

We theorize that the primary sources of uncertainty in building
energy modeling arise from both the assumptions made in the energy
simulation process as well as the “hidden” urban context impacts that
are not captured by individual energy simulations. By using a deep
learning algorithm to map simulated energy consumption to its actual
building energy consumption, we expect this model will better account
for the uncertainties in both the input parameters and assumptions and
the urban context. More importantly, because interdependencies be-
tween buildings and the surrounding environment are dynamically
coupled, the impact of the urban context takes a non-linear form and as
a result can benefit from a deep network architecture that utilizes
multiple hidden layers to capture this non-linearity.

In selecting a deep learning algorithm, we wanted to take full ad-
vantage of the spatial nature of the dense urban built environment,
which a convolutional neural network and its locally-connected layers
would be particularly efficient at handling. While time series fore-
casting is more commonly done using sequence models such as re-
current neural networks, past studies have employed CNNs and shown
their ability to outperform these other models [76,77,84]. However,
CNNs with very deep networks can also suffer from degradation (i.e., a
saturation and rapid decline in training accuracy) [85]. This occurs
when the information passed between convolution layers is not well
estimated, which results in a “snowballing effect” of inaccurate pre-
dictions based on the poor performance of one layer. Residual networks
(ResNets)—an extension of CNNs—apply convolutions in a similar
manner to traditional CNNs but do not experience the high training
losses associated with degradation. Both deep and shallow ResNets
have been previously used in a spatiotemporal context to model crowd
flow prediction [86] and have been shown to outperform traditional
deep CNNs [87].

ResNets are a type of deep convolutional neural network made up of
a series of residual blocks, as shown in Fig. 3a. An exhaustive ex-
planation of residual networks and their architecture can be found in
[85,88]. A residual block is made up of two convolutional layers and an
identity mapping “skip” connection a[l] that can pass over layers to a
deeper location in the neural network [88]. It is this “skip” connection
in the ResNet architecture that makes it uniquely applicable to the
context of urban energy modeling and the primary reason for choosing
it in our initial testing of the DUE-S framework over other machine
learning models. First order impacts of the urban context on energy use
(e.g., shading) are captured by the traditional connections between
layers in the ResNet. The “skip” connection enables the ResNet to learn
the complex second-order impacts of surrounding buildings (e.g.,
thermal radiation, coupled occupant dynamics) of which may impact
some buildings but “skip” buildings that are not impacted. As a result,
the “skip” connection could enable the ResNet to capture the complex
second-order effects of the urban context without forcing the model to
over fit on a single layer and cause degradation (see Fig. 3b).

Specifically, as a[l] skips through the first layer of the residual block,
it passes through a linear function and a non-linear activation function:

= ++ + +Z W a bl l l l[ 1] [ 1] [ ] [ 1]

=+ +a g Z( )l l[ 1] [ 1]

where W is the matrix of learned parameters for the ResNet, a is the
activation for layer l, b is the bias vector, and g is the activation func-
tion. This process is then repeated through the second layer in the re-
sidual block, except for the newly introduced skip connection, which
adds the original input information, a[l], after the linear function but
prior to the second non-linearity equation:

= ++ + + +Z W a bl l l l[ 2] [ 2] [ 1] [ 2]

= ++ +a g Z a( )l l l[ 2] [ 2] [ ]

Batch normalization is often included as part of the ResNet archi-
tecture in order to more easily tune its hyperparameters and train the
neural network [89]. The specific architecture of a residual block may
vary depending on application, but we designed the residual block for
this framework based on the results of [88] (Fig. 3b).

The overarching goal of the residual block is to learn the mappings
between a[l] and a[l+2] while avoiding the issue of degradation. The
output of the ResNet is the final prediction for building energy con-
sumption, which, depending on the network architecture, could be at
any time interval (e.g., hourly, daily, monthly, annually) or spatial scale
(e.g., individual building, block, urban scale).

4. Case study

4.1. Study area and data inputs

To test the performance and feasibility of DUE-S, we draw data and
information from an urban university campus located in California,
USA. Because one of the goals of DUE-S is to capture how inter-building
energy dynamics affect energy use, this site was selected based on the
dense network of buildings on its campus. The study area (Fig. 4) is
comprised of 22 university buildings, located on 4 adjacent blocks used
primarily as offices and classrooms. We note that while the DUE-S
model works for multiple energy types, this case study specifically
analyzes electricity use as this data was only available and the most
relevant for energy loads in the moderate climate of California, USA. A
typical daily, monthly and yearly load profile for a building in the case
study is provided in Appendix A. Its surrounding area contains addi-
tional buildings not included in this study and is paved for both car and
pedestrian traffic with additional landscaping. As shown in Table 1, the
data used to inform the baseline energy simulations was gathered
through both publicly accessible datasets and the local university fa-
cilities department. We gathered three years of hourly historical
weather data on the specific study area from the National Oceanic and
Atmospheric Administration (NOAA) [80] and utilized this data for
each year of simulation. To create the building geometries, we drew
from a building GIS shapefile provided by Los Angeles County’s LARIAC
(LA Region Imagery Acquisition Consortium) program [90]. Since all
the 22 buildings were built before 1980 and mainly consist of offices,
the non-geometric properties for each building were defined based on
the DOE Commercial Reference Building’s “pre-1980s” construction
and “medium office” use type. Additional interviews with a university
facility manager defined the window-to-wall ratio (WWR) to range
from 0.3 to 0.4. While BIM was available for some of the buildings on
campus, we were more interested in evaluating the accuracy of DUE-S
given fewer detailed inputs, as this would more likely be the circum-
stance facing an energy modeler on a city scale.

After simulating each of the 22 buildings for three years, each of
their resulting 15-min interval time series of electricity consumption
become the inputs to our residual network model. For our im-
plementation of the ResNet, we shape our input data—the simulated
data—into 1095 daily signals of 96 15-min time steps for all 22
buildings (Fig. 5). This input tensor with dimensions [22, 1095, 96] was
then flattened to a 2D matrix of size [22, 105120] to feed into the
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ResNet. We then one-hot encode, or featurize, day of the week (7) and
month (12) into our input space, increasing the number of input features
to 41 while keeping the number of output features at 22 for a final
flattened matrix of dimension [41, 105120]. We then split our data into
training, development and testing sets. The training set, which is made
up of 60% of the total data, is used for training several iterations of the
ResNet—each of which use different combinations of hyperparameters
(e.g., number of hidden layers, number of hidden units per layer,

learning rate and activation function). The development set, which is
made up of another 20% of the total data, is used to evaluate each of the
models developed with the training set and to prevent overfitting when
evaluating on the test set. Finally, the testing set, which contains the
last 20% of the data, is used to evaluate the overall accuracy of the
ResNet.

The training inputs were initially fed through a 1D convolutional
layer that output 64 channels, determined through trial-and-error ex-
perimentation of three different channel sizes (32, 64, 128). These 64
channels were then passed through 8 residual blocks, each of which
contain two 1D convolution layers, batch normalization and a leaky
ReLU non-linear activation function with a coefficient of leakage α =
0.01, as shown in Fig. 3b. The number of residual blocks and activation
function were chosen using an exhaustive trial-and-error tuning pro-
cess. These 64 channels were passed through a final 1D convolution to
output 22 channels, which were then fed through a fully connected
logistic layer and a linear output layer, each containing 22 hidden units,
to produce the final prediction for DUE-S. To optimize the network
parameters, we used the Adam optimization algorithm to minimize
MBE [91]. The ResNet’s architecture was adjusted to evaluate the
prediction accuracy of DUE-S at the individual building, block level and
urban level, and the results are discussed in Section 5.

4.2. Validation metrics

The performance of DUE-S depends on how reliable the simulation
results match the actual electricity use. To evaluate the accuracy to
which our model predicts the electricity use at the individual, block and
urban scales, we compare the predicted electricity consumption to the
metered electricity consumption at hourly, daily and monthly intervals
using MBE, CV(RMSE) and MAPE. The first evaluation metric is the
Mean Bias Error (MBE):
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In this equation, Yi is the actual measurement of energy use and ̂Yi is
the simulated value; n is the number of measurements (this varies by
time interval being studied with n = 1095 days, 36 months or 3 years in
our case study). MBE is a non-dimensional metric for overall deviation,
which can effectively reflect overestimation versus underestimation. It
measures long-term model performance through analyzing the error
between the simulated and measured energy use intensity.

Fig. 3. a (top). General ResNet architecture.
Inputs to the model consist of periodic time
series representing simulated energy use. These
inputs are passed through a series of residual
blocks that aim to learn the hidden relationships
between simulated and metered energy use. b
(bottom). Architecture for DUE-S ResNet re-
sidual block. Each residual block contains a
series of convolution layers, batch normal-
izations and non-linear activation functions.

Fig. 4. Test bed study area for DUE-S.

Table 1

Datasets and data fields used for DUE-S baseline energy simulations.

Use Data source Data type Data field

Building
geometry

LA Region Imagery
Acquisition
Consortium (LARIAC)

Shapefile Building area
Building height
Building elevation

Client Interviews Num. of floors
Average WWR
Other specified non-
geometric
parameters

Weather data NOAA Time-series
datasets

Historical hourly
weather
information

Non-geometric
parameters

DOE Commercial
Reference Building
(pre-1980s medium
office)

Database Occupancy
schedules
Building
constructions
HVAC type
Heating/cooling
loads
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The second metric is the Coefficient of Variation (CV) of RMSE
(Root Mean Square Error):

̂

=
∑ −
∑

=

=
CV RMSE

Y Y

Y n
( )

( )

( ( ))/

i

n
i i

i

n
i

1
2

1

The CV(RMSE) is determined by dividing the RMSE by the mean
measured energy use intensity. It is not influenced by the compensation
effect and can evaluate the variability of agreement between the si-
mulated results and measured values over a period of time.

Finally, we evaluate the accuracy of the DUE-S case study using
MAPE (Mean Absolute Percentage Error), which is a common metric
used to evaluate the percentage error for forecasting applications:
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In previous studies, the time granularities of comparison include
hourly [92], daily [93], monthly [94], yearly [19,95] and even ag-
gregated value for the entire period [36]. However, the comparison is
only limited for a few buildings in a small district due to the lack of
available data. A comprehensive comparison at different spatial levels
for validation is missing – a feature DUE-S is able to provide.

5. Results and discussion

After running the complete DUE-S framework for the case study
buildings, we calculate the Mean Bias Error (MBE), Coefficient of
Variation (CV) of RMSE and Mean Absolute Percentage Error (MAPE)
per the equations discussed in Section 4.2. We note that the errors
across our training, development and test data sets were consistent
(e.g., monthly urban predictions had MAPE of 5.32%, 6.41% and 8.28%
for training, development and testing datasets, respectively) and in-
dicate that our ResNet model did not overfit to specific time period of
the training data. The overall results are provided in Table 2 for all
assessed spatial and temporal scenarios. To calculate the error results,
we first aggregate the data temporally across all buildings to the desired
scale for analysis (e.g., hourly, daily, monthly). Then, depending on the
specified spatial scale, we aggregate the results, if necessary, to the
block or urban scale.

In order to contextualize our results, we compare them to the
ASHRAE Standard Guideline 14 [56], which defines metrics and
guidelines for hourly and monthly building energy modeling for in-
dividual buildings. While ASHRAE currently does not have a standard
to evaluate prediction accuracy at the block or urban scales, we are
using individual building electricity use as a conservative proxy as
other urban simulations have similarly done [48]. Based on the

ASHRAE standard, we assess errors on the basis of metered electricity
consumption in kilowatt-hours (kWh). Acceptable ranges for an energy
simulation require an MBE of 10% for hourly intervals and 5% for
monthly as well as a CV(RMSE) of 30% for hourly intervals and 15% for
monthly. While MAPE is not commonly used to assess accuracy in en-
ergy simulation models, we include it in our analysis as it is often used
for evaluating machine learning models. Additionally, different build-
ings might have variances in the magnitude of energy consumption, and
as a result the MBE metric is susceptible to being dominated by larger
buildings with higher electricity consumption. Utilizing the MAPE
metric as an alternative metric allows for the normalization of errors
across numerous buildings.

Overall the results shown in Table 2 demonstrate that DUE-S is able
to more accurately predict electricity use as the spatial and temporal
granularities increase. Compared to the ASHRAE Guidelines, DUE-S was
able to more accurately predict electricity performance at the urban
scale for hourly and monthly time intervals. We postulate that our
model’s success at these higher intervals is because aggregation reduces
the variability in overall electricity consumption and creates a smoother
consumption curve consistent with findings from previous sub-building
[10] and residential [96] forecasting studies. Thus, by assessing elec-
tricity use on a wider spatial scale or at a larger time interval, the effects
of buildings or blocks with worse individual predictions are dampened,
indicating the impacts of urban context on to building energy use have
been partially captured at higher spatial and temporal scales.

Fig. 6 shows the MAPE of DUE-S when predicting at the monthly
interval and urban scale for the testing data. The trend indicates that
the peak winter and summer months tend to perform worse than
months in more temperate spring and fall seasons. One possible reason

Fig. 5. ResNet input space and dataset volume. After simulating each of the 22 buildings, the time series data was shaped into an input volume of 22 build-
ings× 1095 days× 96 15-min intervals of energy consumption. This volume was then flattened to become the 2-dimensional input space used in the ResNet model.

Fig. 6. DUE-S performance in estimating urban scale electricity use at the
monthly interval, evaluated with MAPE.
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is that winter and summer months are generally when university va-
cation periods occur, and thus the use of buildings could be irregular
and unpredictable. When we dissect monthly MAPE further at the block
scale (Fig. 7), we see that while each block generally follows a similar
trend in seasonal prediction with urban scale simulation, there is sig-
nificant variability in the performance of each block. While the south-
west block is unable to estimate electricity use nearly as well as the
others, it is still able to follow a similar trend in seasonality which we
believe shows that the ResNet is picking up on electricity use trends
across large spatial regions. However, to fully understand the drivers
for why this particular block of buildings is performing much worse, we
further assess the monthly MAPE at the building scale (Fig. 8). Fig. 8
indicates that some buildings, similar to the block scale, are able to
predict electricity use better or worse than others. Each row represents
one of the 22 total buildings in the study area, whereas each column
represents a single month of electricity prediction. Darker colors in the
map represent worse MAPE scores and lighter colors represent more
accurate results. As indicated earlier, the southwest block, which is
comprised of the upper five buildings in the heatmap, contains five
buildings that are not particularly accurate in their own electricity
prediction, while each of the other three blocks contains buildings that
were more accurate. One possible reason is the existence of missing
data, which could significantly impact the learning of inter-
dependencies and interactions of building energy use. Some of these
buildings may perform better or worse than others, and we believe that

may be also because the quality of metered data we were able to collect
from the university varies in its completeness. For example, one of the
worst performing buildings in the northwest block has 38% of missing
values, while one of the best performing buildings from the southeast
has 6% missing values. In turn, by assessing which buildings perform
worse than others, we can focus future efforts to collect and clean
electricity data for those particular buildings.

Finally, we examine the distribution of the monthly MAPE at the
building scale in Fig. 9 to show how DUE-S performs for all buildings
throughout the year. Among the twelve boxplots, nine have compact
interquartile ranges (IQR) but long tails, indicating that during these
months at the building scale MAPE deviates from each other but
otherwise generally performs well. It is clear that there are buildings
with much better estimates of electricity consumption than others.
When averaged, however, the final result gives a much higher error
(Table 2) due to the existence of outliers. It can also be seen that the
boxplots are fallen into five regions (three are above the 0.00 line and
two are below), demonstrating seasonality affects whether DUE-S is
under or overestimating electricity use. The spring and fall months
show a trend in underestimating electricity use while winter and
summer ones tend to overestimate. During the months that DUE-S tends
to underestimate electricity, the variance of MAPE is smaller than other
months - indicating that the model performs better when providing a
conservative estimate of electricity use.

It has been demonstrated that DUE-S is capable of accurately pre-
dicting building energy use at multiple temporal and spatial scales,
which could be utilized for a variety of real-world urban energy effi-
ciency applications, such as large-scale retrofit analysis. For example, if

Fig. 7. DUE-S performance in estimating block scale electricity use at the
monthly interval, evaluated with MAPE.

Fig. 8. Heatmap of building scale predictions at the monthly interval, evaluated with MAPE. The heatmap is divided into four sections, each comprised of buildings
located at each of the four blocks.

Fig. 9. Distribution of electricity use predictions by month.
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an engineer was interested in understanding how changing the mate-
riality of windows (e.g., from 6mm Low-E glass to 12mm Low-E glass)
impacts energy use for numerous buildings in northwest block of our
case study, they could utilize the DUE-S model as follows. First, they
would run the DUE-S model with the baseline energy simulation to
enable the residual network to learn the uncertainties associated with
simplified assumptions made in the energy simulation process as well as
the “hidden” urban context impacts. Next, they could take the baseline
energy simulation and, holding all other input parameters constant,
modify the glazing material properties of windows in the buildings
receiving the potential retrofit. The resulting simulation results would
show the basic energy dynamics of the proposed window retrofit. Then,
the results from this retrofit simulation would become the inputs to the
same residual network model created with the baseline energy simu-
lation. By applying transfer learning [97] to the new input data, the pre-
trained network relating simulated and metered energy could also be
used for the retrofit scenario. Because the only differentiation between
the baseline and retrofit scenarios are the new modified window glazing
inputs in the retrofit simulation, the difference in outputs from the re-
sidual network would help quantify the impact of the window retrofit
on a single building in the northwest block, the rest of the block, and
the ones around it.

Overall, the results of the case study underscore the value and merit
of the integrated DUE-S approach, but they also demonstrate that sig-
nificant amount of future work is necessary to further refine it at
smaller spatial and temporal scales. Although it is common for deep
learning models to use much more data than we had for this study, our
ResNet was still able to pick up on the patterns presented in the
available data. Furthermore, it was able to achieve results that de-
monstrate the potential of using deep learning to better predict energy
use on multiple spatial and temporal scales by capturing some un-
certainties in both modeling process and from the urban context.
Besides working with a longer period of metered energy data, we be-
lieve that introducing more features to the input dataset, such as
weather data or hours of operation, may help the ResNet pick up on
additional patterns at the smaller spatial and temporal scales. Finally,
with any data-driven model, its performance can only be as effective as
the quality of its data. Because the inputs to the ResNet were the result
of highly generalized energy simulations, we plan to further analyze the
tradeoffs between modeling objectives and data availability to under-
stand how the DUE-S results can be further improved. In the end, we
aim to establish an integrated model that strikes the balance between
extensibility and detail, as creating and maintaining comprehensive
building energy simulation models for all buildings in a city is in-
feasible. This core objective of this paper is to propose a novel method
for predicting building energy use at various spatial and temporal
scales, and it represents the first key step to enable future work that
explores the potential of using data-driven methods to create multi-
scale urban building energy models.

6. Limitations and future work

This paper aimed to take a first step in overcoming challenges faced
in urban energy modeling and to test the feasibility of DUE-S: a gen-
eralized engineering urban energy simulation model integrated with a
network-based machine learning model. Our goal was to understand

whether an integrated model such as DUE-S could accurately char-
acterize the energy performance of buildings at the individual building,
block, and urban scale simultaneously. We evaluated our model
through a case study of 22 co-located university buildings for 3 years
and found that a residual neural network (ResNet) model was capable
of predicting urban scale energy use on par with industry-accepted
limits. However, future work is required to further validate the mod-
eling approach on other case studies with diverse building stocks and
urban morphologies to ensure the model is reliable for various sce-
narios. Moreover, our model was only able to successfully predict on
the urban (campus) scale but demonstrated potential for achieving
accuracy at other scales as well. The energy simulations relied on inputs
provided by the Department of Energy’s Commercial Reference
Buildings and publicly available data, and specific details related to
each individual building were not included in order to test the level of
generalization a simulation could have to still be able to accurately
predict energy use. Future work should aim to understand the level of
specificity required of the energy simulations in order to improve pre-
diction results within acceptable error ranges. Additionally, deep
learning models, including ResNets, require a large number of ob-
servations in order to effectively train, develop and test their accuracy.
Because one of the limitations of this study is the limited time period of
provided data, we aim to train our ResNet on more observations in
order to produce a model better capable of understanding the more
complex patterns of building energy use. Future work also aims to
analyze the performance of the ResNet in more detail by extracting the
weights of each hidden layer to understand the correlations between
consumption in adjacent buildings. Because the selected study area was
a small cluster of university buildings, we were unable to determine its
performance on a large number of densely clustered buildings of dif-
ferent sizes and use types. As such, we acknowledge that our case study
is not fully representative of a large real city but nonetheless the results
provide a high-level validation of how our proposed model would
perform on a small and dense central business district (CBD) that is
common in many parts of the United States. Finally, we aim to test
DUE-S on a larger, more heterogeneous group of buildings in a different
geographic area to further refine and improve the extensibility of the
underlying framework, as well as implement DUE-S in real-world
building and urban scale retrofit scenarios to support sustainable urban
planning and operations.

7. Conclusion

The primary goal for this paper was to propose DUE-S: a data-driven
modeling framework that integrates the computational power of a
neural network model and interpretability of an engineering building
energy simulation. The results of our case study analysis demonstrate
the significant opportunity that exists to create more accurate multi-
scale urban energy models if emerging machine learning models were
integrated into the current energy simulation workflow. However, in
the current state, there is no generally accepted approach for urban
energy modeling as there exists a significant amount of uncertainties in
both buildings to be modeled and the surrounding environment.
Current methods can only simulate buildings on an individual level,
and fail to account for the energy dynamics and interdependencies re-
sulting from urban context. The rapid development of new sensing

Table 2

Summary of DUE-S results at multiple temporal and spatial scales.

MBE (%) CV(RMSE) (%) MAPE (%)

Hourly Daily Monthly Hourly Daily Monthly Hourly Daily Monthly

Building scale 38.8 27.9 17.3 46.0 31.3 27.9 49.6 43.1 43.8
Block scale 27.1 18.2 14.7 40.6 25.1 18.5 21.4 18.3 16.9
Urban scale 10.5 7.93 4.78 25.6 14.4 11.4 12.7 9.31 8.28
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technologies and smart city initiatives has led to an explosion data
streams describing buildings and their urban environment, which in
turn provide a significant opportunity to create more accurate multi-
scale urban energy models by integrating emerging data-driven ma-
chine learning models with an engineering simulation workflow to
leverage the advantages of both. Specifically, we were able to demon-
strate that our integrated DUE-S model achieves acceptable level of
accuracy at the urban (campus) scale as per ASHRAE standards.

Overall, an integrated engineering and data-driven approach to
urban energy performance modeling can yield a model generalizable
for any city or dense building portfolio data and will be able to simulate
energy consumption on an individual, block, and urban scale. By vi-
sualizing the energy use of buildings across a city, policymakers will
have a better awareness of the effects of new citywide interventions
(e.g., implementing an incentive program for window retrofits across
the city). Designers and building operators will understand the effects
of energy consumption on not only their building, but surrounding ones
as well (e.g., adding reflective coating to minimize glare, retrofitting
the HVAC system). And finally, as data is being increasingly used in the

planning of newer, smarter cities, this model can employ data from
existing cities to optimize building energy use and help inform key
decisions related to energy efficiency early on in the design process and
as part of retrofit programming (e.g., developing planning policies re-
lated to land use and morphology, enacting a new policy to allow high-
rise development). In the end, as the world rapidly urbanizes modeling
the energy performance of our urban buildings will undoubtedly unlock
numerous opportunities that could potentially enhance the sustain-
ability of our cities for years to come.
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Appendix A

Electricity use profiles based on metered electricity data for a single building in the campus study area. Profiles are shown in hourly intervals for
peak summer and winter days, daily intervals for summer and winter months, and monthly intervals for a full year.
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