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a  b  s  t  r a  c t

With  the  world rapidly urbanizing,  addressing  the  energy  intensive  urban  built environment is  becoming

increasingly  important.  Cities  across  the  United States and  the  world are  turning  to energy  benchmarking

as  a  means  of understanding  the  relative  energy efficiency  of their  building  stock  and identifying  poten-

tial  opportunities  to  reduce  energy  usage.  Benchmarking  utilizes building characteristics  and  energy

use data  to measure  a  building’s  energy consumption  against  a performance  baseline and  derive a level

of energy  efficiency.  Over twenty  cities  in the  United States  and  many  others  across the  world have

passed  laws mandating  the collection and  disclosure  of energy  use data  to enable  benchmarking  and pin-

point potential energy saving  opportunities. However,  municipalities are struggling  to convert  this  data

into actionable  insights  and  identify  which  buildings are  prime  candidates for  energy  efficiency  inter-

ventions.  Although  an extensive  body of work exists  on benchmarking  building energy performance,

previous  works  are  limited  in their ability to leverage such  emerging  data  streams  and  conduct  analy-

sis  at  the  city scale.  Moreover,  previous methods are  largely  based on black-box  models  that  limit  the

interpretability  of results  and  in turn  hinder  the  ability  of policy-makers to employ  such models  in  their

policy design  and decision-making  processes. In  this paper, we  propose  DUE-B,  a new Data-driven Urban

Energy Benchmarking  methodology based  on recursive partitioning  and  stochastic  frontier  analysis. To

test DUE-B,  we  evaluate  its performance  using real  energy  and  building  data  from  over 10,000 buildings

in  New  York  City,  and  we compare  the  results  to  other  common benchmarking  models  using  the  Kendall

tau-b  correlation coefficient.  Results  indicate  that DUE-B is more  robust than  conventional benchmarking

methods  in respect  to identifying  subsets of efficient  and  inefficient  buildings.  Furthermore,  we highlight

how  results from DUE-B  can  be  utilized  by  municipal officials and  other  policy-makers  to  target  inef-

ficient  buildings for  energy efficiency  interventions,  incentives,  and programs.  Specifically,  we indicate

how DUE-B can  be  utilized  by  municipalities  to target  the  most inefficient buildings for  subsidized  onsite

energy audits and  less inefficient buildings  for  less capital-intensive energy  efficiency  strategies  such  as

incentives  and educational programs.  In  the  end, more  robust  benchmarking  methods like  DUE-B have

the potential to enhance the  efficacy of municipal energy  efficiency  programs  and  help transition  cities

to  a more sustainable energy  future.

© 2018 Elsevier  B.V.  All  rights  reserved.

1. Introduction

Cities account for over 75%  of all primary energy use and over
80% of direct and indirect greenhouse gas (GHG) emissions world-
wide, with the bulk of such consumption and emissions coming
from buildings [1]. With the world rapidly urbanizing, address-
ing the energy intensive urban built environment is integral to our
transition to a more sustainable world. Given that the majority of

∗ Corresponding author at: Civil &  Environmental Engineering, Stanford Univer-

sity;  473 Via Ortega Way, Rm 269A, Stanford, CA 94305, USA.

E-mail  address: rishee.jain@stanford.edu (R.K. Jain).

existing buildings are believed to  be  inefficient in  some capacity,
enhancing the energy efficiency of our existing urban building stock
through retrofits (e.g., upgrades to  buildings systems, changes to
building envelope) and/or adoption of energy conservation mea-
sures would yield significant energy, environmental, and economic
benefits [2–5].

In  order to  accelerate the adoption of energy efficiency mea-
sures in  cities, municipal officials and policy-makers have turned
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to  energy benchmarking1 as means of understanding the energy
efficiency of their building stock and identifying opportunities to
reduce energy usage. As such, over twenty cities across the United
States (e.g., New York, Philadelphia, Seattle, and San Francisco)
have passed legislation mandating the disclosure of energy use
data for a majority of their building stock [6]. Municipalities are
struggling to turn this data into insights and actionable policy that
can lead to effective and targeted energy efficiency programs. Cur-
rent benchmarking methods are limited in  their ability to  handle
this new type of building and energy data. Traditional engineering
benchmarking methods (e.g., EnergyPlus) require the development
of highly-detailed simulation models and/or an extensive on-site
engineering surveys rendering them infeasible for benchmarking
thousands of buildings across a city [7,8]. Other methods such as
EPA’s EnergyStar ranking system [9] are applicable for city scale
benchmarking, but are based on national level databases and there-
fore fail to leverage local emerging data streams from disclosure
legislation in their analysis. New data-centric methods and models
[10–12] are emerging as part of a  more concentrated effort on har-
nessing local energy usage data for benchmarking purposes. While
such models have shown promise in city scale applications, those
that rely on complex machine learning methods [13] reduce inter-
pretability and thus limit their applicability to  inform the design of
energy efficiency policies and programs.

In  this paper, we propose DUE-B, a  new Data-driven Urban
Energy Benchmarking method for buildings using recursive par-
titioning and stochastic frontier analysis. A major challenge in
conducting energy benchmarking at the urban scale is the hetero-
geneity of building stock and its associated energy usage across
an entire city. To address this challenge, we  utilize an integrated
approach that first partitions buildings based on both energy usage
and building characteristics, with a Classification and Regression
Tree (CART), and then applies Stochastic Frontier Analysis (SFA) on
each partitioned group to separate random errors from sources of
inefficiency in each building. Our integrated approach was  designed
to  strike a balance between generalizability and interpretability.
We aimed to create a  model that  could be utilized by any city
despite differences in data collected as part of disclosure legislation,
yet still provides robust and highly interpretable results that can
inform the design and development of targeted energy efficiency
policies and programs. We  demonstrate the merits of our proposed
DUE-B method by applying it to building data from over 10,000
buildings in New York City and compare results of our  method to
two other common benchmarking methods (EUI, EnergyStar) using
a correlation analysis based on the Kendall tau-b metric.

2.  Related work

Numerous benchmarking models exist in  the literature ranging
from simple to complex methods. The simplest method is the use
of a key performance indicator (KPI), such as the European Energy
Performance Indicator (EPI) or Energy Use Intensity (EUI). These
methods are easy to  compute and have been utilized in  numer-
ous previous works [14,15]. Additionally, the output of such simple
methods is easy to interpret and can be used to rank buildings in
order to estimate levels of energy efficiency. However, such sim-
ple indicators can only provide a  rough estimate of the numerical
differences between the energy efficiency of buildings and do not
account for other influential factors like physical characteristics,
occupancy, and building systems. Specifically, EUI values do  not
normalize for other factors (e.g., HVAC systems, age, number of

1 In this paper, we define energy benchmarking as the process of collecting build-

ing  energy data and measuring a building’s consumption against a  performance

baseline to indicate its relative energy efficiency.

floors) and make the erroneous underlying assumption that energy
and floor area scale linearly [16]. As a result, simple indicators can
be unreliable in assessing the relative energy efficiency of  buildings
at the city scale where there is a large variation in types, sizes and
uses of buildings.

Point-based rating systems use a  predefined scoring system
to grade the performance of buildings and have been embedded
in previous benchmarking systems [17]. Numerous point-based
systems exist but for the sake of brevity we highlight two  main
types: credit- based and rank-based. Credit-based methods, such as
Leadership in Energy and Environmental Design (LEED) in  the U.S.
and Building Research Establishment Environmental Assessment
Method (BREEAM) in  the U.K. evaluate the overall sustainability
and environmental footprint of a  building. However, previous work
[18,19] has pointed to the limitations of credit-based systems as
they do not compare the energy efficiency among buildings after
they are constructed (i.e., during the occupancy phase) and cannot
recognize buildings that are  more operationally energy inefficient
than peers. Ranking-based systems, such as EnergyStar [20], use
national survey data (e.g., CBECS-Commercial Building Energy Con-
sumption Survey) as the basis to quantify how efficient a  building
is compared to the best-practice peers with the same primary
use type. While rank-based systems provide a  quick and intu-
itive numeric evaluation of building energy performance, they are
limited by their use of static national level data. As a  result, ranking-
based systems like EnergyStar are limited in their ability to provide
locally contextualized results for a city and do not quantify the
extent and source of energy inefficiencies within a building.

Simulation-based methods [21,22]  for benchmarking apply
whole building energy simulation programs, such as EnergyPlus
and ESP-r, to  compare current energy use of a  building to a
simulated building’s energy use by virtually representing and
reproducing periodical load dynamics, heat transfer and building-
system interactions. Simulation-based methods can quantitatively
account for numerous factors that influence the energy perfor-
mance of a  building but previous work [23]  has demonstrated that
simulations require time intensive expert calibration in order to
yield accurate results. As a  result, simulation benchmarking meth-
ods main drawback is  the significant time, effort and expertise
required to ensure consistent performance thereby limiting their
applicability to  city scale energy benchmarking.

Linear statistical models are also widely used for benchmarking
building energy efficiency [24,25]  by establishing a mathemati-
cally linear fit between building characteristics and energy use.
Recent work [26] has improved regression models to fit a fuzzy
environment by capturing the fuzzy structures in  the dependent
and independent variables. Despite the ease of implementation
and interpretability of regression, there are several key limitations.
First, the residuals measure the difference between energy use of a
building with a fitted average, which cannot be directly interpreted
as the actual level of energy efficiency. Second, the residuals cap-
ture relative inefficiency, statistical noise, unexplained factors and
any measurement error in the dependent variables. This makes it
difficult to tease out true levels of inefficiency from statistical noise
and measurement error. Third, regression is  highly susceptible to
outliers which can skew the regression fit and is  likely to occur
when being applied to a diverse set of buildings across an entire
city [4]. This is  due to the fact that ordinary least squares regression
finds the mean value of the data where outliers hold more weight.
Thus, a  few poor performing buildings could lead to an incorrect
conclusion that the majority of buildings are efficient and thereby
significantly skew energy benchmarking results.

More recently, Artificial Neural Networks (ANN) methods
have been applied to building energy performance benchmarking
[27,28]. ANN methods work by learning the statistical relation-
ships between building characteristics and energy use through
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a feed-forward back-propagation network. While ANN methods
have demonstrated the ability to model non-linear and non-normal
relationships [29–31], the complexity and black box nature of
these methods make interpreting the results difficult. Moreover,
because knowledge gained in the training process does not  have
any explanatory power and the model derived network does not
have a direct physical meaning, insights into what is causing
energy inefficiencies are limited. As a  result, ANN based meth-
ods have limited applicability to city scale energy benchmarking
where interpretability is  paramount for augmenting and informing
decision-making regarding energy efficiency policies and pro-
grams.

Clustering systems have also been utilized to allocate build-
ings into groups, where the best and worst performers within
each group can be identified as baselines for energy performance
benchmarking [32]. Both parametric methods (e.g., k-means) and
nonparametric methods (e.g., decision trees) have been utilized in
such systems. Specifically, the k-means algorithm has been uti-
lized in previous work [33]  to  divide buildings into a fixed number
of groups by minimizing the differences in energy use or building
characteristics among different clusters. While k-means clustering
is computationally efficient and has been applied to cluster a large
number of buildings [34]. It  requires a preset number of groups
which in general is  difficult to  determine a  priori by  city officials and
other energy efficiency decision-makers. Additionally, k-means is
also unable to account for correlations among building character-
istics (e.g., building area) that are common in city scale datasets
and thus could result in conflicting results in benchmarking appli-
cations. Decision tree methods have been utilized in  previous work
[35,36] to form sub-groups by dividing buildings based on the rela-
tionship between characteristics and energy use. Recent work [37]
has utilized such methods to determine the energy efficiency of a
particular building by  comparing its energy usage to  the mean and
median values within a  clustered sub-group. Decision tree methods
can equally handle both numeric and categorical characteristics,
and are robust to missing data [38].  This ability is  valuable for city
scale building benchmarking given the nature and collection pro-
cess of municipal benchmarking data. However, a  key limitation
of decision tree methods is that the statistics used for benchmark-
ing only represent the typical or average energy performance of a
group of buildings and thus cannot be solely utilized to quantify the
potential level of efficiency attainable for an individual building.

Frontier analysis based benchmarking systems are used to  mea-
sure the divergence of energy use between a constructed frontier,
of energy-efficient buildings and any other building in  the dataset.
Depending on whether stochastic variations of the frontier are
incorporated, there are two main types of frontier analysis: Data
Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA)
[4]. DEA considers buildings as individual decision-making units
and applies fractional programming to measure the efficiency level
of each building [39,40]. Although DEA can quantitatively compare
relative energy performance, it cannot evaluate buildings outside
the training set, and the calculated level  of energy efficiency from
DEA is the combination of random errors and relative inefficiency,
reducing the reliability of benchmarking results. DEA’s determin-
istic nature assumes that efficient buildings consistently exist for
comparison and that variations in  energy use are strictly due to
technical inefficiency sources and not influenced by  other random
factors such as data input error, system malfunctions, etc. In  order
to overcome such limitations of DEA, SFA was introduced to dif-
ferentiate random errors in energy use from inefficiency sources
in several recent studies [41–43]. SFA is a  parametric method for
benchmarking that builds a regression in which it is  assumed
that random errors and inefficiency sources are independently dis-
tributed. An “energy efficient” frontier is  established by  combining
the deterministic kernel and random errors to represent the max-

imum potential efficiency level of building energy use. The energy
efficiency level of a  specific building can then be precisely quanti-
fied by comparing its actual energy use with the frontier. However,
previous work has only applied SFA to buildings comprised of  a
single type (e.g., commercial) without considering variances in the
magnitude of energy usage. This poses a  challenge when extending
SFA to the city scale because a  city’s building stock is  heteroge-
neous in nature and comprised of various types of buildings (e.g.,
commercial office space, retail, multi-family) that have significant
variances in the magnitude of their energy usage. Such large vari-
ations can make it impossible for SFA to create a single frontier for
benchmarking. As a  result, applying SFA to  city scale benchmark-
ing requires pre-processing of the data to minimize the variance
of both the dependent and independent variables (energy use and
other building characteristics, respectively).

This paper proposes a  novel integrated Data-driven Urban
Energy Benchmarking (DUE-B) method that quantitatively esti-
mates a  building’s relative energy efficiency (or inefficiency) and
can be applied to a diverse set of buildings across an entire city.
Additionally, DUE-B aims to preserve interpretability of bench-
marking results in order to facilitate the design of effective and
targeted energy efficiency policies and programs.

3. Data-driven urban energy benchmarking (DUE-B)

method

Our proposed integrated data-driven and highly interpretable,
DUE-B method contains four main steps (visually depicted in Fig. 1):
1) collect and clean building related data; 2) recursively partition
buildings into different subgroups based on building characteris-
tics and energy consumption to  reduce variance in  both; 3)  define
a  stochastic frontier for each group (the maximum potential level  of
efficiency) and calculate energy efficiency estimates for buildings
to benchmark energy performance; 4) identify the energy ineffi-
cient/efficient buildings for targeted energy policy and programs.

3.1. Recursive partitioning: CART

After data is collected and cleaned, a  classification and regres-
sion tree (CART) is applied to recursively partition buildings into
similar groups based on building characteristics and total energy
usage or energy use intensity (EUI). The choice of dependent vari-
able as total energy usage or EUI is determined by the modeler for
a specific city and dataset. We  discuss our choice for the depen-
dent variable in  our experimental test of the method later in  the
paper as part of Section 4.1.  This clustering technique was cho-
sen over other popular methods, like  k-means or  random forest,
due to its high interpretability, its compatibility with categorical
data, its resistance to  irrelevant characteristics and its ability to
easily handle missing data. Results from other clustering meth-
ods can be more difficult to  interpret since distance, or density,
between two  buildings holds little real world meaning outside of
the realm of data analysis (distance in  clustering models refers to  an
abstract metric, measuring similarity between data points across
the entire feature space, and not physical distance). These same
methods often have difficulty handling categorical data, and often
require tuning parameters that can be somewhat arbitrary when
dealing with a  problem where prediction is not the goal. CART can
accept categorical data, increasing the retention of the already lim-
ited information in  city datasets, and automatically chooses the
most important data when constructing a tree, eliminating the use
of irrelevant information. Finally, CART easily handles missing data
and is robust to outliers, which is especially important when deal-
ing with heterogeneous municipal data that often contains missing
data fields. Rather than impute data for those missing entries, which
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Fig. 1. Process of proposed Data-driven Urban Energy Benchmarking (DUE-B) method.

creates strong biases in  building data, CART uses surrogate vari-
ables to partition buildings based on available data, which results
in higher clustering accuracy. The use of CART is  well suited for this
application since city building data is often highly variable, het-
eroskedastic, and contains categorical and missing data. Moreover,
CART can classify two  buildings as comparable based on several
characteristics, therefore avoiding potentially overly simplistic cat-
egorizations based on only one variable. This is desirable given the
numerous building characteristics that can influence energy usage
in a building.

First, CART performs an analysis of variance (ANOVA) process
at the root node to begin building a  regression tree for subse-
quent hierarchical binary partitions. Then at each node of the tree,
building characteristics are examined to select the characteristic
that results in the maximum reduction of variance in  energy use
(by maximizing the inter-cluster sum of squares in  the analysis of
variance) and then partitions the buildings into two  nodes based
on the selected characteristic. This process inherently reduces the
variance of the independent variables as well, thereby clustering
comparable buildings together. The left node holds the values that
satisfy the calculated cut-off condition for the selected character-
istic, while the right node contains the remaining buildings. All
buildings are partitioned into smaller, lower variance groups using
this binary tree process and thereby form a  hierarchical structure
of nodes and edges.

There are two main phases when building a  CART: growing and
pruning.  Growing is when the tree is  constructed and is dependent
on  two user-set parameters: the minimum number of buildings
in  a node for an attempted partition (minsplit) and a  prior com-
plexity (cp). The minsplit ensures that  the tree’s final leaves have a
minimum number of data points and is  set to avoid over partition-
ing. The cp is used to set the minimum reduction of mean square
error (MSE) that must be attained for a  node to  be partitioned. This
value ensures that the tree does not  grow too large and that each
split has a meaningful reduction in energy use variance. A low cp

value will result in a  large tree  with many nodes that each contain
a small number of buildings (set by minsplit).  The inherent goal of
each partition is  to reduce the MSE  of total building energy use
and is evaluated using Eqs. (1) and (2) for node j which contains N

buildings

ej =
1

N

∑

xi ∈  Rj

(yi − ȳi)
2

(1)

es = ej − ejl − ejr (2)

where yi is the energy use of the ith building, and ej is the MSE
of energy use for all N buildings. ejl and ejr are the corresponding
MSE  for the left (jl) and right (jr) subgroup of node j,  respectively.
When es is greater than or equal to the user set cp  value, the par-
titioning adequately satisfies the predefined threshold and is thus
accepted. Otherwise j is  set as a final cluster that  will not be  further
partitioned. The performance of the tree is evaluated based on two

metrics derived from the jackknifed error: relative error (equivalent
to  1-R2) and xerror.  The relative error is  the ratio of the MSE after
running CART to the MSE  before running cart, while xerror is the
average MSE  from ten-fold cross validation. The second phase for
CART, which happens after the tree is  grown, is  pruning. This pro-
cess eliminates branches that are  formed by partitions that did not
significantly reduce the xerror, resulting in  a tree with fewer groups.
To do this, the one-standard error rule (1-SE) rule is applied which
determines the final number of partitions, and therefore the final
cp value for the tree. First, the absolute minimum xerror found for
the grown tree is  summed with its corresponding standard error.
Then, the xerror with the fewest number of partitions below this
summed value is  selected and its corresponding cp  value is  used to
construct the final tree.

3.2. Stochastic frontier analysis

The main advantage of SFA is  primarily based on its ability
to differentiate a  random error term from an inefficiency term
[44,45]. Building energy use can be thought of similarly, where
the random error term depicts unpredictable situations like system
malfunctions, unexpected occupancy dynamics, weather fluctua-
tions and data input omissions. This random error term may  have
either positive or negative influence on building energy use and
can be  generalized as stochastic variations around potential levels
of energy efficiency. The inefficiency term, conversely, is a  solely
non-negative influence on building energy use and can be catego-
rized into three categories: occupant behavior, building envelope,
and building control systems. These types of inefficiencies are often
addressed with upgrades to  insulation, HVAC systems, automa-
tion technologies, demand-driven controls, lighting systems, etc.
Buildings also contain many fixed characteristics that are  seldom
changed, like “year built” or  “number of floors”, that are  better used
to classify buildings into similar groups, and are more integral in the
partitioning phase of our method (i.e., CART). Since the random fac-
tors and inefficiency factors have significantly different impacts on
building energy performance and are related to different actions for
improvement, we utilize SFA to quantitatively separate variations
of building energy use from each other.

Within each group defined by CART, SFA is applied to deter-
mine the efficiency frontier, which signifies the maximum potential
level of energy efficiency attainable, stripped from the influences
of random error. For this paper, SFA is used with the cost function
since we are interested in evaluating the relation between energy
use intensity (EUI) and provided building services given the same
technology set,  or set of input features. By calculating the lower-
bound frontier (cost function), we are establishing the minimum
level of energy consumption possible given certain building char-
acteristics, and thus the relative energy efficiency for any building
can be  measured. Therefore, the output of SFA is  the energy use
intensity (EUI) and the inputs are building characteristics. Given
our goal to benchmark buildings, EUI is used as the output in SFA, as
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opposed to raw energy consumption, as used in  CART, because rel-
ative energy efficiency is  primarily an approximation of a building’s
energy “effectiveness” and unit energy use is more representative
of  this effectiveness. In this paper, we selected the commonly used
Cobb-Douglas function (linear in  logarithms) for the cost function
[46] as shown in Eq. (3).

y = f (x; ˇ) = ˇ0xˇ1
1 xˇ2

2 · · ·xˇk
k (3)

As a result, the base SFA model that combines the random error
term and inefficiency term can be formulated as Eq.  (4),

yi = f
(

xi; ˇ
)

+ vi + ui, i = 1, . .  .., N (4)

where yi is the log of building EUI, the xi is a  vector of building char-
acteristics log transformed, and f () is the Cobb-Douglas function
(Eq. (3)).  ̌ is the vector of coefficients defining the contributions
of building characteristics on EUI, including an intercept value. The
composite error term is  separated into two independent compo-
nents where vi∼iidN

(

0, �2
v

)

accounts for the impacts of random

errors and ui∼iidN+
(

0, �2
u

)

accounts for the sources of inefficiency.
ui is non-negative and is  assumed to have a truncated half normal
distribution. More importantly, ui represents how much a  build-
ing exceeds the relatively maximum potential level of efficiency. If
ui =  0, the building is 100% efficient. Therefore, the SFA model from
Eq. (4), is found by determining the unknown values, ˇ, �2

v
,  �2

u for
the Cobb-Douglas function, which can then be applied to  gauge
the energy performance of individual buildings. In this paramet-
ric process, the maximum likelihood principle is applied, by which
actual observations from different buildings are used to  estimate
the parameter values that make the observations have the high-
est probability to happen. To do so, first the density function for
εi = vi + ui = yi − f (xi;  ˇ)  can be  formulated by the marginal density
function of ui and vi as shown in  Eq. (5),

f� (εi) =

∞
∫

εi

fu (εi − vi) fv(vi)dvi (5)

where fu is the density for ui and fv is  the density function for vi.
Assuming εi = ui + vi and�2 = �2

u +  �2
v

,  Eq. (5) can be transformed to
Eq. (6),

fεi (εi) = 2

[

1  − ˚

(

εi�u

�v�

)]

(

2��2
)− 1

2 exp

(

−
1
2 εi

2

�2

)

(6)

where � is the standard normal cumulative distribution function.
The density function for yi can be defined to  form the log-likelihood
function for a group of buildings, as shown in  Eqs. (7) and Eq. (8),

L(�; y) ≡ −
1

2
Nln(

1

2
�) −

1

2
Nln�2 +

N
∑

t=1

ln  [1 − �(zi)] −
1

2

N
∑

i=1

(yi − xi�)
2
/�2 (7)

zi =

[

yi − xiˇ

�

]

[

�

1 − �

]
1
2

(8)

where � represents the parameter vector for (ˇ, �2,  �) and � =
�2

u

�2
u +�2

v

, which ranges from 0 to  1.  If � is close to 0 when either

�2
u →  0 or �2

v
→ ∞,  the model is an “average frontier model” with

no inefficiency among the buildings. If � is close to 1,  the frontier
is deterministic and called a “full frontier model” with no stochas-
tic noise. In cases where only one data period is available, an error
component frontier is  utilized without a time effect [47].  In the
parameterization, �2

u and �2
v

are replaced by  �2 = �2
u + �2

v
, and

� =
�2

u

�2
u +�2

v

for the derivation of the log-likelihood function. The

maximum likelihood estimates of parameters for the SFA model are
obtained by equating the first order Taylor expansion of the loga-
rithm of likelihood function (with respect to  ˇ, �2, �)  to  zero. There

is no direct closed-form solution thus a  three-step numerical search
is implemented: 1) attain the unbiased ˇ  vector from the ordinary
least square (OLS) estimates; 2)  perform a grid search and calculate
� , where all  ̌ values are the OLS estimates while the intercept and
� are updated according to the corrected ordinary least squares
algorithm [48];  3)  implement an iterative optimization method to
replace ˇk with the newly calculated value ˇk+1 by Eq. (9) until ˇk+1

does not change from ˇk(given by: |ˇk+1 − ˇk| <  10−4) to  obtain the
final maximum likelihood estimates of the parameters [49]. If the
optimization does not converge or  return parameters for the global
maximization of the likelihood function, the input of building char-
acteristics are  not sufficient or  appropriate to construct the SFA
model and require revision.

ˇk+1 = ˇk −

(

∂
2
L
(

ˇk
)

∂ˇ2

)−1
∂L

(

ˇk
)

∂ˇ
(9)

After the functional form is estimated, the deviations of
individual-building energy use intensity can be decomposed into
noise and inefficiency. The energy efficiency score for an individual
building, denoted as efficiency estimate (units of kBtu/ft2), is defined
as the unit energy saving potential by comparing the actual site
EUI with the fitted frontier site EUI (f

(

xi; ˇ
)

+ vi)  to represent best
building practices (actual site EUI – fitted frontier site EUI).  The effi-

ciency estimate can range between zero and infinity, where a  score
of one indicates a fully energy efficient building, while a score of
infinity indicates a completely energy inefficient building. A high
efficiency estimate indicates a  high potential for unit energy savings
for a  building, and poor building energy performance. Buildings
that are prime candidates for interventions or retrofits can then be
identified based upon the efficiency estimates.  One main advantage
of stochastic frontier analysis is  its ability to handle uncertainty,
which prevents random error impacting the efficiency estimates and
can accurately form the lower-bound frontier for buildings with
certain characteristics. To keep our proposed method generalizable,
this paper does not allocate energy inefficiency to  specific sources
(e.g., elements vs. systems).

4.  Data, results, and discussion

We  utilize a  dataset from New York City (NYC) to validate
and demonstrate the merits of our proposed DUE-B method. NYC
passed Local Law 84 (LL84) in 2009, which was the first major man-
date requiring the disclosure of building energy consumption in  the
United States [50]. Under LL84, buildings larger than 50,000 square
feet and tax lots with combined building area of more than 100,000
square feet were required to disclose their annual energy consump-
tion to the city [51]. Energy data collected through LL84 has been
utilized in  several previous works [52–54]. The energy data in this
study is for the 2014 calendar year and is supplemented and merged
with a comprehensive dataset regarding basic building characteris-
tics that was acquired from New York City’s Primary Land Use Tax
Lot Output (PLUTO) database. The PLUTO dataset includes fields
about building features for every tax lot in NYC [55].  It is  main-
tained by city governmental agencies including the Department
of City Planning, the Department of Finance, and the Department
of City-wide Administrative Service. Initially, the merged dataset
contained information for 13,912 buildings in the city. An exten-
sive data cleansing process was  performed to  eliminate buildings
with missing energy use data, combine repeated cells, and correct
for contradictory or erroneous building characteristics (e.g., year
altered is  earlier than year built). The descriptions of the sixteen
building characteristics used in this paper are summarized in  the
Appendix A.  The description in the Appendix includes all variables
that are of potential interest and only eliminates variables such as
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address, code numbers, and other information not pertinent to  the
study. Several buildings with reported EUI numbers higher than
1,000 kBtu per square feet and were assumed to  be outliers based
on heuristics in previous work [56]  and removed. Finally, buildings
with a use type that appeared less than one percent of the time
were eliminated as these buildings are considered to be highly spe-
cialized, making their comparison to  the remaining building stock
unsuitable. In total 10,153 buildings were retained after the data
cleansing process and entered into the CART analysis.

A preliminary test was conducted using SFA on the whole
dataset to test its efficacy on the non-partitioned, highly variable
data. The log likelihood test result (� → 0)  gave a value of zero,
indicating no inefficiency among buildings could be determined
(i.e., all of the error was contained in the random error term vi).
The results of this preliminary test indicate that the variance in
building characteristics and energy usage is too large on the entire
dataset to provide a basis for comparison in the SFA benchmarking
model and underscores the need to run CART to form subgroups
within the large city wide dataset. Inherently, the CART partition-
ing  process reduces the variance in  both energy consumption and
building characteristics and thereby provides a  better peer group
of buildings for comparison.

4.1. CART results

We  implemented CART using the rpart package in the R
programming language [57]  to recursively partition the 10,153
buildings in the dataset. Total building energy use (in kBtu) was log-
transformed to account for the wide range and positively skewed
energy consumption values. For  this experimental test-case, we uti-
lized total energy consumption instead of EUI as the dependent
variable as we did not want to make the strong assumption that
energy usage scales linearly with floor area as this assumption has
been demonstrated to not hold across datasets that are heteroge-
neous in nature [4]. We  acknowledge that this choice of dependent
variable introduces its own set of challenges as it could be possible
that two buildings with similar energy usage but differing charac-
teristics could be partitioned into the same group. However, the
choice of CART as our partitioning method provides some robust-
ness against this issue as it aims to  reduce the variance in the
target variable by  partitioning buildings on selected key features
(i.e., building characteristics), thus also reducing the variance of
the feature space. Additionally, we would also like to  note that  the
DUE-B method is  flexible in nature and the modeler has freedom
to  set the dependent variable and independent variables based on
observed trends within their own dataset.

Using cp and minsplit (set to  10) the sample size  of buildings was
partitioned to reduce the variance in building characteristics and
energy usage. To keep the tree as simple as possible while maximiz-
ing the reduction of variance, the determination of cp was advised
by the 1-SE rule. We applied this rule to prune the tree and obtain
a simpler structure with fewer partitions than the original tree.
The resulting cp was then selected as the final threshold capac-
ity (cp = 0.00197 and xerror = 0.2093). After pruning, our final tree
(shown in Fig. 2) consisted of 15 groups partitioned on the basis of
three of the sixteen building characteristics our method analyzed:
Property Floor Area, Building Class, and Assessed Total Value. The
building class characteristic encompasses information about the
regulations, technologies, architectural trends, construction qual-
ity, and design work for different types of buildings and indicate
the  importance of these aspects to  energy usage. The presence of
property floor area in our final CART model signifies the impor-
tance of size in relation to  building energy consumption. Intuitively,
larger buildings will consume more energy than smaller build-
ings as internal systems will have to  condition larger spaces and
must meet the needs of a  greater number of occupants. Assessed

total value is a significant variable as it encompasses several key
attributes of a  building including quality of build, implemented
technology, and general opulence; these factors are known to  affect
energy performance and can provide some precursory insights into
building operations.

The CART algorithm successfully handled buildings with missing
feature values. These buildings were processed using the surro-
gates determined by the CART algorithm, which are constructed by
finding an alternative characteristic that most closely matches the
partitioning results of the original characteristic. If data was miss-
ing for all surrogates, buildings were partitioned to  be included
in the group with the most data. As shown in Fig. 2, the maxi-
mum number of buildings in  a group is 2732 (Group 1) while the
minimum number is  40 (Group 15), resulting in a  mean of  477
and a  median of 543. To visually depict the number of buildings
partitioned at each step, the branch widths in Fig. 2 are sized pro-
portionally to  the number of buildings in  the ensuing node. The
different shades of color in the figure represent the mean energy
use (log-transformed) for each group; the darker shade represents
high mean in  energy use while the light shade represents low mean
energy use. As shown in Fig. 3,  each group contains buildings with
different values and variances of energy use, further demonstrat-
ing the need to partition buildings into groups before proceeding
with benchmarking using SFA. These boxplots show that  there is
still a  sizeable spread in the data for each cluster (i.e., exhibiting
potential inefficiencies), but the variance is  much smaller than that
of the whole dataset. This eliminates the issues SFA has with highly
variable data where it is unable to  find any inefficiencies within the
dataset. By using this tree, a  building owner can quickly determine
which cluster their building belongs to. For example, a  building
that is  less than 181,612 square feet would go down the first left
branch. If the building was more than 97,488 square feet, it would
then proceed down the next right branch. Then if the building had
an assessed total value greater than $10,421,550 it would go down
the right branch. Lastly if the building belonged to  class  C (walk-up
apartments), D  (elevator apartments), L (loft buildings), R  (condo-
miniums) or W (educational structures) it would proceed down
the left branch and be classified in  group 7 that  consists of  583
buildings.

Another interesting note, is the exclusion of building class for
several clusters. Typically, building class is a  key attribute when
comparing energy use of buildings, yet examining buildings solely
on this attribute has its drawbacks. For example, it is very diffi-
cult to  compare an apartment building with four units to  one with
seven-hundred units. Instead, CART can partition these buildings
so that floor area is  also considered since large buildings are more
likely to  have similar systems in  place even if the buildings are
of a different type. Therefore, CART would deem two very large
buildings as comparable, and separate the small and large apart-
ment structures into different clusters. Also  consider the situation
where two  medium sized apartment buildings have very different
consumption levels. At first glance, it is easy to consider them com-
parable buildings, but they may  be considered dissimilar due to
other building characteristics; the high energy consuming build-
ing may  be equipped with lavish apartments and includes a  gym,
pool, and spa. CART may  classify this building as being more like
a hotel, which often includes well-conditioned rooms, a  gym, and
a pool. The high consuming apartment building and the hotel may
be clustered into the same node based on assessed value of  the
property, as the low consuming apartment building is  not as luxu-
rious as the other two buildings. Given the added level of  services
offered by both the hotel and high consuming apartment building,
it makes more sense to compare these two structures due to their
similar amenities, size, and perceived value, rather than solely on
their building type.
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Fig. 2. Classification and regression tree for each group (different tones represent different levels of mean log-transformed total energy use for different groups. Lighter color

indicates lower mean energy usage, darker indicates higher mean energy usage).

Fig. 3.  Boxplot of energy use for all partitioned groups.

4.2. SFA results

SFA was implemented for each partitioned cluster of buildings
using the sfa package in  the R  programming language [58]. All  avail-
able building characteristics were used to perform an exhaustive
search to determine the optimal subset of features based on good-
ness of fit (R2 value) to  use for the final SFA model for each cluster.
Since the Cobb-Douglas cost function is  used in  this paper, both the
output (building site EUI) and numeric explanatory inputs (build-

ings characteristics) were log-transformed. In the frontier package,
Error Components Frontier (ECF) was selected because only panel
data without time effects are  analyzed in  this paper. ineffDecrease

was set to  FALSE because inefficiency increases the composite
error term � over a  lower-bound frontier for building energy use
intensity. minusU was  set to  FALSE to calculate the Shepard-type
efficiencies which represent the E

[

exp
(

û
)]

. The maximum like-
lihood principle, explained in Section 3.2, was then applied to
estimate the SFA functional form. To be clear, the characteristics
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Table 1

Maximum Likelihood Estimates (MLEs) of coefficients for SFA model of cluster 2.

Building Characteristics Coefficient Estimate

Building floor area −12.742

Building front −0.040

Assessed value 0.010

Commercial floor area 11.856

Building depth −0.006

Year of built −16.420

Number of floors −0.189

Lot front 0.089

Built FAR −0.013

Table 2

Maximum Likelihood Estimates (MLEs) of parameters for SFA model of cluster 2.

Parameter Estimate

Intercept 137.079

� 0.856

Log-likelihood (ECF) −77.691

�2 1.180

� 2.441

Log-likelihood (OLS) −79.424

�2
u 1.011

�2
v 0.169

Ratio Test 0.031

to construct SFA for different clusters are not  necessarily the same
between different clusters, since there are different relationships
between site EUI and building characteristics for different types of
buildings. As an example, the estimates of the SFA model for cluster
2, which contains 73 buildings (warehouses, factory and indus-
trial buildings), are shown in  Tables 1–2.  The parameter � =  0.856
is close to the upper bound of 1, signifying that  most variations
in site EUI stem from sources of inefficiency, with only a  fraction
originating from other random errors. The likelihood ratio test was
also performed to  show that the inefficiency term was statisti-
cally significant, demonstrating that differences regarding energy
efficiency among buildings were identified. Our estimated coeffi-
cients were also consistent with findings from previous studies;
for example, larger buildings consumed energy less intensely than
their smaller counterparts [43].

The boxplots of efficiency estimates for different clusters of build-
ings are presented in Fig. 4,  along with histograms of each cluster’s
distribution to provide a more holistic summary of results. Due
to  the random error term, several buildings were found to  have
actual EUI values that were lower than the frontier. Rather than
assign them with a  negative difference and deem them more effi-
cient than the frontier, their efficiency estimates were set to zero,
indicating maximum efficiency. Although some buildings perform
relatively well, the boxplots show that the distributions have a
long right tail, demonstrating that there are a  substantial number
of highly inefficient buildings with a  wide range of magnitudes.
Inefficient buildings with efficiency estimates much larger than the
upper hinge of the boxplot (1.5% interquartile) could be classified
as the worst performing buildings, in their respective partitioned
clusters (indicated by the circle dots in  Fig. 4). These inefficient
buildings contained would be prime candidates for targeted energy
efficiency policies or programs. Examining the histograms in Fig. 4,
the majority of clusters have distributions with long right tails. This
indicates a high variability among the most inefficient buildings
(the higher the inefficiency estimate, the more inefficient the building).
Significant differences exist in  efficiency estimates among different
clusters, which confirms the important contributions of different
building characteristics to  the partitioning of buildings into sub-
clusters. These histograms can facilitate the analysis of building
energy performance among the partitioned clusters by  city officials
and others. A kernel density estimation (KDE) was  also applied by

using a  Gaussian function as the smoothing kernel in order to pro-
vide an estimate of the underlying distribution (density) of  energy
efficiency estimates for all clusters (solid red lines in Fig. 4)

5. Validation and implications

5.1. Validation of proposed DUE-B method

In  order to validate the performance of DUE-B, results were com-
pared to two widely used benchmarking methods: site  EUI  and
Portfolio Manager EnergyStar. We chose to compare our results
with both EnergyStar scores and EUI due to  the fact that  many cities
(e.g., New York, San Francisco, and Philadelphia) are utilizing both
metrics in their current benchmarking reports [59–61].  We  applied
the Kendall tau-b correlation coefficient as a  non-parametric test
to  evaluate the association between two  benchmarking methods
without prior assumptions about the frequency distribution of the
results. Since different benchmarking methods have different ways
of representing the level of building energy efficiency, comparing
the rank orders of energy efficiency among different methods is
more robust than taking the absolute values. If more than one build-
ing had the same benchmarking results (e.g., the same EnergyStar
scores), they were assigned to  the same rank. Kendall’s tau-b rank
correlation coefficient was then calculated to  represent the level
of correlation between each pair of methods. The equation for cal-
culating the Kendall tau-b correlation coefficient is provided in Eq.
(10):


b =
(# concordant pairs) − (# discordant pairs)

√
N1 ×

√
N2

(10)

When building A is  evaluated as more energy efficient than
building B by the two methods, A–B is called a  concordant pair;
when the relative rank of building A and building B is  evaluated as
opposite by the two methods, A–B is called a  discordant pair. In Eq.
(10),  if the number of concordant pairs is  much larger or  smaller
than that of discordant pairs, the two methods are positively or
negatively correlated. The correlation coefficient ranges from −1
to 1. In addition, in  Eq. (10) N1 and N2 are the numbers of pairs
with different levels of energy efficiency by the two  methods to be
compared.

Before the analysis was performed, buildings with missing Ener-
gyStar scores were assigned the average score of buildings in the
same CART cluster. The results and correlation coefficients for all
15 clusters are shown in  Fig. 5.  The Kendall tau-b correlation analy-
sis shows that  the efficiency estimates consistently correlate higher
with EUI and EnergyStar scores than they do with each other. The
displayed robustness of DUE-B may  indicate that the two existing
models are overlooking, or oversimplifying, intra-building effects
that are causing the building to be inefficient in its use of energy. We
postulate that our proposed DUE-B method is  more robust than site
EUI and EnergyStar because neither of these methods differentiate
random factors from inefficiency factors and because EnergyStar
scores are not computed with respect to local peer buildings. Per-
haps more importantly, cities that have either switched from EUI to
EnergyStar or are simultaneously using both methods may be expe-
riencing inconsistent and variable results that could undermine the
effectiveness of ensuing policies and programs. It is important to
note that the results presented in Fig. 5 are contingent on the use
of both CART and SFA as our preliminary test results (see Section 4)
demonstrated the need for both methods to be utilized in  conjunc-
tion. The results are also contingent of our  choice of  dependent
variable (total energy usage) in the CART partitioning process of
our method. We underscore that  this choice yielded more robust
results for the New York City dataset but the choice for the depen-
dent variable can be modified by the modeler based on observed
trends in  their benchmarking dataset.
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Fig. 4.  Boxplot, histogram, and density of efficiency estimates for the CART partitioned clusters of New York City buildings.

Fig. 5. Kendall’s tab-b correlation test of SFA inefficiency term E[exp(ui)] by the DUE-B proposed method (short as Estimate), site EUI (short as EUI), and Energy Star score

(short as EnergyStar) for all fifteen clusters.

5.2. Implications for urban energy efficiency

Overall, this paper contributes a  new methodological approach
to the growing body of research in the area of data-driven energy
benchmarking [9,34,37].  This work aims to  build on previous work
[13,62] that conducts analysis of building energy performance at a
city-scale by introducing a new data-driven benchmarking method
that utilizes local publicly available data, maintains interpretability,
and produces more robust results than currently used benchmark-
ing methods (EUI, EnergyStar). Moreover, this research extends

previous work on stochastic frontier based energy analysis [43] to
city-scale energy benchmarking by integrating a stochastic frontier
model with a highly-interpretable recursive partitioning method.

It is  generally difficult for municipal officials to use data from
buildings across a  city to develop and implement energy efficiency
policies and programs. Resources to implement and interpret data-
driven analytical tools are limited, as is  the ability to translate
benchmarked data into effective policies and targeted programs.
Our primary focus in  this paper was  to introduce a  new bench-
marking method that  leverages new disclosure data streams and
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Fig. 6. Efficiency Estimates for Group 6. The red shaded region (right tail) is the 5%

“most inefficient” buildings (n  =  38), the  green shaded region is  the 40% “relatively

inefficient” buildings (n  =  292), and the blue shaded region is  the  55% “relatively

well performing” buildings (n = 394). A total of 724 buildings are in this group. (For

interpretation of the references to  colour in this figure legend, the reader is  referred

to  the web version of this article.)

provides municipal officials with robust and interpretable esti-
mates of the energy efficiency of their entire urban building stock.
This paper provides a  thorough investigation on how computa-
tional methods can be used effectively to identify significant energy
savings while maintaining interpretability for a wide audience.

Specifically, results from our model could facilitate the design
and implementation of targeted building energy efficiency policies
and programs. For example, Fig. 6 shows the distribution of effi-

ciency estimates for Group 6 from our  results. Different regions are
shaded on the graph to indicate subsets of buildings that could
be targeted with different interventions. The red region repre-
sents the 5% most inefficient buildings (shown on the far  right tail)
and could be deemed most suitable for subsidized on-site energy
audits, as they are mostly likely to have significant potential for
energy savings. The larger green region encompases the next 40%
of inefficient buildings that could be targeted through less costly
incentives, mandates, or educational outreach programs. Finally,
the blue region holds the remaining 55% of buildings where less
focus is needed because they are shown to be relatively efficient
compared to their peers. In the end, DUE-B aims to help municipal
officials allocate the limited resources they have for energy effi-
ciency programs more intelligently and enable them to reach their
energy and sustainability goals.

6. Limitations and future work

While our proposed method addresses many of the short-
comings (e.g., limited leveraging of local benchmarking data, not
scalable for city wide analysis, difficult to interpret, unable to differ-
entiate between random factors and inefficiency factors) in existing
benchmarking models, its introduction also precipitates several
limitations. First, the data we analyzed did not  allow our proposed
method to quantitatively allocate inefficiency to  individual sources
within a building. With the current state of the model, its best
use case is to determine which buildings are considered inefficient
within a city, where effort could then be further spent determin-
ing the drivers of consumption within those poor performers with
subsidized on-site energy audits and/or in-depth energy simula-
tions. Once more detailed data is  collected and made available, our
model is designed to be flexible and could leverage such data to
better explore the drivers of inefficiencies.

Like any data-driven, the methodology proposed and the result-
ing conclusions would be more profound if  more granular or
complete data (e.g., HVAC systems, building orientation, exte-
rior enclosure, occupancy behavior) was acquired. Yet even with
current limited data, the DUE-B model demonstrated its robust-
ness when compared to  conventional benchmarking methods (EUI,

EnergyStar). In future work, we  aim to test the use and implemen-
tation of DUE-B with city officials, buildings managers, and other
parties to assess the interpretability of our methodology and deter-
mine if the results can be appropriately used to inform the design
and development of energy efficiency policies and programs.

7. Conclusions

This paper proposes DUE-B, a  new data-driven methodology for
benchmarking building energy consumption at the urban scale that
integrates recursive partitioning and stochastic frontier analysis.
We propose DUE-B as an alternative to  existing benchmark-
ing models due to  its numerous advantages. Specifically, DUE-B
eliminates human data entry, exclusively uses publicly available
datasets, is  not susceptible to biased scores as a  result of  outliers or
heterogeneous data and maintains a high-level of interpretability
to facilitate decision-making. As with other benchmarking method-
ologies, quantitatively establishing its superiority is difficult due to
the fact that ground truth data of energy efficiency are infeasible
to  collect for thousands of buildings across a  city. Nevertheless, we
established some quantitative advantages of this model through
the novel application of the Kendall tau-b correlation analysis and
demonstrate that  our model is more robust than EUI and EnergyS-
tar. This robustness is  critical as unreliable and irregular results can
compromise potential energy efficiency policies and programs that
are informed by benchmarking models.

Specifically, a  major challenge in conducting energy bench-
marking at the urban scale is the heterogeneity of building stock
and associated energy usage across an entire city. To address this
challenge, our proposed DUE-B model first uses a  classification
and regression tree (CART) to recursively partition buildings into
different subgroups with reduced variance in both building char-
acteristics and energy usage. Stochastic frontier analysis is then
applied to  construct the efficiency frontier for each individual sub-
group, which represents the theoretical level of efficient energy
consumption that buildings are benchmarked against. Unlike tra-
ditional benchmarking methods, DUE-B leverages local energy
disclosure data, enables city scale analysis and can successfully sep-
arate the impact of random factors from that of inefficiency factors
while maintaining interpretability. We applied our  proposed DUE-
B method to  energy and building data from over 10,000 buildings
in New York City and results indicate that our proposed method is
more robust than two other commonly used benchmarking meth-
ods (EUI, EnergyStar).

Overall, this research represents a key first-step towards
addressing the energy intensive urban built environment. By lever-
aging emerging data streams being collected by cities around the
world, our proposed model aims to  enhance our understanding of
how our urban buildings consume energy and identify opportu-
nities for improving energy efficiency. Utilizing these data-driven
insights, municipal officials and policy-makers can develop effec-
tive energy efficiency policies and programs that tackle the most
inefficient buildings in  a  city and in turn realize substantial energy,
environmental and economic savings. Amidst growing urbaniza-
tion, cities have become a  focal point for energy efficiency and new
data-driven methods will undoubtedly be crucial to helping tran-
sition our cities to a more energy efficient and sustainable future.
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Appendix A.

Field Name Characteristic and Explanation

Property floor area property area: the gross square footage of the property, per the Department of Finance records (ft2)

Building class building class: the major use of structures of the property

A one family dwellings

B  two family dwellings

C walk-up apartments

D elevator apartments

E  warehouses

F factory and industrial buildings

G garages and gasoline stations

H  hotels

I hospital and health

J  theatres

K storage buildings (taxpayers included)

L loft buildings

M churches, synagogues, etc.

N  asylums and homes

O office buildings

P  places of public assembly (indoor) and cultural

Q  outdoor recreation facilities

R  condominiums

S  residential – multiple use

T  transportation facilities (assessed in ore)

U utility bureau properties

V  vacant land

W  educational structures

Y  selected government installations

Z miscellaneous

Assessed total value assessed total value: the tentative assessed total value of the property ($)

Assessed land value assessed land value: the tentative assessed land value ($)

Area  unit price price per  square feet: the unit price per building area ($/ft2)

Building  floor area total building floor area: the total gross area in square feet (ft2)

Lot area lot area: the total area of the tax lot (ft2)

Number of buildings number of buildings: the number of buildings on  the lot

Number of floors number of floors: the number of full and partial stories

Number of total units number of total units: the units in all buildings on the lot

Number of residence units number of residence units: the residential units in all buildings on  the lot

Commercial floor area commercial floor area: exterior dimensions of the structure for commercial use (ft2)

Residential floor area residential floor area: exterior dimensions of the structure for residential use (ft2)

Year built year built: the year building construction completed

Building frontage building frontage: the building frontage along the street (ft)

Building depth building depth: the effective perpendicular distance (ft)
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