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Abstract—Inference of space-time signals evolving over graphs
emerges naturally in a number of network science related
applications. A frequently encountered challenge pertains to
reconstructing such dynamic processes given their values over a
subset of vertices and time instants. The present paper develops a
graph-aware kernel-based kriged Kalman filtering approach that
leverages the spatio-temporal dynamics to allow for efficient on-
line reconstruction, while also coping with dynamically evolving
network topologies. Laplacian kernels are employed to perform
kriging over the graph when spatial second-order statistics are
unknown, as is often the case. Numerical tests with synthetic and
real data illustrate the superior reconstruction performance of
the proposed approach.

Index Terms—Graph signal reconstruction, time series on
graphs, kriged Kalman filtering, Laplacian kernels.

I. INTRODUCTION

A number of applications involve data that can be efficiently

represented as node attributes over social, economic, sensor,

communication, and biological networks [1]. An inference

problem that often emerges is to predict the attributes of all

nodes in the network given the attributes of a subset of nodes.

Such a task is of paramount importance in applications where

collecting the attributes at all nodes is prohibitive, as is the

case when sampling massive graphs or when the attribute of

interest is of sensitive nature such as the transmission of HIV

in a social network. This problem has been formulated as

extrapolation or reconstruction of a function or signal on a

graph [1], [2]. Extrapolation typically leverages smoothness

of the attributes with respect to the graph, meaning that

connected nodes have similar attribute values. Oftentimes, the

aforementioned networks and attributes evolve over time. The

space-time dynamics of such time-varying graph functions

should be properly modeled to achieve accurate reconstruction

over space and time.

Reconstruction of time-invariant graph functions has at-

tracted great attention in recent years. The community of

signal processing on graphs mainly adopts the so-called ban-

dlimited model, which postulates that the signal of interest lies

in a B-dimensional subspace related to the graph topology [3],

[4], or assumes that the signal can be sparsely represented on

The work of V. N. Ioannidis and G. B. Giannakis was supported by ARO
grant W911NF-15-1-0492 and NSF grants 1343248, 1442686, and 1514056.

an over-complete dictionary [5]. On the other hand, the ma-

chine learning community advocates estimators that exploit the

aforementioned notion of smoothness [6], [7]. Interestingly,

most estimators considered by both communities can be seen

as special cases of kernel-based estimators [2].

On the other hand, reconstruction of time-varying graph

functions has been typically tackled by assuming that the

function of interest changes slowly over time. Distributed

reconstruction methods are reported in [8] and [9]. However,

they rely on the bandlimited model, whose effectiveness in

capturing the dynamics of real-world graph functions may

not hold. A kernel-based Kalman filter that captures muliple

forms of spatiotemporal dynamics through space-time kernels

was explored in [10]. But it mainly relies on smoothness

and does not explicitly account for the underlying dynamics.

However, there are cases where the wanted function exhibits

markedly different behaviors over space and time, which

existing approaches cannot account for. To circumvent this

limitation, a kriged graph Kalman filter is introduced in this

paper.

Kriging has been traditionally employed to interpolate sta-

tionary spatial processes that take values over subsets of the

Euclidean space [11, Ch. 3]. Kriging essentially performs

linear minimum mean-square error (LMMSE) estimation. To

accommodate time-evolving fields, [12] introduced the kriged

Kalman filter (KrKF), which affords low-complexity online

spatial prediction. A reduced-dimension version of the KrKF

was introduced in [13] by expanding the spatio-temporal

process as a linear combination of basis functions and applying

the Kalman filter (KF) to the expansion coefficients.

Kriging was extended in [14] to estimate path delays over

IP networks modeled by time-evolving functions defined on

the edges of a graph. Building on [14], [15] exploits temporal

dynamics through the KrKF for estimating network delays.

However, [15] adopts a random walk model on a static

graph and therefore cannot capture general spatial dynamics.

All these KrKF approaches require knowledge of the spatial

statistics, which are furthermore assumed fixed over time.

The main contribution of this paper is to extend the KrKF

for prediction of general spatiotemporal processes that evolve

over dynamic graphs whose topology may change over time.

The resulting estimator is capable of promoting smoothness
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over time through a state-space model, and smoothness over

space through kriging. A generalization of the latter based

on Laplacian kernels is introduced to cope with uncertainty

in the spatial statistics of the process. The computational

complexity of the proposed algorithm is linear in the number

of time samples, rendering it attractive for online and big data

applications.

The rest of the paper is structured as follows. Sec. II

formulates the problem and presents the proposed model.

Sec. III presents the kernel KrKF (KKrKF) for graphs. The

numerical experiments in Sec. IV demonstrate the benefits of

the proposed method. Finally, Sec. V provides some closing

remarks.

Notation: Scalars are denoted by lowercase, column vectors

by bold lowercase, and matrices by bold uppercase letters.

Superscripts > and † respectively denote transpose and

pseudo-inverse; E[x] stands for the expectation of the random

vector x; 1N for the N × 1 all-one vector; δ[·] for the

Kronecker delta; and diag {x} corresponds to a diagonal

matrix with the entries of x on its diagonal. Finally, if A

is a matrix and x a vector, then ||x||2A := x>A−1x and

||x||22 := x>x.

II. MODELING AND PROBLEM FORMULATION

A time-varying graph is a tuple G[t] := (V,A[t]) t =
1, 2, . . ., where V := {v1, . . . , vN} denotes the vertex set

and A[t] the N × N adjacency matrix, whose (n, n′)-th
entry An,n′ [t], is the nonnegative edge weight connection

vertices vn and vn′ at time t. The graphs in this paper are

undirected and have no self-loops, which respectively imply

that A[t] = A>[t] and An,n[t] = 0, ∀t, n. The Laplacian

matrix is defined as L[t] := diag {A[t]1N} − A[t], and

is known to be positive semidefinite [1]. A time-varying

graph function (or signal) is a map f : V × T → R,

where T = {1, 2, . . .} is the set of time indices. Specifically,

fn[t] := f(vn, t) represents an attribute value at node n and

time t, e.g. the closing price of the n-th stock on the t-th day.

Vector f [t] := [f1[t], . . . , fN [t]]> ∈ R
N collects the function

values at time t.
At time t, fn[t] is observed at a subset of S[t] nodes S[t] ⊂

V . The observations y[t] ∈ R
S[t] can be compactly arranged

as

y[t] = S[t]f [t] + e[t], t = 1, 2, . . . (1)

where S[t] ∈ {0, 1}S[t]×N selects the rows of f [t] with indices

in S[t], and e[t] ∈ R
S[t] represents the observation error.

It is assumed that e[t] has zero mean E[e[t]] = 0, and is

uncorrelated over time and space, meaning that E[e[t]e>[τ ]] =
σ2
eIS[t], if t = τ , and 0S[t],S[τ ] otherwise.

Per slot t, f [t] will be modeled as the superposition

f [t] = fχ[t] + fν [t] (2)

where {fν [t]}t are temporally uncorrelated and capture only

spatial dependencies, while {fχ[t]}t are spatio-temporally

colored obeying the state equation

fχ[t] = P [t]fχ[t− 1] + η[t], t = 1, 2, . . . (3)

where P [t] is an N × N transition matrix, and η[t] is

noise with E[η[t]] = 0 and E[η[t]η>[τ ]] = Ση[t]δ[t− τ ].
Moreover, fχ[0] has mean E[fχ[0]] = µχ[0] and covari-

ance matrix E[(fχ[0] − µχ[0])(fχ[0] − µχ[0])
>] = Σχ[0],

and it is assumed uncorrelated with η[t] and e[t]; that is

E[η[t]f>
χ [0]] = 0N,N , and E[e[t]f>

χ [0]] = 0S[t],N ∀t. The

model in (3) is widely used and offers flexibility in tracking

multiple forms of temporal dynamics [16, Ch. 3].

On the other hand, fν [t] is assumed zero mean, since its

mean can otherwise be incorporated into E[fχ[t]], and has

covariance matrix E[fν [t]f
>
ν [τ ]] = Σν [t]δ[t− τ ]. Finally,

e[t] and η[t] are uncorrelated, meaning that E[e[t]η>[τ ]] =
0S[t],N , and also uncorrelated with fν [t], i.e., E[e[t]f>

ν [τ ]] =
0S[t],N , E[η[t]f>

ν [τ ]] = 0N,N ∀t, τ .

Given the model described by (1)-(3), the goal of this paper

is to reconstruct f [t] online, given y[τ ], S[t], σ2
e , Ση[τ ], P [τ ]

and A[τ ] for τ = 1, . . . , t.

Remark 1. In the field of geostatistics, fν [t] models the

so-termed small-scale spatial fluctuations, while fχ[t] cor-

responds to the so-called trend. The decomposition (2) is

often dictated by the sampling interval: whereas fχ[t] captures

slow dynamics relative to the sampling interval, fast variations

are modeled with fν [t]. Examples motivating (2) include

network delay prediction [15], where fχ[t] represents the

queuing delay while fν [t] the propagation, transmission, and

processing delays. Likewise, when predicting prices across

different stocks, fχ[t] captures the daily evolution of the stock

market, which is correlated across stocks and time samples,

while fν [t] describes unexpected changes, such as the daily

drop of the stock market due to political statements, which are

considered uncorrelated over time.

Remark 2. The state transition matrix P [t] can be selected

in accordance with the prior information available. Simplic-

ity in estimation motivates the random walk model, where

P [t] = αIN with α > 0. On the other hand, adherence to the

graph, prompts the selection P [t] = αA[t], in which case (3)

amounts to a graph-constrained vector autoregressive model;

see e.g. [17].

III. GRAPH-AWARE KERNEL KRIGED-KF

This section presents our KKrKF approach. After establish-

ing that kernel ridge regression (KRR) in [2], [18] generalizes

clairvoyant kriging in [11], we will introduce our novel

KKrKF that does not require knowledge of Σν [t].

A. Kriged Kalman Filter

The KrKF algorithm was first introduced for prediction

of processes evolving over continuous fields, as typically

occurs in geostatistics [13]. In contrast, this section reviews

the KrKF for processes f [t] that evolve over a graph [15],

where estimation is performed in two steps. In the first step, an

estimate f̂χ[t|t] is obtained from the measurements {y[τ ]}tτ=1

using the traditional Kalman filter (KF) [16, Ch. 3] with the

unknown fν [t] lumped in the observation noise. In the second
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step, fν [t] is estimated through the kriging predictor [11],

which is given by the LMMSE estimator

f̂ν [t|t] =E
{

fν [t]
∣

∣fχ[t]= f̂χ[t|t],y[t]
}

=Σν [t]S
>[t](S[t]Σν [t]S

>[t] + σ2
eIS[t])

−1ψ[t] (4)

where ψ[t] := y[t] − S[t]f̂χ[t|t]. Finally, combining the

component estimates yields [cf. (2)]

f̂ [t|t] = f̂χ[t|t] + f̂ν [t|t]. (5)

A challenge associated with KrKF is that the kriging pre-

dictor (4) requires knowledge of Σν [t]. The next subsection

reviews graph Laplacian kernels, and proposes a generalization

of the kriging predictor that does not require knowledge of the

underlying spatial statistics.

B. Kernel Kriged Kalman Filter

After recognizing that the kriging predictor is a special case

of the KRR estimator, our KKrKF algorithm is presented.

Kernel ridge regression seeks an estimate of a graph func-

tion fν given the observations ψ = Sfν + e. The argument

[t] is dropped to reflect that a single time instant will be

considered. The KRR estimate of fν is given by [2]

f̂ν = argmin
fν

1

S
||ψ − Sfν ||

2
2 + µf>

νK
−1fν

=KS>(SKS> + µSIS)
−1ψ (6)

where µ is a user-selected regularization parameter and

K > 0 is a kernel matrix, whose (n, n′)-th entry encodes

some notion of similarity between vn and vn′ [2], [6], [7],

[18]. Notice that the KRR estimator (6) reduces to the kriging

predictor (4) if µS = σ2
e and Σν = K. As a result, (6)

generalizes (4) in the sense that fν can be deterministic,

so long as it belongs to a reproducing kernel Hilbert space

generated by the prescribed K. Rather than minimizing the

LMMSE criterion, the resulting KRR can account for the

underlying graph through a judicious selection of K.

Laplacian kernels have been widely used [2], [7] to pro-

mote the smoothness embodied in the graph topology. For

a given Laplacian matrix with eigendecomposition L =
U diag{λ}U>, a Laplacian kernel is defined as [7]

K−1 := r(L) := U diag{r(λ)}U> (7)

where r : R → R is a monotonically increasing function.

Table I summarizes common choices of r(·), which can be

selected to promote a certain structure in the so-called graph

Fourier transform of fν [1], [2], [7]. To sum up, one can obtain

f̂ν through (4) after replacing Σν with a Laplacian kernel.

Interestingly, for a class of random fν there exists a

function r(·) such that the LMMSE and KRR estimators yield

the same estimate. These graph signals are deemed to be

graph stationary in [19], [20], and their covariance matrix is

diagonalizable by the eigenvectors of L.

Proposition 1. If fν is a graph stationary signal on G =
(V,A), and the Laplacian L = U diag{λ}U> has distinct

Kernels Function

Diffusion [6] r(λ) = exp{σ2λ/2}
Laplacian regularization [1], [7] r(λ) = 1 + σ2λ

Bandlimited [2] r(λ) =

{

1/β, λ ≤ λmax

β, o.w.

TABLE I: Common transformation functions.

Algorithm 1: Kernel Kriged Kalman filter (KKrKF)

Initialize: f̂χ[0|0] = µχ[0],M [0|0] = Σχ[0]
for t = 1, . . . do

Input: Ση[t] ∈ S
N
+ , P [t] ∈ R

N×N , y[t] ∈ R
S[t],

S[t] ∈ {0, 1}S[t]×N , σ2
e , K[t] ∈ S

N
+ .

Σε[t] := S[t]K[t]S>[t] + σ2
eIS[t]

f̂χ[t|t− 1] = P [t]f̂χ[t− 1|t− 1]
M [t|t− 1] = P [t]M [t− 1|t− 1]P>[t] +Ση[t]
G[t] =M [t|t− 1]S>[t](Σε[t] + S[t]M [t|t− 1]S>[t])−1

f̂χ[t|t] = f̂χ[t|t− 1] +G[t](y[t]− S[t]f̂χ[t|t− 1])
M [t|t] = (IN −G[t]S[t])M [t|t− 1]
f̂ν [t|t] =K[t]S>[t]Σ−1

ε [t](y[t]− S[t]f̂χ[t|t])

Output: f̂χ[t|t]; f̂ν [t|t]; M [t|t].
end for

eigenvalues, then the covariance matrix Σν of fν is a Lapla-

cian kernel.

Proof. Since fν is graph stationary, Σν is diagonalizable

by U , meaning that Σν = U diag {σ}U>, where σ :=
[σ1 . . . σN ]> > 0 collects the eigenvalues of Σν . A transfor-

mation r−1(·) can then be selected such that σi = r−1(λi),
as long as {λi}i are distinct.

Therefore, if fν [t] is graph stationary, it follows that

Σν [t] =K[t] = U [t](diag{r(λ[t])})−1U>[t] (8)

for some r(·), and the estimates (4) and (6) coincide.

The proposed KKrKF is summarized as Algorithm 1. This

online estimator with complexity O(N3) per t, tracks the

temporal variations of the signal of interest through (3), and

promotes desired properties such as smoothness over the

graph, by judiciously selecting the Laplacian kernel. Different

from existing approaches, our KKrKF takes into account the

underlying graph structure in estimating fν [t] as well as fχ[t].
Furthermore, by using the Laplacian matrix in (8), it can also

accommodate dynamic graph topologies.

IV. SIMULATIONS

This section describes tests on synthetic and real graph

functions over dynamic graphs which demonstrate the superior

performance of KKrKF over competing alternatives. The

tests compare the following reconstruction algorithms: (i)

The least mean-squares (LMS) algorithm in [9] with step size

µLMS; (ii) the distributed least-squares reconstruction (DLSR)

algorithm [8] with step sizes µDLSR and βDLSR (both LMS
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and DLSR can track slowly time-varying B-bandlimited graph

signals); (iii) The B-bandlimited instantaneous estimator (BL-

IE) which uses the estimator in [3], [4] per slot t; and (iv)

Algorithm 1 with the following configuration: a diffusion

kernel (cf. Table I) with parameter σ; a state noise covariance

Ση[t] = sηΣη with parameter sη > 0 and Ση := NN> a

positive definite matrix with N ∈ R
N×N a random matrix

with standardized Gaussian entries; and a transition matrix

P [t] = αA[t] with parameter α.

The performance of the aforementioned approaches is eval-

uated in terms of the normalized mean-square error

NMSE({S[τ ]}tτ=1) :=
E
[
∑t

τ=1 ||S
c[τ ](f [τ ]− f̂ [τ |τ ])||22

]

E
[
∑t

τ=1 ||S
c[τ ]f [τ ]||22

]

where the expectation is taken over the sample locations, and

realizations of Ση , and Sc[τ ] is an (N −S[τ ])×N matrix

comprising the rows of IN whose indices are not in S[t]. For

all the tests, the sampling set is chosen uniformly at random

without replacement over V and kept constant over time; that

is S[t] = S, ∀t.
The first real dataset contains timestamped messages ex-

changed over an online social network between students at

the University of California, Irvine [21] for a period of 90

days corresponding to 3 months. The sampling interval t is

one day. A network was created where {An,n′ [t]}t=30k
t=30(k−1)+1

counts the number of messages exchanged between student

n and n′ in the k-th month. The resulting topology changes

across months. A subset of N = 310 users for which

A[t] corresponds to a connected graph ∀t was selected. At

each time t, f [t] was generated by adding a temporally

uncorrelated B-bandlimited component with B = 5 and a

spatio-temporally correlated component. Specifically, f [t] =
∑5

i=1 γi[t]ui[t] + fχ[t], where fχ[t] follows (3), {γi[t]}
5
i=1

are standardized Gaussian distributed for all t, and {ui[t]}
5
i=1

are the eigenvectors associated with the 5 smallest eigenvalues

of the Laplacian matrix at time t. Function fn[t] is therefore

smooth with respect to the graph and can be interpreted e.g.

as the time that the n-th student spends on the specific social

network during the t-th day.

The first experiment justifies the proposed decomposition

by assessing the impact of dropping each term on the right

hand side of (2). Fig. 1 depicts the NMSE over the time index

for KKrKF; the Kalman filter (KF) estimator, which results

from setting f̂ν [t|t] = 0 for all t in the KKrKF and therefore

does not exploit spatial information, as well as kernel Kriging

(KKr), which the KKrKF reduces to if f̂χ[t|t] = 0 for all

t and therefore does not exploit temporal information. As

observed, the novel algorithm, which accounts for both terms,

is capable of efficiently capturing the spatial as well as the

temporal dynamics over time-evolving topologies.

The second dataset is provided by the National Climatic

Data Center [22], and comprises hourly temperature measu-

ments at N = 109 measuring stations across the continental

United States in 2010. A time-invariant graph was constructed

as in [10], based on geographical distances. The value fn[t]
represents the temperature recorded at the n-th station and
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Fig. 1: NMSE of function estimates. (µχ[0] = 0, Σχ[0] = 0,

σ2
e = 10−4, σ = 1.5, α = 0.028, sη = 10−4)
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Fig. 2: True temperature values along with the estimated ones.

(µχ[0] = 0, Σχ[0] = 0, σ = 1.8, B = 5, µDLSR = 1.2,

βDLSR = 0.5, µLMS = 0.6, α = 10−3, sη = 10−5)

t-th sample. The sampling interval is one hour for the first

experiment and one day for the second.

Next, the performance of the different reconstruction algo-

rithms is evaluated in tracking the temperature values. Fig. 2

depicts the true temperature value along with the estimates of

the different algorithms for a station n that is not sampled, i.e.

n /∈ S , with S = 40. Clearly, the novel algorithm accurately

tracks the temperature by exploiting spatial and temporal

information. On the other hand, DLSR and LMS cannot

capture the fast signal variations. Finally, Fig. 3 compares

the NMSE of all considered approaches, and showcases the

superior NMSE performance of Algorithm 1 for S = 40. As

observed, KKrKF captures the spatio-temporal dynamics and

outperforms existing alternatives.

V. CONCLUSIONS

This paper introduced an online estimator to reconstruct

dynamic processes over dynamic graphs. In this context, the

function to be estimated was decomposed in two parts: one

capturing the spatial dynamics while being uncorrelated over

time, and the other modeling jointly spatiotemporal dynamics.
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Fig. 3: NMSE of temperature estimates. (µχ[0] = 0, Σχ[0] =
0, σ = 1.8, µDLSR = 1.6, βDLSR = 0.5, µLMS = 0.6, α =
10−3, sη = 10−5)

A novel kernel kriged Kalman filtering approach was devel-

oped that leverages Laplacian kernels for reconstructing the

spatial component. The algorithm was evaluated on synthetic

as well as real-data scenarios, and performed markedly better

than existing alternatives. Future work includes distributed im-

plementations, multi-kernel approaches for optimal selection

of r(·), and data-driven learning of P [t].
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