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Abstract—Cellular service providers continuously upgrade
their network software on base stations to introduce new service
features, fix software bugs, enhance quality of experience to
users, or patch security vulnerabilities. A software upgrade
typically requires the network element to be taken out of service,
which can potentially degrade the service to users. Thus, the
new software is deployed across the network using a rolling
upgrade model such that the service impact during the roll-out is
minimized. A sequential roll-out guarantees minimal impact but
increases the deployment time thereby incurring a significant
human cost and time in monitoring the upgrade. A network-
wide concurrent roll-out guarantees minimal deployment time
but can result in a significant service impact. The goal is to
strike a balance between deployment time and service impact
during the upgrade. In this paper, we first present our findings

from analyzing upgrades in operational networks and discussions
with network operators and exposing the challenges in rolling
software upgrades. We propose a new framework Concord to
effectively coordinate software upgrades across the network that
balances the deployment time and service impact. We evaluate
Concord using real-world data collected from a large operational
cellular network and demonstrate the benefits and tradeoffs. We
also present a prototype deployment of Concord using a small-
scale LTE testbed deployed indoors in a corporate building.

I. INTRODUCTION

Today, cellular networks are one of the top drivers for

communication, Internet access, and multimedia applications.

Smartphone users heavily rely upon them and expect high

availability at all times. The cellular service providers aim

to provide excellent quality of experience for billions of

smartphone users by continuously monitoring the network and

service performance. They introduce upgrades to their network

on a regular basis in order to improve service experience,

roll out new service functionalities, fix software bugs, or

patch security issues. Network upgrades typically involve new

software releases, firmware upgrades, hardware modifications,

configuration parameter changes, and topology changes.

Some of these upgrades (e.g., software upgrades) require

the network element to be transiently taken out of service,

which can potentially induce a service impact. The service

providers carefully plan the network upgrades during off-peak

time to minimize the service impact. Typically, night time

(often referred to as maintenance windows) is preferred due

to low traffic volumes. By executing upgrade sequentially

(one element after another), one can maximize the spare

capacity in the network to offload the traffic when the network

element is undergoing an upgrade. This guarantees minimal

impact, but increases network-wide deployment time. A higher

deployment time means increased human cost in monitoring

the upgrade. For large-scale cellular networks with thousands

of base stations, the sequential roll-out is definitely not an

option because of the cost and delayed availability of the

upgrade across the network.

Another option for network-wide deployment is simultane-

ously upgrading all the network elements. This will guarantee

the fastest roll-out but incurs a significant impact to service

and thus is undesirable. The cellular service providers try to

strike a balance between deployment time and service impact

for rolling out the upgrade. They roll-out the upgrade in such a

way that there is spare capacity in the network to accommodate

most of the traffic demands. For example, upgrade K out of N

base stations simultaneously such that the remaining N −K

base stations can serve the users with similar quality of service.

In the next round, one can then upgrade some of the N −K

base stations while the other base stations (including those that

finish upgrade) serve the users. This method of deploying the

upgrade is commonly known as a rolling upgrade model. The

rolling model often leverages multiple rounds. There are some

interesting challenges with deploying the upgrades using the

rolling model:

1. How do you choose the network elements to be upgraded

in each round such that the service impact is minimized?

2. How do you choose the number of rounds such that the

deployment time and cost is minimized?

We interacted with operations teams from a large cellular

service provider to understand their network upgrade deploy-

ment process. We made a few key observations:

1. The deployment time is driven by the OSS-limits on how

many concurrent upgrades can be deployed on the network

elements. An OSS (Operational Support System) serves

multiple network elements in a region and the current

software implementations impose an upper bound on how

many concurrent instructions can be executed.

2. The upgrades comprise multiple steps such as pre/post

health checks, traffic migrations, mechanisms (e.g., soft-

ware download and installation for the upgrade), configu-

ration snapshot, and occasionally a reboot of the element.

Traffic migration and reboot can significantly impact ser-

vice and should be executed at off-peak times to minimize

the impact.

3. The upgrades are executed for elements that are geograph-

ically nearby. By focusing on elements within a region,978-1-5090-6501-1/17/$31.00 c
2017 IEEE



allocation for human resources for monitoring the upgrade

is simplified. For example, the operations team in New

York City monitors upgrades on base stations locations in

New York City.

4. Within a time slot (maintenance window typically ranges

from midnight to 6 AM local times), upgrades are executed

concurrently for a fraction of elements within a region

(e.g., K out of N base stations in New York City) and the

concurrence limit is bounded by the OSS-limits.

5. Different operation teams are responsible for different

types of upgrades (e.g., different teams for major software

upgrades versus configuration parameter changes). Explicit

coordination is required for scheduling of these upgrades

so as to minimize any conflicts that could have occurred

in multiple teams trying to grab the same time for the

upgrade. In some cases, one has to carefully capture the

dependencies, such as applying global parameter changes

on the base stations after major software releases.

We also use real-world data collected from operational

cellular network to analyze the upgrade roll-out process and

their service impacts. The data sets include radio coverage

data using ATOLL [3], traffic and service performance mea-

surements. We make the following observations:

1. Upgrades occur very frequently. They are predominantly

executed on weekdays and non-holidays primarily because

of the staffing around that time.

2. For the same type of upgrade (e.g., software upgrade

from version X to version Y), different base stations take

different amount of time to complete the upgrade. The

different steps in the upgrade can take different amount of

time across different network elements.

3. We capture the service impact of the upgrade by compar-

ing service performance within the impact scope of the

upgrade. For example, we compare performance on the

upgraded elements before the upgrade with the aggregate

performance where the traffic gets re-routed during the

upgrade. We observe a slight degradation in performance

during some of the upgrade. We analyze the impact as a

function of the number of elements undergoing the upgrade

and the tradeoff. This presents an interesting opportunity

to determine the optimal set of the network elements to be

upgraded concurrently such that the impact is minimized.

Our approach and contributions: We present a new frame-

work Concord to effectively coordinate upgrades across the

network that balances the deployment time and service impact.

In this paper, we focus on scheduling upgrades on the LTE

and UMTS cellular base stations using the rolling model.

Concord provides the tradeoff between deployment time and

service impact, and lets the operations team choose what

best suits their needs. Our service metric is a combination

of coverage (capturing if any users lose connectivity to their

cellular network during the upgrade) and achievable data

throughput (capturing any service performance degradation).

We formulate the problem as a joint optimization for coverage

and capacity constraints. We propose a new approach to

model the dependency between the cellular base stations using

coverage maps, traffic and performance measurements. This is

different from traditional models based on neighbor relations

or geographical distances. Our novelty lies in (i) identifying a

new and important problem in cellular network management,

(ii) proposing new models and demonstrating their effective-

ness, and (iii) adapting the optimization algorithms for the new

models.
We evaluate Concord using real-world data collected from a

large operational cellular network and demonstrate the benefits

and tradeoffs. We conduct experiments using a large number

of base stations in a region primarily covering urban and

suburban settings and across multiple dimensions including

day versus night time for upgrade, coverage and capacity con-

straints, and across multi-layer technologies (LTE and UMTS).

We show that Concord can achieve more than 6x improvement

in completion time over sequential upgrade process and in

different settings, it can achieve up to 91% improvement

in completion time over basic concurrent schemes. We also

present a prototype deployment of Concord using a small-

scale LTE testbed deployed indoors in a corporate building.

Our testbed consists of LTE base stations, user equipment

(UE), and an evolved packet core (EPC). The prototype system

presents a proof-of-concept evaluation of Concord.

Paper outline: The rest of the paper is organized as follows.

In Section II, we present our analysis and findings using up-

grades and performance data collected from a large operational

cellular network. In Section III, we present the design and

implementation of Concord. We present our evaluation results

using real-world data in Section IV and using testbed exper-

iments in Section V. We review related work in Section VI,

and conclude in Section VII.

II. MOTIVATION

Operational network data analysis: We use one year

worth of operational data collected from cellular network to

infer software upgrades on LTE base stations. We make the

following observations. First, there are planned upgrades every

day throughout the year. Weekdays and non-holidays see more

upgrades likely because upgrades are currently involving semi-

automated processes and there are more staff during weekdays

and non-holidays to manage upgrades. Second, the upgrade

takes time: often around a few hours on a single base station

(BS) and can take on the order of weeks to months for tens

of thousands of base stations in a cellular network. Third, if

not scheduled carefully, it results in a service disruption.
These observations motivate us to automate the scheduling

process that not only speeds up the deployment of the new

software across the network but also minimizes the disruption

to service performance. We envision our scheduler to develop

schedules for both (a) compile-time - planning in advance

- days before the upgrades are actually executed, and (b)

run-time - pre-execution check - minutes or hours before the

upgrade to take into account any network changes.

Schedule robustness: Pre-planned upgrade scheduling may

lack robustness, which can cause longer roll-out upgrade



times. Consider a pre-planned upgrade schedule for a set of

base stations. For simplicity, assume that the BSes are split in

two groups A and B and all BSes in one group are collectively

upgraded in a single round. If A is scheduled first and some

jobs in A remain unfinished when we have to schedule B, then

the operators are left with two options: (i) wait for the jobs

in A to finish and then reschedule B on some other day or

(ii) go ahead with the planned schedule and upgrade B, which

may lead to serious service impact. Another way to resolve

the problem might be to space out the scheduling of two sets

by some suitable time where there is no chance of scheduling

conflict, but this can drastically increase the overall completion

time of the upgrade process.
Figure 1 shows the CDF of time spent in upgrading a LTE

base station. We collected this data during September 2016 -

February 2017 for tens of thousands of base stations. To pro-

tect proprietary information, we have removed the X-axis. X-

axis is the upgrade duration in linear time scale. The important

thing to learn is that even for the same upgrade, different base

stations took different amount of time to complete. Difference

between T1 and T2 is in granularity of minutes.
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Fig. 1. CDF of upgrade time per eNodeB

Nodes dependencies in cellular domain: There is rich

literature on scheduling dependent jobs in cloud environment

and multiprocessors. Generally, dependencies between jobs are

specified using DAG (Directed-Acyclic-Graph), where an edge

from a parent node to a child node specifies that the child

node cannot proceed until the parent node finishes execution.

However, DAG cannot model wireless interference constraints

since DAG cannot capture the spatial constraints between base

stations.
Consider four base stations with IDs from 1 to 4. They

cover multiple regions but let us focus on two regions. One

region α is covered by the BS set {1, 2, 3} and other region β

is covered by BS set {1, 2, 4}. If we consider only coverage

constraints, then BS 1 can be upgraded under three scenarios,

(i) BS 2 is down and BS 3, 4 are up, (ii) BS 2 is up, (iii) BS 2,

3, 4 are up. This is a relatively simple case; traffic constraints

along with a larger number of nodes can lead to an exponential

number and more complex relationships between nodes. DAG

cannot capture these relationships. Moreover, exploring all

these relationships between nodes for a whole topology might

be too expensive to compute. So we need a lightweight and

scalable framework to tackle these dependencies.

Need for fine-grained modeling of BS coverage re-

gions: Here we motivate the need of a fine-grained model

of regions covered by individual BSes to define dependency

relationship between nodes. A practical way to schedule a base

station in an LTE network (also referred as an eNodeB in

the rest of the paper) is by using X2 neighbors. X2 interface

is established between eNodeBs to exchange information like

handovers. We can use a simple greedy approach to schedule

eNodeBs using X2 neighbor relationship. We start from an

empty list L and iteratively add nodes if none of their X2

neighbors are in L. We continue adding nodes until we exhaust

the list. We schedule these eNodeBs and repeat this process

until all eNodeBs have been upgraded.

To see how this scheme would work, we collected X2

neighbors data for an urban area with 105 eNodeBs. We

used our coverage model based on ATOLL (Section III-B)

to get the traffic demand in each 100m×100m area served by

these 105 eNodeBs and also the maximum throughput that

can be sustained for that 100m×100m area by corresponding

eNodeBs. We used the greedy approach to schedule eNodeBs

and found that because of coarse and conservative definition

of X2 neighbor relationship, completion time of the upgrade

process increases by 50%-65% when compared to Concord

with similar service impact. This shows that our fine-grained

approach using ATOLL based coverage model helps speed up

the upgrade deployment and maintain similar service impact

as the X2 neighbor based approach.

III. SCHEDULING UPGRADES

A. Overview

The upgrade workflow consists of the sequence of instruc-

tions to execute the upgrade. When the upgrade workflow is

ready, the operation team queries the scheduler at planning

time to seek a range of dates and the order for the upgrade.

Once the schedule is ready and approved by the operations

team, it will be passed to an orchestrator that prepares for

the execution of the upgrades. The orchestrator queries the

scheduler at run-time and obtains the schedule to be followed

for executing the upgrades across multiple base stations in

the cellular network. Since this operation is conducted at run-

time, the scheduler seeks the most recent view of topology,

traffic, and performance from the underlying cellular network

and provides an order of the nodes for executing the software

upgrade. Depending on the schedule, the orchestrator then

instructs the controllers to execute the instructions on the

appropriate base stations. Our focus is the design of an

automated scheduler. We also develop simple solutions for the

other components in our online testbed experiments, and defer

in-depth study of these other components to the future work.

Scheduling upgrades in cellular networks is important since

it not only impacts the time to complete upgrade, but also

significantly impacts the user performance during the upgrade.

There are a number of desirable goals:

• Minimize time to complete upgrade in order to save

operational costs;

• Minimize coverage holes and congestion during upgrades

to ensure a maximum number of clients can be served

by remaining BSes while the other BSes are brought

down for upgrades. Some clients cannot be served when



their corresponding BSes go down due to power/terrain

limitations;

• Support networks with different generations (e.g., 2G, 3G,

4G clients and BSes).

Job scheduling has been studied extensively. [16], [11], [19]

provides an excellent survey of the scheduling algorithms.

Abstractly, a scheduling problem is defined by the machine

environment (e.g., one machine vs. multiple machines that

can accept jobs), optimality criterion (e.g., average com-

pletion time, worst-case completion time, weighted average

completion time, or minimizing the number of jobs missing

their deadlines), and constraints (e.g., preemptive vs. non-

preemptive, or precedence constraints). Thousands of schedul-

ing problems have been studied depending on the specifi-

cations of these three components. Scheduling upgrades in

cellular networks differs from the existing scheduling work

due to the new constraints (i.e., minimizing coverage holes

and congestion). Here the job schedule is not only limited by

the capacity constraints, but also affected by the the locations

of the base stations and clients (e.g., not all BSes covering the

same area can be upgraded together to ensure coverage).

Our main contribution is the design of a framework where

we incorporate a cellular network topology and capacity into

optimization for upgrade scheduling. We first present the

data sets used in the paper, followed by the formulation and

algorithms in our new framework Concord.

B. Trace Description

Our scheduling algorithm requires network topology and

traffic demands as the input. We use operational network traces

ranging from coverage data, traffic and performance measure-

ments collected by the cellular service provider. Coverage in-

formation is calculated and stored using a modeling tool called

as ATOLL [3]. Traffic and service performance information

is collected from the network element management systems

every 15 minutes.

For modeling cellular network coverage, ATOLL divides

the geographical area into 100m x 100m grids. It assumes

that users within the grid have same coverage and service

performance. ATOLL provides the path loss information for

each grid and sector pair. Path loss captures the signal at-

tenuation from the sector towards the grid and is measured

in dBm. ATOLL uses standard propagation model (SPM) for

calculating path loss and accounts for the distance between the

sector and the grid, sector antenna height, terrain type (e.g.,

mountains, trees, etc.), carrier frequency, and antenna tilt/gain.

We calculate the received power (or, signal strength) for

each grid by subtracting the path loss from the transmission

power of the sector. Let us denote g as the grid, Lg
s as the

path loss from the sector s towards grid g in dBm, and Ts as

the transmission power from the sector s in dBm. Then, the

received power Rg
s is given by Rg

s = Ts−Lg
s . Then the signal

to noise ratio (SNR) is calculated by subtracting noise (-104.5

dBm) from the received power.

If the SNR is below a threshold, we conclude that the grid is

out of service. We map the SNR to the maximum achievable

data rate using the Modulation and Coding Scheme (MCS)

based model defined in 3GPP LTE standard.

We use uplink and downlink PDCP (Packet Data Conver-

gence Protocol) byte volume to represent traffic demands and

user throughput to represent service performance. To handle

fluctuations in traffic, we average the byte volume over 10

weekdays. Traffic and service performance data is currently

collected by the cellular service provider on a per sector basis

and is not available on a per grid basis. To check if there is

network congestion, we require traffic demand for each grid.

To generate the per-grid traffic demand, we identify the best

sector for each grid that gives the maximum SNR. We then

proportionally map the traffic demand at the best sector to the

traffic demand for each grid that the sector is serving. For

example, a sector has traffic demand of 100 Mbps. It serves

two grids: grid 1 has a rate of 2Mbps and grid 2 has a rate of

1 Mbps. We set the grid 1’s traffic demand to 66.7 Mbps and

set the grid 2’s traffic demand to 33.3 Mbps.

C. Concord Basic Formulation

We first consider the basic version of the problem where

we need to schedule upgrades while ensuring coverage and

no congestion. We explain these constraints incrementally to

make them easily understandable.

We start with ensuring coverage constraints such that while

some BSes go down for upgrade, we want all serviceable

regions to remain covered. Some areas cannot be served when

their serving base stations go down since their next closest

base stations are too far away. However, such areas are very

small in number. Suppose we want to upgrade BSes in a

given area. The area has W BSes. Among them, we need

to upgrade U BSes. We use our ATOLL model to map this

area to 100x100m grids, where for each grid we measure the

received signal strength (RSS) from all BSes it can hear. If the

grid receives RSS higher than a given threshold from a BS,

we say the grid can be served or covered by the BS. Based on

this information, our goal is to minimize the amount of time it

takes to complete upgrades while ensuring all grids in the area

is covered by at least one BS. For simplicity, we first assume

all upgrades take the same amount of time and aim to minimize

the number of rounds during the upgrade. In Section III-F, we

minimize the upgrade time where different BSes may have

different upgrade time. We observe that if a grid is covered

by only two BSes (e.g., A and B), then these two BSes cannot

be upgraded at the same time to ensure coverage. In general,

for a grid that is covered by N BSes, these N BSes cannot

be upgraded at the same time.

The above formulation only ensures every grid is covered

by at least one BS. In cellular context, we should ensure not

only coverage but also no congestion (i.e., the traffic from all

grids can be served by the remaining active BSes). In order

to tackle the no congestion scenario, we partition all BSes

that require upgrade into the minimum number of partitions,

where after removing each partition the coverage and capacity



∀i ∈ Grids, j ∈ BSes
⊲ Input : Rate(i, j), Demand(i), Cap(j)

⊲ Output : T (i, j), x(i, j)

maximize:
�

i,j
T (i, j)

subject to:

[C1]
�

j

T (i, j) ≤ Demand(i) ∀i

[C2] T (i, j) ≤ x(i, j)Rate(i, j) ∀i, j

[C3]
�

i

x(i, j) ≤ 100% ∀j

[C4]
�

i

T (i, j) ≤ Cap(j) ∀j

[C5] x(i, j) > 0, T (i, j) > 0∀i, j

[C6] Controller Level Constraints

Fig. 2. Problem formulation to maximize traffic that can be served by a given
set of base stations, where T (i, j) is the amount of traffic from grid i that
can be served by BS j, Rate(i, j) is the data rate between grid i and BS j,
Demand(i) is grid i’s traffic demand, Cap(j) is BS j’s server or wireline
capacity whichever is smaller.

constraints should still be satisfied. In order to minimize the

number of partitions (or upgrade rounds), we try to maximize

the size of schedulable set in each round. The issue here is to

compute the amount of traffic that can be served by a given

set of BSes.

Maximizing traffic served by a set of BSes: We formulate

the following linear program to maximize the traffic demand

that can be served by a set of BSes. This captures the state

of the network when nodes go through upgrade, determining

the maximum amount of traffic that can be served by the

remaining nodes. If the maximum demand is equal to the total

generated traffic demand, then there is no congestion. We use

our ATOLL model from Section III-B to calculate SNR that

each base station can sustain for each 100m×100m grid and

the traffic generated in that grid. To compute the throughput

a set of BSes can support, we construct a linear program as

shown in Figure 2. Its objective is to maximize the total traffic

that can be served by a set of BSes. [C1] reflects the total

traffic that can be served from a grid is no more than its traffic

demand. Here we assume that different BSes may serve a grid,

which is common in reality. [C2] reflects the total served traffic

from grid i cannot exceed Rate(i, j)x(i, j), where Rate(i, j)
is the data rate between grid i and BS j and x(i, j) denotes the

fraction of time the BS j spends serving the grid i. Rate(i, j)
is determined by the signal-interference-noise ratio (SINR).

We map SINR to Rate according to 3GPP LTE standard. [C3]

reflects that the amount of time BS can serve all grids cannot

exceed 100%. [C4] indicates total traffic each BS can serve

is bounded by its capacity (e.g., the minimum between the

server capacity and wireline capacity at the BS). [C6] reflects

the controller level constraints. For example, we impose the

restriction on the number of instructions that can be processed

through an OSS based on the set of scheduled nodes.

D. Algorithm

It is desirable to minimize upgrade time for the following

reasons. First, it reduces operation cost since the earlier the

upgrade finishes, the less time the staff needs to spend in

monitoring upgrade. Second, end users across the network can

start enjoying the new features and improved performance that

upgrades bring earlier. Therefore, we use upgrade time along

with the impact on service quality as our performance metrics.

We minimize the number of upgrade rounds by developing

a greedy heuristic, which maximizes the number of nodes

to upgrade in each round. Every round, we pick a large

schedulable set such that all nodes in the set can be upgraded

together without any coverage holes or congestion. As we will

show, this greedy heuristic performs close to the optimal.

Finding independent schedulable set: Our goal is to identify

the biggest scheduling set S that consists of nodes which can

be updated simultaneously with the aim of minimizing the

upgrade time. In order to add nodes to S, we can either pick

the nodes in a random manner or use some metric based

selection. We employ the following metric. Each node is

assigned with a node degree, defined as maxg
1

Ng

, where Ng

is the number of nodes serving grid g and 1

Ng

is the amount

of coverage the node provides to the grid g. A node with a

higher degree is less likely to be upgraded together with other

nodes than a node with a lower degree. For example, a node

with degree 1 means it is the only covering node for some

grid and cannot be upgraded without coverage holes. Inspired

by the heuristic to find a large independent set, we sort all

BSes to upgrade in an increasing order of their node degrees.

In later sections, we will use a different sorting metric that

suits the differing formulation.

We compute S in two steps.

• We add the first node from the sorted list to S and then

incrementally add one node at a time as long as upgrading

all nodes in the list does not cause any grid to have no

node covering it. To achieve that, every time a node i is

added to S, we remove it from the grids it covers. We

just need to check if there exists a grid such that i is the

only node covering it. We continue until we exhaust the

sorted list.

• We then formulate our optimization problem from Fig-

ure 2 to check if congestion constraints are satisfied. If

not, we remove the nodes one by one from the end of S
until the congestion constraints are satisfied.

This forms a set of nodes to upgrade in the first round. After

these nodes finish upgrading, we remove them, since they no

longer need upgrade. We repeat the process until all the nodes

have been upgraded.

Lower bound: It is desirable to know how far our algorithm

is from the optimal. It is hard to exactly compute the minimum

upgrade rounds. However, we can derive a lower bound. It is

not difficult to see that if we find a set of nodes such that none

of any two BSes in this set can be upgraded together (called

our notion of clique), the size of this set imposes a lower bound

on the number of upgrade rounds. This is because all nodes in

this set need a separate upgrade round. The size of any clique

is a lower bound. The larger the clique we find, the tighter

the lower bound. However, even the maximum clique may be



a loose bound because (i) scheduling another clique after the

first clique may require adding one or more new rounds, (ii)

Cliques are made using only coverage constraints. In principle,

one can find cliques using no congestion constraints, but this

is much more expensive.

Finding largest cliques: We need to define conflict relation-

ship between nodes in order to determine the largest clique.

Two nodes are in conflict if they cannot be upgraded together.

To define conflict relationships between nodes, we make use

of a binary conflict matrix M. Mij = 1 indicates there is

a conflict between the nodes i and j. We populate M using

our ATOLL model where if a region is covered by only two

nodes i and j, then we mark Mij = 1. In order to find a

clique, we start with a random order of nodes and one initial

node in clique set C. We add a node j to C if for all nodes

i in C,Mij = 1. We continue this until the list of nodes

is exhausted. To tighten the bound, we enumerate multiple

cliques and use the size of largest clique as the lower bound.

E. Supporting Multiple Upgrades Per BS

We learn from the operation team that a BS may require

multiple upgrades one after another. To support multiple

upgrades with ordering requirements on a BS, we make the

case that it is preferable to schedule nodes with more upgrade

tasks early since all their upgrade tasks have to finish before

the upgrade is complete. Therefore, instead of sorting nodes

based on the node degree, here we first sort nodes in terms of

the number of upgrade tasks and further sort the nodes with

the same number of upgrade tasks in an increasing order of

their node degree to increase of the chance of getting a larger

schedulable set.

F. Supporting Variable and Uncertain Upgrade Time

So far, we assume all BSes can be upgraded in the same

amount of time so that we can just minimize the number of

upgrade rounds. Often the time required to upgrade BSes vary

significantly due to difference in vendor or processing power.

Due to some unforeseen circumstances, certain nodes may also

take an uncertain amount of time to complete upgrade.

We make two important modifications to support this vari-

ant. First, we sort the jobs in a decreasing order of their

upgrade time so that we are more likely to schedule larger

jobs earlier since the upgrade can only finish when the last

job finishes. Note that this does not hamper other smaller jobs

from being scheduled if they have no conflict with the already

scheduled jobs. Second, since not all these jobs finish at the

same time, whenever one job in the current round finishes,

we may potentially schedule new job(s) since the BS that

just finishes upgrade may serve some grids and allow new

BSes to be upgraded without violating coverage or congestion

requirements. This scheduling also takes care of uncertain

upgrade times of jobs, because even if a job takes longer than

expected, it does not affect the scheduling of nodes that are

not in conflict with this job. We continue adding nodes one at

a time to the set of nodes that is still going through upgrade as

long as all nodes are schedulable after insertion. In this way,

we achieve online scheduling even in the presence of uncertain

upgrade time.

G. Practical Considerations

Trade-off between upgrade time and performance: So far,

we enforce no coverage hole or no congestion during upgrade.

In practice, one may tolerate minor performance degradation

during upgrade. This is because sometimes it might be de-

sirable to complete the upgrade process as soon as possible

while tolerating some performance hit based on the necessity

of the required upgrade. For example, some important tweak in

security configuration may be required on an urgent basis, so

operators may be willing to incur some performance hit. Our

scheduling algorithm can be adapted so that it allows trade-

off between coverage holes/congestion and performance by

introducing two tolerance threshold parameters. For coverage,

we consider a set of nodes as schedulable if the number of

coverage holes is within a threshold (denoted as threshholes).

For congestion, we consider a set of nodes as schedulable

if the percentage of unsatisfied traffic demand is no larger

than threshold, threshcong. threshholes and threshcong can

be adjusted according to the service requirement.

Supporting Different Generations: A base station may

run 2G, 3G, and 4G, which can be upgraded independently.

For example, 4G part of the base station is going through

upgrade, while 2G and 3G are serving clients. A challenge is

how to pick base stations to support the clients that ensure

no congestion across generations. The new challenge comes

from the coupling between the generations (e.g., 4G clients

may be served by 2G, 3G, or 4G). To ensure no congestion

across generations, we construct a connectivity graph using

BSes and grids as follow. A base station running 2G, 3G, 4G

are represented as 3 nodes and the outgoing edges from these

nodes have capacities set to the BS capacity of that generation.

Moreover, each grid has 2G, 3G, 4G traffic; 2G base station

can serve 2G, 3G, 4G clients, 3G BSes can service 3G and 4G

clients, 4G BSes can only serve 4G clients. To reflect these

properties, we use 3 nodes to represent a grid: one for each

generation. We connect a 2G grid to 2G BSes to reflect that

2G traffic demands can be served only by 2G BSes. Similarly,

we connect a 3G grid to 2G and 3G BSes to reflect that both

2G and 3G BSes can possibly serve 3G traffic, and connect a

4G grid to 2G, 3G, and 4G BSes. We can use the algorithm in

Section III-D to maximize the amount of traffic to serve by a

given set of BSes. The only difference is that the underlying

graph becomes larger since we use different nodes to represent

a grid that generate traffic demands for different generations

and use different nodes to denote BSes supporting different

generations.

IV. EVALUATION

In this section, we evaluate our approaches in Concord

using trace-driven simulation. We first introduce our evaluation

methodology and then present performance results.



A. Evaluation Methodology

Baseline schemes: We compare our scheduling algorithms

with the following baselines:

• Serial upgrades (serial): In this scheme, base stations are

upgraded one by one. This is not the practice in operations

today because it would take too long to complete the

deployment. However, it ensures the least performance

impact and the total upgrade rounds is equal to the number

of base stations being upgraded.

• Basic parallel upgrades (basic-para): A better scheme is

to use the cellular topology and simultaneously upgrade

base stations that do not violate coverage or capacity

constraints. We start from a complete list of eNodeBs

that is assumed to be the schedulable set. We remove

nodes from the current upgrade list according to a random

permutation until all constraints are satisfied. Note that

this is already better than the current practice, which does

not explicitly take into account the topology and traffic

demands to minimize the upgrade time while ensuring no

service disruption. Current operational standard is to wait

for all nodes in the round to complete before moving onto

the next round because conflict resolution is not employed

in real time.

• Lower bound (lowbound): As described in Section III-D,

the largest clique size is a lower bound. Our evaluation

enumerates 1000 cliques and pick the largest out of them.

B. Performance Results

The topology that we consider comes from one of the largest

cities in US, it consists of 105 nodes covering majorly urban

and some suburban area.

Figure 3(a) shows the total upgrade slots if upgrade process

happens only during midnight hours from 00:00 - 6:00 and (b)

shows the upgrade process for daytime hours from 9:00-17:00.

During daytime, upgrade process needs more slots because

there is higher traffic during daytime so in order to satisfy “no

congestion” constraints, we need more nodes to remain ON in

a round. However in both cases, our algorithm’s performance

is very close to the lower bound. The lower bound here only

ensures coverage but not “no congestion” so the lower bound

is not tight. As compared to basic-para, we can update the

eNodeBs at a 30% faster in some scenarios when upgrade

time is the same for all eNodeBs. When upgrade times are not

equal, Concord achieves significant improvement over basic-

para, as shown later.

All the results presented from this point onwards use traffic

demand data from the midnight hours because preferential

operational practice is to perform the upgrade process during

night time, when traffic is low and the impact is small.

Multiple upgrades per BS: Figure 4 shows the number

of upgrade slots required when eNodeBs can have multiple

upgrade jobs. Our ordering of eNodeBs according to the job

order yields 50% reduction in the overall completion time.
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Fig. 3. Comparison of upgrade time while ensuring no congestion. As traffic
increases (low traffic at night time versus high traffic at day time), # required
upgrade slots also increases.

Heterogeneous upgrade time: Figure 5(a) shows the results

by setting the upgrade time according to the real traces, and

Figure 5(b) shows the results using exponentially distributed

upgrade time. In both cases, we know exactly what the upgrade

time will be. Our opportunistic insertion of jobs gains up to

46% improvement because as the nodes get upgraded and re-

enter the grid, conflicts get resolved thus allowing more nodes

to be scheduled for upgrade.
Figure 6(a) shows results when actual upgrade time of

a node is set using normal distribution where mean is the

expected upgrade time from traces and variance in number of

upgrade slots is varied 1-7. Figure 6(b) shows the results when

variance is fixed at 7 but the number of nodes to upgrade is

varied. Concord yields 30%-91% improvement in completion

time over basic-para because basic-para does not employ

opportunistic insertion. The upgrade time of Concord is within

5% of that of the lower bound.

 0

 10

 20

 30

 40

 50

 60

 70

0.3 0.6 0.9

U
p

g
ra

d
e

 S
lo

ts

Fraction of nodes

low-bound
ours

basic-para

(a) 5 Maximum Jobs

 0

 20

 40

 60

 80

 100

0.3 0.6 0.9

U
p

g
ra

d
e

 S
lo

ts

Fraction of nodes

low-bound
ours

basic-para

(b) 10 Maximum Jobs

Fig. 4. Comparison of upgrade time while also ensuring ordering constraints
when maximum # upgrade jobs assigned to a base station are 5 and 10.
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Fig. 5. Comparison of upgrade time under known variable upgrade time.

Tradeoff between upgrade time and performance: Fig-

ure 7(a) shows the number of upgrade slots as we relax the

coverage constraint – allowing more grids to be uncovered

during the upgrade progress. The three curves in the figure

correspond to 30%, 60% and 90% of eNodeBs requiring

upgrade. The number of upgrade slots decreases sharply as

we go from 0 to 50 coverage holes, and tapers off around 100

coverage holes since the upgrade slot is already very small
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Fig. 6. Comparison of upgrade time under uncertain upgrade time.

around 100 coverage holes and further reducing the upgrade

slots results in a large number of grids to go uncovered.

Figure 7(b) shows the number of upgrade slots as we relax

the “no congestion” requirement. We use congestion fraction

to refer to a fraction of total flow that cannot be served. As

we would expect, increasing the congestion fraction reduces

the number of upgrade slots. As before, we observe a similar

slow-down in the reduction of the upgrade slots for the same

reason.
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Fig. 7. Tradeoff between performance and upgrade completion time. Increas-
ing the tolerance for service impact reduces # slots needed for the upgrade.

Supporting Different Generations: Figure 8 compares the

upgrade time between homogeneous and heterogeneous set-

tings when updating 4G nodes in the network. The evaluation

assumes each eNodeB can serve both 3G and 4G clients and

each client can be served by both 3G and 4G eNodes. In

homogeneous setting, only 4G nodes can cover for 4G nodes

so upgrades are planned according to this model with 3G

nodes providing no support for 4G users. In heterogeneous

setting, 3G nodes can also cover for 4G nodes so there is more

traffic handling capacity in the network. Because of additional

capacity, we can complete the upgrade process at most 10%

faster in heterogeneous setting.
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V. TESTBED EXPERIMENTS

In this section, we evaluate our scheduling approaches using

a small-scale LTE testbed deployed indoors in a corporate

building.

Setup: Our testbed consists of 4 LTE base stations (eNodeBs),

9 user equipments (UEs), and an Evolved Packet Core (EPC).

Each eNodeB is a re-programmable LTE small cell and uses

an exclusive 10-MHz experimental license for transmission

in band 7, where the downlink and uplink frequencies are

centered at 2635 MHz and 2515 MHz, respectively. The

antennas on the eNodeBs are omni-directional. The UEs are

deployed in the building such that each one is reachable by at

least two eNodeBs. Thus, if one eNodeB is taken down for an

upgrade, the next best eNodeB serves the UEs. The UEs are

USB dongles and hosted by a Core-I3 Intel box with 4 GB

memory that runs Ubuntu 14.04x64 Linux. The EPC consists

of MME (Mobility Management Engine), SGW (Serving

Gateway), PGW (Packet Data Network Gateway), HSS (Home

Subscriber Server), and PCRF (Policy and Charging Rules

Function Server). Figure 9 shows the testbed deployment with

4 eNodeBs (eNB-1, eNB-4, eNB-5 and eNB-6) and 9 UEs

numbered (7-16) excluding 14. The EPC (not shown in the

figure) is hosted at a single server and connected to the

eNodeBs using Ethernet.

Fig. 9. LTE indoor testbed consisting of 4 eNodeBs and 9 UEs.

Methodology: We implement a system that takes the input

the traffic demands, topology, and all eNodeBs that require

upgrade. In our testbed scenario, each UE is mapped to a

unique grid. We measure SNR for each UE-eNodeB pair

by turning on eNodeBs one by one while keeping others

OFF and asking UE to report received signal strength and

noise to compute SNR. SNR is then mapped to throughput

using Modulation and Coding scheme (MCS) based model

defined in 3GPP LTE standard. We generate traffic for each

UE according to its traffic demand specified in the input

using a UDP iperf server at each UE and a corresponding

UDP iperf client at the app-server on the UE. The system

applies the scheduling algorithm in Section III-D to ensure no

congestion. Then according to the output upgrade schedule, it

takes down the eNodeBs that require upgrades in that round

to mimic upgrades. This is achieved by logging in to the

eNodeB interface and writing 0x0E to RF hardware register

that turns its transmitter off so that the associated UEs will

handoff to other eNodeBs. After the upgrade, it brings up the

eNodeBs by writing 0xDE to the same register to turn their

transmitters on and takes down the eNodeBs to be upgraded in

the next round from our schedule. Each UE will automatically

switch to the best eNodeB at any time using a hard handoff.



We continuously measure UDP throughput before, during, and

after upgrade to quantify the performance impact as well as

measuring the total upgrade time. The upgrade starts after 15

seconds so that we can observe the throughput behavior during

the normal conditions.

A. Experiments

Updating all nodes: First we evaluate the scenario where all

the eNodeBs need to be updated under high traffic. Each UE

is generating UDP traffic at 5Mbps. We compare throughput

under three schemes basic-para, serial and ours when eN-

odeBs undergo upgrade and the time it takes to complete the

upgrade process. Each algorithm outputs a schedule that is

implemented on testbed using a series of steps. For example,

given a schedule that says “Update enb-1 and enb-4, then

Update enb-5 and enb-6”, we first turn enbs 1 and 4 OFF and

measure throughput over all UEs. After upgrading eNodeBs 1

and 4, we turn enbs 5 and 6 OFF and bring 1 and 4 back ON.

After upgrade process is completed for eNodeBs 5 and 6, we

turn ON enbs 5 and 6. So the process takes two rounds.

Results: Figure 10(a) compares the average throughput under

different schemes during upgrade. There is no considerable

difference between throughput using our upgrade scheduling

versus no upgrade. On average, Concord takes 60sec, basic-

para takes ∼83sec, and serial takes 120sec to complete the

upgrade process. This indicates our scheme reduces upgrade

time by 50% over the serial scheduler and 30% over the

basic parallel scheduler with little to no performance impact

compared to no upgrade.
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Fig. 10. Average throughput and upgrade time needed in high traffic scenario.
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Fig. 11. Compiled throughput time series across all UEs and for UE-12.

Figure 11(a) further shows the time-series of the compiled

throughput across all UEs during the upgrade process using

our upgrade scheduler. As we can see, the throughput stays

high throughout the upgrade except the times when the eN-

odeBs are just being taken down for upgrade and the UEs

need to perform hard hand off to switch to the best eNodeB.

This happens around 17 and 47 second marks. Figure 11(b)

shows the throughput from UE-12 during the upgrade. Before

17 second, UE-12 was connected to eNodeB 6. Then eNodeB

6 went down for upgrade. So UE-12 switched to eNodeB 5.

UE-12 channel with eNodeB 5 is not as good as compared to

that with eNodeB 6, so there are some low throughput notches

between 17-47 seconds. At 47 second, eNodeB 5 went down

for upgrade so UE-12 switched back to eNodeB 6.

Serial upgrade process also causes throughput dip for users

because each user has to switch to a different eNodeB when

the base station, to which it is attached, goes down. Average

throughput of UEs under Concord and serial process are

similar as we can see in Figure 10(a).

Random Packing in two rounds: Next, we show the

performance impact if we randomly pack eNodeBs for upgrade

in two slots. We perform experiments for all possible upgrade

schedules. As shown in Figure 10(b), the average throughput

is much worse. UE 10 even goes out of service when we

upgrade eNodeBs 1, 4, 5 in one round because eNodeB 6

cannot cover it. This highlights the importance of carefully

scheduling upgrades to avoid service disruption.

VI. RELATED WORK

Scheduling algorithms: Scheduling has been a widely stud-

ied topic. [16], [11], [19] provide excellent surveys of schedul-

ing algorithms. Many scheduling problems are NP-hard and

various heuristics have been proposed for them. Many heuris-

tics sort jobs in terms of priorities derived based on running

time or deadline. For example, shortest-job-first minimizes

average completion time. Earliest-deadline-first minimizes the

number of jobs that misses deadline. There are new dimensions

in upgrade scheduling problem in cellular networks because

of constraints arising from the topological relationships.

Cellular performance modeling: There has been significant

work on measuring, modeling and optimizing cellular net-

works. For example, [14] deploy 3GTest to collect and analyze

performance measurements. [12] extends the tool to analyze

LTE from users of four major US cellular carriers. Mattar et

al.[26] uses active TCP/UDP measurements to collect informa-

tion across RF, MAC, and transport layers from a CDMA2000

network and analyze the impact of a wireless scheduler and RF

on TCP parameters. The DARWIN+ group collects IP packets

at a GPRS/UMTS network, and analyzes various issues, such

as TCP performance and traffic anomalies [30]. [13] studies

the interactions between applications, transport protocol, and

the radio layer in a large LTE network in US. It reports

52.6% of TCP flows are throttled by TCP receive window.

[18] develops a novel open platform to monitor and analyze

LTE radio performance over both time and space. [32] develop

diagnosis tools that uncover problematic interactions between

control-plan protocols. Significant work has also been devoted

to optimizing cellular network performance [4]. For exam-

ple, [17], [5] examine resource management for OFDMA-

based femtocell networks. [28] studies adaptive interference

coordination in multi-cell OFMDA systems. There are several



proposals [1], [2], [6], [7], [31], [27], [20], [34], [21] for

dynamic tuning of cellular network configuration using SON

in response to changing traffic and network conditions.

Upgrade management: Managing software upgrades and

maintenance activities in large operational networks is ex-

tremely challenging. Researchers have made great efforts in

designing solutions for minimizing disruptions during planned

upgrades in ISP networks [8], [9], [33], data center net-

works [15], [22], [10], Software Defined Networks [29], [15],

and LTE cellular networks [35]. In IP networks, [8] tries to

avoid disruption of OSPF routing configuration upgrades, [9]

avoids connectivity loss during BGP link maintenance and R3

[33] tries to recover from link failures. Software Defined Net-

working has been proposed to ease management of network

configuration and upgrades. Reitblatt [29] presents a system

that guarantees both packet level and flow level consistency

during configuration changes. Dionysus [15] speeds up the

consistent network updates to reduce upgrade impact. zUpdate

[22] provides congestion free migration of traffic during data

center network updates. [10] provides desired correctness

during virtual machine (VM) migration. Magus [35] focuses

on a single upgrade in LTE cellular networks and aims to

proactively minimize service disruption by migrating users to

neighboring base stations. Once upgrades are implemented

in the network, it is important for the operations teams to

carefully monitor the performance impacts [25], [23], [24],

[36]. Our problem scope is different from the above mentioned

works. To our knowledge, this paper is the first that studies

scheduling upgrades in cellular networks.

VII. CONCLUSION

Managing upgrades in cellular networks is an important

problem. In this paper, we propose a new framework Con-

cord and develop a series of upgrade scheduling algorithms

to account for different performance objectives and usage

scenarios. Using testbed experiments and evaluation based on

traces from a major cellular network in US, we show that our

approaches significantly reduce upgrade time while incurring

little to no performance impact during upgrade period. We

believe that our framework can help the network operators

in meeting upgrade completion deadlines while also avoiding

serious service impact. Though techniques we develop are in

the context of cellular networks, the general idea is applicable

in other contexts by incorporating domain specific constraints.
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