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Abstract—Cellular service providers continuously upgrade
their network software on base stations to introduce new service
features, fix software bugs, enhance quality of experience to
users, or patch security vulnerabilities. A software upgrade
typically requires the network element to be taken out of service,
which can potentially degrade the service to users. Thus, the
new software is deployed across the network using a rolling
upgrade model such that the service impact during the roll-out is
minimized. A sequential roll-out guarantees minimal impact but
increases the deployment time thereby incurring a significant
human cost and time in monitoring the upgrade. A network-
wide concurrent roll-out guarantees minimal deployment time
but can result in a significant service impact. The goal is to
strike a balance between deployment time and service impact
during the upgrade. In this paper, we first present our findings
from analyzing upgrades in operational networks and discussions
with network operators and exposing the challenges in rolling
software upgrades. We propose a new framework Concord to
effectively coordinate software upgrades across the network that
balances the deployment time and service impact. We evaluate
Concord using real-world data collected from a large operational
cellular network and demonstrate the benefits and tradeoffs. We
also present a prototype deployment of Concord using a small-
scale LTE testbed deployed indoors in a corporate building.

I. INTRODUCTION

Today, cellular networks are one of the top drivers for
communication, Internet access, and multimedia applications.
Smartphone users heavily rely upon them and expect high
availability at all times. The cellular service providers aim
to provide excellent quality of experience for billions of
smartphone users by continuously monitoring the network and
service performance. They introduce upgrades to their network
on a regular basis in order to improve service experience,
roll out new service functionalities, fix software bugs, or
patch security issues. Network upgrades typically involve new
software releases, firmware upgrades, hardware modifications,
configuration parameter changes, and topology changes.

Some of these upgrades (e.g., software upgrades) require
the network element to be transiently taken out of service,
which can potentially induce a service impact. The service
providers carefully plan the network upgrades during off-peak
time to minimize the service impact. Typically, night time
(often referred to as maintenance windows) is preferred due
to low traffic volumes. By executing upgrade sequentially
(one element after another), one can maximize the spare
capacity in the network to offload the traffic when the network
element is undergoing an upgrade. This guarantees minimal
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impact, but increases network-wide deployment time. A higher
deployment time means increased human cost in monitoring
the upgrade. For large-scale cellular networks with thousands
of base stations, the sequential roll-out is definitely not an
option because of the cost and delayed availability of the
upgrade across the network.

Another option for network-wide deployment is simultane-
ously upgrading all the network elements. This will guarantee
the fastest roll-out but incurs a significant impact to service
and thus is undesirable. The cellular service providers try to
strike a balance between deployment time and service impact
for rolling out the upgrade. They roll-out the upgrade in such a
way that there is spare capacity in the network to accommodate
most of the traffic demands. For example, upgrade K out of NV
base stations simultaneously such that the remaining N — K
base stations can serve the users with similar quality of service.
In the next round, one can then upgrade some of the N — K
base stations while the other base stations (including those that
finish upgrade) serve the users. This method of deploying the
upgrade is commonly known as a rolling upgrade model. The
rolling model often leverages multiple rounds. There are some
interesting challenges with deploying the upgrades using the
rolling model:

1. How do you choose the network elements to be upgraded
in each round such that the service impact is minimized?

2. How do you choose the number of rounds such that the
deployment time and cost is minimized?

We interacted with operations teams from a large cellular
service provider to understand their network upgrade deploy-
ment process. We made a few key observations:

1. The deployment time is driven by the OSS-limits on how
many concurrent upgrades can be deployed on the network
elements. An OSS (Operational Support System) serves
multiple network elements in a region and the current
software implementations impose an upper bound on how
many concurrent instructions can be executed.

2. The upgrades comprise multiple steps such as pre/post
health checks, traffic migrations, mechanisms (e.g., soft-
ware download and installation for the upgrade), configu-
ration snapshot, and occasionally a reboot of the element.
Traffic migration and reboot can significantly impact ser-
vice and should be executed at off-peak times to minimize
the impact.

3. The upgrades are executed for elements that are geograph-
ically nearby. By focusing on elements within a region,



allocation for human resources for monitoring the upgrade
is simplified. For example, the operations team in New
York City monitors upgrades on base stations locations in
New York City.

4. Within a time slot (maintenance window typically ranges
from midnight to 6 AM local times), upgrades are executed
concurrently for a fraction of elements within a region
(e.g., X out of N base stations in New York City) and the
concurrence limit is bounded by the OSS-limits.

5. Different operation teams are responsible for different
types of upgrades (e.g., different teams for major software
upgrades versus configuration parameter changes). Explicit
coordination is required for scheduling of these upgrades
so as to minimize any conflicts that could have occurred
in multiple teams trying to grab the same time for the
upgrade. In some cases, one has to carefully capture the
dependencies, such as applying global parameter changes
on the base stations after major software releases.

We also use real-world data collected from operational
cellular network to analyze the upgrade roll-out process and
their service impacts. The data sets include radio coverage
data using ATOLL [3], traffic and service performance mea-
surements. We make the following observations:

1. Upgrades occur very frequently. They are predominantly
executed on weekdays and non-holidays primarily because
of the staffing around that time.

2. For the same type of upgrade (e.g., software upgrade
from version X to version Y), different base stations take
different amount of time to complete the upgrade. The
different steps in the upgrade can take different amount of
time across different network elements.

3. We capture the service impact of the upgrade by compar-
ing service performance within the impact scope of the
upgrade. For example, we compare performance on the
upgraded elements before the upgrade with the aggregate
performance where the traffic gets re-routed during the
upgrade. We observe a slight degradation in performance
during some of the upgrade. We analyze the impact as a
function of the number of elements undergoing the upgrade
and the tradeoff. This presents an interesting opportunity
to determine the optimal set of the network elements to be
upgraded concurrently such that the impact is minimized.

Our approach and contributions: We present a new frame-
work Concord to effectively coordinate upgrades across the
network that balances the deployment time and service impact.
In this paper, we focus on scheduling upgrades on the LTE
and UMTS cellular base stations using the rolling model.
Concord provides the tradeoff between deployment time and
service impact, and lets the operations team choose what
best suits their needs. Our service metric is a combination
of coverage (capturing if any users lose connectivity to their
cellular network during the upgrade) and achievable data
throughput (capturing any service performance degradation).
We formulate the problem as a joint optimization for coverage
and capacity constraints. We propose a new approach to

model the dependency between the cellular base stations using
coverage maps, traffic and performance measurements. This is
different from traditional models based on neighbor relations
or geographical distances. Our novelty lies in (i) identifying a
new and important problem in cellular network management,
(ii) proposing new models and demonstrating their effective-
ness, and (iii) adapting the optimization algorithms for the new
models.

We evaluate Concord using real-world data collected from a
large operational cellular network and demonstrate the benefits
and tradeoffs. We conduct experiments using a large number
of base stations in a region primarily covering urban and
suburban settings and across multiple dimensions including
day versus night time for upgrade, coverage and capacity con-
straints, and across multi-layer technologies (LTE and UMTS).
We show that Concord can achieve more than 6x improvement
in completion time over sequential upgrade process and in
different settings, it can achieve up to 91% improvement
in completion time over basic concurrent schemes. We also
present a prototype deployment of Concord using a small-
scale LTE testbed deployed indoors in a corporate building.
Our testbed consists of LTE base stations, user equipment
(UE), and an evolved packet core (EPC). The prototype system
presents a proof-of-concept evaluation of Concord.

Paper outline: The rest of the paper is organized as follows.
In Section II, we present our analysis and findings using up-
grades and performance data collected from a large operational
cellular network. In Section III, we present the design and
implementation of Concord. We present our evaluation results
using real-world data in Section IV and using testbed exper-
iments in Section V. We review related work in Section VI,
and conclude in Section VIIL

II. MOTIVATION

Operational network data analysis: We use one year
worth of operational data collected from cellular network to
infer software upgrades on LTE base stations. We make the
following observations. First, there are planned upgrades every
day throughout the year. Weekdays and non-holidays see more
upgrades likely because upgrades are currently involving semi-
automated processes and there are more staff during weekdays
and non-holidays to manage upgrades. Second, the upgrade
takes time: often around a few hours on a single base station
(BS) and can take on the order of weeks to months for tens
of thousands of base stations in a cellular network. Third, if
not scheduled carefully, it results in a service disruption.

These observations motivate us to automate the scheduling
process that not only speeds up the deployment of the new
software across the network but also minimizes the disruption
to service performance. We envision our scheduler to develop
schedules for both (a) compile-time - planning in advance
- days before the upgrades are actually executed, and (b)
run-time - pre-execution check - minutes or hours before the
upgrade to take into account any network changes.

Schedule robustness: Pre-planned upgrade scheduling may
lack robustness, which can cause longer roll-out upgrade



times. Consider a pre-planned upgrade schedule for a set of
base stations. For simplicity, assume that the BSes are split in
two groups .4 and B and all BSes in one group are collectively
upgraded in a single round. If A is scheduled first and some
jobs in A remain unfinished when we have to schedule B, then
the operators are left with two options: (i) wait for the jobs
in A to finish and then reschedule B on some other day or
(ii) go ahead with the planned schedule and upgrade B, which
may lead to serious service impact. Another way to resolve
the problem might be to space out the scheduling of two sets
by some suitable time where there is no chance of scheduling
conflict, but this can drastically increase the overall completion
time of the upgrade process.

Figure 1 shows the CDF of time spent in upgrading a LTE
base station. We collected this data during September 2016 -
February 2017 for tens of thousands of base stations. To pro-
tect proprietary information, we have removed the X-axis. X-
axis is the upgrade duration in linear time scale. The important
thing to learn is that even for the same upgrade, different base
stations took different amount of time to complete. Difference
between T1 and T2 is in granularity of minutes.
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Fig. 1. CDF of upgrade time per eNodeB

Nodes dependencies in cellular domain: There is rich
literature on scheduling dependent jobs in cloud environment
and multiprocessors. Generally, dependencies between jobs are
specified using DAG (Directed-Acyclic-Graph), where an edge
from a parent node to a child node specifies that the child
node cannot proceed until the parent node finishes execution.
However, DAG cannot model wireless interference constraints
since DAG cannot capture the spatial constraints between base
stations.

Consider four base stations with IDs from 1 to 4. They
cover multiple regions but let us focus on two regions. One
region « is covered by the BS set {1, 2, 3} and other region 3
is covered by BS set {1, 2, 4}. If we consider only coverage
constraints, then BS 1 can be upgraded under three scenarios,
(i) BS 2 is down and BS 3, 4 are up, (ii) BS 2 is up, (iii) BS 2,
3, 4 are up. This is a relatively simple case; traffic constraints
along with a larger number of nodes can lead to an exponential
number and more complex relationships between nodes. DAG
cannot capture these relationships. Moreover, exploring all
these relationships between nodes for a whole topology might
be too expensive to compute. So we need a lightweight and
scalable framework to tackle these dependencies.

Need for fine-grained modeling of BS coverage re-
gions: Here we motivate the need of a fine-grained model
of regions covered by individual BSes to define dependency
relationship between nodes. A practical way to schedule a base

station in an LTE network (also referred as an eNodeB in
the rest of the paper) is by using X2 neighbors. X2 interface
is established between eNodeBs to exchange information like
handovers. We can use a simple greedy approach to schedule
eNodeBs using X2 neighbor relationship. We start from an
empty list £ and iteratively add nodes if none of their X2
neighbors are in £. We continue adding nodes until we exhaust
the list. We schedule these eNodeBs and repeat this process
until all eNodeBs have been upgraded.

To see how this scheme would work, we collected X2
neighbors data for an urban area with 105 eNodeBs. We
used our coverage model based on ATOLL (Section III-B)
to get the traffic demand in each 100mx 100m area served by
these 105 eNodeBs and also the maximum throughput that
can be sustained for that 100mx 100m area by corresponding
eNodeBs. We used the greedy approach to schedule eNodeBs
and found that because of coarse and conservative definition
of X2 neighbor relationship, completion time of the upgrade
process increases by 50%-65% when compared to Concord
with similar service impact. This shows that our fine-grained
approach using ATOLL based coverage model helps speed up
the upgrade deployment and maintain similar service impact
as the X2 neighbor based approach.

III. SCHEDULING UPGRADES
A. Overview

The upgrade workflow consists of the sequence of instruc-
tions to execute the upgrade. When the upgrade workflow is
ready, the operation team queries the scheduler at planning
time to seek a range of dates and the order for the upgrade.
Once the schedule is ready and approved by the operations
team, it will be passed to an orchestrator that prepares for
the execution of the upgrades. The orchestrator queries the
scheduler at run-time and obtains the schedule to be followed
for executing the upgrades across multiple base stations in
the cellular network. Since this operation is conducted at run-
time, the scheduler seeks the most recent view of topology,
traffic, and performance from the underlying cellular network
and provides an order of the nodes for executing the software
upgrade. Depending on the schedule, the orchestrator then
instructs the controllers to execute the instructions on the
appropriate base stations. Our focus is the design of an
automated scheduler. We also develop simple solutions for the
other components in our online testbed experiments, and defer
in-depth study of these other components to the future work.

Scheduling upgrades in cellular networks is important since
it not only impacts the time to complete upgrade, but also
significantly impacts the user performance during the upgrade.
There are a number of desirable goals:

e Minimize time to complete upgrade in order to save
operational costs;

e Minimize coverage holes and congestion during upgrades
to ensure a maximum number of clients can be served
by remaining BSes while the other BSes are brought
down for upgrades. Some clients cannot be served when



their corresponding BSes go down due to power/terrain
limitations;

e Support networks with different generations (e.g., 2G, 3G,
4G clients and BSes).

Job scheduling has been studied extensively. [16], [11], [19]
provides an excellent survey of the scheduling algorithms.
Abstractly, a scheduling problem is defined by the machine
environment (e.g., one machine vs. multiple machines that
can accept jobs), optimality criterion (e.g., average com-
pletion time, worst-case completion time, weighted average
completion time, or minimizing the number of jobs missing
their deadlines), and constraints (e.g., preemptive vs. non-
preemptive, or precedence constraints). Thousands of schedul-
ing problems have been studied depending on the specifi-
cations of these three components. Scheduling upgrades in
cellular networks differs from the existing scheduling work
due to the new constraints (i.e., minimizing coverage holes
and congestion). Here the job schedule is not only limited by
the capacity constraints, but also affected by the the locations
of the base stations and clients (e.g., not all BSes covering the
same area can be upgraded together to ensure coverage).

Our main contribution is the design of a framework where
we incorporate a cellular network topology and capacity into
optimization for upgrade scheduling. We first present the
data sets used in the paper, followed by the formulation and
algorithms in our new framework Concord.

B. Trace Description

Our scheduling algorithm requires network topology and
traffic demands as the input. We use operational network traces
ranging from coverage data, traffic and performance measure-
ments collected by the cellular service provider. Coverage in-
formation is calculated and stored using a modeling tool called
as ATOLL [3]. Traffic and service performance information
is collected from the network element management systems
every 15 minutes.

For modeling cellular network coverage, ATOLL divides
the geographical area into 100m x 100m grids. It assumes
that users within the grid have same coverage and service
performance. ATOLL provides the path loss information for
each grid and sector pair. Path loss captures the signal at-
tenuation from the sector towards the grid and is measured
in dBm. ATOLL uses standard propagation model (SPM) for
calculating path loss and accounts for the distance between the
sector and the grid, sector antenna height, terrain type (e.g.,
mountains, trees, etc.), carrier frequency, and antenna tilt/gain.

We calculate the received power (or, signal strength) for
each grid by subtracting the path loss from the transmission
power of the sector. Let us denote g as the grid, LY as the
path loss from the sector s towards grid ¢ in dBm, and 7T as
the transmission power from the sector s in dBm. Then, the
received power RY is given by R = T, — LY. Then the signal
to noise ratio (SNR) is calculated by subtracting noise (-104.5
dBm) from the received power.

If the SNR is below a threshold, we conclude that the grid is
out of service. We map the SNR to the maximum achievable
data rate using the Modulation and Coding Scheme (MCS)
based model defined in 3GPP LTE standard.

We use uplink and downlink PDCP (Packet Data Conver-
gence Protocol) byte volume to represent traffic demands and
user throughput to represent service performance. To handle
fluctuations in traffic, we average the byte volume over 10
weekdays. Traffic and service performance data is currently
collected by the cellular service provider on a per sector basis
and is not available on a per grid basis. To check if there is
network congestion, we require traffic demand for each grid.
To generate the per-grid traffic demand, we identify the best
sector for each grid that gives the maximum SNR. We then
proportionally map the traffic demand at the best sector to the
traffic demand for each grid that the sector is serving. For
example, a sector has traffic demand of 100 Mbps. It serves
two grids: grid 1 has a rate of 2Mbps and grid 2 has a rate of
1 Mbps. We set the grid 1’s traffic demand to 66.7 Mbps and
set the grid 2’s traffic demand to 33.3 Mbps.

C. Concord Basic Formulation

We first consider the basic version of the problem where
we need to schedule upgrades while ensuring coverage and
no congestion. We explain these constraints incrementally to
make them easily understandable.

We start with ensuring coverage constraints such that while
some BSes go down for upgrade, we want all serviceable
regions to remain covered. Some areas cannot be served when
their serving base stations go down since their next closest
base stations are too far away. However, such areas are very
small in number. Suppose we want to upgrade BSes in a
given area. The area has 1/ BSes. Among them, we need
to upgrade U BSes. We use our ATOLL model to map this
area to 100x100m grids, where for each grid we measure the
received signal strength (RSS) from all BSes it can hear. If the
grid receives RSS higher than a given threshold from a BS,
we say the grid can be served or covered by the BS. Based on
this information, our goal is to minimize the amount of time it
takes to complete upgrades while ensuring all grids in the area
is covered by at least one BS. For simplicity, we first assume
all upgrades take the same amount of time and aim to minimize
the number of rounds during the upgrade. In Section III-F, we
minimize the upgrade time where different BSes may have
different upgrade time. We observe that if a grid is covered
by only two BSes (e.g., A and B), then these two BSes cannot
be upgraded at the same time to ensure coverage. In general,
for a grid that is covered by N BSes, these N BSes cannot
be upgraded at the same time.

The above formulation only ensures every grid is covered
by at least one BS. In cellular context, we should ensure not
only coverage but also no congestion (i.e., the traffic from all
grids can be served by the remaining active BSes). In order
to tackle the no congestion scenario, we partition all BSes
that require upgrade into the minimum number of partitions,
where after removing each partition the coverage and capacity



Vi € Grids,j € BSes
> Input : Rate(i,j), Demand(i), Cap(j)
> Output : T(i,7), z(7,7)

maximize: }_, . 7'(4, j)

subject to:

[C1] ) T(,j) < Demand(i) Vi
J

[C2] T(i,j) < =(3,j)Rate(i,j) Vi, j
[C3] ) a(i,j) < 100% Vi
[C4] Y T(i,j) < Cap(j) vj
[C5] (i) > 0,T(i,j) > OVi, j
[C6] Controller Level Constraints

Fig. 2. Problem formulation to maximize traffic that can be served by a given
set of base stations, where T'(, j) is the amount of traffic from grid ¢ that
can be served by BS j, Rate(s, j) is the data rate between grid ¢ and BS j,
Demand(2) is grid ¢’s traffic demand, Clap(j) is BS j’s server or wireline
capacity whichever is smaller.

constraints should still be satisfied. In order to minimize the
number of partitions (or upgrade rounds), we try to maximize
the size of schedulable set in each round. The issue here is to
compute the amount of traffic that can be served by a given
set of BSes.

Maximizing traffic served by a set of BSes: We formulate
the following linear program to maximize the traffic demand
that can be served by a set of BSes. This captures the state
of the network when nodes go through upgrade, determining
the maximum amount of traffic that can be served by the
remaining nodes. If the maximum demand is equal to the total
generated traffic demand, then there is no congestion. We use
our ATOLL model from Section III-B to calculate SNR that
each base station can sustain for each 100mx100m grid and
the traffic generated in that grid. To compute the throughput
a set of BSes can support, we construct a linear program as
shown in Figure 2. Its objective is to maximize the total traffic
that can be served by a set of BSes. [C1] reflects the total
traffic that can be served from a grid is no more than its traffic
demand. Here we assume that different BSes may serve a grid,
which is common in reality. [C2] reflects the total served traffic
from grid ¢ cannot exceed Rate(i,j)xz(i,7), where Rate(i, j)
is the data rate between grid 7 and BS j and x(4, j) denotes the
fraction of time the BS j spends serving the grid i. Rate(i, j)
is determined by the signal-interference-noise ratio (SINR).
We map SINR to Rate according to 3GPP LTE standard. [C3]
reflects that the amount of time BS can serve all grids cannot
exceed 100%. [C4] indicates total traffic each BS can serve
is bounded by its capacity (e.g., the minimum between the
server capacity and wireline capacity at the BS). [C6] reflects
the controller level constraints. For example, we impose the
restriction on the number of instructions that can be processed
through an OSS based on the set of scheduled nodes.

D. Algorithm

It is desirable to minimize upgrade time for the following
reasons. First, it reduces operation cost since the earlier the

upgrade finishes, the less time the staff needs to spend in
monitoring upgrade. Second, end users across the network can
start enjoying the new features and improved performance that
upgrades bring earlier. Therefore, we use upgrade time along
with the impact on service quality as our performance metrics.
We minimize the number of upgrade rounds by developing
a greedy heuristic, which maximizes the number of nodes
to upgrade in each round. Every round, we pick a large
schedulable set such that all nodes in the set can be upgraded
together without any coverage holes or congestion. As we will
show, this greedy heuristic performs close to the optimal.

Finding independent schedulable set: Our goal is to identify
the biggest scheduling set S that consists of nodes which can
be updated simultaneously with the aim of minimizing the
upgrade time. In order to add nodes to S, we can either pick
the nodes in a random manner or use some metric based
selection. We employ the following metric. Each node is
assigned with a node degree, defined as ma;vgNLg, where N,
is the number of nodes serving grid g and NLJ is the amount
of coverage the node provides to the grid g. A node with a
higher degree is less likely to be upgraded together with other
nodes than a node with a lower degree. For example, a node
with degree 1 means it is the only covering node for some
grid and cannot be upgraded without coverage holes. Inspired
by the heuristic to find a large independent set, we sort all
BSes to upgrade in an increasing order of their node degrees.
In later sections, we will use a different sorting metric that
suits the differing formulation.

We compute S in two steps.

o We add the first node from the sorted list to S and then
incrementally add one node at a time as long as upgrading
all nodes in the list does not cause any grid to have no
node covering it. To achieve that, every time a node 1 is
added to S, we remove it from the grids it covers. We
just need to check if there exists a grid such that ¢ is the
only node covering it. We continue until we exhaust the
sorted list.

o We then formulate our optimization problem from Fig-
ure 2 to check if congestion constraints are satisfied. If
not, we remove the nodes one by one from the end of S
until the congestion constraints are satisfied.

This forms a set of nodes to upgrade in the first round. After
these nodes finish upgrading, we remove them, since they no
longer need upgrade. We repeat the process until all the nodes
have been upgraded.

Lower bound: It is desirable to know how far our algorithm
is from the optimal. It is hard to exactly compute the minimum
upgrade rounds. However, we can derive a lower bound. It is
not difficult to see that if we find a set of nodes such that none
of any two BSes in this set can be upgraded together (called
our notion of clique), the size of this set imposes a lower bound
on the number of upgrade rounds. This is because all nodes in
this set need a separate upgrade round. The size of any clique
is a lower bound. The larger the clique we find, the tighter
the lower bound. However, even the maximum clique may be



a loose bound because (i) scheduling another clique after the
first clique may require adding one or more new rounds, (ii)
Cliques are made using only coverage constraints. In principle,
one can find cliques using no congestion constraints, but this
is much more expensive.

Finding largest cliques: We need to define conflict relation-
ship between nodes in order to determine the largest clique.
Two nodes are in conflict if they cannot be upgraded together.
To define conflict relationships between nodes, we make use
of a binary conflict matrix M. M;; = 1 indicates there is
a conflict between the nodes 7 and j. We populate M using
our ATOLL model where if a region is covered by only two
nodes ¢ and j, then we mark M;; = 1. In order to find a
clique, we start with a random order of nodes and one initial
node in clique set C. We add a node j to C if for all nodes
i in C, M;; = 1. We continue this until the list of nodes
is exhausted. To tighten the bound, we enumerate multiple
cliques and use the size of largest clique as the lower bound.

E. Supporting Multiple Upgrades Per BS

We learn from the operation team that a BS may require
multiple upgrades one after another. To support multiple
upgrades with ordering requirements on a BS, we make the
case that it is preferable to schedule nodes with more upgrade
tasks early since all their upgrade tasks have to finish before
the upgrade is complete. Therefore, instead of sorting nodes
based on the node degree, here we first sort nodes in terms of
the number of upgrade tasks and further sort the nodes with
the same number of upgrade tasks in an increasing order of
their node degree to increase of the chance of getting a larger
schedulable set.

F. Supporting Variable and Uncertain Upgrade Time

So far, we assume all BSes can be upgraded in the same
amount of time so that we can just minimize the number of
upgrade rounds. Often the time required to upgrade BSes vary
significantly due to difference in vendor or processing power.
Due to some unforeseen circumstances, certain nodes may also
take an uncertain amount of time to complete upgrade.

We make two important modifications to support this vari-
ant. First, we sort the jobs in a decreasing order of their
upgrade time so that we are more likely to schedule larger
jobs earlier since the upgrade can only finish when the last
job finishes. Note that this does not hamper other smaller jobs
from being scheduled if they have no conflict with the already
scheduled jobs. Second, since not all these jobs finish at the
same time, whenever one job in the current round finishes,
we may potentially schedule new job(s) since the BS that
just finishes upgrade may serve some grids and allow new
BSes to be upgraded without violating coverage or congestion
requirements. This scheduling also takes care of uncertain
upgrade times of jobs, because even if a job takes longer than
expected, it does not affect the scheduling of nodes that are
not in conflict with this job. We continue adding nodes one at
a time to the set of nodes that is still going through upgrade as
long as all nodes are schedulable after insertion. In this way,

we achieve online scheduling even in the presence of uncertain
upgrade time.

G. Practical Considerations

Trade-off between upgrade time and performance: So far,
we enforce no coverage hole or no congestion during upgrade.
In practice, one may tolerate minor performance degradation
during upgrade. This is because sometimes it might be de-
sirable to complete the upgrade process as soon as possible
while tolerating some performance hit based on the necessity
of the required upgrade. For example, some important tweak in
security configuration may be required on an urgent basis, so
operators may be willing to incur some performance hit. Our
scheduling algorithm can be adapted so that it allows trade-
off between coverage holes/congestion and performance by
introducing two tolerance threshold parameters. For coverage,
we consider a set of nodes as schedulable if the number of
coverage holes is within a threshold (denoted as threshpoies)-
For congestion, we consider a set of nodes as schedulable
if the percentage of unsatisfied traffic demand is no larger
than threshold, threshcong. threshnoies and thresheong can
be adjusted according to the service requirement.

Supporting Different Generations: A base station may
run 2G, 3G, and 4G, which can be upgraded independently.
For example, 4G part of the base station is going through
upgrade, while 2G and 3G are serving clients. A challenge is
how to pick base stations to support the clients that ensure
no congestion across generations. The new challenge comes
from the coupling between the generations (e.g., 4G clients
may be served by 2G, 3G, or 4G). To ensure no congestion
across generations, we construct a connectivity graph using
BSes and grids as follow. A base station running 2G, 3G, 4G
are represented as 3 nodes and the outgoing edges from these
nodes have capacities set to the BS capacity of that generation.
Moreover, each grid has 2G, 3G, 4G traffic; 2G base station
can serve 2G, 3G, 4G clients, 3G BSes can service 3G and 4G
clients, 4G BSes can only serve 4G clients. To reflect these
properties, we use 3 nodes to represent a grid: one for each
generation. We connect a 2G grid to 2G BSes to reflect that
2G traffic demands can be served only by 2G BSes. Similarly,
we connect a 3G grid to 2G and 3G BSes to reflect that both
2G and 3G BSes can possibly serve 3G traffic, and connect a
4G grid to 2G, 3G, and 4G BSes. We can use the algorithm in
Section III-D to maximize the amount of traffic to serve by a
given set of BSes. The only difference is that the underlying
graph becomes larger since we use different nodes to represent
a grid that generate traffic demands for different generations
and use different nodes to denote BSes supporting different
generations.

1V. EVALUATION

In this section, we evaluate our approaches in Concord
using trace-driven simulation. We first introduce our evaluation
methodology and then present performance results.



A. Evaluation Methodology

Baseline schemes: We compare our scheduling algorithms
with the following baselines:

e Serial upgrades (serial): In this scheme, base stations are
upgraded one by one. This is not the practice in operations
today because it would take too long to complete the
deployment. However, it ensures the least performance
impact and the total upgrade rounds is equal to the number
of base stations being upgraded.

e Basic parallel upgrades (basic-para): A better scheme is
to use the cellular topology and simultaneously upgrade
base stations that do not violate coverage or capacity
constraints. We start from a complete list of eNodeBs
that is assumed to be the schedulable set. We remove
nodes from the current upgrade list according to a random
permutation until all constraints are satisfied. Note that
this is already better than the current practice, which does
not explicitly take into account the topology and traffic
demands to minimize the upgrade time while ensuring no
service disruption. Current operational standard is to wait
for all nodes in the round to complete before moving onto
the next round because conflict resolution is not employed
in real time.

e Lower bound (lowbound): As described in Section III-D,
the largest clique size is a lower bound. Our evaluation
enumerates 1000 cliques and pick the largest out of them.

B. Performance Results

The topology that we consider comes from one of the largest
cities in US, it consists of 105 nodes covering majorly urban
and some suburban area.

Figure 3(a) shows the total upgrade slots if upgrade process
happens only during midnight hours from 00:00 - 6:00 and (b)
shows the upgrade process for daytime hours from 9:00-17:00.
During daytime, upgrade process needs more slots because
there is higher traffic during daytime so in order to satisfy “no
congestion” constraints, we need more nodes to remain ON in
a round. However in both cases, our algorithm’s performance
is very close to the lower bound. The lower bound here only
ensures coverage but not “no congestion” so the lower bound
is not tight. As compared to basic-para, we can update the
eNodeBs at a 30% faster in some scenarios when upgrade
time is the same for all eNodeBs. When upgrade times are not
equal, Concord achieves significant improvement over basic-
para, as shown later.

All the results presented from this point onwards use traffic
demand data from the midnight hours because preferential
operational practice is to perform the upgrade process during
night time, when traffic is low and the impact is small.

Multiple upgrades per BS: Figure 4 shows the number
of upgrade slots required when eNodeBs can have multiple
upgrade jobs. Our ordering of eNodeBs according to the job
order yields 50% reduction in the overall completion time.
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Fig. 3. Comparison of upgrade time while ensuring no congestion. As traffic
increases (low traffic at night time versus high traffic at day time), # required
upgrade slots also increases.

Heterogeneous upgrade time: Figure 5(a) shows the results
by setting the upgrade time according to the real traces, and
Figure 5(b) shows the results using exponentially distributed
upgrade time. In both cases, we know exactly what the upgrade
time will be. Our opportunistic insertion of jobs gains up to
46% improvement because as the nodes get upgraded and re-
enter the grid, conflicts get resolved thus allowing more nodes
to be scheduled for upgrade.

Figure 6(a) shows results when actual upgrade time of
a node is set using normal distribution where mean is the
expected upgrade time from traces and variance in number of
upgrade slots is varied 1-7. Figure 6(b) shows the results when
variance is fixed at 7 but the number of nodes to upgrade is
varied. Concord yields 30%-91% improvement in completion
time over basic-para because basic-para does not employ
opportunistic insertion. The upgrade time of Concord is within
5% of that of the lower bound.
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Fig. 4. Comparison of upgrade time while also ensuring ordering constraints
when maximum # upgrade jobs assigned to a base station are 5 and 10.
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Tradeoff between upgrade time and performance: Fig-
ure 7(a) shows the number of upgrade slots as we relax the
coverage constraint — allowing more grids to be uncovered
during the upgrade progress. The three curves in the figure
correspond to 30%, 60% and 90% of eNodeBs requiring
upgrade. The number of upgrade slots decreases sharply as
we go from 0 to 50 coverage holes, and tapers off around 100
coverage holes since the upgrade slot is already very small



160

Concord

140 Concord

140 basic-para - — - -

basic-para - — - - 7
low-bound - - -

low-bound - - - -

120
100
80
60
40
20

120

Average Completion Time
Average Completion Time

0
01 02 03 04 05 06 07 08 09

Variance (# Upgrade Slots) Fraction of nodes

(a) Differing Variance (b) Varying Nodes
Fig. 6. Comparison of upgrade time under uncertain upgrade time.

around 100 coverage holes and further reducing the upgrade
slots results in a large number of grids to go uncovered.
Figure 7(b) shows the number of upgrade slots as we relax
the “no congestion” requirement. We use congestion fraction
to refer to a fraction of total flow that cannot be served. As
we would expect, increasing the congestion fraction reduces
the number of upgrade slots. As before, we observe a similar
slow-down in the reduction of the upgrade slots for the same
reason.
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Fig. 7. Tradeoff between performance and upgrade completion time. Increas-
ing the tolerance for service impact reduces # slots needed for the upgrade.

Supporting Different Generations: Figure 8 compares the
upgrade time between homogeneous and heterogeneous set-
tings when updating 4G nodes in the network. The evaluation
assumes each eNodeB can serve both 3G and 4G clients and
each client can be served by both 3G and 4G eNodes. In
homogeneous setting, only 4G nodes can cover for 4G nodes
so upgrades are planned according to this model with 3G
nodes providing no support for 4G users. In heterogeneous
setting, 3G nodes can also cover for 4G nodes so there is more
traffic handling capacity in the network. Because of additional
capacity, we can complete the upgrade process at most 10%
faster in heterogeneous setting.
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Fig. 8. Incorporating lower generations (UMTS/3G) support when upgrading
LTE eNodeBs speeds up the upgrade process.

V. TESTBED EXPERIMENTS

In this section, we evaluate our scheduling approaches using
a small-scale LTE testbed deployed indoors in a corporate
building.

Setup: Our testbed consists of 4 LTE base stations (eNodeBs),
9 user equipments (UEs), and an Evolved Packet Core (EPC).
Each eNodeB is a re-programmable LTE small cell and uses
an exclusive 10-MHz experimental license for transmission
in band 7, where the downlink and uplink frequencies are
centered at 2635 MHz and 2515 MHz, respectively. The
antennas on the eNodeBs are omni-directional. The UEs are
deployed in the building such that each one is reachable by at
least two eNodeBs. Thus, if one eNodeB is taken down for an
upgrade, the next best eNodeB serves the UEs. The UEs are
USB dongles and hosted by a Core-I3 Intel box with 4 GB
memory that runs Ubuntu 14.04x64 Linux. The EPC consists
of MME (Mobility Management Engine), SGW (Serving
Gateway), PGW (Packet Data Network Gateway), HSS (Home
Subscriber Server), and PCRF (Policy and Charging Rules
Function Server). Figure 9 shows the testbed deployment with
4 eNodeBs (eNB-1, eNB-4, eNB-5 and eNB-6) and 9 UEs
numbered (7-16) excluding 14. The EPC (not shown in the
figure) is hosted at a single server and connected to the
eNodeBs using Ethernet.
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Fig. 9. LTE indoor testbed consisting of 4 eNodeBs and 9 UEs.

Methodology: We implement a system that takes the input
the traffic demands, topology, and all eNodeBs that require
upgrade. In our testbed scenario, each UE is mapped to a
unique grid. We measure SNR for each UE-eNodeB pair
by turning on eNodeBs one by one while keeping others
OFF and asking UE to report received signal strength and
noise to compute SNR. SNR is then mapped to throughput
using Modulation and Coding scheme (MCS) based model
defined in 3GPP LTE standard. We generate traffic for each
UE according to its traffic demand specified in the input
using a UDP iperf server at each UE and a corresponding
UDP iperf client at the app-server on the UE. The system
applies the scheduling algorithm in Section III-D to ensure no
congestion. Then according to the output upgrade schedule, it
takes down the eNodeBs that require upgrades in that round
to mimic upgrades. This is achieved by logging in to the
eNodeB interface and writing 0xOE to RF hardware register
that turns its transmitter off so that the associated UEs will
handoff to other eNodeBs. After the upgrade, it brings up the
eNodeBs by writing 0xDE to the same register to turn their
transmitters on and takes down the eNodeBs to be upgraded in
the next round from our schedule. Each UE will automatically
switch to the best eNodeB at any time using a hard handoff.



We continuously measure UDP throughput before, during, and
after upgrade to quantify the performance impact as well as
measuring the total upgrade time. The upgrade starts after 15
seconds so that we can observe the throughput behavior during
the normal conditions.

A. Experiments

Updating all nodes: First we evaluate the scenario where all
the eNodeBs need to be updated under high traffic. Each UE
is generating UDP traffic at SMbps. We compare throughput
under three schemes basic-para, serial and ours when eN-
odeBs undergo upgrade and the time it takes to complete the
upgrade process. Each algorithm outputs a schedule that is
implemented on testbed using a series of steps. For example,
given a schedule that says “Update enb-1 and enb-4, then
Update enb-5 and enb-6", we first turn enbs 1 and 4 OFF and
measure throughput over all UEs. After upgrading eNodeBs 1
and 4, we turn enbs 5 and 6 OFF and bring 1 and 4 back ON.
After upgrade process is completed for eNodeBs 5 and 6, we
turn ON enbs 5 and 6. So the process takes two rounds.

Results: Figure 10(a) compares the average throughput under
different schemes during upgrade. There is no considerable
difference between throughput using our upgrade scheduling
versus no upgrade. On average, Concord takes 60sec, basic-
para takes ~83sec, and serial takes 120sec to complete the
upgrade process. This indicates our scheme reduces upgrade
time by 50% over the serial scheduler and 30% over the
basic parallel scheduler with little to no performance impact
compared to no upgrade.
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Fig. 10. Average throughput and upgrade time needed in high traffic scenario.
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Fig. 11. Compiled throughput time series across all UEs and for UE-12.
Figure 11(a) further shows the time-series of the compiled
throughput across all UEs during the upgrade process using
our upgrade scheduler. As we can see, the throughput stays
high throughout the upgrade except the times when the eN-
odeBs are just being taken down for upgrade and the UEs
need to perform hard hand off to switch to the best eNodeB.

This happens around 17 and 47 second marks. Figure 11(b)
shows the throughput from UE-12 during the upgrade. Before
17 second, UE-12 was connected to eNodeB 6. Then eNodeB
6 went down for upgrade. So UE-12 switched to eNodeB 5.
UE-12 channel with eNodeB 5 is not as good as compared to
that with eNodeB 6, so there are some low throughput notches
between 17-47 seconds. At 47 second, eNodeB 5 went down
for upgrade so UE-12 switched back to eNodeB 6.

Serial upgrade process also causes throughput dip for users
because each user has to switch to a different eNodeB when
the base station, to which it is attached, goes down. Average
throughput of UEs under Concord and serial process are
similar as we can see in Figure 10(a).

Random Packing in two rounds: Next, we show the
performance impact if we randomly pack eNodeBs for upgrade
in two slots. We perform experiments for all possible upgrade
schedules. As shown in Figure 10(b), the average throughput
is much worse. UE 10 even goes out of service when we
upgrade eNodeBs 1, 4, 5 in one round because eNodeB 6
cannot cover it. This highlights the importance of carefully
scheduling upgrades to avoid service disruption.

VI. RELATED WORK

Scheduling algorithms: Scheduling has been a widely stud-
ied topic. [16], [11], [19] provide excellent surveys of schedul-
ing algorithms. Many scheduling problems are NP-hard and
various heuristics have been proposed for them. Many heuris-
tics sort jobs in terms of priorities derived based on running
time or deadline. For example, shortest-job-first minimizes
average completion time. Earliest-deadline-first minimizes the
number of jobs that misses deadline. There are new dimensions
in upgrade scheduling problem in cellular networks because
of constraints arising from the topological relationships.

Cellular performance modeling: There has been significant
work on measuring, modeling and optimizing cellular net-
works. For example, [14] deploy 3GTest to collect and analyze
performance measurements. [12] extends the tool to analyze
LTE from users of four major US cellular carriers. Mattar et
al.[26] uses active TCP/UDP measurements to collect informa-
tion across RE, MAC, and transport layers from a CDMA2000
network and analyze the impact of a wireless scheduler and RF
on TCP parameters. The DARWIN+ group collects IP packets
at a GPRS/UMTS network, and analyzes various issues, such
as TCP performance and traffic anomalies [30]. [13] studies
the interactions between applications, transport protocol, and
the radio layer in a large LTE network in US. It reports
52.6% of TCP flows are throttled by TCP receive window.
[18] develops a novel open platform to monitor and analyze
LTE radio performance over both time and space. [32] develop
diagnosis tools that uncover problematic interactions between
control-plan protocols. Significant work has also been devoted
to optimizing cellular network performance [4]. For exam-
ple, [17], [5] examine resource management for OFDMA-
based femtocell networks. [28] studies adaptive interference
coordination in multi-cell OFMDA systems. There are several



proposals [1], [2], [6], [7], [31], [27], [20], [34], [21] for
dynamic tuning of cellular network configuration using SON
in response to changing traffic and network conditions.

Upgrade management: Managing software upgrades and
maintenance activities in large operational networks is ex-
tremely challenging. Researchers have made great efforts in
designing solutions for minimizing disruptions during planned
upgrades in ISP networks [8], [9], [33], data center net-
works [15], [22], [10], Software Defined Networks [29], [15],
and LTE cellular networks [35]. In IP networks, [8] tries to
avoid disruption of OSPF routing configuration upgrades, [9]
avoids connectivity loss during BGP link maintenance and R3
[33] tries to recover from link failures. Software Defined Net-
working has been proposed to ease management of network
configuration and upgrades. Reitblatt [29] presents a system
that guarantees both packet level and flow level consistency
during configuration changes. Dionysus [15] speeds up the
consistent network updates to reduce upgrade impact. zUpdate
[22] provides congestion free migration of traffic during data
center network updates. [10] provides desired correctness
during virtual machine (VM) migration. Magus [35] focuses
on a single upgrade in LTE cellular networks and aims to
proactively minimize service disruption by migrating users to
neighboring base stations. Once upgrades are implemented
in the network, it is important for the operations teams to
carefully monitor the performance impacts [25], [23], [24],
[36]. Our problem scope is different from the above mentioned
works. To our knowledge, this paper is the first that studies
scheduling upgrades in cellular networks.

VII. CONCLUSION

Managing upgrades in cellular networks is an important
problem. In this paper, we propose a new framework Con-
cord and develop a series of upgrade scheduling algorithms
to account for different performance objectives and usage
scenarios. Using testbed experiments and evaluation based on
traces from a major cellular network in US, we show that our
approaches significantly reduce upgrade time while incurring
little to no performance impact during upgrade period. We
believe that our framework can help the network operators
in meeting upgrade completion deadlines while also avoiding
serious service impact. Though techniques we develop are in
the context of cellular networks, the general idea is applicable
in other contexts by incorporating domain specific constraints.
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