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Abstract—Cellular networks are constantly evolving due to
frequent changes in radio access and end user equipment
technologies, dynamic applications and associated traffic mixes.
Network upgrades should be performed with extreme caution
since millions of users heavily depend on the cellular networks for
a wide range of day to day tasks, including emergency and alert
notifications. Before upgrading the entire network, it is important
to conduct field evaluation of upgrades. Field evaluations are
typically cumbersome and can be time consuming; however if
done correctly they can help alleviate a lot of the deployment
issues in terms of service quality degradation. The choice and
number of field test locations have significant impacts on the
time-to-market as well as confidence in how well various network
upgrades will work out in the rest of the network. In this
paper, we propose a novel approach — Reflection to automatically
determine where to conduct the upgrade field tests in order to
accurately identify important features that affect the upgrade.
We demonstrate the effectiveness of Reflection using extensive
evaluation based on real traces collected from a major US cellular
network as well as synthetic traces.

I. INTRODUCTION

Cellular networks play a significant role in today’s commu-
nication. To many users across different regions, it is often the
only means of getting connectivity. Many users rely on cellular
networks for entertainment, social activities and business crit-
ical tasks, such as stock trading, navigation, and emergency
services. The cellular networks are extremely complex and
constantly evolving at a rapid pace. Changes are introduced to
either support new service features (e.g., Voice over LTE),
technologies (e.g., LTE-advanced, small cells), fix software
bugs, or expand network coverage. Deploying changes in
a cellular network should be done with extreme caution in
order to avoid any unexpected performance degradation or
failures. Extensive testing is typically conducted in large-scale
laboratory settings, but it is virtually impossible to replicate
the large-scale, diverse variations and extreme complexity of
real operational networks. Thus, the changes are tested on a
smaller scale in the field. This small scale testing in the field
is referred to as the First Field Application (FFA).

The goal of FFA testing is to identify and infer the per-
formance impacts of the change and make a recommendation
for a go/no-go decision for a network-wide roll-out. If the
desirable service performance impacts are observed after the
FFA, the decision is to go-ahead with the roll-out. However,
if performance degradations are observed, the changes need to
be rolled back at the FFA locations and further analysis needs
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to be conducted in lab settings. Network operation and engi-
neering teams carefully analyze the performance impact during
FFA. Once they certify the change using field test results, the
network-wide roll-out begins at a rapid pace. Strict deadlines
are set to quickly update the network. Any unexpected issues
discovered in the network-wide roll-out would slow down
the process because of the need to understand the negative
performance impact during FFA. Thus, careful planning and
design of field tests is important to ensure smooth roll-out for
the network-wide deployment.

A major challenge faced by the network operations and
engineering teams in the planning and design of fields tests
is how to select network elements to be used for the field
tests? This is an important and unique challenge arising from
the tremendous diversity in cellular networks. We present
two illustrative examples to highlight this diversity. First, we
analyze around 250 configuration parameters across 8000 LTE
eNodeBs (i.e., base stations in LTE) and observe that there
are 747 unique clusters where each cluster is identified by
a unique combination of configuration values. The cluster
size distribution is not skewed implying diverse configuration
settings across eNodeBs. Second, we note that for an example
software upgrade case, different eNodeBs had different per-
formance impacts; some had improvements after the upgrade
whereas others had no impact. The root-cause for contrasting
performance impact for the same software upgrade varies
across different cases.

Current practice used by operations team is to test the
change under high traffic, which assumes that negative impacts
are more likely to occur under high traffic. Service perfor-
mance indicators are also stable at high traffic locations, which
enables accurate before/after analysis of upgrade impacts.
However, contrasting performance impacts can happen often
due to features unrelated to traffic. Also past upgrade history
data cannot always be used to guide the design of FFA tests be-
cause the new upgrades may introduce features/configurations
changes which were never deployed in the past.

Our approach: We propose a new approach Reflection
that systematically utilizes a diverse set of features (e.g.,
software/hardware configuration, radio parameters, user pop-
ulation, mobility patterns) and automatically identifies the
FFA locations that would improve the predictability between
the performance impacts during FFA and network-wide de-
ployment. Having predictable performance behaviors with



FFA ensures a smooth and rapid wide-scale roll-out. Though
we apply Reflection in cellular context, the techniques we
develop are generic enough to be applied in other domains
by appropriately selecting the set of features.

Designing Reflection requires us to address the following
technical challenges: (i) Extremely large search space: There
are tens of thousands of cellular eNodeBs to choose from,
each with hundreds of features. Which features to consider and
which nodes to test have significant impact on the accuracy
and predictability of the tests. Given N features and each
can take k values, it generate EN test cases. For example,
N = 30 and k = 2 (binary features) generates around 1G test
cases, which is already infeasible for operational networks. (ii)
Interactions between features: It is often impossible to know
in advance which features will interact negatively with a new
network change. Particularly, for a new feature/configuration
introduction, you have no prior upgrade history data and there
is uncertainty in knowing how this new feature will interact
with the rest of the system. Ideally we should automatically
discover any undesirable interaction based on the limited FFA
tests, and resolve the issue before the network-wide roll-out.
(iii) Very low sampling for FFA locations: Since one of
the goals of FFA is to minimize the risk of negative impact
on network locations, the network operations and engineering
teams have a very low sampling budget. For example, for
10,000 eNodeBs, the number of locations available for FFA
testing could only be 100, yielding a sampling rate of 1%.
Such a low sampling rate and wide-variety of features pose a
significant challenge to identify the appropriate set of locations
for FFA with high predictability during network-wide roll-out.

One way to design test cases is to diversify all features
(e.g., for each feature, select test case that involves different
values of that feature). However, the number of test cases
grows exponentially with the number of features, which can
be prohibitively expensive. In practice, only a small number of
features are important to the performance, and these important
features may not be known in advance.

There are several works in the area of fractional factorial
design and software testing, where a small subset of exper-
iments are chosen out of exponential number of possible
experiments and the hypothesis is that testing on this small
but carefully chosen subset will expose important features.
However, these techniques are not directly applicable in our
case because: (i) Some of the experiments in the subset
outputted by software testing/fractional factorial design do not
exist in the real data, and (ii) the outcome of an experiment in
our case is probabilistic whereas the outcome is assumed to be
deterministic in software testing or fractional factorial design
based approaches. Therefore, we develop a multi-phase test
planning. In the first phase, we iteratively pick nodes that offer
the best coverage over all features so that we can assess the
impact of each of these features to narrow down to a smaller
subset of candidate features that are likely to be important.
In the later phases, we focus on testing only these candidate
features by selecting nodes that offer the best coverage over
the candidate features so that we can further narrow down to

the final set of features that we consider as important. In this
way, we can significantly reduce the number of test cases. Our
contributions can be summarized as follows:

1. We develop a multi-phase test planning in Reflection to
automatically diagnose contrasting performance and select
network locations for FFA testing to improve the pre-
dictability for network-wide deployment (Section II).

2. We develop an algorithm to analyze contrasting perfor-
mance impact across network locations during the FFA. Tt
helps narrow down the relevant features to be considered
for the next phase of planning. In comparison, the previous
works (e.g., Litmus [19] and Mercury [20]), can only detect
contrasting performance impacts but not identify the root
cause (Section II).

3. We evaluate Reflection using one-year data collected from
a major cellular service provider in US. Our results show
that our diagnosis approach accurately identify the root
causes and our test planning only requires testing 1-1.5%
nodes to identify the major features that affect degradation.
We further evaluate Reflection using synthetic traces.

I1. Reflection DESIGN

We develop a multi-phase test planning approach that uses
the performance outcome from previous tests to guide the
design of the subsequent tests. The intuition behind our
multi-phase test planning approach is that if we know the
performance at eNodeBs with different feature values, we
can more effectively design the tests. This multi-phase test
planning is practical since major cellular service providers
schedule FFA in a staggered manner. Staggered roll-out is
necessary because thousands of eNodeBs cannot be upgraded
on a single day and rolling out the upgrade over multiple days
also enables the operation teams to carefully monitor their
performance impacts. Thus future tests can be designed using
performance impact assessments from the previous tests.

In order to realize the multi-phase test plan, we need to
answer the following important questions: (i) What features
to use for test planning and performance analysis? (ii) How
to prepare inputs for test planning and diagnosing contrast-
ing performance impacts? (iii) How to determine the initial
test locations? (iv) How can we determine the performance
impacts? (v) How to diagnose the contrasting performance in
the previous test? (vi) How to use the analysis results of the
previous tests to design future tests?

To answer these questions, we design Reflection, shown
in Figure 1. It first extracts the features to be used for
test planning and then processes them for analysis. Then it
performs the first phase test planning (Section II-C), applies
upgrades to the testing locations, assesses performance im-
pact (Section II-D), diagnoses test performance to identify
important features (Section II-E), uses the diagnosis results
to guide subsequent test planning (Section II-F), and iterates
until the maximum number of phases is reached. In the end,
it outputs the final diagnosis results for the important features
and predicts the performance on untested locations. Sections



II-A and II-B are specific to our cellular networks, while the
other parts are general and can be applied in other contexts.
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Fig. 1: Reflection workflow.

A. Feature Extraction

Our traces come from a major LTE service provider in the
US. E-UTRAN NodeB (abbreviated as eNodeB) in LTE is
essentially a cellular eNodeB. It communicates directly with
mobile handsets (UEs). It runs the E-UTRA protocol, which
uses OFDMA for the downlink and single-carrier FDMA (SC-
FDMA) for the uplink. In order to make the selection effective,
it is important to include all features that can potentially affect
eNodeB performance. Therefore, we try to be comprehensive
and obtain as much information about eNodeBs as possible.

We come up with a few hundred features for each eN-
odeB by digging through configuration files and collecting
measurement driven data. We group the features into the
following categories: (i) node-level configuration(software ver-
sion, hardware version, modem, eNodeB manufacturer etc.),
(ii) protocol-level configuration(Carrier-Aggregation enabled,
Carrier frequencies etc.), (iii) topological features(connected
MME ID, load-balancing enabled etc.), and (iv) location
centric features( traffic, mobility, terrain type etc.). The set of
features used here are more or less the ones used by operations
in diagnosing the performance issues. These features are
particular to cellular domain; Reflection can easily be applied
in other contexts by selecting the relevant features.

B. Input Preparation

The input to our planning and diagnosis algorithms consists
of eNodeBs’ feature list and its performance tag, which
indicates whether its performance improves, has no change,
or degrades. We process these raw inputs as follows.

Discretize feature values: Most features in our traces are
binary. The remaining features take either textual values or
real numbers. To ease diagnosis and test planning, we sys-
tematically map all textual features to numerical values. In
addition, we discretize a real numbered feature by comparing
it with mean — 2 % std and mean + 2 * std to map to one
of the three levels: 0, 1, 2, where both the mean and standard
deviation (std) are computed using values across all eNodeBs.
We then convert them to binary features.

Dimension reduction: We propose clustering features into
equivalence classes. This has several benefits. First, it is

impossible to differentiate the impact of two features if (i) they
always change together and (ii) for each value of feature f1,
there is a unique value for feature f2. Consider two features
f1 and f2. When they take 00, performance improves. When
they take 11, performance degrades. The traces do not have
instances with the feature values of 01 or 10. In this case, it is
impossible to tell if performance degraded due to f1 =1 or
f2=1or (fl =1and f2 = 1). Second, clustering features
reduces the number of unknowns and improves accuracy.

To accommodate such inherent ambiguity as well as im-
prove accuracy and speed, we group features into equivalence
classes. Strictly speaking, two features are indistinguishable
whenever there is always one unique value of f2 for each
value of f1 and vice versa. In practice, we relax this condition
to allow occasional violations as long as in most cases there
is one unique value of f2 for each value of f1 and vice versa.

For a pair of features f; and f;, we compute the following
metric to determine if the two features are equivalent. For each
value f; takes, say v; , we look at how many unique values
f; takes and the number of nodes that take these values to
compute a metric, called unique ratio: (%:;T%iiv?:ﬁg)

>, max N(vj 1,0 k) .
> L UJJLLM k’; )/2. where N(v; x,v;;) is the number of

nocies that take the k-th value in feature i and take the [-
th value in feature j. We search for the most popular value
v, that feature j takes when feature 7 takes the k-th value.
max;N (v i, vj;) is the number of nodes whose feature j
takes the most popular value [ under v; ;. Collectively, the
numerator in the first term of the above equation reflects
the total number of nodes taking the most popular feature
values v;; normalized by the total number of nodes from
the perspective of feature i, and the second term computes
the same quantity from the perspective of feature j. We
normalize by 2 to get the mean as the equivalence relationship
is symmetric. When the unique ratio is higher than a threshold,
we declare that two features are equivalent. The threshold must
be high enough so that we group only those features that are
almost identical. We set it to 0.95.

Upgrade trigger: In our measurements sometimes all nodes
have the same value for a feature, and then all change to
another value for the same feature upon application of update.
Among these nodes, some see improvement while others see
degradation. At the first glance, one may think this feature
is irrelevant, since nodes with the same value in the feature
see different performance. But in practice, this feature could
be relevant and the degradation could be due to interaction
between this feature and some other features.

To handle such cases, features that changed during upgrade
are considered as possible triggers to the performance issues.
For the features that take different values across different
eNodeBs at a given time, we can rely on our diagnosis algo-
rithm(Section II-E) to identify them. So the trigger set consists
of the set of features that changed from one value to another
when upgrade gets applied. Then we apply the diagnosis
algorithm described in Section II-E to identify root causes.
Our diagnosis result includes the trigger set and root cause,



where the trigger set contains features that changed during the
upgrade and the root cause contains the equivalence classes of
features that best explain the contrasting performance.

C. First Phase Test Location Selection

In this subsection, we focus on design of the first phase. Its
main goal is to diversify over all features to identify a small set
of features that are likely to matter. This step can quickly prune
irrelevant features to get a small set of candidate features. We
diversify over all the features because for the new upgrade,
we may have no knowledge about which features are going to
matter. If that information is known, then diversification can be
enabled only on the selected features. The subsequent phases
focus on this small set of features to pinpoint the root cause.
We use 70% budget in first phase because we want to enable
diversification over a large set of features and keep 30% for
subsequent phases where number of features may be small.

Hamming distance based selection: We develop a greedy al-
gorithm that selects feature values that maximize the minimum
Hamming distance among them. Minimum Hamming distance
is used as the optimization metric because it captures how
many features whose impacts can be assessed (e.g., if we select
two feature values: 000 vs. 111, we can potentially assess
the impact of three features by comparing the performance
when each feature takes a value O versus 1). In the next
iteration, we add a feature value combination that has the
largest Hamming distance from the one selected earlier. For
example, if we first select a feature combination 00. Then
we will prefer to select a feature combination 11 instead
of 01 or 10. This is because it allows us to potentially
estimate impact of two features by computing the difference
between when one feature takes a value O versus takes a
value 1. In the third iteration, we pick a feature combination
that maximizes the minimum Hamming distance from the
two we picked so far: maz min; Hamming(n;,n'), where
n; are the set of feature combinations already selected and
n' denotes the new feature combination to add. We iterate
until we select enough eNodeBs to test. In order to compute
degradation probability, we need to select multiple nodes from
each feature combination. Our evaluation uses 3 nodes per
feature combination. We also tried 2 and 4 but that did not
change the performance much. We want to test more clusters
so that we have feature diversity in our test cases. Sampling a
large number of nodes from each cluster reduces the number
of clusters that can be sampled. For k features, n unique feature
combinations and m selected feature combinations, the running
time is O(nm?k).

We can support a number of other extensions in the same
framework. For example, one can also weigh the Hamming
distance by the importance of a feature. The weight can reflect
either the frequency of occurrence or the importance of a given
feature based on prior knowledge. We plan to explore these
extensions as part of our future work. While our Hamming
distance based approach appears simple, it provides good
empirical performance. There may be interesting connection
between Hamming distance and sub-modular optimization

(e.g., [3]). This paves the way towards using the machinery
of sub-modular optimization to come up with efficient greedy
algorithms to choose the best subset of base-stations [22].

D. Performance Impact Assessment

The network operation teams carefully monitor the impacts
of network changes using a wide variety of service perfor-
mance indicators. If there is performance degradation after the
network upgrade, a roll-back to the previous configuration is
important to minimize the service disruption. Statistical tech-
niques such as Mercury [20] and Prism [18] provide automated
ways to detect the impact. We use Mercury to automatically
extract the performance indicator for each eNodeB about
whether its performance degrades after an upgrade or not. We
use the following service performance metrics in Mercury to
capture the statistical changes in behaviors: (i) Accessibility is
the ratio of successful call establishments to total call attempts,
(ii) Retainability is the ratio of successful call terminations to
total calls, and (iii) Data throughput is a measure of bits/sec
delivered to the end-users. Unless otherwise specified, we
conclude a node degrades if any of the above three metrics
satisfies the following condition: i%m > threshold,
where Pyefore and P,y denote the median performance
during the 14 days before and after the upgrade, respectively,
MAD stands for mean absolute deviation during the 14 days
before the upgrade, which is defined as = >~ ||z, —mean(z),
and threshold = 3. We use 14 days before and after the
application of upgrade to analyze performance impact because
this is the current operational standard in Mercury.

E. Contrasting Impact Diagnosis

Once we obtain the results from the first phase of testing
eNodeBs, we can use the eNodeBs that see contrasting per-
formance to identify the important features that affect network
upgrades. Specifically, if there are contrasting impacts for the
same type of upgrade but across different network locations,
we identify the root-cause that best explains the contrast.

Problem Formulation. Each eNodeB can be characterized
by N features. Because degradation is a probabilistic event
so even when two nodes take identical values in all features,
one may degrade while the other may observe no performance
change. So we use degradation probabilities instead of a binary
performance tag. For each unique feature value combination,
we compute degradation probability based on our traces. For
example, when there are two binary features f; and fo, we
compute the degradation probabilities when they take 00, O1,
10, and 11, respectively. Then the goal is to identify which
subset of features can best separate the high degradation
probabilities from the low degradation probabilities.

The major questions we should answer in diagnosing up-
grade performance issues involve: (i) what metric can best cap-
ture the notion of separation between degradation probabilities,
and (ii) how to design an efficient algorithm that can handle a
large number of features, which can be a few hundred in our
traces, and it is too expensive to try all possible combinations.



We summarize the limitations of existing approaches here and
present diagnosis results over real case studies in Section I1I-B.

Existing approaches and limitations. chi-squared test is
used to determine if two events are independent. One way to
apply chi-squared test is to test the dependence between the
degradation probabilities and a given feature, and select the
most dependent features. Information gain is used in building
decision trees and it measures the importance of an attribute
using entropy. Fisher score finds a subset of features such
that in the data space spanned by the selected features, the
distance between data points in different classes are as large
as possible while the distance between data points in the
same class are as small as possible. Linear regression can
also be applied to diagnosis. We form a matrix A based
on the unique feature values and form a vector b based
on the corresponding degradation probabilities. To learn the
importance of each feature, we construct a linear equation:
Ax = b, where x; is the weight of the i-th feature. We can
simply solve x based on the linear equation. Often we may
not have enough observations to uniquely solve x. To address
the under-constrained problem, one can use regularization
terms. Ridge regression incorporates Lo norm regularization
and lasso regression incorporates L; norm regularization.

Our evaluation indicates that the accuracy of these existing
algorithms is limited especially when the root cause contains
multiple important features. A closer look of the results reveals
several significant limitations. First, they rank the features
based on a certain metric, and pick the top ranked few features.
But there can be significant correlation among these features.
Therefore, we should revise the algorithm to make them
iterative and remove the impact of the previously selected
features before picking the next important feature. Second, the
existing metrics fall short. For example, the chi squared test
fails to take into account different sample sizes in different
feature values. It performs poorly when one of the feature
values is more dominant in population than the other. Both
information gain and fisher scores are biased towards a feature
that has more diverse values. For example, suppose most
features take two values and one feature takes 10 values.
The feature with 10 values tends to be picked as the root
cause since its information gain and fisher score tend to be
higher. Linear regression accuracy is also limited due to (i)
dependence between the features, (ii) non-linear relationship
between the features and degradation probabilities, and (iii)
significant under-constrained systems.

Our Approach. We use an iterative algorithm to analyze the
contrasting impact. For each unique feature value combination,
we compute the degradation probability using the traces. Our
approach iteratively adds one feature set at a time to optimize
a metric. A feature set can consist of 1-3 features. We use
3 as the upper bound because the operations team observes
root cause usually consists of 1-2 features(Section III-B).
Following the standard Z-test [24], we develop a new metric:

> i Zj;r&i |25

l[#regions|| x (||#regions| — 1)

Pi—Pj zitx;
T p iy 4P = noms
denote one of the feature combinations defined by the currently
selected features (e.g., 00, 01, 10, 11 for two binary features),
|[#regions|| is the total number of regions defined by the
selected features (e.g., two binary features define 4 regions: 00,
01, 10, 11), z; and x; are the number of degraded eNodeBs
for the i-th and j-th feature combinations, and n; and n; are
the corresponding total number of eNodeBs.

Our metric reflects how different are the two distributions.
Not only does it capture the difference between feature values
but also difference between population sizes. Essentially, it
quantifies the average difference between z-scores across all
regions defined by the selected features. The intuition is that
important features yield larger difference in degradation prob-
abilities. But instead of directly using probability difference,
we weigh the probability difference based on the number of
samples in the cluster since a large difference under a small
sample size does not mean much but the same difference under
a large sample size means more.

Applying the greedy algorithm, we first add the feature set
fr1 that maximizes our metric. Then we add a second feature
set fro that yields the maximum difference when these two
features take different values. For example, for binary features,
we want to maximize performance difference when fj; and
fra take 00, 01, 10 and 11. We iterate until the difference
across different regions does not increase significantly.

where z;; = v and j

F. Subsequent Phase

After we analyze the performance results and narrow down
the potentially important features, our subsequent phase in
test planning refines selection. We can have two or more
phases. Note that the total budget does not change, it is just
split into different phases. The second and all subsequent
phases essentially use the same procedure. So we focus on the
second phase. It is similar to the first phase: it also employs
a similar greedy algorithm that maximizes the minimum
Hamming distance between selected nodes. There are two
main differences between the first and second phases. First,
since the first phase already narrows down to a subset of
candidate features, the second phase only diversifies over these
candidate features. Second, the second phase should add new
nodes to test that complement the nodes already tested during
the first phase. This can be achieved by selecting a new feature
value that maximizes the minimum Hamming distance from
all the selected nodes so far, including those selected in the
first phase and the previous iterations of the second phase.

After testing on these eNodeBs selected during the second
phase, we run the same diagnosis algorithm in Section II-E.
Note that by now we see the performance outcomes from all
nodes selected in all test phases, so we use the performance
information from all tests to identify the important features that
contribute to performance difference. The only difference is
that the intermediate diagnosis steps use a lower improvement
threshold to pick more features and avoid missing important
features for designing future tests whereas the final diagnosis
step uses a higher threshold to limit the false positive. Our



evaluation uses 0.005 during the intermediate diagnosis and
0.03 during the final diagnosis.

III. EVALUATION USING REAL TRACES

In this section, we present an overview of the case studies
that we will use for evaluation of our diagnosis, test planning
and prediction. Each of the case study involved exhaustive
analysis by the field operation teams of a large tier-1 cellular
service provider in understanding the performance impacts of
network changes during the large-scale roll-out. The number
of case studies where the contrasting performance impact
was seen at a large scale are limited. We separately evaluate
diagnosis for small scale case studies in Section III-B2. In our
evaluation, we will show that our automated diagnosis algo-
rithm would have enabled accurate and rapid identification of
the root-cause upon seeing contrasting performance impacts.

A. Evaluation Methodology

We use the service performance data and apply Mer-
cury [20] algorithm to conduct a statistical pre/post impact
analysis around network changes to mark each eNodeBs with
Degradation or No Change, by comparing their performance
before and after the upgrade. The time-interval for pre/post
analysis is -14/+14 days. For each eNodeB, approximately 250
configuration and metric-driven features were collected. These
features comprised both textual as well as numerical values,
and we systematically convert these values into a few discrete
numbers as described in Section II-B. Each case study has a
different number of eNodeBs. We evaluate diagnosis and test
planning components separately and report the average over
25 random runs for each scenario.

Evaluating diagnosis accuracy: We first evaluate the diagno-
sis step using our metric and compute accuracy by comparing
with the ground truth root causes from operations team.

Evaluating test planning: Next we evaluate the effectiveness
of test planning. Test planning evaluation differs from diagno-
sis evaluation in that diagnosis sees the performance outcome
from all eNodeBs involved in the upgrade. Whereas to reduce
test cost test planning only allows to test upgrade on a smaller
subset of nodes and the input to the test planning contains the
performance from these tested nodes along with their features.
The accuracy in test planning depends on both selection of test
locations and diagnosis algorithm. We evaluate our approach
against Random and High-Traffic based selection approaches.
In high-traffic based selection, we select nodes from a group
of nodes for which the traffic is in 85" percentile or above.
We use the following metrics to quantify the accuracy:
recall = tpfffn and precision = ; tp e where tp is
the number of true positives (i.e., correctly detected im-
portant features), fp is the number of false positives (i.e.,
incorrectly detected important features), fn is the number
of false negatives (i.e., missed important features). We also
integrate precision and recall into a single metric called
F1 score, which is the harmonic mean of precision and recall:
F1 score = 2 For all three metrics, larger

1/precision+1/recall
values indicate higher accuracy and maximum value can be 1.

We first quantify the recall of the first test phase based on
whether the ground truth features are included in the analysis.
We are only interested in recall in the first step since the second
step can rule out false positives. Next we evaluate the accuracy
of our second step test phase using F1 score. The average
F1 score of of the multi-phase approach is 35% higher than
the single-phase, and the detailed result of the single-phase is
omitted in the interest of space.

Evaluating prediction: Finally, we quantify the accuracy of
predicting whether an eNodeB will degrade based on its fea-
ture value and the performance outcome of a few tested nodes.
The prediction accuracy is measured as Y, [D7e! — Dg¢st|,
where D¢ and D¢5! are the actual and estimated number
of degraded eNodeBs that take feature value ¢, respectively.
We normalize it with the number of nodes in the case study.
The prediction error is a little high in the traces because
(i) degradation is a probabilistic event and the probability
estimation can be erroneous especially without a sufficient
number of samples, and (ii) a heuristic is used to tag eNodeBs
with degradation in the ground truth data, which may introduce
additional error. Our primary objective is to identify the root
cause for contrasting impacts during FFA. While we only have
five real traces where we know the exact ground truth, we
have access to more traces that contain eNodeBs performance
before and after upgrade. We evaluate prediction error for these
additional traces in Section III-D.

B. Diagnosis Evaluation

We collect ground truth information from the operation
teams of the cellular service provider. We divide it into two
categories: (i) diagnosing performance impact of network-
wide changes, where the same change is applied to multiple
eNodeBs across the network, and (ii) diagnosing performance
degradation of individual eNodeBs, where only one node may
experience the change and we apply our algorithm to identify
the root cause by comparing it to neighboring eNodeBs that
did not experience the degradation around the same time. Cat-
egory (i) consists of 5 case studies of network-wide changes
(Section III-B1) and category (ii) consists of 261 case studies
over two months (Section I1I-B2).

1) Diagnosing Impact of Network Upgrades: Case Study
I: Software upgrade on LTE cell towers. In our first
study, we analyzed the roll-out and impact analysis of a
software version upgrade across multiple LTE cell towers.
We observed performance improvements on some cell towers
and minor performance degradation (increase in call drops)
on a small set. The operation teams figured out that the end-
users were sending duplicate statistics measurements to the
cell towers that were pointing to the same reference object.
This led to cell towers dropping the calls because of internal
failures. This effect was only observed on cell towers with
the specific configuration; however other cell towers with
the same software upgrade but different configuration did
not experience service performance degradation. We run our
greedy diagnosis on the input that contains 250 features for



each eNodeB and whether its performance degrade or not.
It identified UTRAANR (UMTS Automated Neighbor Rela-
tions Discovery) feature as the possible trigger and Duplicate
Measurement as the root cause. Both the trigger and root
cause match exactly with the ground-truth from the operation
team. Our scheme further estimates degradation probabilities
are 0.67 and 0.28 when Duplicate Measurement is present and
not present, respectively.

Case Study II: Configuration changes on LTE cell tow-
ers. In our second case study, one of the configuration changes
introduced a new positioning feature for the end-users. The
positioning feature enables users to report the time difference
between specific signals from several cell towers to serving
centers in the core network. This feature introduction led
to increase in call drops only at cell towers with a higher
number of handovers. Again, the diagnosis of the contrasting
impact was challenging. Our automated algorithm enabled
faster detection of the root-cause. It identified Observed Time
Difference of Arrival (OTDOA) [6] Hearability Enhancement
(time synchronization for UE location positioning) as the
possible trigger and handovers as the root case. Both match
with the ground-truth from the operations team. It further
derives the degradation probabilities of 0.65 and 0.42 when
the number of handovers is high and low, respectively.

Case Study III: Hardware updates in the core. We
started with hardware update in the core network at Mobility
Management Entity (MME). MME in LTE manages multiple
cell towers and is responsible for processing the signaling
information between end-user and core network. After the
hardware change, we observed that there was an increase
in a particular type of alarm across a small number of cell
towers but not everywhere. Our diagnosis discovered that the
software version on the cell towers was the cause. A specific
software version had conflicting interactions with the new
hardware controller in the MME and caused the increase in
the number of alarms. Our algorithm identified controller type
as the trigger, and OS version as the root cause for raising
alarms on MMEs, which agrees with the ground truth from the
operation teams. It further derives the degradation probability
of 0.83 in OS version 1 and 0.55 in OS version 2.

Case Study IV: Software upgrade on LTE cell towers. The
fourth case study came to us before the operation team knew
the ground truth. We applied our algorithm to understand
the contrasting service performance impacts resulting from a
software roll-out on LTE cell towers in a specific region. There
was an increase in connection establishment failure rate at only
a small number of cell towers. Our algorithm automatically
identified that congested towers had performance degradation,
whereas others had no negative impacts. Congestion on the cell
towers was because of a multi-day high traffic special event
scenario which coincided with the day of the software upgrade.
Our results helped the operation team, who later confirmed that
issue occurred due to high traffic during holidays.

Case Study V: Software upgrade on LTE cell towers. In our
final case study, we analyzed software upgrade that was being

rolled out on LTE cell towers across the entire network. The
operation teams had noticed contrasting performance impacts
across cell towers. We used Mercury to detect that some cell
towers experienced throughput degradation whereas other cell
towers had no negative impact. We automatically identified
the cell towers that were serving a large number of users and
carrying higher traffic were experiencing degradation in LTE
data throughput. We confirmed our findings with the operation
teams. It turned out that the new software version was unable
to handle high traffic on specific carrier frequencies.

Table 1 compares the diagnosis results under different di-
agnosis algorithms for five case studies. All algorithms except
ours miss some case studies.

Reflection | Info. Gain | Fischer Sc. | L1/L2 Norm | Chi Square

100% 60% 80% 40%/80% 80%

TABLE I: Diagnosis accuracy across five case studies.

2) Diagnosing degradations on individual eNodeBs: We
analyzed the performance degradations observed on individual
eNodeBs during a time interval of two months. For each
case, our objective is to sift through a wide variety of fea-
ture data sets including configuration, alarms, performance
and traffic metrics, and identify the potential explanation
for the degradation. Degradations were observed in service
performance metrics, such as accessibility, retainability, and
data throughput. The operation teams had manually gleaned
through the feature sets to identify the root-cause. Even though
the traces are smaller-scale compared to the previous ones,
it still takes at least a few hours to manually diagnose each
case. In comparison, we develop a tool that automates the
diagnosis completely: it pulls the database to get the raw
input, prepares the input for our diagnosis program, and
automatically diagnoses each case within 2 minutes.

The number of features for each case study ranged from
60 to 80. For each eNodeB with performance degradation,
we identified a number of neighbors that did not experience
degradation around the same time. This gives us a contrasting
set. Since the cases were tackled historically, we knew the
ground truth root-cause for each of them. Our tool identified
radio congestion (significant increases in random access chan-
nel request) as the most likely explanation for the performance
degradation. Other root causes include remote IP address
unreachable, cell range change after software upgrade. This
aligns perfectly with the findings from the operation teams.

C. Test Planning

Case Study I: Figure 2(a) plots the recall after the first step
as the sampling ratio is varied from 0.25% to 2%. We make
several observations. First, Hamming distance based node
selection yields significantly higher accuracy than random
selection and high traffic selection. High traffic selection
under-performs even the random selection because it only sees
a biased subset of nodes. The bias is particularly bad in this
case because the feature value that causes degradation is more
popular in low traffic locations and more low traffic nodes
see performance degradation. This highlights the importance



of sampling diverse feature values in the tested nodes instead
of pre-assume traffic is the feature that matters. Second, the
performance benefit of strategic node selection is largest when
the sample size is small. Due to a large number of eNodeBs
in the network, a sample size of 0.5% - 1.5% is desirable
according to the operation team, and we observe a large
benefit in those scenarios. Third, it is interesting to note
that just by sampling 1%, Hamming distance based selection
combined with greedy diagnosis yields close to 100% recall.
This significantly reduces testing cost and manual diagnosis
effort. In comparison, the other selection schemes yield only
around 10%-70% around this region. Figure 2(b) compares F1
score of the second step. Hamming distance based continues to
out-perform the other two schemes. The gap between random
and Hamming distance reduces due to more samples are drawn
in the second step. Figure 2(c) shows the prediction errors of
different schemes. Prediction error for Reflection approaches
0.18 and for Random and high-traffic based heuristics, it
approaches 0.2 as sampling ratio approaches 2%.
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Fig. 2: Test planning in case study I.

Case Study II: Hamming distance based selection contin-
ues to perform the best, while random selection and high
traffic based selection perform significantly worse especially
when the number of samples are small. High traffic based
selection performs the worst because high handover nodes are
distributed proportionally across low-traffic versus high-traffic
nodes. So high traffic based selection is essentially randomly
sampling over a smaller pool of nodes.

Figure 3(b) and (c) plot F1 score and prediction error
after the second step using the traces from the case study
II. Hamming distance based selection yields the highest F1
score and lowest prediction error. Sampling 1% nodes yields
F1 score of 0.9 and prediction error of 0.18. The F1 score
approaches to 1 and prediction error approaches 0.14 as the
sampling ratio increases to 2%.

Case Study III: Figure 4(a), (b), and (c) plots recall after
step 1, F1 score and prediction error after step 2, respectively.
In this case, Reflection performs significantly better than the
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Fig. 3: Test planning in case study II.

other schemes due to non-uniform feature value distribution
of the root cause feature. Other schemes tend to pick very few
nodes which do not have popular feature values. Due to the
absence of diverse values of root cause feature in testing set,
these schemes fail to capture the root cause.

We do not evaluate test planning in case studies IV and V
because these cases have within 100 nodes and test planning
is useful for a large number of nodes.
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Fig. 4: Test planning in case study III.

D. Prediction Error

In addition to the prediction error results for the case studies,
we also evaluate prediction error using a few more traces.
Figure 5 summarizes the results. As we can see, Hamming
distance based selection yields the lowest error. Sampling 2%
nodes can already achieve prediction error of 0.1-0.18. High-
traffic based selection performs either similarly to random
selection or worse since traffic is likely not the root cause
for degradation in these traces; picking high-traffic only nodes
causes unnecessary bias in sampling and lead to degradation
in traces 8 and 9.
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Fig. 5: Prediction error in additional traces.

IV. EVALUATION USING SYNTHETIC TRACES

In this section, we complement the real trace analysis by
generating synthetic traces. While synthetic traces are not
realistic, they allow us to extensively evaluate each component
in our design and provide insights on how each parameter
impacts the accuracy of diagnosis and test planning. We
randomly select K important features out of N total fea-
tures. Then we generate a degradation probability for each
combination of K important features. For each configuration,
we generate a new trace with different eNodeB degradation
probabilities and feature values.

A. Test Planning

For each configuration, we generate 25 random traces, vary
the sampling ratio and report the average. We generate 20000
eNodeBs each with 50 features. We compare our Hamming
based selection with random selection for the two-phase plan-
ning. We plot comparison graphs for two cases, when we have
1 important feature and when we have 5 important features.
Figure 6 shows the recall of Hamming based approach is
higher because we diversify the feature values at each step. The
benefit of Hamming selection increases as the sampling rate
decreases and/or the number of important features increases
since the test planning algorithm is more critical in these cases.
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Fig. 6: Recall after step 1 in synthetic traces.

Figure 6 plots the recall after the first phase and Figure 7
plots Fl-score after the second step. For 1 important feature
around 1% sampling rate, recall and F1 is close to 1 for Re-
flection while the random selection clearly underperforms. The
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Fig. 7: F1 scores after step 2 in synthetic traces.

difference in F1 score is around 0.4 at 0.9% sampling ratio.
For 5 important features around 1% sampling rate, Reflection
can identify 4 out of 5 important features whereas random
can only identify at most 2 important features. Figure 8 shows
the prediction error after the second step where the difference
between Reflection and random can be as large as 15%.

The advantage of Hamming distance based selection over
random increases when the feature value distribution is skewed
in the dataset. In those cases, random selection misses out on
picking certain feature values for testing so it becomes difficult
to identify the root cause for contrasting performance impacts.
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Fig. 8: Prediction error in synthetic traces.

V. RELATED WORK

Software testing: Software testing includes white-box testing
using source code, black-box testing without source code,
and grey-box testing based on specification of the program.
Combinatorial testing is used to generate automatic test cases
using various features of the software (e.g., [23], [8]). Software
testing differs from our upgrade tests in several important
aspects as we explained in Section 1. A/B testing [14], [13]
are used in the web domains for making data-driven decisions.
However, it is prohibitively expensive to perform A/B testing
on all possible feature combinations. [5] develops an algebraic
approach to determine which network paths to probe in order
to fully recover end-to-end path properties. The number of
paths that it requires to monitor is close to the number of
links in the network. In comparison, we can only sample a
very small fraction of eNodeBs.

Network upgrades and impact analysis: [11] proposes a fast
system for executing consistent updates in a software defined
network. [25] proposes abstractions for network updates and
preserves consistency between configuration transitions. [9],
[16], [7] achieve congestion-free upgrades with zero packet
loss. Magus [33] minimizes service disruption for planned
upgrades in cellular networks by proactively tuning network



configuration. Mercury [20] time-aligns multiple network up-
grades and conducts an aggregate performance impact analy-
sis. PRISM [18] is a real-time analytics tool to detect perfor-
mance degradations immediately after a planned maintenance.
Litmus [19] uses robust algorithms to assess the performance
impact of network changes by comparing study group with
control group. However, Mercury, PRISM and Litmus cannot
perform root-cause analysis.

Network and service diagnosis: [15] develops an open
platform to monitor LTE radio performance by extracting
information from the LTE control channel. A number of works,
such as ThinkRF [31] and IntelliJudge [27], sniff RF signals
for testing inter-operability. [10] studies the interactions be-
tween applications, transport protocol, and the radio layer in
a large LTE network in US. It reports 52.6% of TCP flows
are throttled by TCP receive window. [32] uncovers several
problematic interactions among the control-plane protocols
in cellular networks. [28], [36], [2] use machine learning
techniques to diagnose problems in networks. Argus [35]
uses Holt-Winters algorithm to detect and localize service
performance anomalies in large ISP networks. NICE [21],
WISE [30], Giza [17], NetMedic [12], GRCA [34], and
URCA [29] capture the statistical dependencies between net-
work and service performance. Spectroscope [26] and X-
ray [1] compare two executions of program before and after
the change to diagnose performance changes. DiffProv [4] uses
differential provenance to compare good and bad examples of
system behavior to identify the reason for the bad behavior.
As also pointed by the authors, DiffProv assumes network
behavior is deterministic which is often not the case in
operational cellular network.

Remarks: Our work complements existing work by focusing
on a new aspect of network management — selecting test
locations and contrasting performance analysis, which is a
critical but under-explored problem.

VI. CONCLUSION

Cellular networks frequently go through upgrades. It is
important to automatically design field tests to identify the
features that affect the upgrade performance and predict the
performance of untested location and diagnose the perfor-
mance issues during the upgrades. We develop algorithms to
automate both processes, and apply them to the real traces
from a major cellular provider. We show that by sampling 1-
1.5% of eNodeBs in real world case studies, we can identify
the root cause with close to 100% accuracy. Encouraged by
the promising performance, we are working with the network
operation team to incorporate our solution to their operation.
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