
Reflection: Automated Test Location Selection for
Cellular Network Upgrades

Mubashir Adnan Qureshi∗, Ajay Mahimkar†, Lili Qiu∗, Zihui Ge†, Sarat Puthenpura†, Nabeel Mir†, Sanjeev Ahuja†

The University of Texas at Austin∗, AT&T†

Abstract—Cellular networks are constantly evolving due to
frequent changes in radio access and end user equipment
technologies, dynamic applications and associated traffic mixes.
Network upgrades should be performed with extreme caution
since millions of users heavily depend on the cellular networks for
a wide range of day to day tasks, including emergency and alert
notifications. Before upgrading the entire network, it is important
to conduct field evaluation of upgrades. Field evaluations are
typically cumbersome and can be time consuming; however if
done correctly they can help alleviate a lot of the deployment
issues in terms of service quality degradation. The choice and
number of field test locations have significant impacts on the
time-to-market as well as confidence in how well various network
upgrades will work out in the rest of the network. In this
paper, we propose a novel approach – Reflection to automatically
determine where to conduct the upgrade field tests in order to
accurately identify important features that affect the upgrade.
We demonstrate the effectiveness of Reflection using extensive
evaluation based on real traces collected from a major US cellular
network as well as synthetic traces.

I. INTRODUCTION

Cellular networks play a significant role in today’s commu-

nication. To many users across different regions, it is often the

only means of getting connectivity. Many users rely on cellular

networks for entertainment, social activities and business crit-

ical tasks, such as stock trading, navigation, and emergency

services. The cellular networks are extremely complex and

constantly evolving at a rapid pace. Changes are introduced to

either support new service features (e.g., Voice over LTE),

technologies (e.g., LTE-advanced, small cells), fix software

bugs, or expand network coverage. Deploying changes in

a cellular network should be done with extreme caution in

order to avoid any unexpected performance degradation or

failures. Extensive testing is typically conducted in large-scale

laboratory settings, but it is virtually impossible to replicate

the large-scale, diverse variations and extreme complexity of

real operational networks. Thus, the changes are tested on a

smaller scale in the field. This small scale testing in the field

is referred to as the First Field Application (FFA).

The goal of FFA testing is to identify and infer the per-

formance impacts of the change and make a recommendation

for a go/no-go decision for a network-wide roll-out. If the

desirable service performance impacts are observed after the

FFA, the decision is to go-ahead with the roll-out. However,

if performance degradations are observed, the changes need to

be rolled back at the FFA locations and further analysis needs

to be conducted in lab settings. Network operation and engi-

neering teams carefully analyze the performance impact during

FFA. Once they certify the change using field test results, the

network-wide roll-out begins at a rapid pace. Strict deadlines

are set to quickly update the network. Any unexpected issues

discovered in the network-wide roll-out would slow down

the process because of the need to understand the negative

performance impact during FFA. Thus, careful planning and

design of field tests is important to ensure smooth roll-out for

the network-wide deployment.

A major challenge faced by the network operations and

engineering teams in the planning and design of fields tests

is how to select network elements to be used for the field

tests? This is an important and unique challenge arising from

the tremendous diversity in cellular networks. We present

two illustrative examples to highlight this diversity. First, we

analyze around 250 configuration parameters across 8000 LTE

eNodeBs (i.e., base stations in LTE) and observe that there

are 747 unique clusters where each cluster is identified by

a unique combination of configuration values. The cluster

size distribution is not skewed implying diverse configuration

settings across eNodeBs. Second, we note that for an example

software upgrade case, different eNodeBs had different per-

formance impacts; some had improvements after the upgrade

whereas others had no impact. The root-cause for contrasting

performance impact for the same software upgrade varies

across different cases.

Current practice used by operations team is to test the

change under high traffic, which assumes that negative impacts

are more likely to occur under high traffic. Service perfor-

mance indicators are also stable at high traffic locations, which

enables accurate before/after analysis of upgrade impacts.

However, contrasting performance impacts can happen often

due to features unrelated to traffic. Also past upgrade history

data cannot always be used to guide the design of FFA tests be-

cause the new upgrades may introduce features/configurations

changes which were never deployed in the past.

Our approach: We propose a new approach Reflection

that systematically utilizes a diverse set of features (e.g.,

software/hardware configuration, radio parameters, user pop-

ulation, mobility patterns) and automatically identifies the

FFA locations that would improve the predictability between

the performance impacts during FFA and network-wide de-

ployment. Having predictable performance behaviors with978-1-5090-6501-1/17/$31.00 c
2017 IEEE

FFA ensures a smooth and rapid wide-scale roll-out. Though

we apply Reflection in cellular context, the techniques we

develop are generic enough to be applied in other domains

by appropriately selecting the set of features.

Designing Reflection requires us to address the following

technical challenges: (i) Extremely large search space: There

are tens of thousands of cellular eNodeBs to choose from,

each with hundreds of features. Which features to consider and

which nodes to test have significant impact on the accuracy

and predictability of the tests. Given N features and each

can take k values, it generate kN test cases. For example,

N = 30 and k = 2 (binary features) generates around 1G test

cases, which is already infeasible for operational networks. (ii)

Interactions between features: It is often impossible to know

in advance which features will interact negatively with a new

network change. Particularly, for a new feature/configuration

introduction, you have no prior upgrade history data and there

is uncertainty in knowing how this new feature will interact

with the rest of the system. Ideally we should automatically

discover any undesirable interaction based on the limited FFA

tests, and resolve the issue before the network-wide roll-out.

(iii) Very low sampling for FFA locations: Since one of

the goals of FFA is to minimize the risk of negative impact

on network locations, the network operations and engineering

teams have a very low sampling budget. For example, for

10,000 eNodeBs, the number of locations available for FFA

testing could only be 100, yielding a sampling rate of 1%.

Such a low sampling rate and wide-variety of features pose a

significant challenge to identify the appropriate set of locations

for FFA with high predictability during network-wide roll-out.

One way to design test cases is to diversify all features

(e.g., for each feature, select test case that involves different

values of that feature). However, the number of test cases

grows exponentially with the number of features, which can

be prohibitively expensive. In practice, only a small number of

features are important to the performance, and these important

features may not be known in advance.

There are several works in the area of fractional factorial

design and software testing, where a small subset of exper-

iments are chosen out of exponential number of possible

experiments and the hypothesis is that testing on this small

but carefully chosen subset will expose important features.

However, these techniques are not directly applicable in our

case because: (i) Some of the experiments in the subset

outputted by software testing/fractional factorial design do not

exist in the real data, and (ii) the outcome of an experiment in

our case is probabilistic whereas the outcome is assumed to be

deterministic in software testing or fractional factorial design

based approaches. Therefore, we develop a multi-phase test

planning. In the first phase, we iteratively pick nodes that offer

the best coverage over all features so that we can assess the

impact of each of these features to narrow down to a smaller

subset of candidate features that are likely to be important.

In the later phases, we focus on testing only these candidate

features by selecting nodes that offer the best coverage over

the candidate features so that we can further narrow down to

the final set of features that we consider as important. In this

way, we can significantly reduce the number of test cases. Our

contributions can be summarized as follows:

1. We develop a multi-phase test planning in Reflection to

automatically diagnose contrasting performance and select

network locations for FFA testing to improve the pre-

dictability for network-wide deployment (Section II).

2. We develop an algorithm to analyze contrasting perfor-

mance impact across network locations during the FFA. It

helps narrow down the relevant features to be considered

for the next phase of planning. In comparison, the previous

works (e.g., Litmus [19] and Mercury [20]), can only detect

contrasting performance impacts but not identify the root

cause (Section II).

3. We evaluate Reflection using one-year data collected from

a major cellular service provider in US. Our results show

that our diagnosis approach accurately identify the root

causes and our test planning only requires testing 1-1.5%

nodes to identify the major features that affect degradation.

We further evaluate Reflection using synthetic traces.

II. Reflection DESIGN

We develop a multi-phase test planning approach that uses

the performance outcome from previous tests to guide the

design of the subsequent tests. The intuition behind our

multi-phase test planning approach is that if we know the

performance at eNodeBs with different feature values, we

can more effectively design the tests. This multi-phase test

planning is practical since major cellular service providers

schedule FFA in a staggered manner. Staggered roll-out is

necessary because thousands of eNodeBs cannot be upgraded

on a single day and rolling out the upgrade over multiple days

also enables the operation teams to carefully monitor their

performance impacts. Thus future tests can be designed using

performance impact assessments from the previous tests.

In order to realize the multi-phase test plan, we need to

answer the following important questions: (i) What features

to use for test planning and performance analysis? (ii) How

to prepare inputs for test planning and diagnosing contrast-

ing performance impacts? (iii) How to determine the initial

test locations? (iv) How can we determine the performance

impacts? (v) How to diagnose the contrasting performance in

the previous test? (vi) How to use the analysis results of the

previous tests to design future tests?

To answer these questions, we design Reflection, shown

in Figure 1. It first extracts the features to be used for

test planning and then processes them for analysis. Then it

performs the first phase test planning (Section II-C), applies

upgrades to the testing locations, assesses performance im-

pact (Section II-D), diagnoses test performance to identify

important features (Section II-E), uses the diagnosis results

to guide subsequent test planning (Section II-F), and iterates

until the maximum number of phases is reached. In the end,

it outputs the final diagnosis results for the important features

and predicts the performance on untested locations. Sections

II-A and II-B are specific to our cellular networks, while the

other parts are general and can be applied in other contexts.

Fig. 1: Reflection workflow.

A. Feature Extraction

Our traces come from a major LTE service provider in the

US. E-UTRAN NodeB (abbreviated as eNodeB) in LTE is

essentially a cellular eNodeB. It communicates directly with

mobile handsets (UEs). It runs the E-UTRA protocol, which

uses OFDMA for the downlink and single-carrier FDMA (SC-

FDMA) for the uplink. In order to make the selection effective,

it is important to include all features that can potentially affect

eNodeB performance. Therefore, we try to be comprehensive

and obtain as much information about eNodeBs as possible.

We come up with a few hundred features for each eN-

odeB by digging through configuration files and collecting

measurement driven data. We group the features into the

following categories: (i) node-level configuration(software ver-

sion, hardware version, modem, eNodeB manufacturer etc.),

(ii) protocol-level configuration(Carrier-Aggregation enabled,

Carrier frequencies etc.), (iii) topological features(connected

MME ID, load-balancing enabled etc.), and (iv) location

centric features(traffic, mobility, terrain type etc.). The set of

features used here are more or less the ones used by operations

in diagnosing the performance issues. These features are

particular to cellular domain; Reflection can easily be applied

in other contexts by selecting the relevant features.

B. Input Preparation

The input to our planning and diagnosis algorithms consists

of eNodeBs’ feature list and its performance tag, which

indicates whether its performance improves, has no change,

or degrades. We process these raw inputs as follows.

Discretize feature values: Most features in our traces are

binary. The remaining features take either textual values or

real numbers. To ease diagnosis and test planning, we sys-

tematically map all textual features to numerical values. In

addition, we discretize a real numbered feature by comparing

it with mean − 2 ∗ std and mean + 2 ∗ std to map to one

of the three levels: 0, 1, 2, where both the mean and standard

deviation (std) are computed using values across all eNodeBs.

We then convert them to binary features.

Dimension reduction: We propose clustering features into

equivalence classes. This has several benefits. First, it is

impossible to differentiate the impact of two features if (i) they

always change together and (ii) for each value of feature f1,

there is a unique value for feature f2. Consider two features

f1 and f2. When they take 00, performance improves. When

they take 11, performance degrades. The traces do not have

instances with the feature values of 01 or 10. In this case, it is

impossible to tell if performance degraded due to f1 = 1 or

f2 = 1 or (f1 = 1 and f2 = 1). Second, clustering features

reduces the number of unknowns and improves accuracy.

To accommodate such inherent ambiguity as well as im-

prove accuracy and speed, we group features into equivalence

classes. Strictly speaking, two features are indistinguishable

whenever there is always one unique value of f2 for each

value of f1 and vice versa. In practice, we relax this condition

to allow occasional violations as long as in most cases there

is one unique value of f2 for each value of f1 and vice versa.

For a pair of features fi and fj , we compute the following

metric to determine if the two features are equivalent. For each

value fi takes, say vi,k, we look at how many unique values

fj takes and the number of nodes that take these values to

compute a metric, called unique ratio: (
�

k maxlN(vi,k,vj,l)�
k

�
l N(vi,k,vj,l)

+
�

l
maxkN(vj,l,vi,k)�
l

�
k
N(vj,l,vi,k)

)/2. where N(vi,k, vj,l) is the number of

nodes that take the k-th value in feature i and take the l-
th value in feature j. We search for the most popular value

vj,l that feature j takes when feature i takes the k-th value.

maxlN(vi,k, vj,l) is the number of nodes whose feature j
takes the most popular value l under vi,k. Collectively, the

numerator in the first term of the above equation reflects

the total number of nodes taking the most popular feature

values vj,l normalized by the total number of nodes from

the perspective of feature i, and the second term computes

the same quantity from the perspective of feature j. We

normalize by 2 to get the mean as the equivalence relationship

is symmetric. When the unique ratio is higher than a threshold,

we declare that two features are equivalent. The threshold must

be high enough so that we group only those features that are

almost identical. We set it to 0.95.

Upgrade trigger: In our measurements sometimes all nodes

have the same value for a feature, and then all change to

another value for the same feature upon application of update.

Among these nodes, some see improvement while others see

degradation. At the first glance, one may think this feature

is irrelevant, since nodes with the same value in the feature

see different performance. But in practice, this feature could

be relevant and the degradation could be due to interaction

between this feature and some other features.

To handle such cases, features that changed during upgrade

are considered as possible triggers to the performance issues.

For the features that take different values across different

eNodeBs at a given time, we can rely on our diagnosis algo-

rithm(Section II-E) to identify them. So the trigger set consists

of the set of features that changed from one value to another

when upgrade gets applied. Then we apply the diagnosis

algorithm described in Section II-E to identify root causes.

Our diagnosis result includes the trigger set and root cause,

where the trigger set contains features that changed during the

upgrade and the root cause contains the equivalence classes of

features that best explain the contrasting performance.

C. First Phase Test Location Selection

In this subsection, we focus on design of the first phase. Its

main goal is to diversify over all features to identify a small set

of features that are likely to matter. This step can quickly prune

irrelevant features to get a small set of candidate features. We

diversify over all the features because for the new upgrade,

we may have no knowledge about which features are going to

matter. If that information is known, then diversification can be

enabled only on the selected features. The subsequent phases

focus on this small set of features to pinpoint the root cause.

We use 70% budget in first phase because we want to enable

diversification over a large set of features and keep 30% for

subsequent phases where number of features may be small.

Hamming distance based selection: We develop a greedy al-

gorithm that selects feature values that maximize the minimum

Hamming distance among them. Minimum Hamming distance

is used as the optimization metric because it captures how

many features whose impacts can be assessed (e.g., if we select

two feature values: 000 vs. 111, we can potentially assess

the impact of three features by comparing the performance

when each feature takes a value 0 versus 1). In the next

iteration, we add a feature value combination that has the

largest Hamming distance from the one selected earlier. For

example, if we first select a feature combination 00. Then

we will prefer to select a feature combination 11 instead

of 01 or 10. This is because it allows us to potentially

estimate impact of two features by computing the difference

between when one feature takes a value 0 versus takes a

value 1. In the third iteration, we pick a feature combination

that maximizes the minimum Hamming distance from the

two we picked so far: max mini Hamming(ni, n
′), where

ni are the set of feature combinations already selected and

n′ denotes the new feature combination to add. We iterate

until we select enough eNodeBs to test. In order to compute

degradation probability, we need to select multiple nodes from

each feature combination. Our evaluation uses 3 nodes per

feature combination. We also tried 2 and 4 but that did not

change the performance much. We want to test more clusters

so that we have feature diversity in our test cases. Sampling a

large number of nodes from each cluster reduces the number

of clusters that can be sampled. For k features, n unique feature

combinations and m selected feature combinations, the running

time is O(nm2k).

We can support a number of other extensions in the same

framework. For example, one can also weigh the Hamming

distance by the importance of a feature. The weight can reflect

either the frequency of occurrence or the importance of a given

feature based on prior knowledge. We plan to explore these

extensions as part of our future work. While our Hamming

distance based approach appears simple, it provides good

empirical performance. There may be interesting connection

between Hamming distance and sub-modular optimization

(e.g., [3]). This paves the way towards using the machinery

of sub-modular optimization to come up with efficient greedy

algorithms to choose the best subset of base-stations [22].

D. Performance Impact Assessment

The network operation teams carefully monitor the impacts

of network changes using a wide variety of service perfor-

mance indicators. If there is performance degradation after the

network upgrade, a roll-back to the previous configuration is

important to minimize the service disruption. Statistical tech-

niques such as Mercury [20] and Prism [18] provide automated

ways to detect the impact. We use Mercury to automatically

extract the performance indicator for each eNodeB about

whether its performance degrades after an upgrade or not. We

use the following service performance metrics in Mercury to

capture the statistical changes in behaviors: (i) Accessibility is

the ratio of successful call establishments to total call attempts,

(ii) Retainability is the ratio of successful call terminations to

total calls, and (iii) Data throughput is a measure of bits/sec

delivered to the end-users. Unless otherwise specified, we

conclude a node degrades if any of the above three metrics

satisfies the following condition:
Pbefore−Pafter

MAD
> threshold ,

where Pbefore and Pafter denote the median performance

during the 14 days before and after the upgrade, respectively,

MAD stands for mean absolute deviation during the 14 days

before the upgrade, which is defined as 1
n

�
i kxi−mean(x)k,

and threshold = 3. We use 14 days before and after the

application of upgrade to analyze performance impact because

this is the current operational standard in Mercury.

E. Contrasting Impact Diagnosis

Once we obtain the results from the first phase of testing

eNodeBs, we can use the eNodeBs that see contrasting per-

formance to identify the important features that affect network

upgrades. Specifically, if there are contrasting impacts for the

same type of upgrade but across different network locations,

we identify the root-cause that best explains the contrast.

Problem Formulation. Each eNodeB can be characterized

by N features. Because degradation is a probabilistic event

so even when two nodes take identical values in all features,

one may degrade while the other may observe no performance

change. So we use degradation probabilities instead of a binary

performance tag. For each unique feature value combination,

we compute degradation probability based on our traces. For

example, when there are two binary features f1 and f2, we

compute the degradation probabilities when they take 00, 01,

10, and 11, respectively. Then the goal is to identify which

subset of features can best separate the high degradation

probabilities from the low degradation probabilities.

The major questions we should answer in diagnosing up-

grade performance issues involve: (i) what metric can best cap-

ture the notion of separation between degradation probabilities,

and (ii) how to design an efficient algorithm that can handle a

large number of features, which can be a few hundred in our

traces, and it is too expensive to try all possible combinations.

We summarize the limitations of existing approaches here and

present diagnosis results over real case studies in Section III-B.

Existing approaches and limitations. chi-squared test is

used to determine if two events are independent. One way to

apply chi-squared test is to test the dependence between the

degradation probabilities and a given feature, and select the

most dependent features. Information gain is used in building

decision trees and it measures the importance of an attribute

using entropy. Fisher score finds a subset of features such

that in the data space spanned by the selected features, the

distance between data points in different classes are as large

as possible while the distance between data points in the

same class are as small as possible. Linear regression can

also be applied to diagnosis. We form a matrix A based

on the unique feature values and form a vector b based

on the corresponding degradation probabilities. To learn the

importance of each feature, we construct a linear equation:

Ax = b, where xi is the weight of the i-th feature. We can

simply solve x based on the linear equation. Often we may

not have enough observations to uniquely solve x. To address

the under-constrained problem, one can use regularization

terms. Ridge regression incorporates L2 norm regularization

and lasso regression incorporates L1 norm regularization.

Our evaluation indicates that the accuracy of these existing

algorithms is limited especially when the root cause contains

multiple important features. A closer look of the results reveals

several significant limitations. First, they rank the features

based on a certain metric, and pick the top ranked few features.

But there can be significant correlation among these features.

Therefore, we should revise the algorithm to make them

iterative and remove the impact of the previously selected

features before picking the next important feature. Second, the

existing metrics fall short. For example, the chi squared test

fails to take into account different sample sizes in different

feature values. It performs poorly when one of the feature

values is more dominant in population than the other. Both

information gain and fisher scores are biased towards a feature

that has more diverse values. For example, suppose most

features take two values and one feature takes 10 values.

The feature with 10 values tends to be picked as the root

cause since its information gain and fisher score tend to be

higher. Linear regression accuracy is also limited due to (i)

dependence between the features, (ii) non-linear relationship

between the features and degradation probabilities, and (iii)

significant under-constrained systems.

Our Approach. We use an iterative algorithm to analyze the

contrasting impact. For each unique feature value combination,

we compute the degradation probability using the traces. Our

approach iteratively adds one feature set at a time to optimize

a metric. A feature set can consist of 1-3 features. We use

3 as the upper bound because the operations team observes

root cause usually consists of 1-2 features(Section III-B).

Following the standard Z-test [24], we develop a new metric:
�

i

�
j 6=i |zij |

k#regionsk × (k#regionsk− 1)

where zij =
pi−pj√

pij(1−pij)(1/ni+1/nj)
and pij =

xi+xj

ni+nj
, i and j

denote one of the feature combinations defined by the currently

selected features (e.g., 00, 01, 10, 11 for two binary features),

k#regionsk is the total number of regions defined by the

selected features (e.g., two binary features define 4 regions: 00,

01, 10, 11), xi and xj are the number of degraded eNodeBs

for the i-th and j-th feature combinations, and ni and nj are

the corresponding total number of eNodeBs.
Our metric reflects how different are the two distributions.

Not only does it capture the difference between feature values

but also difference between population sizes. Essentially, it

quantifies the average difference between z-scores across all

regions defined by the selected features. The intuition is that

important features yield larger difference in degradation prob-

abilities. But instead of directly using probability difference,

we weigh the probability difference based on the number of

samples in the cluster since a large difference under a small

sample size does not mean much but the same difference under

a large sample size means more.
Applying the greedy algorithm, we first add the feature set

fk1 that maximizes our metric. Then we add a second feature

set fk2 that yields the maximum difference when these two

features take different values. For example, for binary features,

we want to maximize performance difference when fk1 and

fk2 take 00, 01, 10 and 11. We iterate until the difference

across different regions does not increase significantly.

F. Subsequent Phase

After we analyze the performance results and narrow down

the potentially important features, our subsequent phase in

test planning refines selection. We can have two or more

phases. Note that the total budget does not change, it is just

split into different phases. The second and all subsequent

phases essentially use the same procedure. So we focus on the

second phase. It is similar to the first phase: it also employs

a similar greedy algorithm that maximizes the minimum

Hamming distance between selected nodes. There are two

main differences between the first and second phases. First,

since the first phase already narrows down to a subset of

candidate features, the second phase only diversifies over these

candidate features. Second, the second phase should add new

nodes to test that complement the nodes already tested during

the first phase. This can be achieved by selecting a new feature

value that maximizes the minimum Hamming distance from

all the selected nodes so far, including those selected in the

first phase and the previous iterations of the second phase.

After testing on these eNodeBs selected during the second

phase, we run the same diagnosis algorithm in Section II-E.

Note that by now we see the performance outcomes from all

nodes selected in all test phases, so we use the performance

information from all tests to identify the important features that

contribute to performance difference. The only difference is

that the intermediate diagnosis steps use a lower improvement

threshold to pick more features and avoid missing important

features for designing future tests whereas the final diagnosis

step uses a higher threshold to limit the false positive. Our

evaluation uses 0.005 during the intermediate diagnosis and

0.03 during the final diagnosis.

III. EVALUATION USING REAL TRACES

In this section, we present an overview of the case studies

that we will use for evaluation of our diagnosis, test planning

and prediction. Each of the case study involved exhaustive

analysis by the field operation teams of a large tier-1 cellular

service provider in understanding the performance impacts of

network changes during the large-scale roll-out. The number

of case studies where the contrasting performance impact

was seen at a large scale are limited. We separately evaluate

diagnosis for small scale case studies in Section III-B2. In our

evaluation, we will show that our automated diagnosis algo-

rithm would have enabled accurate and rapid identification of

the root-cause upon seeing contrasting performance impacts.

A. Evaluation Methodology

We use the service performance data and apply Mer-

cury [20] algorithm to conduct a statistical pre/post impact

analysis around network changes to mark each eNodeBs with

Degradation or No Change, by comparing their performance

before and after the upgrade. The time-interval for pre/post

analysis is -14/+14 days. For each eNodeB, approximately 250

configuration and metric-driven features were collected. These

features comprised both textual as well as numerical values,

and we systematically convert these values into a few discrete

numbers as described in Section II-B. Each case study has a

different number of eNodeBs. We evaluate diagnosis and test

planning components separately and report the average over

25 random runs for each scenario.

Evaluating diagnosis accuracy: We first evaluate the diagno-

sis step using our metric and compute accuracy by comparing

with the ground truth root causes from operations team.

Evaluating test planning: Next we evaluate the effectiveness

of test planning. Test planning evaluation differs from diagno-

sis evaluation in that diagnosis sees the performance outcome

from all eNodeBs involved in the upgrade. Whereas to reduce

test cost test planning only allows to test upgrade on a smaller

subset of nodes and the input to the test planning contains the

performance from these tested nodes along with their features.

The accuracy in test planning depends on both selection of test

locations and diagnosis algorithm. We evaluate our approach

against Random and High-Traffic based selection approaches.

In high-traffic based selection, we select nodes from a group

of nodes for which the traffic is in 85th percentile or above.

We use the following metrics to quantify the accuracy:

recall = tp
tp+fn and precision = tp

tp+fp . where tp is

the number of true positives (i.e., correctly detected im-

portant features), fp is the number of false positives (i.e.,

incorrectly detected important features), fn is the number

of false negatives (i.e., missed important features). We also

integrate precision and recall into a single metric called

F1 score, which is the harmonic mean of precision and recall:

F1 score = 2
1/precision+1/recall . For all three metrics, larger

values indicate higher accuracy and maximum value can be 1.

We first quantify the recall of the first test phase based on

whether the ground truth features are included in the analysis.

We are only interested in recall in the first step since the second

step can rule out false positives. Next we evaluate the accuracy

of our second step test phase using F1 score. The average

F1 score of of the multi-phase approach is 35% higher than

the single-phase, and the detailed result of the single-phase is

omitted in the interest of space.

Evaluating prediction: Finally, we quantify the accuracy of

predicting whether an eNodeB will degrade based on its fea-

ture value and the performance outcome of a few tested nodes.

The prediction accuracy is measured as
�

i |D
real
i − Dest

i |,
where Dreal

i and Dest
i are the actual and estimated number

of degraded eNodeBs that take feature value i, respectively.

We normalize it with the number of nodes in the case study.

The prediction error is a little high in the traces because

(i) degradation is a probabilistic event and the probability

estimation can be erroneous especially without a sufficient

number of samples, and (ii) a heuristic is used to tag eNodeBs

with degradation in the ground truth data, which may introduce

additional error. Our primary objective is to identify the root

cause for contrasting impacts during FFA. While we only have

five real traces where we know the exact ground truth, we

have access to more traces that contain eNodeBs performance

before and after upgrade. We evaluate prediction error for these

additional traces in Section III-D.

B. Diagnosis Evaluation

We collect ground truth information from the operation

teams of the cellular service provider. We divide it into two

categories: (i) diagnosing performance impact of network-

wide changes, where the same change is applied to multiple

eNodeBs across the network, and (ii) diagnosing performance

degradation of individual eNodeBs, where only one node may

experience the change and we apply our algorithm to identify

the root cause by comparing it to neighboring eNodeBs that

did not experience the degradation around the same time. Cat-

egory (i) consists of 5 case studies of network-wide changes

(Section III-B1) and category (ii) consists of 261 case studies

over two months (Section III-B2).

1) Diagnosing Impact of Network Upgrades: Case Study

I: Software upgrade on LTE cell towers. In our first

study, we analyzed the roll-out and impact analysis of a

software version upgrade across multiple LTE cell towers.

We observed performance improvements on some cell towers

and minor performance degradation (increase in call drops)

on a small set. The operation teams figured out that the end-

users were sending duplicate statistics measurements to the

cell towers that were pointing to the same reference object.

This led to cell towers dropping the calls because of internal

failures. This effect was only observed on cell towers with

the specific configuration; however other cell towers with

the same software upgrade but different configuration did

not experience service performance degradation. We run our

greedy diagnosis on the input that contains 250 features for

each eNodeB and whether its performance degrade or not.

It identified UTRAANR (UMTS Automated Neighbor Rela-

tions Discovery) feature as the possible trigger and Duplicate

Measurement as the root cause. Both the trigger and root

cause match exactly with the ground-truth from the operation

team. Our scheme further estimates degradation probabilities

are 0.67 and 0.28 when Duplicate Measurement is present and

not present, respectively.

Case Study II: Configuration changes on LTE cell tow-

ers. In our second case study, one of the configuration changes

introduced a new positioning feature for the end-users. The

positioning feature enables users to report the time difference

between specific signals from several cell towers to serving

centers in the core network. This feature introduction led

to increase in call drops only at cell towers with a higher

number of handovers. Again, the diagnosis of the contrasting

impact was challenging. Our automated algorithm enabled

faster detection of the root-cause. It identified Observed Time

Difference of Arrival (OTDOA) [6] Hearability Enhancement

(time synchronization for UE location positioning) as the

possible trigger and handovers as the root case. Both match

with the ground-truth from the operations team. It further

derives the degradation probabilities of 0.65 and 0.42 when

the number of handovers is high and low, respectively.

Case Study III: Hardware updates in the core. We

started with hardware update in the core network at Mobility

Management Entity (MME). MME in LTE manages multiple

cell towers and is responsible for processing the signaling

information between end-user and core network. After the

hardware change, we observed that there was an increase

in a particular type of alarm across a small number of cell

towers but not everywhere. Our diagnosis discovered that the

software version on the cell towers was the cause. A specific

software version had conflicting interactions with the new

hardware controller in the MME and caused the increase in

the number of alarms. Our algorithm identified controller type

as the trigger, and OS version as the root cause for raising

alarms on MMEs, which agrees with the ground truth from the

operation teams. It further derives the degradation probability

of 0.83 in OS version 1 and 0.55 in OS version 2.

Case Study IV: Software upgrade on LTE cell towers. The

fourth case study came to us before the operation team knew

the ground truth. We applied our algorithm to understand

the contrasting service performance impacts resulting from a

software roll-out on LTE cell towers in a specific region. There

was an increase in connection establishment failure rate at only

a small number of cell towers. Our algorithm automatically

identified that congested towers had performance degradation,

whereas others had no negative impacts. Congestion on the cell

towers was because of a multi-day high traffic special event

scenario which coincided with the day of the software upgrade.

Our results helped the operation team, who later confirmed that

issue occurred due to high traffic during holidays.

Case Study V: Software upgrade on LTE cell towers. In our

final case study, we analyzed software upgrade that was being

rolled out on LTE cell towers across the entire network. The

operation teams had noticed contrasting performance impacts

across cell towers. We used Mercury to detect that some cell

towers experienced throughput degradation whereas other cell

towers had no negative impact. We automatically identified

the cell towers that were serving a large number of users and

carrying higher traffic were experiencing degradation in LTE

data throughput. We confirmed our findings with the operation

teams. It turned out that the new software version was unable

to handle high traffic on specific carrier frequencies.

Table 1 compares the diagnosis results under different di-

agnosis algorithms for five case studies. All algorithms except

ours miss some case studies.

Reflection Info. Gain Fischer Sc. L1/L2 Norm Chi Square

100% 60% 80% 40%/80% 80%

TABLE I: Diagnosis accuracy across five case studies.

2) Diagnosing degradations on individual eNodeBs: We

analyzed the performance degradations observed on individual

eNodeBs during a time interval of two months. For each

case, our objective is to sift through a wide variety of fea-

ture data sets including configuration, alarms, performance

and traffic metrics, and identify the potential explanation

for the degradation. Degradations were observed in service

performance metrics, such as accessibility, retainability, and

data throughput. The operation teams had manually gleaned

through the feature sets to identify the root-cause. Even though

the traces are smaller-scale compared to the previous ones,

it still takes at least a few hours to manually diagnose each

case. In comparison, we develop a tool that automates the

diagnosis completely: it pulls the database to get the raw

input, prepares the input for our diagnosis program, and

automatically diagnoses each case within 2 minutes.

The number of features for each case study ranged from

60 to 80. For each eNodeB with performance degradation,

we identified a number of neighbors that did not experience

degradation around the same time. This gives us a contrasting

set. Since the cases were tackled historically, we knew the

ground truth root-cause for each of them. Our tool identified

radio congestion (significant increases in random access chan-

nel request) as the most likely explanation for the performance

degradation. Other root causes include remote IP address

unreachable, cell range change after software upgrade. This

aligns perfectly with the findings from the operation teams.

C. Test Planning

Case Study I: Figure 2(a) plots the recall after the first step

as the sampling ratio is varied from 0.25% to 2%. We make

several observations. First, Hamming distance based node

selection yields significantly higher accuracy than random

selection and high traffic selection. High traffic selection

under-performs even the random selection because it only sees

a biased subset of nodes. The bias is particularly bad in this

case because the feature value that causes degradation is more

popular in low traffic locations and more low traffic nodes

see performance degradation. This highlights the importance

of sampling diverse feature values in the tested nodes instead

of pre-assume traffic is the feature that matters. Second, the

performance benefit of strategic node selection is largest when

the sample size is small. Due to a large number of eNodeBs

in the network, a sample size of 0.5% - 1.5% is desirable

according to the operation team, and we observe a large

benefit in those scenarios. Third, it is interesting to note

that just by sampling 1%, Hamming distance based selection

combined with greedy diagnosis yields close to 100% recall.

This significantly reduces testing cost and manual diagnosis

effort. In comparison, the other selection schemes yield only

around 10%-70% around this region. Figure 2(b) compares F1

score of the second step. Hamming distance based continues to

out-perform the other two schemes. The gap between random

and Hamming distance reduces due to more samples are drawn

in the second step. Figure 2(c) shows the prediction errors of

different schemes. Prediction error for Reflection approaches

0.18 and for Random and high-traffic based heuristics, it

approaches 0.2 as sampling ratio approaches 2%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
e

c
a

ll

Sampling Percentage

Ours
Random

High Traffic

(a) Step 1 recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
1

 S
c
o

re

Sampling Percentage

Ours
Random

High Traffic

(b) Step 2 F1 score

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
re

d
ic

ti
o

n
 E

rr
o

r

Sampling Percentage

Ours
Random

High Traffic

(c) Step 2 prediction error

Fig. 2: Test planning in case study I.

Case Study II: Hamming distance based selection contin-

ues to perform the best, while random selection and high

traffic based selection perform significantly worse especially

when the number of samples are small. High traffic based

selection performs the worst because high handover nodes are

distributed proportionally across low-traffic versus high-traffic

nodes. So high traffic based selection is essentially randomly

sampling over a smaller pool of nodes.

Figure 3(b) and (c) plot F1 score and prediction error

after the second step using the traces from the case study

II. Hamming distance based selection yields the highest F1

score and lowest prediction error. Sampling 1% nodes yields

F1 score of 0.9 and prediction error of 0.18. The F1 score

approaches to 1 and prediction error approaches 0.14 as the

sampling ratio increases to 2%.

Case Study III: Figure 4(a), (b), and (c) plots recall after

step 1, F1 score and prediction error after step 2, respectively.

In this case, Reflection performs significantly better than the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
e

c
a

ll

Sampling Percentage

Ours
Random

High Traffic

(a) Step 1 recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
1

 S
c
o

re

Sampling Percentage

Ours
Random

High Traffic

(b) Step 2 F1 score

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
re

d
ic

ti
o

n
 E

rr
o

r

Sampling Percentage

Ours
Random

High Traffic

(c) Step 2 prediction error

Fig. 3: Test planning in case study II.

other schemes due to non-uniform feature value distribution

of the root cause feature. Other schemes tend to pick very few

nodes which do not have popular feature values. Due to the

absence of diverse values of root cause feature in testing set,

these schemes fail to capture the root cause.

We do not evaluate test planning in case studies IV and V

because these cases have within 100 nodes and test planning

is useful for a large number of nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
e

c
a

ll

Sampling Percentage

Ours
Random

High Traffic

(a) Step 1 recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
F

1
 S

c
o

re
Sampling Percentage

Ours
Random

High Traffic

(b) Step 2 F1 score

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
re

d
ic

ti
o

n
 E

rr
o

r

Sampling Percentage

Ours
Random

High Traffic

(c) Step 2 prediction error

Fig. 4: Test planning in case study III.

D. Prediction Error

In addition to the prediction error results for the case studies,

we also evaluate prediction error using a few more traces.

Figure 5 summarizes the results. As we can see, Hamming

distance based selection yields the lowest error. Sampling 2%

nodes can already achieve prediction error of 0.1-0.18. High-

traffic based selection performs either similarly to random

selection or worse since traffic is likely not the root cause

for degradation in these traces; picking high-traffic only nodes

causes unnecessary bias in sampling and lead to degradation

in traces 8 and 9.

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

d
ic

ti
o

n
 E

rr
o

r

Sampling Percentage

Ours
Random

High Traffic

(a) Trace 6

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

d
ic

ti
o

n
 E

rr
o

r

Sampling Percentage

Ours
Random

High Traffic

(b) Trace 7

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

d
ic

ti
o

n
 E

rr
o

r

Sampling Percentage

Ours
Random

High Traffic

(c) Trace 8

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

d
ic

ti
o

n
 E

rr
o

r

Sampling Percentage

Ours
Random

High Traffic

(d) Trace 9

Fig. 5: Prediction error in additional traces.

IV. EVALUATION USING SYNTHETIC TRACES

In this section, we complement the real trace analysis by

generating synthetic traces. While synthetic traces are not

realistic, they allow us to extensively evaluate each component

in our design and provide insights on how each parameter

impacts the accuracy of diagnosis and test planning. We

randomly select K important features out of N total fea-

tures. Then we generate a degradation probability for each

combination of K important features. For each configuration,

we generate a new trace with different eNodeB degradation

probabilities and feature values.

A. Test Planning

For each configuration, we generate 25 random traces, vary

the sampling ratio and report the average. We generate 20000

eNodeBs each with 50 features. We compare our Hamming

based selection with random selection for the two-phase plan-

ning. We plot comparison graphs for two cases, when we have

1 important feature and when we have 5 important features.

Figure 6 shows the recall of Hamming based approach is

higher because we diversify the feature values at each step. The

benefit of Hamming selection increases as the sampling rate

decreases and/or the number of important features increases

since the test planning algorithm is more critical in these cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

R
e

c
a

ll

Sampling Percentage

Hamming
Random

(a) 1 important feature

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

R
e

c
a

ll

Sampling Percentage

Hamming
Random

(b) 5 important features

Fig. 6: Recall after step 1 in synthetic traces.

Figure 6 plots the recall after the first phase and Figure 7

plots F1-score after the second step. For 1 important feature

around 1% sampling rate, recall and F1 is close to 1 for Re-

flection while the random selection clearly underperforms. The

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

F
1

Sampling Percentage

Hamming
Random

(a) 1 important feature

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

F
1

Sampling Percentage

Hamming
Random

(b) 5 important features

Fig. 7: F1 scores after step 2 in synthetic traces.

difference in F1 score is around 0.4 at 0.9% sampling ratio.

For 5 important features around 1% sampling rate, Reflection

can identify 4 out of 5 important features whereas random

can only identify at most 2 important features. Figure 8 shows

the prediction error after the second step where the difference

between Reflection and random can be as large as 15%.

The advantage of Hamming distance based selection over

random increases when the feature value distribution is skewed

in the dataset. In those cases, random selection misses out on

picking certain feature values for testing so it becomes difficult

to identify the root cause for contrasting performance impacts.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0.10.30.50.70.91.11.31.51.71.9

P
re

d
ic

ti
o

n
 E

rr
o

r

Sampling Percentage

Hamming
Random

(a) 1 important feature

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0.10.30.50.70.91.11.31.51.71.9

P
re

d
ic

ti
o

n
 E

rr
o

r

Sampling Percentage

Hamming
Random

(b) 5 important features

Fig. 8: Prediction error in synthetic traces.

V. RELATED WORK

Software testing: Software testing includes white-box testing

using source code, black-box testing without source code,

and grey-box testing based on specification of the program.

Combinatorial testing is used to generate automatic test cases

using various features of the software (e.g., [23], [8]). Software

testing differs from our upgrade tests in several important

aspects as we explained in Section I. A/B testing [14], [13]

are used in the web domains for making data-driven decisions.

However, it is prohibitively expensive to perform A/B testing

on all possible feature combinations. [5] develops an algebraic

approach to determine which network paths to probe in order

to fully recover end-to-end path properties. The number of

paths that it requires to monitor is close to the number of

links in the network. In comparison, we can only sample a

very small fraction of eNodeBs.

Network upgrades and impact analysis: [11] proposes a fast

system for executing consistent updates in a software defined

network. [25] proposes abstractions for network updates and

preserves consistency between configuration transitions. [9],

[16], [7] achieve congestion-free upgrades with zero packet

loss. Magus [33] minimizes service disruption for planned

upgrades in cellular networks by proactively tuning network

configuration. Mercury [20] time-aligns multiple network up-

grades and conducts an aggregate performance impact analy-

sis. PRISM [18] is a real-time analytics tool to detect perfor-

mance degradations immediately after a planned maintenance.

Litmus [19] uses robust algorithms to assess the performance

impact of network changes by comparing study group with

control group. However, Mercury, PRISM and Litmus cannot

perform root-cause analysis.

Network and service diagnosis: [15] develops an open

platform to monitor LTE radio performance by extracting

information from the LTE control channel. A number of works,

such as ThinkRF [31] and IntelliJudge [27], sniff RF signals

for testing inter-operability. [10] studies the interactions be-

tween applications, transport protocol, and the radio layer in

a large LTE network in US. It reports 52.6% of TCP flows

are throttled by TCP receive window. [32] uncovers several

problematic interactions among the control-plane protocols

in cellular networks. [28], [36], [2] use machine learning

techniques to diagnose problems in networks. Argus [35]

uses Holt-Winters algorithm to detect and localize service

performance anomalies in large ISP networks. NICE [21],

WISE [30], Giza [17], NetMedic [12], GRCA [34], and

URCA [29] capture the statistical dependencies between net-

work and service performance. Spectroscope [26] and X-

ray [1] compare two executions of program before and after

the change to diagnose performance changes. DiffProv [4] uses

differential provenance to compare good and bad examples of

system behavior to identify the reason for the bad behavior.

As also pointed by the authors, DiffProv assumes network

behavior is deterministic which is often not the case in

operational cellular network.

Remarks: Our work complements existing work by focusing

on a new aspect of network management – selecting test

locations and contrasting performance analysis, which is a

critical but under-explored problem.

VI. CONCLUSION

Cellular networks frequently go through upgrades. It is

important to automatically design field tests to identify the

features that affect the upgrade performance and predict the

performance of untested location and diagnose the perfor-

mance issues during the upgrades. We develop algorithms to

automate both processes, and apply them to the real traces

from a major cellular provider. We show that by sampling 1-

1.5% of eNodeBs in real world case studies, we can identify

the root cause with close to 100% accuracy. Encouraged by

the promising performance, we are working with the network

operation team to incorporate our solution to their operation.

Acknowledgment: We thank Chris Hristov, Jia Wang, Jen-

nifer Yates, Chris Rice, Jiasi Chen, and anonymous reviewers

for their insightful feedback on the paper. We strongly appre-

ciate the collaboration and continuous support from the AT&T

Network Engineering and Operations teams in the application

of Reflection, regular feedback to improve its usability, and

case-study analysis. This work is supported in part by NSF

Grant CNS-1718089.

REFERENCES
[1] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause

diagnosis of performance anomalies in production software. In USENIX
OSDI, 2012.

[2] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang.
Developing a predictive model of quality of experience for internet
video. In Proc. of ACM SIGCOMM, 2013.

[3] A. Barg, A. Mazumdar, and R. Wang. Restricted isometry property of
random subdictionaries. IEEE Trans. on Information Theory, 2015.

[4] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo. The good,
the bad, and the differences: Better network diagnostics with differential
provenance. In ACM SIGCOMM, 2016.

[5] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebraic approach to
practical and scalable overlay network monitoring. In ACM SIGCOMM,
2004.

[6] S. Fischer. Observed Time Difference Of Arrival (OTDOA) Position-
ing in 3GPP LTE. https://www.qualcomm.com/media/documents/files/
otdoa-positioning-in-3gpp-lte.pdf.

[7] S. Ghorbani and M. Caesar. Walk the line: Consistent network updates
with bandwidth guarantees. In Proc. of HotSDN, 2012.

[8] M. Grindal, J. Offutt, and S. F. Andler. Combination testing strategies:
A survey. Software Testing, Verification, and Reliability, 2005.

[9] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
wan. In Proc. of ACM SIGCOMM, 2013.

[10] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, and O. S.
Subhabrata Sen. An in-depth study of LTE: effect of network protocol
and application behavior on performance. In ACM SIGCOMM, 2013.

[11] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network updates.
In Proc. of ACM SIGCOMM, 2014.

[12] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl.
Detailed diagnosis in enterprise networks. In ACM SIGCOMM, 2009.

[13] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann.
Online controlled experiments at large scale. In ACM KDD, 2013.

[14] R. Kohavi, R. M. Henne, and D. Sommerfield. Practical guide to
controlled experiments on the web: listen to your customers not to the
hippo. In Proc. of ACM KDD, 2007.

[15] S. Kumar, E. Hamed, D. Katabi, and L. E. Li. LTE radio analytics made
easy and accessible. In Proc. of SIGCOMM, 2014.

[16] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz.
zupdate: Updating data center networks with zero loss. In ACM
SIGCOMM, 2013.

[17] A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and
Q. Zhao. Towards automated performance diagnosis in a large IPTV
network. In Proc. of ACM SIGCOMM, 2009.

[18] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J. Emmons, B. Hunt-
ley, and M. Stockert. Rapid detection of maintenance induced changes
in service performance. In Proc. of ACM CoNEXT, 2011.

[19] A. Mahimkar, Z. Ge, J. Yates, C. Hristov, V. Cordaro, S. Smith, J. Xu,
and M. Stockert. Robust assessment of changes in cellular networks. In
ACM CoNEXT, 2013.

[20] A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang,
and J. Emmons. Detecting the performance impact of upgrades in large
operational networks. In Proc. of ACM SIGCOMM, 2010.

[21] A. Mahimkar, J. Yates, Y. Zhang, A. Shaikh, J. Wang, Z. Ge, and C. T.
Ee. Troubleshooting chronic conditions in large IP networks. In Proc.
of ACM CoNEXT, 2008.

[22] M. Minoux. Accelerated greedy algorithms for maximizing submodular
set functions. In Optimization Techniques. Springer, 1978.

[23] C. Nie and H. Leung. A survey of combinatorial testing. ACM Comput.
Surv., 43(2):11:1–11:29, Feb. 2011.

[24] PSU. Psu. https://onlinecourses.science.psu.edu/stat414/node/268.
[25] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.

Abstractions for network update. In Proc. of ACM SIGCOMM, 2012.
[26] R. R. Sambasivan and A. X. Z. et al. Diagnosing performance changes

by comparing request flows. In USENIX NSDI, 2011.
[27] The wavejudge wireless test system. http://www.sanjole.com/

our-products/wavejudge-test-system/.
[28] M. Z. Shafiq, L. Ji, A. Liu, J. Pang, S. Venkataraman, and J. Wang.

A first look at cellular network performance during crowded event. In
Proc. of ACM SIGMETRICS, 2013.

[29] F. Silveira and C. Diot. URCA: Pulling out anomalies by their root
causes. In INFOCOM, 2010.

[30] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar.
Answering what-if deployment and configuration questions with WISE.
In ACM SIGCOMM, 2008.

[31] Product concept brief for distributed and remote LTE analysis. http:
//thinkrf.com/.

[32] G.-H. Tu, Y. Li, C. Peng, C.-Y. Li, H. Wang, and S. Lu. Control-plane
protocol interactions in cellular networks. In Proc. of SIGCOMM, 2014.

[33] X. Xu, I. Broustis, Z. Ge, R. Govindan, A. Mahimkar, N. Shankara-
narayanan, and J. Wang. Magus: Minimizing cellular service disruption
during network upgrades. In ACM CoNEXT, 2015.

[34] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates. G-RCA: a
generic root cause analysis platform for service quality management in
large ip networks. In ACM CoNEXT, 2010.

[35] H. Yan, A. Flavel, and Z. G. et al. Argus: End-to-end service anomaly
detection and localization from an ISP’s point of view. In IEEE
INFOCOM, 2012.

[36] S. Zhou, J. Yang, D. Xu, G. Li, Y. Jin, Z. Ge, M. B. Kosseifi,
R. Doverspike, Y. Chen, and L. Ying. Proactive call drop avoidance
in umts networks. In Proc. of IEEE INFOCOM, 2013.

