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Abstract—Models produced by machine learning, particularly
deep neural networks, are state-of-the-art for many machine
learning tasks and demonstrate very high prediction accuracy.
Unfortunately, these models are also very brittle and vulnerable
to specially crafted adversarial examples. Recent results have
shown that accuracy of these models can be reduced from close
to hundred percent to below 5% using adversarial examples. This
brittleness of deep neural networks makes it challenging to deploy
these learning models in security-critical areas where adversarial
activity is expected, and cannot be ignored. A number of
methods have been recently proposed to craft more effective and
generalizable attacks on neural networks along with competing
efforts to improve robustness of these learning models. But the
current approaches to make machine learning techniques more
resilient fall short of their goal. Further, the succession of new
adversarial attacks against proposed methods to increase neural
network robustness raises doubts about a foolproof approach to
robustify machine learning models against all possible adversarial
attacks. In this paper, we consider the problem of detecting
adversarial examples. This would help identify when the learning
models cannot be trusted without attempting to repair the models
or make them robust to adversarial attacks. This goal of finding
limitations of the learning model presents a more tractable
approach to protecting against adversarial attacks. Our approach
is based on identifying a low dimensional manifold in which
the training samples lie, and then using the distance of a new
observation from this manifold to identify whether this data
point is adversarial or not. Our empirical study demonstrates
that adversarial examples not only lie farther away from the
data manifold, but this distance from manifold of the adversarial
examples increases with the attack confidence. Thus, adversarial
examples that are likely to result into incorrect prediction by the
machine learning model is also easier to detect by our approach.
This is a first step towards formulating a novel approach based on
computational geometry that can identify the limiting boundaries
of a machine learning model, and detect adversarial attacks.

Index Terms—trusted machine learning, robustness, adversar-
ial examples, manifolds
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I. INTRODUCTION

Deep neural networks have emerged as an ubiquitous choice
of representation in machine learning due to the relative ease
and computational efficiency of training these models in the
presence of large amounts of data. The massive increase in
computational power fueled by Moore’s law and the emer-
gence of architectures supporting parallel processing at a large
scale have made it possible to train these highly nonlinear deep
learning networks with thousands of parameters using millions
of samples in a reasonable amount of time. This has led to a
quantum leap in the prediction accuracy of machine learned
models, and encouraged their rapid adoption in different
aspects of our social, economic and military infrastructure.
Deep neural networks currently provide state-of-the-art results
in various applications ranging from computer vision, network
security, natural language processing to automatic control.

Unfortunately, these models have been shown to be very
brittle and vulnerable to specially crafted adversarial perturba-
tions to examples: given an input x and any target classification
t, it is possible to find a new input z that is similar to = but
classified as t. These adversarial examples often appear almost
indistinguishable from natural data to human perception and
are yet incorrectly classified by the neural network. Recent
results have shown that accuracy of neural networks can be
reduced from close to 100% to below 5% using adversarial
examples. This creates a significant challenge in deploying
these deep learning models in security-critical domains where
adversarial activity is intrinsic, such as Internet of Battle
Things, cyber-networks, and surveillance. The use of neural
networks in computer vision and speech recognition have
brought these models into the center of security-critical sys-
tems where authentication depends on these machine learned
models. How do we ensure that adversaries in these domains
do not exploit the limitations of machine learning models to go
undetected or trigger a non-intended outcome? This paper aims
at addressing this challenge by detecting adversarial examples.



Fig. 1: Original samples (first 3 rows are from MNIST and the 4th row from CIFAR10) perturbed to create adversarial examples
with increasing (left to right) norm bound in the Projected Gradient Method implemented within CleverHans system [21].

There has been a recent explosion of methods for adversarial
attacks on neural network models along with techniques for
making neural networks resilient to attacks. No single resilient
mechanism has yet been discovered which can be used against
any feasible attack method. This paper takes a different
approach to resilience by focusing on the identification of
suspicious adversarial examples. The overall idea is to ensure
that the machine learning models can identify adversarial
attacks, and not provide a prediction on them instead of
providing a wrong prediction. An approach to detect these
adversarial examples will act as a runtime monitor that finds
the limits of the machine learning model.

The central novel contribution of this paper is an approach to
detect adversarial examples by identifying a low dimensional
manifold in which the training data lie, and then measuring
the distance of a new sample to this manifold. Adversarial
examples often rely on lying outside this manifold, and since
the model was learned using data samples in the manifold,
the model naturally mis-predicts on examples farther away
from the manifold. In our experiments, we use the CleverHans
system [21] and employ the Projected Gradient Descent (PGD)
attack method implemented in it. This is an implementation of
a very recent attack method described in Madry et al [17]. We
control the strength of the attack using one of the parameters
in this method e that bounds the maximum distortion of
adversarial example compared to the original input. Increasing
this norm bound generates adversarial examples with higher
confidence. Figure 1 illustrates how the generated adversarial
examples change with increase in the norm bound. Even
though the change in these images remains small in perception,
the accuracy of the neural network drops to below 5%. Our
empirical study on MNIST [15] and CIFAR10 [13] datasets
suggests that adversarial examples not only lie farther away
from the data manifold, but this distance from manifold of an
adversarial example increases with the confidence of adversar-
ial examples. Consequently, the detection approach presented
in this paper can more easily detect adversarial examples
generated with higher norm bound and hence, more likely

to cause mis-prediction in the machine learned model. This
is a first step towards formulating a computational geometric
approach to identifying boundaries of a machine learning
model, and using it to detect adversarial attacks.

The rest of the paper is organized as follows. In Section II,
we discuss related work on attacks and defense mechanisms
including methods for making machine learning algorithm
robust or pre-filtering of adversarial examples. We present
some background on manifold based learning in Section II,
and discuss the proposed approach in Section III. We present
the result of our experiments in Section IV before concluding
in Section V by discussing limitations of the current approach
and ongoing work in this direction.

II. BACKGROUND AND RELATED WORK

Multiple methods have been proposed in literature to gen-
erate adversarial examples as well as defend against ad-
versarial examples. Adversarial example generation methods
include both white-box and black-box attacks on neural net-
works [7], [22], [23], [29], targeting feedforward classification
networks [4], generative networks [12], and recurrent neural
networks [24]. These methods leverage gradient based opti-
mization for normal examples to discover perturbations that
lead to mis-prediction - the techniques differ in defining the
neighborhood in which perturbation is permitted and the loss
function used to guide the search. For example, one of the
earliest attacks [7] used a fast sign gradient method (FGMS)
that looks for a similar image x’ in the L°° neighborhood
of . Given a loss function Loss(x,1) specifying the cost of
classifying the point x as label [, the adversarial example z’
is calculated as

¥’ =z +e-sign(VyLoss(z, 1)

FGMS was improved to iterative gradient sign approach
(IGSM) in [14] by using a finer iterative optimization strategy
where the attack performs FGMS with a smaller step-width «,
and clips the updated result so that the image stays within the



€ boundary of x. In this approach, the i-th iteration computes
the following:

.%';+1 = Clipe,a:(w; +o- Sign(vaOSS(w7 lw)))

In contrast to FGSM and IGSM, DeepFool [20] attempts to
find a perturbed image 2’ from a normal image x by finding
the closest decision boundary and crossing it. In practice,
DeepFool relies on local linearized approximation of the
decision boundary. Another attack method that has received
a lot of attention is Carlini attack that relies on finding a
perturbation that minimizes change as well as the hinge loss on
the logits (pre-softmax classification result vector). The attack
is generated by solving the following optimization problem:

mins[||8]|2 + ¢ - max( Z(2),, — maxZ(z'); 1 i # lp, —k )]

where Z denotes the logits, [, is the ground truth label, s
is the confidence (raising which will force searcher for larger
perturbations), and c is a hyperparameter that balances the
perturbation and the hinge loss. Another attack method is
projected gradient method (PGM) proposed in [17]. PGD
attempts to solve this constrained optimization problem:

max Loss(z*™,1,)

[z dv —z|[ o0 <e

where S is the constraint on the allowed perturbation usually
given as bound ¢ on the norm, and [, is the ground truth
label of z. Projected gradient descent is used to solve this
constrained optimization problem by restarting PGD from
several points in the [, balls around the data points x. This
gradient descent increases the loss function Loss in a fairly
consistent way before reaching a plateau with a fairly well-
concentrated distribution and the achieved maximum value is
considerably higher than that of a random point in the data
set. In this paper, we focus on this PGD attack because it
is shown to be a universal first order adversary [17], that is,
developing detection capability or resilience against PGD also
implies defense against many other first order attacks.

Defense of neural networks against adversarial examples
is more difficult compared to generating attacks. Madry et
al. [17] propose a generic saddle point formulation where D
is the underlying training data distribution, Loss(f, z,l,) is a
loss function at data point z with ground truth label [/, for a
model with parameter 6:

max  Loss(0,z°%,1,)]

min F ~D
g @y [Hz“duszooge

This formulation uses robust optimization over the expected
loss for worst-case adversarial perturbation for training data.
The internal maximization corresponds to finding adversarial
examples, and can be approximated using IGSM [14]. This
approach falls into a category of defenses that use adversarial
training [27]. Instead of training with only adversarial exam-
ples, using a mixture of normal and adversarial examples in
the training set has been found to be more effective [20], [29].
Another alternative is to augment the learning objective with
a regularizer term corresponding to the adversarial inputs [7].

More recently, logit pairing has been shown to be an effective
approximation of adversarial regularization [11].

Another category of defense against adversarial attacks on
neural networks are defensive distillation methods [23]. These
methods modify the training process of neural networks to
make it difficult to launch gradient based attacks directly
on the network. The key idea is to use distillation training
technique [9] and hide the gradient between the pre-softmax
layer and the softmax outputs. Carlini and Wagner [4] found
methods to break this defense by changing the loss function,
calculating gradient directly from pre-softmax layer and trans-
ferring attack from easy-to-attack network to distilled network.
More recently, Athalye et al. [1] showed that it is possible to
bypass several defenses proposed for the whitebox setting.

Our approach falls into the category of techniques that focus
on only detecting adversarial examples. Techniques based
on manually identified statistical features [8] or a dedicated
learning model [19] trained separately to identify adversarial
examples have been previously proposed in literature. These
explicit classification methods do not generalize well across
different adversarial example generation techniques.

In contrast to these defensive methods, our approach does
not require any augmentation of training data, modification
of the training process or change in the learned model. The
design and training of the neural network is independent to
the manifold based filtering developed in this paper. Thus,
our approach to detection is orthogonal to learning robust
machine learning models and can benefit from these methods.
Further, we do not require access to the adversarial example
generation method, and thus this defense is likely to generalize
well across different attack methods. Our approach relies on
just identifying the manifold of typical data which need not
be even labeled and hence, this method is more practical in
contexts where labeled training data is very difficult to obtain.

A number of explanations for vulnerability of deep neural
networks to adversarial samples have been put forward in liter-
ature. Szegedy et al. [29] argue that low-probability adversarial
“pockets” densely populate the input space and hence, finding
an adversarial perturbation is easy. Goodfellow et al. [7]
link the ease of generating adversarial examples to the linear
nature of deep neural networks. Tanay and Griffin [30] present
a boundary tilting perspective that suggests the adversarial
examples lie in regions where the classification boundary is
close to the manifold of training data. Fienman et al. [5]
identify three situations that give rise to adversarial examples:
first, when the adversarial example is far away from the data
manifold, the second when the submanifolds corresponding to
different labels have pockets in them that allow the adversarial
example to be on submanifold of the wrong label further
away from the classification boundary, and finally when the
adversarial example is near two submanifolds as well as close
to the decision boundary.

Manifold based explanations for adversarial attacks have
also motivated defense mechanisms that try to exploit the
manifold property of training data. Bhagoji et al. [3] propose
a defense comprising of transforming data to eliminate per-



Fig. 2: Left to right: 2D manifold embedding of MNIST dataset using LLE, ISOMAP, t-SNE and Spectral Embedding.

turbations in non-principle components. Meng and Chan [18]
consider using autoencoders to project an input image to low
dimensional encoding and then decode it back to remove per-
turbations. Xu et a. [32] propose feature squeezing for images
in the input space that effectively forces the data to lie in a
low dimensional manifold. Song et al. [28] also note that the
distribution of log-likelihoods show considerable difference
between perturbed adversarial images and the training data
set which can be used to detect adversarial attacks.

III. APPROACH

Learning manifold in which data points lie has been itself
an active area of research [16], [25], [26], [31]. ISOMAP,
t-SNE and spectral embedding have been proposed to learn
the data manifold. Figure 2 illustrates the learned manifold
for MNIST data in 2 dimensions using these methods. The
spectral embedding method performs dimensionality reduction
in a way that preserves dot products between data points
as closely as possible by minimizing >_,(z7z; — yly;)?
where y; is embedding of z;. ISOMAP [31] embeds the
data points in a low dimensional space while preserving the
geodesic distances between data points. The geodesic distances
are measured in terms of shortest paths between the points
in a graph formed by computing k-nearest neighbors and
introducing an edge between the neighbors. After computing
the geodesic distances, spectral methods can be used to
compute the embeddings that preserve this geodesic distance
instead of Euclidean distance. t-distributed Stochastic Nearest
Embedding (t-SNE) [16] is another method for computing
manifold. It constructs a probability distribution over pairs of
high-dimensional data points in such a way that similar objects
have a high probability of being picked. This is followed
by defining a similar distribution in the low dimension and
minimized the KL divergence between the two distributions.

LLE [25] is another graph-based dimensionality reduction
method that tries to preserve the local linear structure. LLE lin-
early approximates each data point in the training set manifold
with its closest neighbors where the approximation is learned
using linear regression. LLE requires computations of the k-
nearest neighbors followed by computing the weight matrix W
that represents each point as a linear combination of its neigh-
bors. W' is computes such that the overall reconstruction error
doillzi=32; Wijz;]|* is minimized subject to constraints that
Wi; = 0 when z; and z; are not neighbors, and } -, W;; =1
for all 7. The low dimensional embedding is computed in LLE

2

by minimizing the following objective: >, [|y;— >, Wijy;||*,
where y; denotes the low dimensional embedding of x;, and
we can normalize the representation by requiring » . y; = 0
and YTY = I. W is constructed locally for each point, but
the low dimensional embeddings y; are computed globally
in a single optimization step. This enables LLE to uncover
global structure. Further, the embedding discovered by LLE
is scale and rotation independent due to constraints on y;.
Our experiments found LLE to be most effective because of
LLE’s better discovery of nonlinearity, and sharper embedding
in lower dimension as illustrated in Figure 2.

Our approach relies on computing the distance of the new
sample point from the manifold of training data. The kernel
density estimation can be used to measure the distance d(x) of
x from the data manifold of training set. Specifically, d(z) =
X Z k(z;, ), where X is the full data set and k(-,-) is a

x,€X
kernel function such as Gaussian or a simple L., or Ly norm.

In case of using Gaussian kernel, the bandwidth ¢ needs to be
carefully selected to avoid ‘spiky’ density estimate or an overly
smooth density estimate. A typical good choice for bandwidth
is a value that maximizes the log-likelihood of the training
data [10]. Further, we can restrict the set of training points
to be considered from the full set X to a set of immediate
neighbors of . The neighborhood can be defined using the
maximum distance or bound on the number of neighbors. In
our experiments, we use L, norm with bound on the number
of neighbors which yielded good result.

It has been hypothesized in literature [2], [6] that the deeper
layers of a deep neural network provide more linear and
unwrapped manifolds in comparison to the input space. Thus,
the task of identifying the manifold becomes easier as we
progress from the input space to the more abstract feature
spaces all the way to the logit space. But the adversarial
perturbations are harder to detect at higher levels and might
get hidden by the lower layers of the neural network. In our
experiments, we learned manifolds in input space as well as
the logit space.

IV. EXPERIMENTS

We evaluated our approach on MNIST dataset [15] and
CIFAR10 dataset [13]. We report the key findings in this
section.

As the norm bound in the PGD method for generating
adversarial examples is increased, the distance of adversarial
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Fig. 3: Increase in adversarial distance from manifold for MNIST in input space (Left) and logit space (Right). Each line of
different color shows the increase in distance with attack norm for one sample of a 1000 images. The distance monotonically
increased in each of the 100 experiments in the input space. The logit space shows increase in distance with norm up to a
threshold after which the distance decreases before again increasing. This is because of high norm bound allowing occasional
discovery of ‘clever’ adversarial examples that are closer to the logit manifold though farther from the input manifold.
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The boxes in the box plot denote the first and third quartile of the distance at a given attack norm.

examples from the manifold increases. While the success of
attack on the neural network increases with high norm bound,
it also becomes easier to detect these adversarial examples.
We observed this behavior to be common across MNIST and
CIFAR10 data set as illustrated in Figure 4. The distance from
manifold monotonically increases in the input space but in
the logit space, higher norm bound beyond a threshold allows
the attack method to find examples that decrease the distance
from logit manifold even though they are farther from the input
manifold. The consistent rise and fall of distance in logit space
for all the 100 samples is likely a property of the used PGD
method. This result is illustrated in Figure 3. The detection
rate of adversarial examples for MNIST as well as CIFAR10
improves with increase in norm bound and increased distance
from the manifold as illustrated in Figure 5 and 6.
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Fig. 5: Detection rate for MNIST data set
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V. CONCLUSION

We proposed a novel approach for detecting adversarial
examples using distance of a new example from the manifold
of training data. We focused on PGD method for generating
adversarial examples because it is shown to be a universal first
order adversary. Our empirical study on MNIST and CIFAR10
datasets suggests that adversarial examples not only lie farther
away from the data manifold, but this distance from manifold

of

an adversarial example increases with the confidence of

adversarial examples. Thus, examples which are more likely
to cause neural network to mis-predict are easier to detect
using distance from manifold. This paper is a first step towards
formulating a computational geometric approach to detecting
adversarial attacks. The approach presented in this paper is

not

limited to only detecting adversarial examples but can be

extended to learn boundaries of a machine learning model by
geometrically characterizing the training data and the model
parameters.

[1]

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated
gradients give a false sense of security: Circumventing defenses to
adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah Rifai.
Better mixing via deep representations. In International Conference
on Machine Learning, pages 552-560, 2013.

Arjun Nitin Bhagoji, Daniel Cullina, Chawin Sitawarin, and Prateek
Mittal. Enhancing robustness of machine learning systems via data
transformations. In Information Sciences and Systems (CISS), 2018 52nd
Annual Conference on, pages 1-5. IEEE, 2018.

Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. arXiv preprint arXiv:1608.04644, 2016.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B
Gardner. Detecting adversarial samples from artifacts. arXiv preprint
arXiv:1703.00410, 2017.

Jacob R Gardner, Paul Upchurch, Matt J Kusner, Yixuan Li, Kil-
ian Q Weinberger, Kavita Bala, and John E Hopcroft. Deep manifold
traversal: Changing labels with convolutional features. arXiv preprint
arXiv:1511.06421, 2015.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples (2014). arXiv preprint
arXiv:1412.6572.

Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes,
and Patrick McDaniel. On the (statistical) detection of adversarial
examples. arXiv preprint arXiv:1702.06280, 2017.

(9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

M Chris Jones, James S Marron, and Simon J Sheather. A brief survey
of bandwidth selection for density estimation. Journal of the American
Statistical Association, 91(433):401-407, 1996.

Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit
pairing. arXiv preprint arXiv:1803.06373, 2018.

Jernej Kos, Ian Fischer, and Dawn Song. Adversarial examples for
generative models. arXiv preprint arXiv:1702.06832, 2017.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset.
online: http://'www. cs. toronto. edu/kriz/cifar. html, 2014,

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial
examples in the physical world. arXiv preprint arXiv:1607.02533, 2016.
Yann LeCun. The mnist database of handwritten digits. http://yann.
lecun. com/exdb/mnist/, 1998.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. Journal of machine learning research, 9(Nov):2579-2605, 2008.
Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.
Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against
adversarial examples. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 135-147.
ACM, 2017.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian
Bischoff.  On detecting adversarial perturbations. arXiv preprint
arXiv:1702.04267, 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. Deepfool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2574-2582, 2016.

Nicolas Papernot, Nicholas Carlini, Ian Goodfellow, Reuben Feinman,
Fartash Faghri, Alexander Matyasko, Karen Hambardzumyan, Yi-Lin
Juang, Alexey Kurakin, Ryan Sheatsley, et al. cleverhans v2. 0.0: an
adversarial machine learning library. arXiv preprint arXiv:1610.00768,
2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pages 506-519.
ACM, 2017.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,
Z Berkay Celik, and Ananthram Swami. The limitations of deep learning
in adversarial settings. In Security and Privacy (EuroS&P), 2016 IEEE
European Symposium on, pages 372-387. IEEE, 2016.

Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and Richard
Harang. Crafting adversarial input sequences for recurrent neural
networks. In Military Communications Conference, MILCOM 2016-
2016 IEEE, pages 49-54. 1IEEE, 2016.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality
reduction by locally linear embedding. science, 290(5500):2323-2326,
2000.

Lawrence K Saul and Sam T Roweis. Think globally, fit locally:
unsupervised learning of low dimensional manifolds. Journal of machine
learning research, 4(Jun):119-155, 2003.

Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding
adversarial training: Increasing local stability of neural nets through
robust optimization. arXiv preprint arXiv:1511.05432, 2015.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate
Kushman. Pixeldefend: Leveraging generative models to understand and
defend against adversarial examples. arXiv preprint arXiv:1710.10766,
2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Thomas Tanay and Lewis Griffin. A boundary tilting persepective on the
phenomenon of adversarial examples. arXiv preprint arXiv:1608.07690,
2016.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global
geometric framework for nonlinear dimensionality reduction. science,
290(5500):2319-2323, 2000.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: De-
tecting adversarial examples in deep neural networks. arXiv preprint
arXiv:1704.01155, 2017.



