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Abstract—Models produced by machine learning, particularly
deep neural networks, are state-of-the-art for many machine
learning tasks and demonstrate very high prediction accuracy.
Unfortunately, these models are also very brittle and vulnerable
to specially crafted adversarial examples. Recent results have
shown that accuracy of these models can be reduced from close
to hundred percent to below 5% using adversarial examples. This
brittleness of deep neural networks makes it challenging to deploy
these learning models in security-critical areas where adversarial
activity is expected, and cannot be ignored. A number of
methods have been recently proposed to craft more effective and
generalizable attacks on neural networks along with competing
efforts to improve robustness of these learning models. But the
current approaches to make machine learning techniques more
resilient fall short of their goal. Further, the succession of new
adversarial attacks against proposed methods to increase neural
network robustness raises doubts about a foolproof approach to
robustify machine learning models against all possible adversarial
attacks. In this paper, we consider the problem of detecting
adversarial examples. This would help identify when the learning
models cannot be trusted without attempting to repair the models
or make them robust to adversarial attacks. This goal of finding
limitations of the learning model presents a more tractable
approach to protecting against adversarial attacks. Our approach
is based on identifying a low dimensional manifold in which
the training samples lie, and then using the distance of a new
observation from this manifold to identify whether this data
point is adversarial or not. Our empirical study demonstrates
that adversarial examples not only lie farther away from the
data manifold, but this distance from manifold of the adversarial
examples increases with the attack confidence. Thus, adversarial
examples that are likely to result into incorrect prediction by the
machine learning model is also easier to detect by our approach.
This is a first step towards formulating a novel approach based on
computational geometry that can identify the limiting boundaries
of a machine learning model, and detect adversarial attacks.

Index Terms—trusted machine learning, robustness, adversar-
ial examples, manifolds
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I. INTRODUCTION

Deep neural networks have emerged as an ubiquitous choice

of representation in machine learning due to the relative ease

and computational efficiency of training these models in the

presence of large amounts of data. The massive increase in

computational power fueled by Moore’s law and the emer-

gence of architectures supporting parallel processing at a large

scale have made it possible to train these highly nonlinear deep

learning networks with thousands of parameters using millions

of samples in a reasonable amount of time. This has led to a

quantum leap in the prediction accuracy of machine learned

models, and encouraged their rapid adoption in different

aspects of our social, economic and military infrastructure.

Deep neural networks currently provide state-of-the-art results

in various applications ranging from computer vision, network

security, natural language processing to automatic control.

Unfortunately, these models have been shown to be very

brittle and vulnerable to specially crafted adversarial perturba-

tions to examples: given an input x and any target classification

t, it is possible to find a new input x that is similar to x but

classified as t. These adversarial examples often appear almost

indistinguishable from natural data to human perception and

are yet incorrectly classified by the neural network. Recent

results have shown that accuracy of neural networks can be

reduced from close to 100% to below 5% using adversarial

examples. This creates a significant challenge in deploying

these deep learning models in security-critical domains where

adversarial activity is intrinsic, such as Internet of Battle

Things, cyber-networks, and surveillance. The use of neural

networks in computer vision and speech recognition have

brought these models into the center of security-critical sys-

tems where authentication depends on these machine learned

models. How do we ensure that adversaries in these domains

do not exploit the limitations of machine learning models to go

undetected or trigger a non-intended outcome? This paper aims

at addressing this challenge by detecting adversarial examples.





ε boundary of x. In this approach, the i-th iteration computes

the following:

x′
i+1 = clipε,x(x

′
i + α · sign(∇xLoss(x, lx)))

In contrast to FGSM and IGSM, DeepFool [20] attempts to

find a perturbed image x′ from a normal image x by finding

the closest decision boundary and crossing it. In practice,

DeepFool relies on local linearized approximation of the

decision boundary. Another attack method that has received

a lot of attention is Carlini attack that relies on finding a

perturbation that minimizes change as well as the hinge loss on

the logits (pre-softmax classification result vector). The attack

is generated by solving the following optimization problem:

minδ[||δ||2 + c ·max( Z(x′)lx −maxZ(x′)i : i 6= lx,−κ )]

where Z denotes the logits, lx is the ground truth label, κ

is the confidence (raising which will force searcher for larger

perturbations), and c is a hyperparameter that balances the

perturbation and the hinge loss. Another attack method is

projected gradient method (PGM) proposed in [17]. PGD

attempts to solve this constrained optimization problem:

max
||xadv−x||∞≤ε

Loss(xadv, lx)

where S is the constraint on the allowed perturbation usually

given as bound ε on the norm, and lx is the ground truth

label of x. Projected gradient descent is used to solve this

constrained optimization problem by restarting PGD from

several points in the l∞ balls around the data points x. This

gradient descent increases the loss function Loss in a fairly

consistent way before reaching a plateau with a fairly well-

concentrated distribution and the achieved maximum value is

considerably higher than that of a random point in the data

set. In this paper, we focus on this PGD attack because it

is shown to be a universal first order adversary [17], that is,

developing detection capability or resilience against PGD also

implies defense against many other first order attacks.

Defense of neural networks against adversarial examples

is more difficult compared to generating attacks. Madry et

al. [17] propose a generic saddle point formulation where D
is the underlying training data distribution, Loss(θ, x, lx) is a

loss function at data point x with ground truth label lx for a

model with parameter θ:

min
θ

E(x,y)∼D[ max
||xadv−x||∞≤ε

Loss(θ, xadv, lx)]

This formulation uses robust optimization over the expected

loss for worst-case adversarial perturbation for training data.

The internal maximization corresponds to finding adversarial

examples, and can be approximated using IGSM [14]. This

approach falls into a category of defenses that use adversarial

training [27]. Instead of training with only adversarial exam-

ples, using a mixture of normal and adversarial examples in

the training set has been found to be more effective [20], [29].

Another alternative is to augment the learning objective with

a regularizer term corresponding to the adversarial inputs [7].

More recently, logit pairing has been shown to be an effective

approximation of adversarial regularization [11].

Another category of defense against adversarial attacks on

neural networks are defensive distillation methods [23]. These

methods modify the training process of neural networks to

make it difficult to launch gradient based attacks directly

on the network. The key idea is to use distillation training

technique [9] and hide the gradient between the pre-softmax

layer and the softmax outputs. Carlini and Wagner [4] found

methods to break this defense by changing the loss function,

calculating gradient directly from pre-softmax layer and trans-

ferring attack from easy-to-attack network to distilled network.

More recently, Athalye et al. [1] showed that it is possible to

bypass several defenses proposed for the whitebox setting.

Our approach falls into the category of techniques that focus

on only detecting adversarial examples. Techniques based

on manually identified statistical features [8] or a dedicated

learning model [19] trained separately to identify adversarial

examples have been previously proposed in literature. These

explicit classification methods do not generalize well across

different adversarial example generation techniques.

In contrast to these defensive methods, our approach does

not require any augmentation of training data, modification

of the training process or change in the learned model. The

design and training of the neural network is independent to

the manifold based filtering developed in this paper. Thus,

our approach to detection is orthogonal to learning robust

machine learning models and can benefit from these methods.

Further, we do not require access to the adversarial example

generation method, and thus this defense is likely to generalize

well across different attack methods. Our approach relies on

just identifying the manifold of typical data which need not

be even labeled and hence, this method is more practical in

contexts where labeled training data is very difficult to obtain.

A number of explanations for vulnerability of deep neural

networks to adversarial samples have been put forward in liter-

ature. Szegedy et al. [29] argue that low-probability adversarial

“pockets” densely populate the input space and hence, finding

an adversarial perturbation is easy. Goodfellow et al. [7]

link the ease of generating adversarial examples to the linear

nature of deep neural networks. Tanay and Griffin [30] present

a boundary tilting perspective that suggests the adversarial

examples lie in regions where the classification boundary is

close to the manifold of training data. Fienman et al. [5]

identify three situations that give rise to adversarial examples:

first, when the adversarial example is far away from the data

manifold, the second when the submanifolds corresponding to

different labels have pockets in them that allow the adversarial

example to be on submanifold of the wrong label further

away from the classification boundary, and finally when the

adversarial example is near two submanifolds as well as close

to the decision boundary.

Manifold based explanations for adversarial attacks have

also motivated defense mechanisms that try to exploit the

manifold property of training data. Bhagoji et al. [3] propose

a defense comprising of transforming data to eliminate per-








