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Abstract—Robotic surgical systems have contributed greatly
to the advancement of minimally invasive surgery (MIS). More
specifically, telesurgical robots have provided enhanced dexter-
ity to surgeons performing MIS procedures. However, current
robotic teleoperated systems have only limited situational aware-
ness of the patient anatomy and surgical environment that would
typically be available to a surgeon in an open surgery. Although
the endoscopic view enhances the visualization of the anatomy,
perceptual understanding of the environment and anatomy is
still lacking due to the absence of sensory feedback. To address
these limitations, we present an algorithmic software framework
to provide Complementary Situational Awareness (CSA) in a
surgical assistant. This framework aims at improving the human-
robot relationship by providing elaborate guidance and sensory
feedback capabilities for the surgeon in complex MIS procedures.
Unlike traditional teleoperation, this framework enables the user
to telemanipulate the situational model in a virtual environment
and uses that information to command the slave robot with
appropriate admittance gains and environmental constraints.
Simultaneously, the situational model is updated based on in-
teraction of the slave robot with the task space environment.
We provide various high-level and mid-level components to
provide CSA and illustrate the necessary capabilities required
for any robotic platform to readily incorporate CSA. We also
demonstrate the use of our framework for constrained model-
mediated teleoperation using the open-source da Vinci Research
Kit (dVRK) hardware.

Keywords-software framework; dVRK; online estimation; tele-
operation;

I. INTRODUCTION

Teleoperation is the most common human-in-the-loop sys-

tem, where, in the most basic form, the slave robot follows

a motion command given by the master device operated by

a human. Due to uncertainty in the environment, performing

complex manipulation tasks using basic teleoperation can be

risky and is completely dependent on the surgeon’s visual

perception of the environment. In some cases, it is impractical

or extremely difficult to visualize the anatomical features. Our

proposed framework aims at dynamically providing informa-

tion of the situational model, making sure the surgeon is aware

of the constantly evolving target anatomy. The whole idea

of CSA can be summarized in two fundamental concepts;

a) manipulation is mediated by a situational model, and b)
the situational model is updated based on information from
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Fig. 1. a) Conventional surgical workflow, b) Surgical workflow with CSA

manipulation. Our software platform is implemented as a

component based framework with various high-level and mid-

level components. Figure 1a shows the conventional surgical

workflow in an operational theatre and Figure 1b shows the

surgical workflow with the addition of CSA.

To provide CSA, any computational framework must incor-

porate many machine capabilities, including sensor informa-

tion fusion, enforcing operational constraints for human-robot

task execution, providing sensory feedback of the situational

model environment, and updating an a priori model based on

the environment. Further, these functions must be executed

simultaneously at interactive, near-to-video frame rates.

There is considerable prior art describing methods for

implementing these individual capabilities. Sotiras et al. [1]

present a review of various deformable registration methods

dealing with environments that deform relative to a priori
models. In more recent work ([2], [3]), global deformation

of a model is addressed.

A number of researchers (e.g. [4–8]) have developed finger-

like tactile and force sensors to provide information about tool-

to-tissue interaction forces. Mahvash et al. [9] developed a



control system for the da Vinci surgical system [10], which

provides force feedback with a position-position controller

with friction and inertia compensation. Using this system they

provided some results on stiffness estimation of a tissue model,

based on discrete palpation. More recently, Xu and Simaan

have developed methods for estimating the force/moment

acting at the tip of continuum robots by using measurements of

joint-level actuation forces and extrinsic information regarding

the type of interaction with the environment [11], [12]. These

methods have been used in [13] to enable force-controlled

exploration of flexible anatomy in a manner that benefits from

the palpation methods presented in this research.

Mitra and Niemeyer [14] introduced the concept of model-

mediated telemanipulation. Based on this approach, Xia et al.

[15] demonstrated model-based telemanipulation for satellite

servicing using hybrid force/motion control to accommodate

environment mismatch with the slave robot. Force controlled

exploration has also been examined previously as a means

of gathering information for registration and updating a pre-

operative model [16]. Constrained Kalman filtering was em-

ployed to obtain the rigid registration of the model using

contact and estimated stiffness information.

Even though these challenges have been tackled individu-

ally, existing approaches have limitations when implemented

together in a real-time interactive environment and require a

system infrastructure that is non-trivial to implement. Further,

when the system has to perform interactively in response to

new incoming data, there are additional problems that arise,

such as registration and update of the situational model.

Most prior work on image-guided robotic assistance is

focused on registering intra-operative to pre-operative images.

Global deformation methods such as Coherent Point Drift

[2] are also inefficient when new sample points are provided

for registration in an incremental manner. Our framework

uses an incremental global deformation technique to update

the situational model. To estimate surface information, re-

searchers have used discrete probing strategies [17], which

can be extremely time consuming and wasteful. The CSA

framework supports continuous palpation strategies to dy-

namically estimate shape and stiffness information during

exploration. Current model-based telemanipulation systems

lack an efficient way of using this exploration data to update

the deformable situational model. Haptic cues and task-specific

virtual fixtures can also be highly unintuitive because they

are dependent on the constantly evolving situational model.

In our own prior work, we have reported concurrent offline

estimation of surface shape and stiffness [18] and model-

mediated teleoperation using virtual fixtures [19].

This paper presents a component based framework that

enables us to address these challenges together. In particular,

our computational framework facilitates interactive, online up-

dates of the situational model using information from multiple

sources while concurrently updating task-based virtual fixtures

based on information obtained during manipulation. Further,

our framework dynamically corrects for discrepancies between

the situational model and target anatomy.
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Fig. 2. Various components in the CSA framework.

.

II. SOFTWARE FRAMEWORK

CSA is implemented as a component based framework, us-

ing the open source cisst libraries, developed at Johns Hopkins

University ([20], [21]), with support for the Robot Operating

System (ROS) [22]. Figure 2 shows the proposed framework

and various component interactions to facilitate CSA. Teleop
is the central high level component managing communication

between various components of the framework. The Master
mid level controller (MLC) sends position to the Teleop; the

Slave MLC receives these position commands from the Teleop

and executes the motion. Each component in this framework

is responsible for a particular task and together they provide

situational awareness for the surgeon. This computational

framework can be incorporated into any robotic platform that

can provide the following capabilities: a) Master LLC can be

commanded in torque and position control, b) Slave LLC can

be commanded in position control and c) Means to report

interaction forces.

The following subsections give a brief description of various

components and their significance to provide CSA in surgical

assistant robots.

A. Master MLC

The Master MLC is implemented as a torque controller.

This allows the user to provide external joint torques computed

from various control goals. The component is responsible for

adding all the necessary joint torques and sending them to the

Master LLC which communicates with the master hardware to

perform joint-level servo control. One such goal is compliance

control, which requires the user to to provide compliance gains

to the master MLC. Using these gain parameters, the com-

pliance wrench is computed based on pseudocode described

in Algorithm 1. Here the compliance frame Fc = [Rc, pc]
defined in the master base frame is used to calculate the desired

wrench [f, t]. The position stiffness gains, �k(+), �k(−), position

damping gains �b(+),�b(−) and force bias terms �g(+), �g(−) are

used to calculate the desired force. Similarly, torque bias terms

�τ (+), �τ (−) and orientation stiffness gains �k
(+)
o , �k

(−)
o are used



for computing the desired torque. This compliance control

is used to provide force feedback to the user on the master

handle, which is helpful for user guidance.

The user also has a provision for sending the compliance

wrench directly to the Master MLC. This allows for the system

to compute the compliance wrench externally and send it to

the Master MLC for haptic rendering. As shown in Fig. 3,

the user can either specify the external compliance wrench

(fe, te) or provide compliance gains for the system to compute

the compliance wrench (f, t). The compliance torque τc and

torque from gravity compensation (τgc) are added to get the

total desired torque.

����������
	���
��	�����	�

�������	���������

�

����
��	�����	��

��������	���
��	�
�����������

��� ��

���� ���

�	

�
	

�

�� �� � � �

����������

��
��
��

��
�

����������

��
���

�����	
���	

	��

��
��	������
�	��

Fig. 3. Master MLC: q-joint position, q̇-joint velocity, x-cartesian position,
ẋ-cartesian velocity, [fe, te]-compliance wrench from external source, [f, t]-
wrench computed based on compliance algorithm, τgc-joint torque from
gravity compensation, τc-joint torque from compliance control and τ -total
joint torque sent to Master LLC

Algorithm 1 Compliance wrench
Output: Wrench [f, t]

�ε = F−1
c �p = R−1

c (�p− �pc) � Position Error

�v = R−1
c ṗ � Velocity on compliance frame

for i ∈ {x, y, z} do
if �εi ≤ 0 then

�gi = �g
(−)
i + �k

(−)
i �εi +�b

(−)
i �vi

else
�gi = �g

(+)
i + �k

(+)
i �εi +�b

(+)
i �vi

end if
end for
�f = Rc�g � Desired force

�θ = Rodriguez(�R = R−1
c R) � Orientation Error

for i ∈ {x, y, z} do
if �θi ≤ 0 then

�τi = �τ
(−)
i + �k

(−)
oi

�θi
else

�τi = �τ
(+)
i + �k

(+)
oi

�θi
end if

end for
�t = Rc�τ � Desired torque
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Fig. 4. Slave MLC: qc-current joint state, qd-desired joint state, xc-
current cartesian state, xd-desired cartesian state, Fc-sensed force, Fd-desired
limiting force and {x∗

d, F
∗
d }-updated desired position and force based on user

specified palpation primitive.

B. Slave MLC

The Slave MLC is responsible for sending motion com-

mands to the slave low level controller (LLC) which communi-

cates with the slave hardware. The Slave MLC is implemented

as an admittance type controller while the slave robot follows a

hybrid force/motion (HFM) control law. As the name suggests,

the control is based on position and force, thus a force sensing

component is also connected to the Slave MLC to retrieve the

interaction forces with the anatomy. This enables for better

perception of the patient anatomy and surgical environment.

Figure 4 shows the internal communication of the Slave MLC.

HFM control is implemented as an optimization problem and

the setup for obtaining the desired incremental joint motion is

stated below,

δq = min‖Jδq − δx‖ (1)

such that,

δx = KaKg(Fc − Fd)δt+Kp(xd − xc)

vl ≤ δq

δt
≤ vu

where, J represents the body jacobian of the slave robot, δt is

the sampling rate of the component in seconds and δx and δq
represent incremental cartesian and joint position, respectively.

Kp and Ka are motion force projection matrices as described

in ([23], [24]). Ka projects the motion from the force con-

troller in the direction normal to the surface. Similarly, Kp

projects motion from the position controller in the direction

perpendicular to the surface normal. Fc denotes the contact

force obtained from the force sensor and Fd denotes the

desired force the slave should maintain with the anatomy. Kg

is the admittance gain matrix for the force motion. xc is the

current cartesian position and xd is the commanded/desired

cartesian position. Inclusion of the constrained optimizer in

the Slave MLC also allows the user to incorporate task-space

virtual fixtures.

The Slave MLC also has a provision for choosing different

motion primitives for continuous palpation. Currently, two

motion primitives are supported:

1) Sinusoidal force reference: Motion is achieved when

following a sinusoidal force reference. The desired force



Fd in (1) is replaced by F ∗
d ,

F ∗
d = Fd +A ∗ Sin(2πωt) (2)

where A,ω, t are parameters of the sine motion.

2) Sinusoidal motion reference: Motion is achieved by

applying a sinusoidal motion reference in the direction

of the sensed force vector. Desired motion xd in (1) is

replaced by x∗
d,

x∗
d = xd + n̂A ∗ Sin(2πωt) (3)

where A,ω, t are parameters of the sine motion and

n̂ = Fc

||Fc|| is the direction of the sensed force vector.

Figure 5 properly depicts the motions of these primitives.
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Fig. 5. Palpation motion primitives : a) Sinusoidal force reference, b)
Sinusoidal motion reference

C. Proxy Slave

As stated before, CSA focuses on interacting with the

situational model and uses information from sensing and inter-

action with the modeled environment to update the model. The

situational model in the virtual environment is registered to a

simulated slave robot, called the Proxy Slave. This component

obtains position commands from the Teleop component and

executes the motion based on the position controller only. The

minimization problem is similar to that of eq. 1:

δq = min‖Jδq − δx‖

such that,

δx = (xd − xc)

vl ≤ δq

δt
≤ vu

The user teleoperates the Proxy slave and based on the

interaction with the situational model, Teleop sends impedance

commands to the Master MLC and admittance commands to

the slave MLC. The advantage of the proxy slave is that it

provides the state information of a slave robot with an ideal

position control. This allows the Teleop component to use the

contact information of the proxy slave with the situational

model for haptic rendering on the master side. Additionally,

Teleop uses this information to send admittance commands to

the slave side for better control.
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Fig. 6. Proxy Slave : qc-current joint state, qd-desired joint state, xc-current
cartesian state, xd-desired cartesian state

D. Teleop Component

Teleop is a high-level component which maintains various

state information and is responsible for managing commu-

nications among various components as shown in Fig. 8. It

retains the state information of the master robot, slave robot

and the proxy slave robot. Since the user is teleoperating

the proxy slave, the virtual environment will eventually drift

from reality when there is an interaction with the anatomy.

This is due to the additional force controller in the Slave

MLC. However, the system corrects this mismatch between

the virtual and real environment using the contact information

of both the slave robots with their respective environments. A

sample mismatch scenario is demonstrated in Fig. 7. At time

step t0 the slave robot and the proxy slave robot are at the

exact same location in the real and the virtual environment,

respectively. Based on master movement, at time step t1, both

receive an incremental move (δx) command from the Teleop.

At time step t2, the Slave robot, obeying the HFM control,

reaches the surface of the model and servos at the point of

contact maintaining minimal contact force. However, Proxy

Slave, obeying position control, will cross the surface in the

virtual environment, creating a mismatch between the joint

state of the Slave robot and the Proxy Slave.
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Fig. 7. Sample mismatch scenario

Following are different teleop states (Fig. 9) that are imple-

mented to handle various mismatch scenarios:

• PROXY_CONTACT: This is the state of Teleop when the

proxy slave is in contact with the situational model but

the slave robot is not in contact with the anatomy.
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Fig. 8. Teleop information flow

Correction: Compliance forces are sent to the Master

MLC for haptic rendering. Desired force (Fd) is cal-

culated and sent to the Slave MLC according to the

following equation:

Fd = kd�εs (4)

where �εs is a vector defining the depth of the Proxy

Slave’s tip inside the surface and kd is a scaling factor

resembling stiffness of the tissue. This correction will

eventually change the teleop state to FULL_CONTACT
or NO_CONTACT.

• SLAVE_CONTACT: This is the state of Teleop when the

proxy slave is not in contact with the situational model

but the slave robot is in contact with the anatomy.

Correction: Send zero desired force to the Slave MLC

and set the projection matrices in the HFM law to be

identity. This will enable position control in the force

regulating direction and eventually the teleop state will

switch to FULL_CONTACT or NO_CONTACT
• FULL_CONTACT: This is the state of Teleop when the

proxy slave is in contact with the situational model and

the slave robot is also in contact with the anatomy.

Correction: Compliance forces are sent to the Master

MLC and admittance gains are sent to the slave MLC.

Additionally, the direction of the desired force is calcu-

lated based on the direction of the sensed contact force.

This will make sure that, if palpation is enabled, the

force reference direction is close to the surface normal

direction.

• NO_CONTACT: This is the state of Teleop when the proxy
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Fig. 9. Different Teleop states to correct mismatch

slave and the slave robot both are not in contact with the

situational model and the anatomy, respectively.

Correction: This is a special case where both are not in

contact but there still might be a mismatch due to the

previous state of Teleop:

1) If the previous state was NO_CONTACT or

FULL_CONTACT, then there is no mismatch.

2) If the previous state was PROXY_CONTACT or

SLAVE_CONTACT, then the proxy slave’s state

information is synced with the slave robot.

The Teleop component also retains the current model infor-

mation. Based on the contact information of the proxy slave

with the situational model, compliance forces are calculated

using algorithm 1 and sent to the Master MLC.

This design allows the system to dynamically detect and

correct the mismatch between the virtual environment and the

reality. Simultaneously, the system also provides smooth haptic

rendering when interacting with the situational model.

E. Modeler

The Modeler is responsible for providing the Teleop compo-

nent with the latest model information based on the interaction

between the slave robot and the anatomy. Additionally, it

performs an optimization step to provide the optimum location

for exploration to maximize information gain. This task is

divided into three sub processes:

1) GP Process: This process is responsible for providing

surface and stiffness information based on continuous

palpation. The method is based on Gaussian Process

(GP) and our work on offline estimation is described

in [18]. However, for the framework to execute in real-

time the estimation has to be done incrementally. Our

new approach is based on learning the local force model

around the palpating region using GP. This model is then

used to incrementally estimate the local stiffness and

shape of the anatomy while it is being palpated. Spatial

data structures, specifically hash grids, are used to store

position and force information for efficient data storage

and retrieval. This allows for low-latency estimation of

local surface information around the region of palpation.

2) Registration process: This process is responsible for

providing the latest model information by registering the

current model with the information provided by the GP

component. We implemented an online deformable reg-

istration technique based on work done by Billings et al.

[25]. We use a grid-based deformation technique where

the undeformed model mesh is enclosed with sparse grid

vertices. The deformation field is then optimized over

the grid vertices rather than the model vertices for faster

computation.

3) Trajectory optimizer: We have implemented a prelim-

inary version of a trajectory optimizer formulated as a

stochastic optimization over trajectories parameterized

using a finite dimensional vector (FDV). This process is

responsible for providing the next optimum location on



the model based on a user specified cost function. We

presented some initial results of this method in [18],

which is based on an upper confidence bound (UCB)

on the stiffness estimate. We considered two different

cost functions for a given FDV: one minimizing the

variance of stiffness and thus seeking to improve overall

model quality and the other seeking maximum stiffness.

Optimization is performed using a cross-entropy method

as detailed in [26], [27].

Our colleagues at Carnegie Mellon University are further

exploring different strategies for path optimization that

can be easily incorporated in the CSA framework ([28–

30]).

�� ��

���������	�

�������
�������

������

���������

�������������
�������

�������
��

��

�� ��

�� ��

���	����	��	
�����	


�������
�� 	

������
��������������

����������


�

����	�����������

Fig. 10. Modeler : [xc, fc]-current robot tip position and sensed force;
[xs, κs]- estimated surface point and stiffness; [ξ, θ]- shape and registration
parameters; MR-situational model in robot space and MP -preoperative model

Figure 10 shows detailed information flow between various

processes of the modeler component. The GP component

continuously receives position and force information (xc, fc)

from the Teleop component and stores it in a spatial data

structure. In this process, surface shape and stiffness (xs, κs)

are recursively estimated in the neighborhood of the current

end-effector location. This information is then passed to the

registration process, which computes an optimized set of shape

and registration parameters (ξ, θ). Using these parameters and

the preoperative model (MP ), the situational model is updated

(MR). The Matlab component is responsible for retrieving the

latest surface and shape information (xs, κs, ξ, θ) and passing

it to the trajectory optimizer. Based on this information, a

new location (pn) is calculated and sent to Teleop for further

exploration.

This task division of modeler component is useful in ex-

panding the system for future inclusion of different surface

estimation, registration and optimization techniques.

III. SYSTEM INTEGRATION

The high and mid-level components provided by our frame-

work can be configured with any low-level controllers that pro-

vide the necessary interfaces. In this section, we demonstrate

the CSA integration with the open source da Vinci Research

Kit (dVRK) [31], [32], along with an example application.

A. Build, Dependency and Support

The CSA framework is compiled against the open source

cisst libraries, developed at Johns Hopkins University ([20],

[21]). The build system is a catkin-based solution as de-

scribed in [32], where all the CSA packages depend-

ing on cisst are built as catkin packages. This allows

the users to download the CSA code and compile us-

ing ROS catkin tools. This makes ROS one of the core

dependencies of the CSA framework. Additional exter-

nal dependencies include Eigen (https://eigen.tuxfamily.org),

PCL (wiki.ros.org/pcl), dlib (www.dlib.net) and WildMagic

(www.geometrictools.com). All these dependencies already

exist as catkin packages or are included in the CSA code as

catkin packages created from their latest versions.

We also provide support for evaluating MATLAB code in

C++ using the MATLAB Engine API. This allows the users to

have their code in the MATLAB workspace and call MATLAB

functions with arguments from C++. The API also allows the

system to directly exchange data between MATLAB and C++,

rather than communicating over a ROS channel. The user is

also provided with an interactive shell to type in MATLAB

commands in the C++ workspace. This allows the users to

interactively view their data while the application is running.

B. Integration with dVRK

The dVRK supports custom configuration of arms us-

ing Javascript Object Notation (JSON) files, thus facilitating

integration of CSA in the dVRK framework. The Master

MLC, Slave MLC and Teleop components of the dVRK are

replaced with the CSA components via JSON configuration.

This allows the CSA components to maintain communication

with the dVRK low-level controllers, since CSA is also a

component based architecture developed using cisst. We used

this integration for various applications in the past ([18], [19])

and below is a demonstration of one such setup. Although this

integration takes advantage of the cisst framework, this is not

a requirement because integration can also be performed via

ROS or the UDP interface described in Section III-C1.
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Fig. 11. a) User teleoperating using the dVRK master device; b) Slave side
setup.

To demonstrate the system, we created a silicone phantom

with an embedded stiff feature resembling a tumor at an

unknown location. An ATI Mini-25 force-torque sensor (ATI

Industrial Automation, Apex, NC, USA) was used to measure



Fig. 12. Endoscopic view as seen by the user. (Bottom Left) Overlay of the
situational model on the console view. (Top Left) This is not an overlay, it is
for the reader’s benefit to show the user performing constrained teleoperation
on the situational model.

the interaction forces. In our setup, we placed the force-torque

sensor underneath the support plate holding the phantom,

however, the system is capable of receiving force information

over the network. The goal of the user is to locate the tumor

using robotic exploration. With a conventional teleoperation

system, the user would have to perform discrete probing on

the phantom and do an offline estimation of the stiffness. With

the help of CSA framework, the user simply moved in the

lateral direction of the phantom maintaining contact with the

surface at all times. The system superimposed a palpation

motion based on sinusoidal force reference and recursively

estimated/updated the stiffness map. This information was also

displayed for the user to visualize. Further, if the user wants to

narrow down the estimation of the stiffness to a specific region,

the user provides a few point locations enclosing the region

of interest (ROI). The system generated a Forbidden Region

Virtual Fixture (FRVF), constraining the motion of the slave

end effector inside the ROI. The compliance wrench was also

calculated based on the interaction of the Proxy Slave with

the situational model. The estimated compliance wrench was

sent to the Master LLC to render force-feedback at the handle

of the master console. Figure 11 shows the master console

display as seen by the user. The situational model is located

on the bottom left, which includes the rendering of the ROI

(computed using convex hull) using points selected by the user.

Figure 12 shows the master console view of the teleopera-

tion procedure. On the bottom left of the view is the virtual

environment containing the situational model. The green dot

represents the current tip position of the Proxy Slave. The

red dot represents the closest point on the situational model

from the tip position of the Proxy Slave. The red arrow on the

situational model shows the current compliance force direction

felt by the user on the master end-effector. The length of the

arrow represents the magnitude of the force.

C. Extensions to dVRK

Here we provide a brief overview of a few features that

were developed for CSA, some of which are already included

in the current release of dVRK or will be available in future

releases:

1) UDP Slave: The overall CSA concept is independent of

the robotic platform. We currently support any type of slave

device with the dVRK master robot for teleoperation. We have

implemented a network-based slave component which act as a

proxy for the real robot. The real system communicates with

the proxy component based on User Datagram Protocol (UDP)

using custom UDP packets. This allows the user to teleoperate

a UDP-based slave robot with a dVRK master device. We

chose UDP over existing middleware (e.g. ROS), to facilitate

the integration with other robotic platforms (e.g. Matlab xPC).

We have done some preliminary tests using this feature by

teleoperating the IREP snake robot [33] with the dVRK master

device at Vanderbilt University.

2) Simulated Mater/Slave: We have added support for the

user to manipulate master or slave robots in simulation. This

allows the users to test/debug various motion algorithms in

simulation before testing on the real system.

3) Compliance wrench estimation: As mentioned earlier,

we have incorporated support for compliance wrench esti-

mation based on user specified gain parameters. This allows

the user to formulate compliance type virtual fixtures on the

master device.

IV. DISCUSSION AND FUTURE WORK

We believe our CSA framework is robust and will benefit

in complex MIS procedures by providing proper guidance and

surgical assistance. With our colleagues, we have demonstrated

the significance of model-mediated teleoperation with virtual

fixtures presented in this framework evaluated in a force

controlled simulated ablation task [19]. We have incorporated

continuous motion primitives which are time efficient palpa-

tion strategies compared to discrete probing. In our own work,

we have developed a novel offline GP method to concurrently

estimate the organ geometry and tissue stiffness based on

continuous palpation [18]. In our current framework, we also

have further improved our GP estimation (Section II-E) to

provide real-time updates of the organ geometry and tissue

stiffness while the surgeon is palpating the tissue. This online

estimation allows the surgeon to have near to video frame rate

updates of the stiffness map and make an informed decision

on the trajectory of telemanipulation.

Our CSA framework is designed to enable other sensing

modalities such as ultrasound images, confocal endomicro-

scopic images and other vision based information, however,

the current implementation is limited to force sensing informa-

tion. We also plan to evaluate the accuracy of our framework

by incorporating it in other robotic platforms such as the IREP

snake robot [33].

V. SUMMARY

This paper has presented a software framework to provide

situational awareness for the surgeon while teleoperating. Our

software framework is implemented in a component based

C++ framework. Support for ROS-based communication is

provided to facilitate integration with other systems. We

have demonstrated integration of CSA with the open source



dVRK hardware and software. Multiple useful features were

developed for the dVRK community, which will be available

in future releases. The software stack to provide CSA in a

surgical assistant is maintained by JHU, with contributions

from research groups at Vanderbilt University and Carnegie

Mellon University.

VI. ACKNOWLEDGEMENT

This work was supported in part by NSF NRI IIS1327566

and in part by Johns Hopkins University internal funds. The

da Vinci Research Kit is supported by NSF NRI IIS1637789.

We also thank our colleagues Nabil Simaan, Long Wang and

Rashid Yasin at Vanderbilt University and Howie Choset, Elif

Ayvali and Arun Srivatsan at Carnegie Mellon University, for

their helpful insights while developing the ideas presented

here.

REFERENCES

[1] A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image
registration: A survey,” IEEE Transactions on Medical Imaging, vol. 32,
no. 7, pp. 1153–1190, 2013.

[2] A. Myronenko and X. Song, “Point set registration: Coherent point
drift,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 12, pp. 2262–2275, Dec 2010.

[3] S. Billings and R. Taylor, “Iterative most likely oriented point regis-
tration,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2014, pp. 178–185.

[4] I. Wanninayake, L. Seneviratne, and K. Althoefer, “Estimation of tissue
stiffness using a prototype of air-float stiffness probe,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on, May 2014,
pp. 1426–1431.

[5] D. Uribe, R. Stroop, T. Hemsel, and J. Wallaschek, “Development of a
biomedical tissue differentiation system using piezoelectric actuators,”
in Frequency Control Symposium, 2008 IEEE International, May 2008,
pp. 91–94.

[6] A. Sabatini, P. Dario, and M. Bergamasco, “Interpretation of
mechanical properties of soft tissues from tactile measurements,”
in Experimental Robotics I, ser. Lecture Notes in Control and
Information Sciences, V. Hayward and O. Khatib, Eds. Springer
Berlin Heidelberg, 1990, vol. 139, pp. 452–462. [Online]. Available:
http://dx.doi.org/10.1007/BFb0042534

[7] J. Dargahi, S. Najarian, V. Mirjalili, and B. Liu, “Modelling and testing
of a sensor capable of determining the stiffness of biological tissues,”
Electrical and Computer Engineering, Canadian Journal of, vol. 32,
no. 1, pp. 45–51, Winter 2007.

[8] H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne,
and K. Althoefer, “Rolling mechanical imaging for tissue abnormality
localization during minimally invasive surgery,” Biomedical Engineer-
ing, IEEE Transactions on, vol. 57, no. 2, pp. 404–414, 2010.

[9] M. Mahvash, J. Gwilliam, R. Agarwal, B. Vagvolgyi, L.-M. Su, D. D.
Yuh, and A. Okamura, “Force-feedback surgical teleoperator: Controller
design and palpation experiments,” in Haptic interfaces for virtual
environment and teleoperator systems, 2008. haptics 2008. symposium
on, March 2008, pp. 465–471.

[10] G. Guthart and J. Salisbury, J., “The INTUITIV ETM telesurgery
system: overview and application,” in Robotics and Automation, 2000.
Proceedings. ICRA ’00. IEEE International Conference on, vol. 1, 2000,
pp. 618–621 vol.1.

[11] K. Xu and N. Simaan, “Intrinsic wrench estimation and its perfor-
mance index for multisegment continuum robots,” IEEE Transactions
on Robotics, vol. 26, no. 3, pp. 555–561, 2010.

[12] ——, “An investigation of the intrinsic force sensing capabilities of
continuum robots,” IEEE Transactions on Robotics, vol. 24, no. 3, pp.
576–587, 2008.

[13] A. Bajo and N. Simaan, “Hybrid Motion/Force Control of Multi-
Backbone Continuum Robots,” The International Journal of Robotics
Research, vol. 28, no. 9, pp. 1–13, July 2015.

[14] P. Mitra and G. Niemeyer, “Model-mediated telemanipulation,” The
International Journal of Robotics Research, vol. 27, no. 2, pp. 253–
262, 2008.

[15] T. Xia, S. Leonard, I. Kandaswamy, A. Blank, L. Whitcomb, and
P. Kazanzides, “Model-based telerobotic control with virtual fixtures for
satellite servicing tasks,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), Karlsruhe, Germany, May 2013.

[16] S. Sanan, S. Tully, A. Bajo, N. Simaan, and H. Choset, “Simultaneous
compliance and registration estimation for robotic surgery,” in Proceed-
ings of Robotics: Science and Systems, Berkeley, USA, July 2014.

[17] R. A. Srivatsan, E. Ayvali, L. Wang, R. Roy, N. Simaan, and H. Choset,
“Complementary model update: A method for simultaneous registration
and stiffness mapping in flexible environments,” in 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), May 2016, pp.
924–930.

[18] P. Chalasani, L. Wang, R. Roy, N. Simaan, R. H. Taylor, and M. Ko-
bilarov, “Concurrent nonparametric estimation of organ geometry and
tissue stiffness using continuous adaptive palpation,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), May
2016, pp. 4164–4171.

[19] L. Wang, Z. Chen, P. Chalasani, R. M. Yasin, P. Kazanzides, R. H.
Taylor, and N. Simaan, “Force-controlled exploration for updating
virtual fixture geometry in model-mediated telemanipulation,” Journal
of Mechanisms and Robotics, vol. 9, no. 2, p. 021010, 2017.

[20] A. Deguet, R. Kumar, R. Taylor, and P. Kazanzides, “The cisst libraries
for computer assisted intervention systems,” in MICCAI Workshop, 2008.

[21] M. Y. Jung, M. Balicki, A. Deguet, R. H. Taylor, and P. Kazanzides,
“Lessons learned from the development of component based medical
robot systems,” J. of Software Engineering for Robotics (JOSER), vol. 5,
no. 2, pp. 25–41, Sep 2014.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, Kobe, Japan,
2009.

[23] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, February 1987.

[24] R. Featherstone, S. Sonck, and O. Khatib, A general contact model
for dynamically-decoupled force/motion control. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 128–139. [Online]. Available:
https://doi.org/10.1007/BFb0112956

[25] S. D. Billings, E. M. Boctor, and R. H. Taylor, “Iterative most-likely
point registration (imlp): a robust algorithm for computing optimal shape
alignment,” PloS one, vol. 10, no. 3, p. e0117688, 2015.

[26] M. Kobilarov, “Cross-entropy motion planning,” International Journal
of Robotics Research, vol. 31, no. 7, pp. 855–871, 2012.

[27] R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified
approach to combinatorial optimization. Springer, 2004.

[28] E. Ayvali, R. A. Srivatsan, L. Wang, R. Roy, N. Simaan, and H. Choset,
“Using Bayesian optimization to guide probing of a flexible environment
for simultaneous registration and stiffness mapping,” The International
Conference on Robotics and Automation (ICRA), 2016.

[29] E. Ayvali, H. Salman, and H. Choset, “Ergodic coverage in
constrained environments using stochastic trajectory optimiza-
tion,” CoRR, vol. abs/1707.04294, 2017. [Online]. Available:
http://arxiv.org/abs/1707.04294

[30] E. Ayvali, A. Ansari, L. Wang, N. Simaan, and H. Choset, “Utility-
guided palpation for locating tissue abnormalities,” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 864–871, April 2017.

[31] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor,
and S. P. DiMaio, “An open-source research kit for the daV inciTM

surgical system,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA), May 2014, pp. 6434–6439.

[32] Z. Chen, A. Deguet, R. H. Taylor, and P. Kazanzides, “Software
architecture of the da Vinci Research Kit,” in Robotic Computing (IRC),
IEEE International Conference on. IEEE, 2017, pp. 180–187.

[33] A. Bajo, R. E. Goldman, L. Wang, D. Fowler, and N. Simaan, “In-
tegration and preliminary evaluation of an insertable robotic effectors
platform for single port access surgery,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp.
3381–3387.


