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Abstract

The xergm package is an implementation of extensions to the exponential random
graph model (ERGM). It acts as a meta-package for multiple constituent packages. One
of these packages is btergm, which implements bootstrap methods for the temporal ERGM
estimated by maximum pseudolikelihood. Here, we illustrate the temporal exponential
random graph model and its implementation in the package btergm using data on inter-
national alliances and a longitudinally observed friendship network in a Dutch school.
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1. The xergm package

The xergm package (Leifeld, Cranmer, and Desmarais 2017) for the R (R Core Team 2017)
statistical computing environment is dedicated to extensions of exponential random graph
models (ERGM). These extensions include the so-called temporal exponential random graph
model (TERGM), which was implemented in the sub-package btergm (Leifeld, Cranmer, and
Desmarais 2018). The TERGM was proposed by Hanneke, Fu, and Xing (2010) owing to
Robins and Pattison (2001). Desmarais and Cranmer (2010, 2012c) proposed a bootstrap
approach to assessing uncertainty. This article is designed as a hands-on tutorial for speci-
fying and estimating TERGMs for binary networks, assessing goodness-of-fit, and examining
predictive performance (Cranmer and Desmarais 2011; Leifeld and Cranmer 2014) using the
btergm package version 1.9.1.

Below, we briefly review the TERGM and the use of bootstrap methods with estimation via
maximum pseudolikelihood, then move on to the practical matters of data preparation, the
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software implementation for TERGM estimation, the assessment of model fit, out-of-sample
prediction, degeneracy checking, and micro-level interpretation.

Throughout the examples provided below, two datasets are used, which are both delivered
with the xergm.common package (Leifeld 2017b), another sub-package of xergm. The first
dataset illustrates the network of international alliances over 20 years and was collected by
Cranmer, Desmarais, and Kirkland (2012a) and Cranmer, Desmarais, and Menninga (2012b).
The second dataset, collected by Andrea Knecht, illustrates the dynamics of adolescent
friendship networks in a Dutch school class (Knecht 2006, 2008; Knecht, Snijders, Baerveldt,
Steglich, and Raub 2010; Steglich and Knecht 2009). This dataset is also a classic example
for estimating stochastic actor-oriented models using SIENA and RSiena (Ripley, Snijders,
Boda, Vörös, and Preciado 2017b; Ripley, Boitmanis, Snijders, and Schoenenberger 2017a;
Snijders, Steglich, and Van de Bunt 2010).

2. ERGM with temporal extensions

The feature of network data that is both scientifically and methodologically distinct is that
the probability of a tie forming between any two nodes in the network – often the dependent
variable of interest – depends upon the structure of the rest of the network (Cranmer and
Desmarais 2011). Additionally, the likelihood of two nodes tying can also depend upon
attributes of nodes, which makes tie prediction in part analogous to regression modeling
with covariates. To provide an example of the integration of interdependence and covariate
theories, consider the dynamics of partner selection within an inter-organizational policy
network. Berardo and Scholz (2010) hypothesize that highly connected policy organizations
are likely to be sought after due to their coordinating potential. They also hypothesize that
actors are likely to seek out trustworthy partners. These hypotheses represent (1) theory about
dependence among ties in that the connectedness of a node generates additional connections,
and (2) theory about the influence of a nodal attribute (trustworthiness) on the network
structure. The methodological research challenge in statistical inference with networks is the
development of methods that can simultaneously incorporate interdependence and covariate
effects. One flexible method for incorporating a wide range of theories into the analysis
of network generation is an ERGM. An ERGM treats a network as a single multivariate
observation in which the relations in the network depend on covariates (i.e., exogenous data)
as well as each other (i.e., endogenous processes).

2.1. The model

The temporal exponential random graph model, usually called TERGM, is an extension of
the ERGM designed to accommodate inter-temporal dependence in longitudinally observed
networks. The extension is accomplished by incorporating parameters into an ERGM speci-
fication that reflect the ways in which previous realizations of the network determine current
features of the network.

To understand the TERGM, begin with the single-network (i.e., cross-sectional) ERGM. An
ERGM of the network N , where N is the adjacency matrix in which the (i, j) element Nij = 1
if actor/node i sends a tie to j and 0 otherwise, is specified as

P(N,θθθ) =
exp(θθθ>

h(N))
c(θθθ)

, (1)
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where θθθ is the vector of model coefficients, h(N) is a vector of statistics computed on N
that include endogenous (e.g., mutual dyad counts, triangle counts) and exogenous (e.g.,
within-demographic-group tie counts) dependencies, and c(θθθ) =

∑N
i=1 exp(θθθ>(Ni)). Note

that the normalizing constant c(θθθ) is problematic for estimation because the set of all possible
permutations of the network with the same number of nodes, denoted N , is extremely large,
even with small to moderate sized networks. Note, too, that we use the notation θθθ> to indicate
the transpose of the θθθ vector. The transpose symbol > is different from the number of time
steps T introduced in the following equations. A detailed review of ERGMs is provided by a
number of sources including Goodreau, Kitts, and Morris (2008b), Hunter, Handcock, Butts,
Goodreau, and Morris (2008b), Cranmer and Desmarais (2011), Cranmer, Leifeld, McClurg,
and Rolfe (2017), and Lusher, Koskinen, and Robins (2013).

The ERGM in (1) for network N at time t, denoted N t, can be modified to include dependen-
cies on some number, K ∈ {0, 1, . . . , T − 1}, of previously observed networks by introducing
lagged networks into h

P(N t|N t−K , . . . , N t−1, θθθ) =
exp(θθθ>

h(N t, N t−1, . . . , N t−K))
c(θθθ, N t−K , . . . , N t−1)

, (2)

where the specification of K is important because it must fully encompass the temporal
dependencies of N t. In other words, it must be the case that networks in the time series
occurring prior to N t−K are independent of N t, conditional upon {N t−K , . . . , N t−1}.

But Equation 2 only specifies a TERGM for a single network at a single point in time, N t.
We can model the joint probability of observing the networks between times K + 1 and T by
taking the product of the probabilities of the individual networks conditional on the others,
which we may do since they are independent if K has been chosen appropriately:

P(NK+1, . . . , NT |N1, . . . , NK , θθθ) =
T
∏

t=K+1

P(N t|N t−K , . . . , N t−1, θθθ). (3)

In this way, a TERGM can account for high (or low)-order time dependence in a single network
or over a series of networks. For more detailed methodological treatment of TERGMs, see
Hanneke et al. (2010), Cranmer and Desmarais (2011), and Desmarais and Cranmer (2012c).
For TERGM applications, see, e.g., Cranmer et al. (2012a,b), Czarna, Leifeld, Śmieja, Dufner,
and Salovey (2016), Almquist and Butts (2013), Cranmer, Heinrich, and Desmarais (2014)
and Ingold and Leifeld (2016).

2.2. Exogenous and endogenous dependencies

As with a cross-sectional ERGM, a TERGM can incorporate both exogenous covariates and
endogenous dependencies through the h() function. It is useful to explore some important
examples. We begin with an exogenous covariate X with no temporal dependencies. That is,
contemporaneous observations of X, rather than earlier observations of X, affect contempo-
raneous observations of N . This is included as an edge covariate that models the relationship
between ties and covariate values as,

hX(N t, Xt) =
∑

i6=j

N t
ijXt

ij , (4)

where X is a relational matrix of the same dimensions as N .
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Intertemporal dependencies are also included in a similar way as in the cross-sectional ERGM,
but now, functions of the lagged networks are incorporated into the statistics. For example,
in many social networks, reciprocity may be a generative feature of the model, but will
incorporate a temporal lag (i.e., it may take time for a node to develop a response to a sent
tie). We can specify a single-period delayed reciprocity term as:

hr(N t, N t−1) =
∑

ji

N t
ijN t−1

ji . (5)

Naturally, the temporal dependencies involved with the specification of endogenous effects
can vary in terms of their order, from 1 to K. For example, if K = 3, we could model the
effects of inter-temporal triad closure over three periods, but specify over-time reciprocation as
only a one-period process. See Morris, Handcock, and Hunter (2008) for an extensive review
of endogenous effect specification. The btergm package is fully compatible with the ergm

package, and any endogenous dependencies available in the ergm package may be used in
btergm. Custom model terms added to ergm through the ergm.userterms package (Hunter,
Goodreau, and Handcock 2013; Handcock, Hunter, Butts, Goodreau, Krivitsky, and Morris
2015) or the ergm.graphlets package (Yaveroglu, Fitzhugh, Kurant, Markopoulou, Przulj, and
Butts 2015) can be used in btergm as well. Additionally, btergm contains several temporal
statistics designed specifically for TERGMs.

2.3. Memory terms

So-called “memory terms” play a special role in the specification of TERGMs. “Memory
terms” refer to a class of intertemporal dependencies designed to capture temporal processes
without capturing additional network structure. Below we introduce the notion of change
statistics for the easy coding and implementation of such effects.

First, note that an ERGM, as articulated in Equation 1, may be equivalently expressed
through the conditional probability of an edge from i to j:

πij(θθθ) = P(Nij = 1|N−ij , θθθ) = logit−1

(

R
∑

r=1

θrδ(ij)
r (N)

)

, (6)

where the notation N−ij refers to the entire network N except for the dyad Nij , logit−1 is
the inverse logistic function such that logit−1(x) = 1/(1 + exp(−x)), the subscript r refers to
any effect included in the h vector, of length R, and – most importantly – δ

(ij)
r (N) is equal to

the change in hr when Nij is changed from zero to one. The change statistic δ
(ij)
r (N) is the

result of the thought experiment in which the value of hr(N−
ij ) is subtracted from the value

of hr(N+
ij ), where hr(N+

ij ) indicates the network with the ij dyad – possibly directed – equal
to 1 and hr(N−

ij ) indicates the network with the ij dyad equal to 0. Because these change
values are summed if included as an edgewise covariate in Equation 4, one may compute the
change statistics for a given element of the generative model and include them directly. This
is useful because it is generally easier to compute change statistics for a given dependency
than to code new structural parameters. See Goodreau, Handcock, Hunter, Butts, and Morris
(2008a) for a more detailed exposition of change statistics.

What follows is a short taxonomy of “memory terms” that can be included in a TERGM.
This list is by no means exhaustive. For example, Krivitsky and Handcock (2014) briefly
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discuss a “two-timing” term, and other, more elaborate, memory terms are possible. As the
term is vague, we give specific names to the different temporal effects and avoid the use of the
generic “memory.” To use a statistic in the btergm package that has not already been hard-
coded (e.g., memory, delrecip), users need to calculate the change statistic for the statistic
and include it as an edge covariate. Note that if the statistics meet the condition that
δ

(ij)
r

(

N t|N t
l,k = 0

)

= δ
(ij)
r

(

N t|N t
l,k = 1

)

∀{i, j, l, k} (i.e., dyadic independence within time
points), then the change statistics involve only past networks, and the statistics themselves
are special cases of hX(N t, Xt), where Xt is defined by the networks preceding t.

Positive autoregression (lagged outcome network)

This is the simplest memory term to include and is especially useful in cases where edge
persistence is of particular interest, but it is not necessary to account for the stability of
non-edges. There are many cases where this will be appropriate, but it may be particularly
useful when dealing with sparse networks.

The term is specified as a lagged network and included as a dyadic covariate:

ha =
∑

N t
ijN t−1

ij . (7)

There is no difference between this and Equation 4 where Xt
ij = 1 if N t−1

ij = 1 and 0 otherwise.
In other words, Xt = N t−1, in this case. However, since the lagged network is included as a
dyadic covariate, the software computes the h statistic as in Equation 4 rather than Equation 7
when we include this term in an ERGM.

The change statistic for positive autocorrelation is δ
(ij)
a = 1 when N t−1

ij = 1 and δ
(ij)
a = 0

otherwise. In other words, if we imagine ha(N+
ij ) − ha(N−

ij ), the change will be 0 when
N t−1

ij = 0 and 1 when N t−1
ij = 1. Directly coding the change statistic as δa captures the

process of interest.

The substantive interpretation of this term is straightforward: it counts the number of edges
that persist from t − 1 to t. This is comparable to an edges term in the dissolution phase of
a separable TERGM (Krivitsky and Handcock 2014).

Dyadic stability

One may be dissatisfied with positive autocorrelation because it does not treat the persistence
of non-edges (e.g., the tendency of dyadic relationships that do not exist at t−1 to continue not
to exist at t). When one wishes to treat the stability of existing and non-existing relationships
equivalently, the following stability term is useful.

The statistic should count the number of dyads that are stable between t−1 and t. The term
may be written as

hs =
∑

ij

N t
ijN t−1

ij + (1 − N t
ij)(1 − N t−1

ij ), (8)

where all notation is the same as above.

The substantive interpretation is also simple: one counts the number of stable dyads, both
persistent edges and persistent non-edges, between two time periods.

Consider now the change statistic, δ
(ij)
s , for this term. Reflecting on hs(N+

ij ) − hs(N−
ij ) makes

it clear that the statistic will lose 1 whenever N t−1
ij = 0 and gain 1 whenever N t−1

ij = 1. As
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such, the change statistic can be coded as a covariate where the Xt
ij = −1 when N t−1

ij = 0
and Xt

ij = 1 when N t−1
ij = 1. Note that a stability term and a positive autocorrelation term

should not be included in the same model; one must be excluded as a baseline.

Edge innovation and loss

The analyst may be interested in directly modeling the tendency of new edges to form between
observed time periods. Such a tendency would be modeled with an edge innovation statistic,
he =

∑

ij N t
ij(1 − N t−1

ij ), which counts the number of edges that exist in time t and did not
exist in time t−1. This would be incorporated into TERGM by specifying a dyadic covariate
Xt coded 1 if N t−1

ij = 0 and 0 if N t−1
ij = 1. In other words, the covariate is coded 1 any time

an edge in period t would be new with respect to the previous period.

The change statistic produced from this coding will be δ(ij) = 1 if N t−1
ij = 0 and 0 otherwise

(i.e., one would be added to the edge creation count if N t−1
ij were 0 and N t

ij were toggled from
0 to 1). The substantive interpretation is that we are counting the number of edges that were
created between t − 1 and t.

To do the inverse of this: modeling edge loss directly, let hl =
∑

ij(1−N t
ij)N t−1

ij , which counts
the number of edges that existed in t − 1 and do not exist in t. The change statistic of hl is
coded −1 if N t−1

ij = 1 and 0 if N t−1
ij = 0.

Note, though, that each of these different memory parameterizations is functionally just
shifting around the baseline of a categorical variable to ease interpretation. The fit of the
model should not be affected, given the intercept and some function of N t−1

ij .

2.4. Dynamic effects and pooling time periods

Temporal change in networks can be governed by two levels of dynamics: (1) variation ac-
cording to an underlying TERGM or (2) change in the generative TERGM (i.e., temporal
variation in θθθ). When a single TERGM is applied to a pooled time series of networks, the
analyst either implicitly or explicitly assumes that all changes in the network are attributable
to (1). However, in many applications, variation in the underlying model is equally plausible.
There are several ways in which parameter/model heterogeneity over time can be diagnosed
and addressed.

The major symptom of model variation is that the pooled model fits different time spans
differently (e.g., is overly dense early on in the time series and too sparse in later periods).
This can be diagnosed by evaluating model fit on a period-by-period basis. There are two basic
approaches to addressing temporal heterogeneity in the underlying model. First, completely
different models can be fitted in different time spans, as is done by Cranmer et al. (2012a).
The other approach is to interact individual statistics with smooth functions of time (e.g.,
linear time trends, quadratics and higher order polynomials). This is similar to the approach
taken by Cranmer et al. (2014).

More specifically, one may be interested in modeling time trends in the probability of edges
over time by including temporal statistics of the form

ht =
∑

ij

N t
ijf(t), (9)

where f(t) is a function of time, for example a linear time trend f(t) = t, a quadratic trend
f(t) = t2, arbitrary polynomial functions of the form f(t) = a + bt + ct2, geometric decay
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f(t) =
√

t, or step-wise functions of the form f(t) = 1 if a < t < b and 0 otherwise, with
user-defined a and b which capture exogenous events.

Moreover, one may be interested in interaction effects between exogenous covariates and time,

htcov =
∑

ij

N t
ijXt

ijf(t), (10)

which capture the increasing or decreasing role of a covariate X with time.

2.5. Maximum pseudolikelihood with bootstrap confidence intervals

The btergm package uses the bootstrapped pseudolikelihood inference methods described by
Desmarais and Cranmer (2012c), and a much more detailed treatment of this estimation rou-
tine may be found there. Maximum pseudolikelihood estimation (MPLE) works by replacing
the joint likelihood with the product over conditional (on the rest of the network) dyadic
tie probabilities (Strauss and Ikeda 1990). These conditional dyadic tie probabilities were
described above in Equation 6. Consider a slight modification of the notation in Equation 6,
where we add a temporal index to π in order to define it for a given network as a function of
the past t − K networks and the non-ij entries in the network N t. To find the MPLE, one
need only to maximize

arg max
θ

T
∑

t=K+1

∑

〈ij〉

ln
[

(

πt
ij(θθθ)

)Nt
ij
(

1 − πt
ij(θθθ)

)1−Nt
ij

]

, (11)

where T indicates networks in the time series and 〈ij〉 indicates the set of dyads. This
optimization can be performed with a hill-climbing algorithm and does not involve simulation.
The fact that MPLE does not require simulation represents a substantial advantage over the
major alternative approach, which is based on Markov chain Monte Carlo (MCMC) and is
much more computationally demanding. This computational advantage is more significant
with voluminous data – either many nodes or large T – as simulations require more time
and memory and the MPLE gains in efficiency as the volume of data increases (Desmarais
and Cranmer 2012c). Indeed, the MPLE converges, asymptotically, to the MLE (Strauss and
Ikeda 1990; Hyvärinen 2006), making it a consistent estimator as either the number of nodes
or the number of network samples (T ) goes to infinity (Strauss and Ikeda 1990; Arnold and
Strauss 1991).

Yet the MPLE has a substantial drawback: uncertainty measures based on the MPLE are
biased downwards, sometimes severely. Specifically, while the MPLE is a consistent estimator
of the MLE, using the inverse of the negative Hessian ([−H])−1 of the log likelihood at the
MPLE to measure variance in the MPLE leads to substantial underestimation (e.g., on the
order of 70%) (Van Duijn, Gile, and Handcock 2009).

Desmarais and Cranmer’s (2012c) approach to bootstrapping the pseudolikelihood corrects
this problem for TERGMs (not for single network ERGMs). The procedure works as follows:
take a sample of s estimates of θθθ by drawing s samples of T − K networks from the longi-
tudinally observed series of networks {NK+1, . . . , NT } and computing θ̂θθ. The efficacy of this
approach is made apparent by the fact that

T
∑

t=K+1

∂
∑

〈ij〉 ln
[

(

πt
ij(θ̂θθ)

)Nt
ij
(

1 − πt
ij(θ̂θθ)

)1−Nt
ij

]

∂θ̂θθ
= 0, (12)



8 Temporal Exponential Random Graph Models with btergm

the very definition of an M-estimator (Lahiri 1992). The consistency of the temporal bootstrap
confidence intervals is based on the consistency and asymptotic normality of the MPLE as T
goes to infinity (Arnold and Strauss 1991; Desmarais and Cranmer 2012c). Desmarais and
Cranmer (2012c) validate the technique extensively with Monte Carlo studies.

2.6. Markov chain Monte Carlo maximum likelihood estimation

The btergm package also contains routines that employ Markov chain Monte Carlo maxi-
mum likelihood estimation (MCMC-MLE) for TERGMs. They serve as an alternative to
MPLE with bootstrap confidence intervals. With MCMC-MLE, all networks are combined
in a large block-diagonal matrix, and an ERGM is estimated on this matrix with structural
zeros prohibiting cross-network edges in the off-diagonal blocks. The estimation procedure
of Hunter et al. (2008b) is used for this. MCMC-MLE is slower than MPLE with bootstrap
confidence intervals, even prohibitively slow for more than a few small consecutive networks.
Therefore MPLE with bootstrapped confidence intervals is the only option in many empirical
applications. MCMC-MLE is also prone to degeneracy when the model specification does
not hit the true data-generating process. However, the estimates of MCMC-MLE may be
more accurate precisely when only few networks are observed, as the consistency of MPLE
and the bootstrap confidence intervals increases with more observations (see Section 2.5).
Thus both estimators have complementary strengths. For example, applications in the field
of international relations are often based on 20 to 50 annual time slices of the international
system – a typical situation where MPLE with bootstrapped confidence intervals can play
out its strengths –, while applications in public policy are often based on two or three survey
waves of political actors and their collaboration ties – a typical situation where MCMC-MLE
may be preferable.

3. Software implementation in R

The xergm package (Leifeld et al. 2017) for the statistical computing environment R (R Core
Team 2017) serves as a meta-package for extensions of exponential random graph models.
Package xergm is available from the Comprehensive R Archive Network (CRAN) at https://

CRAN.R-project.org/package=xergm. One of its constituent packages is the btergm package
(Leifeld et al. 2018), which implements TERGM estimation (see Section 2.5). Loading the
xergm package automatically loads the btergm package as well, but btergm can also be loaded
on its own without the other companion packages contained in xergm.

The package contains the btergm function, which implements MPLE estimation for TERGMs
with bootstrap confidence intervals. The btergm syntax is highly compatible with that of the
ergm function in the ergm package (Hunter et al. 2008b; Handcock, Hunter, Butts, Goodreau,
Krivitsky, and Morris 2017). Moreover, the package contains the mtergm function, which has
the same syntax as the btergm function and estimates TERGMs by MCMC-MLE. In addition
to these estimation functions, there are several support functions that we illustrate in the
following sections. They include goodness-of-fit assessment, degeneracy checks, and micro-
level interpretation of fitted models. All of these functions are highly compatible with the
statnet suite of packages (Handcock, Hunter, Butts, Goodreau, and Morris 2008; Goodreau
et al. 2008a; Handcock, Hunter, Butts, Goodreau, Krivitsky, Bender-deMoll, and Morris
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2016), in particular the ergm package (Hunter et al. 2008b; Morris et al. 2008; Handcock
et al. 2017) and the network package (Butts 2008, 2015).

The next two sections provide an introduction to TERGM modeling using the btergm package.
Two examples are presented along with the code necessary to replicate the examples: a
network of international alliances, and a school friendship network.

Several R packages should be loaded for running the examples presented below: the texreg

package (Leifeld 2013, 2017a) will be used for displaying estimation results; the statnet suite
of network analysis packages provides basic functions for handling network data (Handcock
et al. 2008; Butts 2008); and the xergm package (Leifeld et al. 2017). It is important to
load the btergm package after loading the statnet package because btergm provides add-on
functionality that masks some of the functions contained in the latter. We also set the random
seed for exact reproducibility.

R> library("statnet")

R> library("texreg")

R> library("xergm")

R> set.seed(10)

4. A simple example: International alliances

The first example is a model of international alliances (see also Cranmer et al. 2012a,b). The
package contains the international defense alliance network among 164 countries, covering the
years 1981–2000. In this toy dataset, the same countries are present across all years. This
makes it a simple example without the need for any data preparation. The alliance network
is stored in 20 ‘network’ objects wrapped in a ‘list’ object called allyNet. These objects
can be manipulated and plotted using functions from the network package (Butts 2008). For
example, the following code loads the dataset and plots the last three alliance networks (as
displayed in Figure 1).

R> data("alliances", package = "xergm.common")

R> pdf("alliances.pdf", width = 9, height = 3)

R> par(mfrow = c(1, 3), mar = c(0, 0, 1, 0))

R> for (i in (length(allyNet) - 2):length(allyNet)) {

+ plot(allyNet[[i]], main = paste("t =", i))

+ }

R> dev.off()

Network data for use with package btergm should be stored as lists of network objects in
chronological order, with one network per time period. Dyadic covariates can be stored either
as lists of network objects or matrices (in the case of time-varying covariates) or as single
network objects or matrices (in the case of covariates that do not change over time). Node-
level data should be stored as vertex attributes of the networks that comprise the outcome
network time series (i.e., the temporal network to be modeled).

The alliance dataset contains the constant dyadic covariate contigMat, which is a 164 × 164
binary matrix in which a 1 indicates that two countries share a border. Furthermore, it
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t = 18 t = 19 t = 20

Figure 1: The last three years in the network of international alliances.

contains two time-varying dyadic covariates: LSP records the number of shared partners be-
tween countries in the alliance network from the previous year, and warNet contains matrices
that indicate whether two states were in a militarized interstate dispute in the respective year.
Each network in the allyNet list also contains several node-level attributes, for example cinc

(indicating military capabilities) and polity (the “polity” score, which indicates regime au-
thority on a scale from −10 = hereditary monarchy to +10 = consolidated democracy). Nodal
attribute data can be accessed using commands from the network package (Butts 2008), e.g.,
get.vertex.attribute and related functions. More information about the dataset can be
found on the help page ?alliances.

In a first simple model, a TERGM without any temporal dependencies is estimated. This
corresponds to a pooled ERGM – pooling across T networks that are assumed to be inde-
pendent of each other – where the estimates reflect the average effects across the 20 time
points. The (somewhat unrealistic) assumption here is that the consecutive networks are
independent from each other. Note that this functionality could be used to fit a single set
of ERGM parameters to many independently sampled networks (e.g., as in Goodreau et al.
2008b, who apply ERGM to friendship networks measured in 59 schools). The model and
the coefficients therefore describe a single data-generating process that applies to all 20 time
steps independently.

A TERGM is estimated with the btergm function, which implements the bootstrapping pro-
cedure described above and stands for “bootstrapped TERGM.” The first argument of the
btergm function is a formula like in the ergm function, but accepting lists of networks or
matrices instead of a single network or matrix as the dependent variable. In all other regards,
the syntax of btergm and the syntax of ergm are identical.

The model is estimated with 50 bootstrap replications (argument R = 50). More replications
means less simulation error in the confidence intervals calculated, but also longer runtime. As
a rule of thumb, at least 100 replications are necessary for testing purposes, while something
on the order of 1,000 replications should be used for publication purposes. Here, we use
a smaller sample for purposes of illustration. Options for parallel processing on multicore
CPUs or HPC servers are available (see ?btergm). In the following example, we use two cores
and an ad-hoc PSOCK cluster, which is not the fastest option but works also in Windows
environments without any additional preparation (while multicore forking is restricted to
Unix systems).
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R> model.1a <- btergm(allyNet ~ edges + gwesp(0, fixed = TRUE) +

+ edgecov(LSP) + edgecov(warNet) + nodecov("polity") +

+ nodecov("cinc") + absdiff("polity") + absdiff("cinc") +

+ edgecov(contigMat), R = 50, parallel = "snow", ncpus = 2)

R> summary(model.1a, level = 0.95)

==========================

Summary of model fit

==========================

Formula: allyNet ~ edges + gwesp(0, fixed = TRUE) + edgecov(LSP) +

edgecov(warNet) + nodecov("polity") + nodecov("cinc") + absdiff("polity") +

absdiff("cinc") + edgecov(contigMat)

Time steps: 20

Bootstrapping sample size: 50

Estimates and 95% confidence intervals:

Estimate 2.5% 97.5%

edges -5.0498497 -5.1861 -4.8859

gwesp.fixed.0 1.6242771 1.5516 1.6938

edgecov.LSP[[i]] 2.1065906 1.8301 2.4422

edgecov.warNet[[i]] 0.2866346 0.1953 0.3893

nodecov.polity -0.0050764 -0.0121 0.0012

nodecov.cinc 8.3308516 2.6219 12.7612

absdiff.polity -0.1257948 -0.1379 -0.1141

absdiff.cinc -4.8494093 -8.5083 0.5427

edgecov.contigMat[[i]] 3.2145679 3.1287 3.3238

In Model 1a, the collection of 20 alliance networks is jointly explained by a number of endoge-
nous and exogenous statistics. The model contains network dependencies within time steps,
such as gwesp(0, fixed = TRUE), which controls for triadic closure by at least one shared
partner. Any model term available in the ergm package (Hunter et al. 2008b; Handcock
et al. 2017) can also be used with btergm. Details on available model terms can be found
on the help page ?"ergm-terms". Moreover, the model contains several nodal and dyadic
covariates. Note that nodal covariates – e.g., nodecov("polity") – are wrapped in quotes
because they refer to the attribute stored in the network objects contained in allyNet, while
dyadic covariates – e.g., edgecov(warNet) – are stored in separate objects in the work space.

The coefficients and confidence intervals resulting from the estimation are stored in a ‘btergm’
object, which is an instance of an S4 class for which several methods like coef, getformula,
nobs, summary, print, and confint are available. The results can be displayed using the
summary method, and its level argument can be used to adjust the confidence level. The
results are shown in Table 1. It is not possible to set interval or inequality constraints on
the coefficients using any of the estimation functions in package btergm, so the estimated
coefficients can take on any real value.
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Model 1a Model 1b
edges −5.05 [−5.19; −4.89]∗ −3.14 [−3.76; −2.34]∗

gwesp.fixed.0 1.62 [1.55; 1.69]∗ 1.79 [1.46; 2.04]∗

edgecov.LSP[[i]] 2.11 [1.83; 2.44]∗ 0.11 [0.06; 0.46]∗

edgecov.warNet[[i]] 0.29 [0.20; 0.39]∗ −1.14 [−2.32; 0.21]
nodecov.polity −0.01 [−0.01; 0.00] −0.02 [−0.05; 0.02]
nodecov.cinc 8.33 [2.62; 12.76]∗ −0.16 [−9.63; 17.15]
absdiff.polity −0.13 [−0.14; −0.11]∗ −0.07 [−0.13; −0.01]∗

absdiff.cinc −4.85 [−8.51; 0.54] 3.27 [−10.23; 10.70]
edgecov.contigMat[[i]] 3.21 [3.13; 3.32]∗ 1.60 [0.56; 2.49]∗

edgecov.memory[[i]] 5.10 [4.68; 5.89]∗

edgecov.timecov[[i]] 0.07 [0.00; 0.16]∗

edgecov.timecov.warNet[[i]] 0.05 [−0.11; 0.11]
∗ 0 outside the confidence interval.

Table 1: International alliance TERGM examples.

By default, a 95 % confidence interval is reported around the estimates. For example, the
absdiff("polity") term has an estimate of −0.13, which means that an additional difference
in the polity scores of two countries of one point decreases their odds of being allies by
100 · (exp(0.13) − 1) ≈ 13.88% on average conditional on the rest of the network. The effect
is significant because 0 is outside the confidence interval of [−0.14; −0.11]. See Section 6
and Desmarais and Cranmer (2012a) for further details on interpretation of ERGMs and
TERGMs. The summary and confint methods have a type argument, where the confidence
interval type can be changed from quantile-based confidence intervals (the default type =

"perc") to bias-corrected confidence intervals (type = "bca"), as implemented in the boot

package (Canty and Ripley 2017).

The results indicate, among other findings, that direct contiguity of two countries makes them
more likely to be allied, as indicated by the positive and significant edgecov.contigMat effect,
and that two countries that fight each other are more likely to be allied than countries that
do not have a war in the respective year (edgecov.warNet). But are these results valid?
Statistical theory suggests that the joint likelihood is only valid if the model encompasses all
relevant cross-sectional and temporal dependencies (see Sections 2.1 and 2.4). This can be
diagnosed by examining model fit. We can assess the endogenous goodness-of-fit of the model
using the gof function in the btergm package. gof is a generic function that has methods
for several kinds of network models, including ‘btergm’, ‘mtergm’, ‘ergm’, and RSiena models,
both for within-sample and out-of-sample fit assessment, following the procedures suggested
by Hunter, Goodreau, and Handcock (2008a). Details on out-of-sample predictive fit are
provided in Section 5.6.

R> gof.1a <- gof(model.1a, nsim = 50, statistics = c(esp, geodesic, deg))

R> pdf("gof-1a.pdf", width = 8, height = 2.5)

R> plot(gof.1a)

R> dev.off()

The gof method accepts arguments nsim (for the number of networks simulated from each
time step to compare to the observed networks) and statistics (for user-supplied or hard-
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Figure 2: Goodness-of-fit assessment for the non-temporal Model 1a (upper row) and
Model 1b with temporal dependencies (lower row).

coded functions to compare simulated and observed network matrices and condense the com-
parison into a single quantity or a vector of values). The goodness-of-fit statistics supplied
with the package are listed on the help page ?"gof-statistics". The gof function also
supports parallel processing (see ?"gof-methods").

The nsim = 50 argument causes the gof function to simulate a total of 1,000 networks (50
from each of the 20 time steps). Naturally, when estimating models for publication, more
simulations are preferable. Here, however, exposition is accomplished with fewer simulations
and less computing time.

The resulting gof.1a object can be printed to the console in order to obtain comparison tables
of the edge-wise shared partner, geodesic distance, and degree distributions of the simulated
versus the observed networks. The object can also be plotted, as shown in the upper row of
Figure 2. Interpretation of these plots is straightforward; the model is said to fit better the
closer the medians of the box plots (based on the simulated networks) come to the line that
plots the actual value of these statistics in the observed network. Obviously, the endogenous
model fit of Model 1a is poor. Therefore we estimate a model with some simple temporal
dependencies as follows:

R> model.1b <- btergm(allyNet ~ edges + gwesp(0, fixed = TRUE) +

+ edgecov(LSP) + edgecov(warNet) + nodecov("polity") +

+ nodecov("cinc") + absdiff("polity") + absdiff("cinc") +

+ edgecov(contigMat) + memory(type = "stability") +

+ timecov(transform = function(t) t) +

+ timecov(warNet, transform = function(t) t), R = 50)
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Model term Arguments with default values Details
delrecip mutuality = FALSE, Delayed reciprocity or mutuality.

lag = 1

timecov x = NULL, Time trend or interaction with time.
minimum = 1,
maximum = NULL,
transform = function(t) 1

memory type = "stability", Positive autoregression; dyadic
lag = 1 stability; edge innovation or loss.

Table 2: Temporal network statistics.

R> texreg(list(model.1a, model.1b), single.row = TRUE,

+ include.nobs = FALSE, file = "alliance-table.tex",

+ caption = "International alliance TERGM examples.",

+ label = "alliance-table",

+ custom.model.names = c("Model~1a", "Model~1b"),

+ use.packages = FALSE, booktabs = TRUE, dcolumn = TRUE)

R> gof.1b <- gof(model.1b, nsim = 50, statistics = c(esp, geodesic, deg))

R> pdf("gof-1b.pdf", width = 8, height = 2.5)

R> plot(gof.1b)

R> dev.off()

The results of Model 1b along with Model 1a are displayed in Table 1. The table is created
using the texreg package (Leifeld 2013, 2017a). Goodness-of-fit is assessed like in the previous
model, and the resulting diagrams can be found in the lower row of Figure 2. The model
with temporal dependencies fits considerably better, although there is still some room for
improvement. With increasing endogenous model fit, the estimates become less biased.

The new model is identical to the previous model, except for three additional model terms
that represent temporal dependence:

• memory(type = "stability") is a dyadic stability memory term (see Section 2.3),
which controls whether ties and non-ties at one time point carry over to ties and non-
ties, respectively, at the next time point. As indicated by the positive and significant
coefficient, there is a great amount of stability in alliance ties over time.

• timecov(transform = function(t) t) is a time covariate (see Section 2.4) that sim-
ply checks whether there is a (linear) time trend in the number of alliance edges over
time. The transform argument accepts any functional form provided as a function,
including linear time trends (transform = function(t) t), quadratic time trends
(transform = function(t) t^2), and geometric decay (transform = sqrt). The de-
fault is transform = function(t) 1 + (0 * t) + (0 * t^2)). Additionally, step-
wise functions of time are possible by setting the minimum and maximum arguments.
Time points below and above the minimum and maximum, respectively, are set to 0
while the function given in the transform argument is applied to the remaining time
steps. This functionality serves to model structural breaks in the data-generating pro-
cess, for example due to political reforms or new knowledge entering a system. Here,
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the linear time trend has a positive and significant coefficient, which indicates that the
network gets slightly denser over time.

• timecov(warNet, transform = function(t) t) is an interaction between a linear
time effect and the warNet exogenous covariate. The model term tests whether dyadic
conflicts become more (or less) important over time in explaining alliances. This is not
the case, as shown in Table 1.

Besides memory and timecov, the package contains a third hard-coded temporal network
statistic, delrecip, which tests for delayed reciprocity (i.e., whether an edge from node j to
node i in one time period leads to an edge from i to j later). More temporal dependencies
may be included in the future. Table 2 gives an overview of the temporal model terms that
are currently implemented. The help page for ?"tergm-terms" provides additional details.

While some of the temporal model terms are significant, some of the other model terms that
were previously significant have lost their explanatory power, such as the warNet covariate
and the nodal effects for polity and cinc. Simply controlling for previous states of the
system provides a better-fitting account of who is allied with whom than these variables.
However, the majority of model terms are still significant after controlling for the temporal
effects.

5. Advanced example: Friendship networks in a school class

This first TERGM example illustrated the use of the btergm and gof functions with and
without temporal dependence, and introduced the data structures and model syntax. The
next example will serve to introduce advanced functions, such as mtergm estimation, changes
in actor composition and other data preparation issues, and out-of-sample prediction with
TERGMs.

The dataset used for the second example contains four waves of a friendship network in a
Dutch school class (Knecht 2006, 2008; Knecht et al. 2010; Steglich and Knecht 2009). It is
delivered with the xergm package and is also the classic example for estimating stochastic
actor-oriented models using SIENA and RSiena (Ripley et al. 2017b,a; Snijders et al. 2010).

The four network waves are stored as matrices in a ‘list’ object called friendship. There are
several nodal and dyadic covariates (see help("knecht") for details). Of particular interest
are the sex of the pupils (stored in a data frame called demographics) and a network called
primary, which contains dyadic information on which pupils co-attended the same primary
school.

We replicate a basic model described in Snijders et al. (2010). For the sake of simplicity,
we replicate the specification used by Snijders et al. (2010) exactly, even though it might be
possible to achieve a better fit by altering this specification. In this model, the topology of
the networks is determined by the following quantities (with the corresponding model terms
of the ergm package given in brackets – see help("ergm-terms") for details):

• a baseline probability of establishing edges (edges);

• the in-degree and out-degree of the nodes in the network (computed using the degree

function and modeled using nodeocov and nodeicov terms);
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• the sex of ego, the sex of alter, and sex match of ego and alter (nodeofactor, nodeifactor,
and nodematch, respectively);

• primary school co-attendance (edgecov);

• the tendency of edges to be reciprocated (mutual);

• and the number of cyclic triples, transitive triples, and transitive ties (ctriple, ttriple,
and transitiveties, respectively).

5.1. Addressing missing data

After attaching the dataset to the workspace, some missing data need to be addressed. The
dataset in its original form contains four friendship matrices with 26 nodes (equaling the
number of rows and columns) each. However, one pupil dropped out of the class, which
results in missing data for node 21 at time steps 3 and 4. In the matrices, these missing
values are coded using values of 10. Moreover, at time step 2, one pupil does not provide
any answers, and at time step 3, two pupils do not provide any answers. This kind of unit
non-response is coded as NA in the dataset.

Because the btergm estimation function cannot handle any missing values, something must
be done to address such values. One has several options. Perhaps most common is to replace
NA entries with the modal value (usually 0). This makes sense in situations where one can
assume that all present edges will be observed, though we may not have a specific recording of
0 for absent edges. Note, however, that the erroneous introduction of 0s where edges actually
exist is a form of measurement error that will result in biased statistical models. A second
option is to remove nodes with incomplete edge profiles from the dataset. This strategy, at
best, is inefficient because removing a node – perhaps because of a single missing value in
one of its edges – requires removing all incoming and outgoing ties from that node. In other
words, the network nature of the data means that an entire row and column of the data
matrix will be removed any time we remove a node. This compounds the inefficiency of the
case-wise deletion process compared to that same inefficiency in a normal, rectangular, data
frame. At worst, case-wise deletion of nodes with missing edges results in bias. Bias will
occur from this procedure any time the occurrence of missing edges is not completely random
(e.g., if the occurrence of missing values is related to any attributes of the edge or node,
observed or unobserved, bias will be the result). Lastly, missing edge values may be imputed
with one of several techniques from a new and budding literature (Handcock and Gile 2010;
Koskinen, Robins, Wang, and Pattison 2013; Robins, Pattison, and Woolcock 2004). With
this cautionary note, the xergm package provides the handleMissings function to aid the
user in removing or imputing missing data by either removing nodes with missing data or
imputing modal values.

In this example, we choose to remove nodes who dropped out (coded as 10) because they
are no longer part of the network, while we impute the values affected by unit non-response
using the modal value. To do this, it is necessary to be able to identify the respective nodes
across network waves and covariates. Removing a node would otherwise make the networks
incomparable because they would have different dimensions, with some networks having 25
and others 26 nodes. By labeling the rows and columns before removing the respective nodes,
we ensure that the nodes can be assigned correctly across network or matrix objects even after
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removing rows and columns. Therefore the first step is the assignment of row and column
names to all matrices, and names to all vectors containing attribute data:

R> data("knecht", package = "xergm.common")

R> for (i in 1:length(friendship)) {

+ rownames(friendship[[i]]) <- 1:nrow(friendship[[i]])

+ colnames(friendship[[i]]) <- 1:ncol(friendship[[i]])

+ }

R> rownames(primary) <- rownames(friendship[[1]])

R> colnames(primary) <- colnames(friendship[[1]])

R> sex <- demographics$sex

R> names(sex) <- 1:length(sex)

The second step is the application of the handleMissings function to the list of friendship
networks. The first function call removes all nodes that have values of 10, and the second
function call replaces NA values by the modal value in the respective matrix:

R> friendship <- handleMissings(friendship, na = 10, method = "remove")

t = 1: 0% of the data (= 0 ties) were dropped due to 0% (= 0) missing ties.

t = 2: 0% of the data (= 0 ties) were dropped due to 0% (= 0) missing ties.

t = 3: 7.54% of the data (= 51 ties) were dropped due to 7.54% (= 51)

missing ties.

t = 4: 7.54% of the data (= 51 ties) were dropped due to 7.54% (= 51)

missing ties.

R> friendship <- handleMissings(friendship, na = NA, method = "fillmode")

t = 1: 0% of the data (= 0 ties) were replaced by the mode (0) because they

were NA.

t = 2: 3.85% of the data (= 26 ties) were replaced by the mode (0) because

they were NA.

t = 3: 8% of the data (= 50 ties) were replaced by the mode (0) because they

were NA.

t = 4: 0% of the data (= 0 ties) were replaced by the mode (0) because they

were NA.

5.2. Data preparation and manual adjustment of dimensions

The model will contain node-level covariates. To accommodate them in the model formula,
we need to convert the matrices at each time step into ‘network’ objects and embed the node
attributes in these networks. However, the nodal covariates like sex are constant over time
and have 26 observations while we have just removed nodes from some of the time steps.
Therefore we need to adjust the dimensions of the covariates to the dependent network at
each time step by removing observations from the node attribute that are not present in the
network object. To do that, package btergm provides a helper function called adjust.
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In the following code block, we iterate over the four time steps, and at each time step, we
adjust the dimensions of the sex covariate to the dimensions of the current friendship network
and embed it in the network object. We also generate two nodal covariates idegsqrt and
odegsqrt, which contain the square root of the in-degree or out-degree centrality of each
node (as in the original contribution by Snijders et al. 2010), and embed them in the network
object at each time step. Finally, we print the dimensions of the four networks to see whether
we have indeed 26 nodes at the first two and 25 nodes at the last two time steps.

R> for (i in 1:length(friendship)) {

+ s <- adjust(sex, friendship[[i]])

+ friendship[[i]] <- network(friendship[[i]])

+ friendship[[i]] <- set.vertex.attribute(friendship[[i]], "sex", s)

+ idegsqrt <- sqrt(degree(friendship[[i]], cmode = "indegree"))

+ friendship[[i]] <- set.vertex.attribute(friendship[[i]],

+ "idegsqrt", idegsqrt)

+ odegsqrt <- sqrt(degree(friendship[[i]], cmode = "outdegree"))

+ friendship[[i]] <- set.vertex.attribute(friendship[[i]],

+ "odegsqrt", odegsqrt)

+ }

R> sapply(friendship, network.size)

t1 t2 t3 t4

26 26 25 25

To get a first visual impression of the networks after the data preparation step, we plot each
network wave using methods from the statnet suite of packages. The result is displayed in
Figure 3.

R> pdf("knecht.pdf")

R> par(mfrow = c(2, 2), mar = c(0, 0, 1, 0))

R> for (i in 1:length(friendship)) {

+ plot(network(friendship[[i]]), main = paste("t =", i),

+ usearrows = TRUE, edge.col = "grey50")

+ }

R> dev.off()

We see that the topology (i.e., the geometric shape) of the network varies considerably over
the four periods of observation. The primary modeling challenge of the TERGM analysis is
to capture the generative process that leads to these four observed networks.

5.3. Automatic adjustment of network dimensions

We begin by explaining edge formation at these four time steps, first by assuming indepen-
dence between the time steps (Model 2a) and then by modeling network evolution as a process
with temporal dependencies (Model 2b).
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t = 1 t = 2

t = 3 t = 4

Figure 3: The four directed networks in the Knecht dataset.

R> model.2a <- btergm(friendship ~ edges + mutual + ttriple +

+ transitiveties + ctriple + nodeicov("idegsqrt") +

+ nodeicov("odegsqrt") + nodeocov("odegsqrt") +

+ nodeofactor("sex") + nodeifactor("sex") + nodematch("sex") +

+ edgecov(primary), R = 100)

In Model 2a, friendship is modeled as a function of several endogenous statistics, like reci-
procity (mutual) and transitive triplets (ttriple), several node-level covariates like sex

and popularity (nodeicov("idegsqrt")), and one dyadic covariate (edgecov("primary")),
which is constant over time and contains a 1 if a row node and a column node attended the
same primary school.

To estimate a TERGM, the dimensions of the networks and matrices need not be identical
across time steps or even within time steps across covariates/networks – as long as row and
column names or node labels are embedded in the respective objects that are referenced
in the model formula. If all objects are appropriately labeled, which we did in Section 5.1
for the current example, the btergm function automatically adjusts the dimensions between
objects within a single time step. I. e., if a node is present in one network but not in another
network at the same time step, the node is automatically removed from the first network to
ensure compatibility. To make this adjustment work, however, row and column names must
be consistently present.

In the present example, the primary covariate is a constant-time covariate, meaning that the
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same matrix is used as a covariate at each time step. As the dependent network has 26 nodes
at time steps 1 and 2 and 25 nodes at time steps 3 and 4, the btergm function internally
creates copies of the primary matrix for each time step and removes the nodes from the
respective copy that are not present at a given time step. This is all done automatically, and
the btergm function reports the result of this adjustment process when the above command
is executed:

Initial dimensions of the network and covariates:

t=1 t=2 t=3 t=4

friendship (row) 26 26 25 25

friendship (col) 26 26 25 25

primary (row) 26 26 26 26

primary (col) 26 26 26 26

Dimensions differ across networks within time steps.

Trying to auto-adjust the dimensions of the networks. If this fails, provide

conformable matrices or network objects.

Absent nodes:

label time object where

1 21 3 networks row

2 21 3 networks col

3 21 4 networks row

4 21 4 networks col

Number of nodes per time step after adjustment:

t=1 t=2 t=3 t=4

maximum deleted nodes (row) 0 0 1 1

maximum deleted nodes (col) 0 0 1 1

remaining rows 26 26 25 25

remaining columns 26 26 25 25

Dimensions of the network and covariates after adjustment:

t=1 t=2 t=3 t=4

friendship (row) 26 26 25 25

friendship (col) 26 26 25 25

primary (row) 26 26 25 25

primary (col) 26 26 25 25

Starting pseudolikelihood estimation with 100 bootstrapping replications on a

single computing core...

Done.

A TERGM does not require the same nodes to be present across different time steps. Only
compatibility of dimensions within time steps across covariates is necessary and automatically
enforced. To see why different time steps may have different node sets, consider that a
TERGM counts subgraph products within time steps, e.g., the number of reciprocal ties at
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Model 2a Model 2b
edges −9.18 [−10.50; −8.73]∗ −9.54 [−12.42; −8.72]∗

mutual 2.96 [2.26; 3.84]∗ 2.17 [1.84; 2.85]∗

ttriple 0.21 [0.10; 0.37]∗ 0.13 [0.03; 0.24]∗

transitiveties 0.37 [0.20; 0.42]∗ 0.32 [0.29; 0.39]∗

ctriple −0.68 [−0.96; −0.46]∗ −0.55 [−0.82; −0.42]∗

nodeicov.idegsqrt 1.18 [1.02; 1.52]∗ 1.28 [1.12; 1.62]∗

nodeicov.odegsqrt −0.28 [−0.65; −0.17]∗ −0.13 [−0.31; −0.02]∗

nodeocov.odegsqrt 1.20 [1.17; 1.43]∗ 1.50 [1.38; 2.02]∗

nodeofactor.sex.2 0.61 [0.42; 0.83]∗ 0.53 [0.38; 0.83]∗

nodeifactor.sex.2 0.23 [0.10; 0.37]∗ 0.29 [−0.13; 0.60]
nodematch.sex 1.77 [1.60; 2.10]∗ 1.49 [1.30; 2.03]∗

edgecov.primary[[i]] 1.05 [0.76; 1.42]∗ 0.42 [−0.28; 0.98]
edgecov.delrecip[[i]] 0.67 [0.33; 1.50]∗

edgecov.memory[[i]] 0.78 [0.68; 1.03]∗

∗ 0 outside the confidence interval.

Table 3: TERGM examples on friendship networks in a school class.

each time step. Only if dependencies across at least two time steps are used in a model, the
time steps involved in the dependency term must be compatible. However, this is also solved
automatically by the btergm function because a memory term, for instance, is computed by
creating an internal copy of the list of dependent networks, shifting the list by a time unit
specified by the user (usually one step, as defined by the lag argument), using the time-
shifted list of networks as a covariate, and auto-adjusting this copy rather than the original
dependent network to the other networks. Thus the user needs only to take care of a proper
labeling of rows and columns of all networks and matrices at all time steps. Providing such
row and column names is not necessary if all objects are already conformable per time step,
as in the alliance example (Section 4).

Model 2b adds a memory term and a delayed reciprocity term. Note that these two model
terms are internally introduced into the model as time-shifted covariates. Therefore the auto-
adjustment procedure reports that nodes are removed from these covariates to match the
node sets of the dependent networks:

R> model.2b <- btergm(friendship ~ edges + mutual + ttriple +

+ transitiveties + ctriple + nodeicov("idegsqrt") + nodeicov("odegsqrt") +

+ nodeocov("odegsqrt") + nodeofactor("sex") + nodeifactor("sex") +

+ nodematch("sex") + edgecov(primary) + delrecip +

+ memory(type = "stability"), R = 100)

Initial dimensions of the network and covariates:

t=2 t=3 t=4

friendship (row) 26 25 25

friendship (col) 26 25 25

primary (row) 26 26 26

primary (col) 26 26 26

delrecip (row) 26 26 25
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delrecip (col) 26 26 25

memory (row) 26 26 25

memory (col) 26 26 25

Dimensions differ across networks within time steps.

Trying to auto-adjust the dimensions of the networks. If this fails, provide

conformable matrices or network objects.

Absent nodes:

label time object where

1 21 3 networks row

2 21 3 networks col

3 21 4 networks row

4 21 4 networks col

Number of nodes per time step after adjustment:

t=2 t=3 t=4

maximum deleted nodes (row) 0 1 1

maximum deleted nodes (col) 0 1 1

remaining rows 26 25 25

remaining columns 26 25 25

Dimensions of the network and covariates after adjustment:

t=2 t=3 t=4

friendship (row) 26 25 25

friendship (col) 26 25 25

primary (row) 26 25 25

primary (col) 26 25 25

delrecip (row) 26 25 25

delrecip (col) 26 25 25

memory (row) 26 25 25

memory (col) 26 25 25

The results of Models 2a and 2b are reported in Table 3. While the inclusion of temporal
model terms changes some of the effect sizes, the qualitative interpretation is not changed in
this case.

5.4. Temporal dependencies and the treatment of initial networks

Another important detail is that the use of temporal network dependencies leads to a smaller
number of usable observations. If temporal dynamics are modeled, at least one time step is
lost. Usually, the first time step is dropped from the list of dependent networks. The reason
is that the estimation is conditioned on the network at the previous time step(s) each time,
and for the first observed network, there is simply no previous time step that could be used.
Therefore, estimation of the friendship TERGM with temporal dynamics starts at t = 2 and
ends at t = 4, and the covariates start at t = 1 and end at t = 3 (see the adjustment report
above).
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To see this procedure more clearly, it is possible to specify an equivalent model manually by
estimating the model explicitly on time steps two to four and including two dyadic covariates
that contain the change statistics for delayed reciprocity (see Section 2.2) and dyadic stability
(see Section 2.3) based on time steps one to three as lists of matrices. As expected, Model 2b
and Model 2c yield identical estimates:

R> delrecip <- lapply(friendship, function(x) t(as.matrix(x)))[1:3]

R> stability <- lapply(friendship, function(x) {

+ mat <- as.matrix(x)

+ mat[mat == 0] <- -1

+ return(mat)

+ })[1:3]

R> model.2c <- btergm(friendship[2:4] ~ edges + mutual + ttriple +

+ transitiveties + ctriple + nodeicov("idegsqrt") +

+ nodeicov("odegsqrt") + nodeocov("odegsqrt") +

+ nodeofactor("sex") + nodeifactor("sex") + nodematch("sex") +

+ edgecov(primary) + edgecov(delrecip) + edgecov(stability), R = 100)

In a similar way, it is possible to include custom change statistics for other temporal network
effects manually. For example, one could design a temporal network statistic for delayed
triadic closure over two or three time periods, analytically derive the change statistic (see
Section 2.3), include it as a list of matrices in a dyadic covariate, and estimate the model
on all but the first one or two time steps to ensure that the covariate and the networks to
be modeled are of equal length. Delayed triadic closure has not been hard-coded in package
btergm because there are many different variants of it one could be theoretically interested
in.

5.5. Estimation with mtergm

An alternative estimation strategy is MCMC-MLE (see Section 2.6). This is implemented in
the mtergm function in the btergm package. mtergm has the same formula syntax as btergm,
therefore Model 2b can be equivalently specified as follows:

R> model.2d <- mtergm(friendship ~ edges + mutual + ttriple +

+ transitiveties + ctriple + nodeicov("idegsqrt") +

+ nodeicov("odegsqrt") + nodeocov("odegsqrt") +

+ nodeofactor("sex") + nodeifactor("sex") + nodematch("sex") +

+ edgecov(primary) + delrecip + memory(type = "stability"),

+ control = control.ergm(MCMC.samplesize = 5000, MCMC.interval = 2000))

Note that arguments at the end of the function call are handed over to the ergm function,
which permits adjusting the MCMC options as documented in the ergm package. The last
line of the command illustrates this by increasing the MCMC sample size and the MCMC
interval. It is also possible to pass on constraints to the ergm function, for example the
argument constraints = ~ bd(maxout = 3) would limit the number of outgoing ties per
node to three. Further details can be found in the documentation of the ergm package.

Note also that the estimates differ slightly from the btergm estimates and that they are likely
more accurate with small numbers of networks like in this example.
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With ‘mtergm’ objects, goodness-of-fit assessment, micro-level interpretation, degeneracy checks,
and other operations are possible just like with ‘btergm’ objects.

5.6. Out-of-sample prediction with TERGMs

To draw valid inferences, the model must capture the endogenous properties of the data-
generating process well. This can be checked by comparing simulated networks based on the
model with the actual observed network(s). However, this bears the risk of overfitting as
some of the endogenous properties may be very specific to the case study at hand. To draw
inferences that are valid across networks, the gold standard is therefore the assessment of
model fit with network data that were not used to create the model in the first place. For
example, if a TERGM is applied to six independent networks, one could estimate the model
based on four or five of them and try to predict the networks that were left out using the
model.

In many settings, however, only one time series is available. For example, there is just one
realization of international conflict per year. In such a situation, the best one can do is leave
out some time steps when estimating the model, and predict the time steps that were left out
using the model. If this works reasonably well, the model seems to fit well out-of-sample.

The btergm package offers both within-sample and out-of-sample prediction and goodness-of-
fit assessment through the generic gof function and its methods. The within-sample case was
demonstrated in Section 4. The following example introduces out-of-sample goodness-of-fit
assessment with the friendship dataset.

We recompute Model 2b, but we omit the last time step from the estimation. That is, the
model is based exclusively on time steps 1–3. As we are using temporal network statistics, the
“dependent variable” consists of the networks at time steps 2 and 3 while the lagged temporal
covariates consist of time steps 1 and 2:

R> model.2e <- btergm(friendship[1:3] ~ edges + mutual + ttriple +

+ transitiveties + ctriple + nodeicov("idegsqrt") +

+ nodeicov("odegsqrt") + nodeocov("odegsqrt") +

+ nodeofactor("sex") + nodeifactor("sex") + nodematch("sex") +

+ edgecov(primary) + delrecip + memory(type = "stability"), R = 100)

Next, we can employ the gof function to simulate 100 networks from the model and compare
them to the observed network at t = 4. In the following code block, the argument target =

friendship[[4]] causes the gof function to compare the simulated networks to the omitted
and observed fourth time step. To simulate new networks, one needs to supply the covariates
for the coefficients, including the temporal statistics. We do this by specifying the formula
again and adding index [3:4] to the left-hand side of the formula. This computes the
relevant covariates for the fourth time step, partly by making use of information contained in
the third time step (in the case of the temporal variables). Using the coef argument, we tell
the gof function to use the estimated coefficients from Model 2e. The statistics argument
contains the functions that are used for comparing the simulated to the observed networks
(see ?"gof-terms"). Finally, the comparison is plotted.

R> gof.2e <- gof(model.2e, nsim = 100, target = friendship[[4]],
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PR curve of the null model. PR curves are better suited for sparse networks because absent
ties are not taken into account. For the Knecht data, however, this is not an issue. The PR
curve also shows that the predictive fit is good.

ROC and PR curves can be used to compare different model specifications, also for within-
sample goodness-of-fit. To condense the performance into a single measure, the area under
the curve (AUC) can be reported for both curves. AUC values are stored in the goodness-of-
fit objects and are printed along with other goodness-of-fit measures when the object (here:
gof.2e) is called. The following code prints the details of the six goodness-of-fit comparisons
stored in gof.2e, including the AUC values for both curves (and random graphs for compar-
ison), and plots only the ROC and PR curves, respectively. The AUC values can be accessed
directly through their respective slots in the sixth object:

R> gof.2e

R> plot(gof.2e[[6]])

R> gof.2e[[6]]$auc.pr

Finally, the btergm package also provides ‘btergm’ and ‘mtergm’ methods for statnet’s generic
simulate function. The simulate function can be used to simulate new networks from
a ‘btergm’ model or from an ‘mtergm’ model. The following command simulates ten new
networks based on the coefficients stored in Model 2e and for time step 3. The index argument
refers to the third item in the list of dependent networks used in the model; if the model
included time steps 2 to 4, index = 3 would refer to time step 4. The resulting ten networks
are stored in a list. The simulate methods use the ‘formula’ method from the ergm package
internally to create new networks via MCMC (Hunter et al. 2008b; Handcock et al. 2017).

R> nw <- simulate(model.2e, nsim = 10, index = 3)

6. Micro-level interpretation of ERGMs and TERGMs

In addition to the estimation and goodness-of-fit assessment of TERGMs, the btergm package
provides tools for micro-level interpretation of ERGM or TERGM coefficients as described by
Desmarais and Cranmer (2012a). The interpret function calculates probabilities of subgraph
outcomes at the edge, dyad, and block level. For example, what is the probability that node
i has a tie to node j (an edge-level question) conditional on the rest of the network? What is
the probability that the dyad of i and j has a unidirectional, a reciprocated, or no tie at all
(a dyad-level question)? Or what is the probability that node i is connected to nodes j, k,
and l, but not to nodes m and n (a block-level question)? The interpret function computes
these probabilities and facilitates interpretation and comparison of ERGM-type models.

A first simple example examines the dyad state probabilities between nodes 12 and 15 at the
last time step, which is the third item in the dep list of networks used for Model 2 above:

R> interpret(model.2b, type = "dyad", i = 12, j = 15, t = 3)

$`t = 3`

j->i = 0 j->i = 1

i->j = 0 0.15567374 0.2965098

i->j = 1 0.03089624 0.5169203
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In this example, the probability that i and j are mutually tied is approximately 0.52. Note
that nodes i and j can be provided as indices (in this case, the 12th row and 15th column of
the matrix) or via their node labels.

In a second, more complex example, we would like to analyze the probabilities of same-sex
edges over time, separately for both sexes. Provided that both nodes involved in a dyad are
male (female), what is the probability that an edge is realized in this dyad at t = 2, t = 3,
and t = 4, given the rest of the network and given Model 2b? This will give context to the
coefficient of the nodematch term in Model 2b, which does not differentiate between sexes or
time steps.

To answer the research question, we first need to compile the set of male-male and female-
female dyads, apply the interpretation function to each of these dyads at the edge level to
compute their probabilities of forming a tie, then sample a number of dyads from this set,
and compute the median probability and confidence interval for each sex–time combination.
With large numbers of networks or nodes per network, it would make sense to sample from
the dyads of interest and then compute their probabilities using the interpret function.
Here, we have relatively few dyads in total, so we just compute all dyadic probabilities and
resample afterwards to obtain the confidence intervals.

The first step is the creation of the set of dyads along with their probabilities (using the
interpret function along with information on the sex of the dyad):

R> dyads <- list()

R> for (t in 2:length(friendship)) {

+ sex <- get.vertex.attribute(friendship[[t]], "sex")

+ mat <- as.matrix(friendship[[t]])

+ for (i in 1:nrow(mat)) {

+ for (j in 1:ncol(mat)) {

+ if (i != j && sex[i] == sex[j]) {

+ dyads[[length(dyads) + 1]] <- c(i, j, t, interpret(model.2b,

+ type = "tie", i = i, j = j, t = t - 1), sex[i])

+ }

+ }

+ }

+ }

R> dyads <- do.call("rbind", dyads)

R> dyads <- as.data.frame(dyads)

R> colnames(dyads) <- c("i", "j", "t", "prob", "sex")

In principle, one could plot the probability distributions for the six combinations of sex and
time now and compare them. However, we resample dyads in each group in order to obtain
the median along with the lower and upper bound of the confidence interval for each group:

R> samplesize <- 10000

R> results <- list()

R> for (t in 2:length(friendship)) {

+ for (s in 1:2) {

+ label <- ifelse(s == 1, paste0("f", t), paste0("m", t))

+ d <- dyads[dyads$sex == s & dyads$t == t, ]
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Figure 5: Micro-level interpretation exercise: Same-sex tie probabilities over time by sex.

+ n <- nrow(d)

+ means <- sapply(1:samplesize, function(x) {

+ samp <- sample(1:n, n, replace = TRUE)

+ mean(d[samp, ]$prob)

+ })

+ results[[label]] <- means

+ }

+ }

After the resampling of probabilities for each group, we compute the median and lower and
upper confidence intervals from the resampled probabilities:

R> quantiles <- sapply(results, function(x) {

+ return(c(quantile(x, 0.025), quantile(x, 0.5), quantile(x, 0.975)))

+ })

Finally, we plot the median per group along with the confidence intervals:

R> library("gplots")

R> pdf("interpret.pdf")

R> barplot2(quantiles[2, ], col = c("lightpink", "cornflowerblue"),

+ plot.ci = TRUE, ci.l = quantiles[1, ], ci.u = quantiles[3, ],

+ names = rep(c("F", "M"), 3), space = c(0.2, 0.2, 0.6, 0.2, 0.6, 0.2),

+ xlab = "Time from t = 2 to t = 4",

+ ylab = "Median edge probability (with 95 percent CI)", ci.lwd = 2,

+ main = "Same-sex friendship probabilities over time")

R> dev.off()

Figure 5 shows the resulting plot and illustrates that male-male dyads become more likely to
be tied over time whereas the probabilities for female-female dyads to be tied is approximately
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constant over time. This qualifies the result for the nodematch("sex") model term: it might
be useful to capture these processes in separate model terms for the two types of dyads.
Estimating separate ERGMs for each time step with such separate model terms confirms this.

The btergm package also contains the edgeprob function, which returns a data frame of all
dyadic tie probabilities along with the change statistics of all model terms. As the predicted
probabilities are derived analytically with this approach, this is faster than applying the
interpret function to all dyads separately. It can be used for creating plots of predicted
probabilities (e.g., for visualizing interaction terms) as in Czarna et al. (2016).

7. Checking for model degeneracy

A simple degeneracy check compares the sufficient statistics of simulated networks to those
of the observed networks at each observed time step (Hanneke et al. 2010, Section 4). If
the statistics of the observed networks are extreme outliers in relation to the distribution of
statistics in the simulated networks, the model specification needs to be modified such that
the observed data is not an outlier with respect to predictions from the model.

The checkdegeneracy function computes target statistics (i.e., the counts for the h statistics
included in the model) at each time step for the observed network and a range of simulated
networks. The results can be printed to the R console as different quantiles of the simulated
distribution versus the observed value, and a plot method permits plotting the observed
statistic against a histogram of simulated statistics to aid the detection of extreme values.

The results of the degeneracy assessment could show extreme deviations between observed
and simulated statistics for one of three reasons. First and foremost, the model is degenerate,
which rarely occurs with btergm. Second, there is unmodeled temporal variation in parameter
values. Third, the MPLE is substantially different from the MLE. This is not the case here
as none of the observed target statistics (except delayed reciprocity at t = 1) is extreme with
respect to the distribution of simulated statistics:

R> checkdegeneracy(model.2b, nsim = 1000)

Degeneracy check for network 1:

obs 2.5% 25% 50% 75% 97.5%

edges 117.000 88.000 97.000 103.000 108.000 118.00

mutual 33.000 21.975 26.000 28.000 30.000 35.00

ttriple 268.000 131.975 173.000 196.000 221.000 278.00

transitiveties 97.000 66.000 79.000 85.000 90.000 103.00

ctriple 54.000 25.000 36.000 42.000 48.000 62.00

nodeicov.idegsqrt 285.284 217.306 239.613 252.785 265.228 289.13

nodeicov.odegsqrt 244.576 184.043 203.945 215.121 225.947 248.39

nodeocov.odegsqrt 288.245 216.992 241.773 253.712 266.237 290.89

nodeofactor.sex.2 39.000 25.000 31.000 34.000 37.000 43.00

nodeifactor.sex.2 31.000 23.000 27.000 30.000 32.000 38.00

nodematch.sex 95.000 72.000 80.000 84.500 89.000 97.00

edgecov.primary[[i]] 38.000 31.000 36.000 38.000 40.000 45.00

edgecov.delrecip[[i]] 55.000 40.000 45.000 47.000 49.000 54.00

edgecov.memory[[i]] 3.000 -8.000 2.000 7.000 12.000 22.00
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Degeneracy check for network 2:

obs 2.5% 25% 50% 75% 97.5%

edges 133.00 128.00 139.00 145.00 150.00 162.000

mutual 36.00 30.00 35.00 37.00 40.00 44.025

ttriple 387.00 363.98 442.00 489.00 538.00 638.075

transitiveties 122.00 116.97 129.00 135.00 141.00 154.000

ctriple 82.00 61.00 79.00 90.00 101.00 125.000

nodeicov.idegsqrt 340.53 330.73 355.40 368.75 382.23 410.919

nodeicov.odegsqrt 292.89 273.89 295.29 306.45 319.47 344.335

nodeocov.odegsqrt 383.34 367.77 397.35 412.98 428.83 461.046

nodeofactor.sex.2 53.00 47.00 54.00 57.00 61.00 69.000

nodeifactor.sex.2 44.00 35.00 41.00 44.00 48.00 53.000

nodematch.sex 102.00 95.00 102.00 106.00 111.00 119.000

edgecov.primary[[i]] 41.00 33.00 37.75 40.00 42.00 45.000

edgecov.delrecip[[i]] 59.00 52.00 56.00 59.00 61.00 66.000

edgecov.memory[[i]] 7.00 -21.00 -9.00 -4.00 1.00 11.000

Degeneracy check for network 3:

obs 2.5% 25% 50% 75% 97.5%

edges 119.000 109.000 118.000 124.000 129.000 139.00

mutual 33.000 31.000 36.000 39.000 41.000 46.00

ttriple 241.000 236.000 288.000 319.000 354.250 420.00

transitiveties 101.000 94.000 105.000 111.000 118.000 129.00

ctriple 60.000 58.000 73.000 83.000 92.000 110.00

nodeicov.idegsqrt 285.411 264.668 285.118 299.128 310.387 332.74

nodeicov.odegsqrt 264.019 248.686 267.665 279.984 292.055 312.32

nodeocov.odegsqrt 299.939 275.066 298.810 313.153 324.830 349.10

nodeofactor.sex.2 54.000 49.000 55.000 58.000 61.000 67.00

nodeifactor.sex.2 47.000 41.000 46.000 48.500 51.000 57.00

nodematch.sex 92.000 83.000 92.000 96.000 100.000 109.00

edgecov.primary[[i]] 36.000 31.000 36.000 39.000 41.000 46.00

edgecov.delrecip[[i]] 62.000 60.975 66.000 69.000 72.000 78.00

edgecov.memory[[i]] 31.000 23.000 32.000 36.000 41.000 51.00

8. Discussion

The btergm package takes its place among two other packages that implement ERGM-like
statistical models for longitudinal network data: the RSiena (Ripley et al. 2017a) and tergm

(Krivitsky and Handcock 2017) packages.

The main differences between the btergm and tergm implementations of TERGMs are the
estimation procedures and the specifications supported. First, estimation in package tergm is
done by either MCMC-MLE or a simulated method of moments procedure. These are effective
estimation procedures when the networks are modestly sized and/or T is small, but will be
noticeably more computationally demanding than btergm when dealing with voluminous
data. The first example provided in Section 4, for instance, is already too large to compute
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by MCMC-MLE, making the bootstrap MPLE approach in the btergm package necessary.
Second, the specifications supported in the tergm package are based on the separate edge
loss and edge creation functions proposed by Krivitsky and Handcock (2014). Researchers
may be interested in these specifications, but if not, the specification constraints in the tergm

package may be seen as a limitation. An example from the study of international conflict may
illustrate this point: it may be plausible that a country i starts attacking another country j
as soon as a third country k’s conflict with j is dissolved in order to keep up the pressure.
However, if k does not dissolve its war with j, there is no reason for i to intervene because
it can effectively free-ride. In this example, both the formation and dissolution may take
place in close temporal order. Thus it may make sense in some applications to model both
processes jointly, and the xergm package permits such joint modeling of temporal processes.
In other situations, however, a separable TERGM as implemented in the tergm package may
be theoretically plausible.

In terms of the stochastic actor-oriented models implemented in package RSiena, the differ-
ences with TERGM are numerous and interested readers are directed to Leifeld and Cranmer
(2014) and Desmarais and Cranmer (2012a) for a detailed discussion as well as suggestions
for empirical comparison between the two models.

There are many additional features available in the btergm package that we omit here to keep
the exposition short, such as support for TERGMs for bipartite networks. There are several
additional extensions in progress or planned for the xergm package. The tnam package
(Leifeld and Cranmer 2017), another part of the xergm suite of packages, implements a
dynamic model for vertex attributes which we refer to as “temporal network autocorrelation
model” (TNAM) and which can be thought of as analogous to the vertex behavior components
of the stochastic actor-oriented model implemented in package RSiena (Ripley et al. 2017a).
We are actively working to implement the generalized ERGM for networks with weighted
ties developed by Desmarais and Cranmer (2012b) in the GERGM package (Denny, Wilson,
Cranmer, Desmarais, and Bhamidi 2017).
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