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Abstract
A large number of studies have been published examining the implications of climate change for
agricultural productivity that, broadly speaking, can be divided into process-based modeling and
statistical approaches. Despite a general perception that results from these methods differ
substantially, there have been few direct comparisons. Here we use a data-base of yield impact
studies compiled for the IPCC Fifth Assessment Report (Porter et al 2014) to systematically
compare results from process-based and empirical studies. Controlling for differences in
representation of CO2 fertilization between the two methods, we find little evidence for
differences in the yield response to warming. The magnitude of CO2 fertilization is instead a
much larger source of uncertainty. Based on this set of impact results, we find a very limited
potential for on-farm adaptation to reduce yield impacts. We use the Global Trade Analysis
Project (GTAP) global economic model to estimate welfare consequences of yield changes and
find negligible welfare changes for warming of 1 °C–2 °C if CO2 fertilization is included and
large negative effects on welfare without CO2. Uncertainty bounds on welfare changes are highly
asymmetric, showing substantial probability of large declines in welfare for warming of 2 °C–3 °C
even including the CO2 fertilization effect.
Introduction

There is now a large literature examining the impact of
climate change on agricultural yields that can be
divided into two types of studies. One category uses
process-based crop models that simulate the biological
mechanisms of crop growth. A second category that
has been developed more recently looks at statistical
relationships between climate or weather and crop
yields. The benefits of the former are that it is
grounded in a mechanistic, bottom-up understanding
of how plants grow. But process-based models are
often calibrated to specific field settings which can be
data intensive and means the generalizability of results
to larger areas is unclear. Statistical models are
typically based on observations of crop growth over
large areas in real-world field settings. But the
reduced-form relationship between weather variables
© 2017 IOP Publishing Ltd
and yield means the mechanisms driving model results
are often unclear and that care should therefore be
taken in using results for climate change projections
extending beyond the historical record.

Despite the fact that both approaches seek to
quantify the impacts of climate change on agricultural
productivity, there have been relatively few attempts to
systematically compare findings. A number of studies
have compared process-based and empirical responses
for individual crops in individual locations, such as
maize and wheat in South Africa (Estes et al 2013) or
maize in Switzerland (Holzkamper et al 2015). At the
global level, Liu et al (2016) provide a systematic
comparison of the temperature response of wheat
yields estimated from regression models, upscaling
point estimates from an ensemble of process-based
models, and gridded process-based models, generally
finding only small differences between the three
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5 This count treats CERES-maize, CERES-rice and CERES-wheat as
a single model family, for example.
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methods. In this special issue, Lobell and Asseng
(2017) compare individual published estimates of crop
sensitivities to climate impacts from process-based
and empirical yield models, finding little difference
in the temperature response. Roudier et al (2011),
Knox et al (2012), and Knox et al (2016) are perhaps
most similar to the analysis presented here. These
papers present meta-analyses of yield impacts for
multiple crops in specific regions (West Africa,
Africa and South Asia, and Europe respectively) and
report average differences between process-based and
empirical estimates. All papers find that the effect of
impact estimation technique is small relative to other
sources of variation. Our approach adds to these
studies firstly by performing a global analysis (thereby
giving us a larger set of data-points to work from) and
secondly by using a multivariate regression for our
meta-analysis, instead of simply splitting the sample of
studies. This multivariate approach allows us both to
control for potential confounding variables and to
estimate continuous response functions that can be
globally extrapolated in order to inform an economic
analysis.

In the agricultural sector, the effect of climate
change-induced yield shocks on more policy-relevant
variables such as prices, consumption, food-security,
and economic welfare will be mediated by the global
trade in agricultural commodities and will depend on
terms-of-trade effects and the interaction of climate
change impacts with existing market distortions
(Hertel and Randhir 2000). Though several papers
have incorporated climate productivity shocks into
partial- and general-equilibrium models (Nelson et al
2014 b, 2014a, Wiebe et al 2015, Stevanovic ́ et al 2017)
very few report welfare changes (Stevanovic ́ et al 2016
is an exception). Understanding the welfare impacts of
climate change-induced productivity shocks on
agriculture is important both for policy and because
the simple integrated assessment models (IAMs) used
to calculate the social cost of carbon (SCC) use
damage functions that parameterize changes in
economic welfare with temperature. Current agricul-
tural damage functions in these IAMs use studies from
the early-to-mid 1990s that are now dated and largely
obsolete (NAS 2017, Rose et al 2014).

This paper contributes to the existing literature in
two ways. It is the first systematic, multi-crop, global
comparison between empirical and process-based
crop models. Although the distinction between these
approaches has been widely discussed, this paper
quantifies this difference at the global scale and puts it
in the context of other uncertainties in future climate
change impacts, such as how quickly farmers are able
to adapt to climate change. In addition, we advance the
literature by examining not just yields but also
economic welfare by incorporating estimated yield
changes into the Global Trade Analysis Project (GTAP)
CGEmodel, thereby producing results ready to inform
IAM damage functions.
2

Data and methods

The basis of the yield-temperature response functions
in this paper is a database of studies estimating the
climate change impact on yield compiled for the IPCC
5th Assessment Report (Porter et al 2014), also
described in a meta-analysis by Challinor et al (2014).
This database contains over 1700 point estimates of
the impacts of changes in temperature, rainfall, and
CO2 concentrations on the yield of 17 different crops
compiled from 94 different studies. These studies
include a wide range of process-based crop models as
well as empirical papers, published between the late
1990s and 2012, and they vary substantially in the
geographic regions examined as well as the extent to
which they include on-farm adaptations. In this paper
we focus on maize, rice, soy and wheat, four crops that
make up a major part of the scientific literature on
climate impacts on crops. These crops collectively
account for approximately 20% of the value of global
agricultural production, 65% of harvested crop area,
and just under 50% of calories directly consumed
(FAO 2016). For these four crops, the database
contains 1010 data-points (344, 238, 336, and 92, for
maize, rice, wheat and soybeans respectively). Of
these, 451 are reported as including some form of on-
farm, within-crop agronomic adaptation. The major-
ity of these adaptations involve adjusting either
planting date (10%), cultivar (12%) or both (44%).
In total, 28 models are represented in the 56 studies
used for the estimation, made up of 17 process-based
model families5 and 11 statistical models.

For this analysis we have complemented the
existing database in two ways. Firstly, we coded each
study based on whether a process-based or empirical
approach was used. Secondly we added baseline
growing-season temperatures to the database. To do
this, each data point was assigned to a country. 86% of
points come from studies located in a single country.
For the remaining 14% coming from studies with an
international scope the assigned country was the
country with the highest production of the relevant
crop. Average growing season temperatures were
calculated using planting and harvest dates from
Sacks et al (2010) and gridded monthly temperature
from the Climate Research Unit (CRU 2016).

We treat the database of studies as a kind of
‘ensemble of opportunity’ (Stone et al 2007, Tebaldi
and Knutti 2007). The benefits of this approach are
that predictions from multi-model ensembles have
been shown to consistently out-perform individual
models in both climate modeling and, increasingly, in
agricultural modeling (Asseng et al 2014, Bassu et al
2014, Li et al 2015). Though not derived from a formal
ensemble modeling project, the universe of individual
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studies contained in the database can be thought of as
draws from a set of possible models, each of which
captures the response of crops to changing climate
conditions with some error. The sampling of models is
not systematic or random, but instead has emerged
from scientific research and associated peer review of
work on climate effects on crop yields over the last two
decades. A difficult question in estimating multi-
model ensembles is always how to weight different
models (Tebaldi and Knutti 2007). The approach
described here takes advantage of an implicit
weighting derived from representation of models
within the scientific literature. To the extent that this
representation reflects researchers’ judgements about
the best model to use for particular crops in particular
locations, it may be that this implicit weighting
emerging from the scientific literature is preferred to
simpler one-model one-vote aggregation schemes (for
instance Asseng et al 2014).

We use multiple regression to aggregate the results
from individual studies to an ensemble average
response function. This approach allows us to estimate
common response functions at an appropriate level of
aggregation. For example, every study in the database
examines the effect of change in temperatures on
yields, allowing us to estimate separate yield response
functions by crop and by baseline temperature, as well
as by type of study. Fewer studies examine the effect of
CO2 fertilization or adaptation, limiting our ability to
model heterogeneity in response to changes in these
variables.

Our regression specification is:

DY ijk¼b1jDTijkCjT jk þb2jDT
2
ijkCjT jk

þb3DTijkSijkkþb4DT
2
ijkSijkþb5f 1ðDCO2ijkÞC3j

þb6f 2ðDCO2ijkÞC4jþb7DPijk

þb8DTijkAijkþb9Aijkþeijk ð1Þ

whereΔY ijk is the change in yield from data-points for
crop j in country k (in % relative to the 1995–2005
baseline)6.ΔTijk;ΔCO2ijk andΔPijk are the changes in
temperature (in degrees C), CO2 concentration (in
parts per million (ppm)) and rainfall (in percent) for
point-estimate ijk, Sijk is a dummy variable indicating
whether point-estimate ijk came from a statistical
study, and Aijk is a dummy variable indicating whether
authors report the point-estimate as incorporating any
on-farm adaptation. Cj is a dummy variable taking the
value 1 if the point-estimate is for crop j and 0
otherwise and T jk is the baseline growing-season
temperature for crop j in country k. C3j and C4j are
dummy variables indicating whether crop j is a C3 or
C4 crop. The b parameters in equation (1) are
6 Each observation in this regression is a combination of an
estimated change in yield given certain changes in climate. A single
study in the database may include multiple observations (for
example, for different locations, different levels of temperature
change, or with and without adaptation).
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estimated using OLS regression. eijk gives the residual
variability in yield changes in the database unexplained
by the variables in equation (1). We allow for
correlations between data-points from the same study
by estimating standard errors using 750 block
bootstraps, blocking at the study level. In results that
follow, error bars show the 95% confidence interval
based on these block bootstraps. This regression
model has an adjusted R2 of 39%. One thousand leave-
one-out cross validations gave a median root mean
squared error of 9.9% (95% CI: 0.4% to 39.1%). For
comparison, the standard deviation of the dependent
variable is 20.1%.

This specification allows estimation of different
quadratic response functions for each crop and for the
effect of warming to differ according to baseline
temperature. But the estimated effect of statistical as
opposed to process-based modeling (b3 and b4 in
equation (1)) is common across crops. We are limited
in our ability to model heterogeneity in the effect of
statistical modeling due to limited representation of
statistical studies in the database. Figure 1 shows the
number of observations by crop, country, and level of
warming coming from process-based and empirical
papers. There are approximately ten times more
observations from process-based models than from
empirical models. Moreover, observations from
empirical papers are tightly clustered around 1 °C
warming with very few studies reporting results for
2 °C warming or more. This is because while statistical
studies estimate a continuous response function
between yield and temperature, they frequently
only report the marginal effect of a 1° increase in
temperature, even when the estimated response
function is non-linear. Results from process-based
studies are much more widely dispersed between
1 and 5 °C.

The effect of CO2 on crop yields is modelled as a
concave function, allowing for a declining marginal
effect of CO2, consistent with a number of field studies
(Long et al 2006, Tubiello et al 2007). Specifically
the function takes the form f ΔCO2ij

� � ¼ ΔCO2ijk

ΔCO2ijkþA
where A is a free parameter that is allowed to differ
between C3 and C4 crops. It is set at 100 ppm for C3

and 50 ppm for C4 based on a comparison of the R2

across models using multiple possible values. The
changes in CO2 are adjusted so that all are relative to a
modern baseline of 360 ppm (the most common
baseline value for studies included in the analysis).

The effect of adaptation on crop yields is modelled
with both an intercept term (b9Þ and an interaction
with warming (b8). This is prompted by the
observation that in many studies that report including
on-farm agronomic adaptations, adaptation is repre-
sented by changing management practices that would
improve yields even in the current climate (Lobell
2014). Failing to include an adaptation intercept in
this context will lead to an over-estimation of the
potential of the adaptation actions included in these
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Figure 1. (a) Maps of the distribution of individual data-points included in the yield impacts database by crop and geographic region.
(b) Distribution of individual data-points by level of warming.
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studies to reduce the negative impacts of a warming
climate. We therefore include an adaptation intercept
in the estimating equation but then subtract it out to
produce a damage function that goes through the
origin7. The true effect of adaptation is captured by
the interaction with temperature change, given by the
b8 term in equation (1). This term reflects the effect
of management changes that are not beneficial today
but that will be beneficial under a changed climate,
the standard definition of adaptation8.

To estimate the impact of local warming for a pre-
specified increase in global mean temperature we use
pattern-scaling between local and global temperature
changes based on the CMIP5 multi-model mean for
RCP8.5 (Taylor et al 2012). The multi-model mean
was calculated using the Climate Explorer tool (KNMI
2015) using methods documented in van Oldenborg
et al (2013). For each grid cell we take the change in
temperature between a future (2035–2065) and
baseline (1861–1900) period and divide by the mean
global warming over this time period. Local warming
is greater than global average warming over land areas
and is larger at high latitudes and in continental
interiors. Gridded local temperature changes are
combined with the response functions estimated
using equation (1) and baseline growing season
temperatures based on CRU (2016) and Sacks et al
7 In other words, we calculate the effect of a change in temperature
of X on yields to be the yield change predicted from equation (1) for
a temperature change of X minus the yield change predicted for a
temperature change of zero (i.e. b9Adapt ijk).
8 Note that the meta-analysis is capturing only the representation of
agronomic, within-crop adaptations. Other adaptations such as
crop switching, movement of agricultural areas, trade adjustments,
and consumption switching are dealt with in the GTAP modeling
section. Additional discussion is provided in table S1.

4

(2010) to give projected changes in yield with warming
on a 0.5 degree grid. Global average yield changes are
calculated by production-weighting the gridded data
using production data for the relevant crop in the year
2000 (Monfreda et al 2008).

In presenting results, we focus on global
temperature changes ranging from 1 to 3 °C and
use 4 cases to examine the importance of different
variables. The reference case is based on the
temperature response curves for process-based
models, including CO2 and adaptation. The ‘No
CO2’ case is the same as the reference except without
CO2 fertilization. ‘No Adaptation’ is the same as the
reference except excluding adaptation. And finally,
the ‘Statistical’ case is the same as the reference (i.e.
includes CO2 fertilization and adaptation) except
the temperature response comes from statistical
studies.

In order to assess the economic implications of
alternative studies of climate impacts on crop yields,
we use the Global Trade Analysis Project (GTAP)
model (Hertel, 1997). GTAP is a global, computable
general equilibrium model which seeks to predict
changes in bilateral trade flows, production, con-
sumption, intermediate use and welfare, owing to
changes in technology, policies or other exogenous
shocks. In this case, we treat the climate-induced yield
changes as Hicks-neutral productivity changes. Thus,
a 10% yield loss would mean that, if farmers did not
alter their practices in the face of the changing climate,
application of the same inputs to the same amount of
land would result in 10% less output. The economic
model does allow for changes in area planted, as well as
input intensities, in response to changing relative
prices, so actual yields will not change by 10%. In this
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Figure 2. Yield-temperature response functions derived from process-based and statistical models for maize (a), rice (b), soybeans (c)
and wheat (d) estimated using equation (1). Response curves are plotted for three baseline growing season temperatures based on the
25th, 50th and 75th percentile of temperatures for regions represented in the yield impacts database. In each graph the lightest color
corresponds to the coolest baseline temperature and the darkest color to the warmest. Dashed lines show the 95% confidence intervals
based on 750 block bootstraps, blocking at the study level. For the GTAP analysis, any grid cell with more than 99% yield loss was set to
99% yield loss. Temperature changes are relative to a 1995–2005 baseline.
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sense, all of the economic results reported here allow
for economic adaptation (table S1).

In order to implement the yield shocks under the
different climate scenarios, we aggregate the gridded
impacts for each of the four crops to the level of the
140 countries/regions in the version 9 GTAP data
base (Aguiar et al 2016). Since maize and soybeans
are part of larger crop aggregates in the GTAP data
base (coarse grains in the case of maize and oilseeds
in the case of soybeans), the climate-induced yield
shocks are diluted by multiplying them by the share
of the country-commodity aggregate made up of
maize and soybeans, respectively. Thus in a region
which does not produce soybeans, the climate shock
would be zero, whereas a country in which maize was
the only coarse grain produced would experience
precisely the productivity shock specified by the
aggregated maize results for that geographic region.
To be consistent with these incomplete agricultural
yield shocks, when it comes to reporting the welfare
losses, we report the losses as a share of that
incomplete production value (i.e. change in welfare/
sum of rice, maize, wheat and soybean output values
at 2001 prices).
Results

Figure 2 shows the temperature response functions
estimated from equation (1). Warming has a negative
impact on yields that is worse for maize and wheat
than for the more heat-tolerant rice. It is striking that
we find very little evidence for any yield benefits from
5

warming over most growing areas—our point
estimates are negative even for warming less than
1 °C and even in the 25th percentile of growing season
temperatures (i.e. relatively cool areas). This negative
impact is generally statistically significant for process-
based model results at warming above 2 °C. Standard
errors for results from statistical models are much
larger and bracket zero in almost all cases. The
interaction with baseline temperature is in the
expected direction: warming is less damaging for
crops in cooler locations. Figure S1 shows the gridded
yield responses to 2 °C of global average warming for
each crop. While many areas see negative impacts,
there are some positive effects in the boreal zone and in
cooler temperate areas.

In figure S2 we show a comparison between our
estimated response to a 1 °C warming and the mean of
multiple process-based crop models calibrated to
specific locations as part of the Agricultural Modeling
Inter-comparison and Improvement Project (AgMIP)
for the three crops that are available: maize (Bassu et al
2014), wheat (Asseng et al 2013), and rice (Li et al
2015). The results from these two very different
methods are close for both wheat and maize while the
findings for rice show more variability. In all cases the
AgMIP data are well within the 95% confidence
interval produced in this study.

Figure 3 shows how the type of study (b3 and b4 in
equation (1)), inclusionof adaptation (b8), and theCO2

fertilization effect (b5 and b6) affect the climate change
response. Point estimates for b3 and b4 suggest that on
average results from statistical studies are slightly more
optimistic than results from process-based models
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9 Equation (1) also includes a linear control for rainfall (b7 term in
equation 1). This shows that, on average, higher rainfall improves
yields. A 1% increase in precipitation increases yields by 0.22% (std.
error¼ 0.11, p < 0.05). This is consistent with the initial meta-
analysis of Challinor et al (2014) who, with a different meta-analysis
regression specification, found a 1% increase in rainfall increased
yields by 0.53%. In the welfare analysis we do not further consider
rainfall changes meaning our results should be interpreted as the
marginal effect of only temperature (and CO2 changes in the
relevant cases) on yields.
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for small amounts of warming andmore pessimistic for
higher levels of warming. Error bars for the statistical
model are extremely large though, particularly for
warming beyond 2 °C, which is perhaps unsurprising
given the concentration of empirical results at 1°
warming documented in figure 1.

The point estimate for the effect of adaptation is
in the opposite direction from what would be
expected (slightly negative), but the error bars are
large and the effect is not distinguishable from zero.
Studies that include adaptation do have more positive
yield outcomes than studies that don’t, but those
benefits are captured entirely in the adaptation
intercept term (b9 ¼ 7.05%, p > 0.05). Therefore,
these findings suggest that most within-crop agro-
nomic adaptation measures represented in process-
based modeling studies would provide the same
benefit under the current climate as they would under
future climates. In other words, they are actions that
shift the supply curve out to the right but do not
change the marginal impacts of future warming,
consistent with the ‘adaptation illusion’ identified by
Lobell (2014).

Finally, the CO2 response functions show
statistically-significant benefits of CO2 fertilization
that asymptote at 17.3% for C3 crops and 10.6% for
C4 crops. Given the functional form assumption, this
translates to yield gains of 11.5% (C3) and 8.5% (C4)
for a doubling of CO2 from pre-industrial levels. For
C3 crops, this value is close to that obtained from
FACE experiments which range between 12 and 14%
yield gains for a doubling of CO2 (Long et al 2006).
(It may well be that some process-based models have
used FACE data for calibration of the CO2 fertiliza-
tion effect (particularly those published more
recently) and therefore this may not be a fully
independent validation of the meta-analysis results.)
Fewer FACE experiments have been performed for C4

crops but available experimental data, as well as
theory, suggest C4 crops will benefit less from CO2
6

except under water-stressed conditions (Leakey et al
2006, Long et al 2006)9.

Figure 4 shows global production-weighted yield
losses for a global temperature change of 1 °C–3 °C for
four cases. Except for soybeans, the reference case that
includes CO2 fertilization and adaptation shows
positive effects on yields at low levels of warming,
becoming negative between 2 °C–3 °C of warming.
Variation between the different cases reflects what
might be expected given the response curves shown in
figure 3. CO2 fertilization is most important–
excluding the CO2 effect produces substantial losses
for all crops ranging from 14% (rice) to 25% (wheat)
at 3 °C of warming. The effect of excluding adaptation
is very small. The effect of statistical as opposed to
process-based studies is small and slightly positive for
1 °C–2 °C, becoming slightly negative at 3 °C. At
higher levels of temperature change we would expect
this effect to become more negative (figure 3). The
95% confidence intervals are large and mostly bracket
zero, with the exception of the No CO2 case at 3 °C of
global average warming. Uncertainties are particularly
large for soybeans and for the statistical case at 3 °C of
warming—both instances where the number of data-
points in the meta-analysis are limited.

We use our estimates of the response of global crop
productivity to temperature change as an input to the
GTAP CGE model in order to determine how national
economic welfare is affected by climate impacts on
crop yields. Figure 5 gives the global damage functions
(% change in welfare with warming) within the
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impacted sectors. Among all the cases that include
CO2 fertilization, welfare changes are negligible at
1–2 degrees of warming, becoming negative at 3
degrees. In contrast, the No-CO2 case shows
substantial global welfare losses, even at 1–2 degrees.
Uncertainty bounds are large meaning no cases are
statistically different from the reference case at the 95%
confidence level. But the uncertainty in potential yield
losses is also highly asymmetric: the possibility of large
welfare losses is substantial whereas welfare gains are
both smaller and less likely, particularly for a warming
of 2–3 degrees. These welfare changes depend on
modeled changes in harvested crop areas, production
intensity, and consumption. Some of these changes are
shown in figures S3 and S4 and are discussed more
7

extensively in the supplemental information available
at stacks.iop.org/ERL/12/065008/mmedia.
Discussion and conclusions

We believe there is a general perception that empirical
studies give more pessimistic estimates of crop
response to warming than do process-based models
(Lobell and Asseng 2017). However, there is a lack of
systematic comparisons between the two methods. In
particular, because empirical studies do not include
CO2 fertilization whereas process-based studies
generally do, it is important to account for this
difference in comparing the temperature response

http://stacks.iop.org/ERL/12/065008/mmedia
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from the two methods. Here we are able to do this
statistically, showing that once CO2 (and to a lesser
extent adaptation) are controlled for, differences
between empirical and process-based responses may
be smaller than generally believed. Though the point-
estimates do show some evidence of more negative
impacts from statistical studies at higher temperatures
(4–5°), the effect is not precisely estimated and error
bars are large.

The poor representation of empirical studies
within the yield impacts database, particularly at
higher levels of warming, is a major limitation of this
analysis. Inclusion of more recent studies would help
with this, but this is not always straightforward. Many
recent papers report the marginal effect of growing
degree days rather than average growing season
temperature and converting from one to the other
is not simple (for example, Burke and Emerick 2016,
Butler and Huybers 2012). Standardized reporting of
the impacts of a 1 °C increase in average temperature
(and higher levels of warming for non-linear response
functions) in empirical papers would help with this
and should be encouraged. In addition, as noted
above, the number of points at which the continuous
response function estimated in empirical papers
should be sampled for inclusion in the database is
inevitably arbitrary. Some standardization would be
useful and would help with interpretation in the
future.

Another finding from this paper is that there is
little evidence in the existing literature that farm-level
adaptations will substantially reduce the negative
impacts of climate change on yields. The results
presented here suggest that many actions described as
adaptation in yield modeling studies would raise yields
both in the current and in the future climate, meaning
they do not necessarily reduce the negative impacts of
future warming. If actions would confer benefit in the
current climate but are not being adopted, economic
logic suggests that models may be either over-
estimating benefits or they may be missing important
costs of implementation. In either case, the potential
for within-crop, farm-level adaptations that improve
yields in the future climate more than in the present
climate appears limited, at least as currently repre-
sented within the studies included in the meta-
analysis.

This paper confirms the importance of CO2

fertilization in determining the average global impacts
of changing temperature over the 21st century. Our
results show the question of whether or not CO2

effects are included is more important than either the
inclusion of adaptation or the type of study used to
estimate the temperature response. For both maize,
wheat, and rice, CO2 fertilization fully offsets negative
impacts of warming up to 1–2° for the global average
yield effect. This demonstrates the importance of
future work to better constrain the magnitude of this
benefit. While we find good agreement between our
8

results and those derived from FACE experiments, at
least for the C3 crops (Long et al 2006), there is
evidence that the fertilization effect depends critically
on water and nutrient availability (McGrath and
Lobell 2013, Zhu et al 2016, Reich et al 2014).
Capturing this heterogeneity in CO2 fertilization by
crop and farming intensity could be important in
improving estimates of the yield impacts of climate
change at both global and regional scales. Because of
the importance of the CO2 fertilization effect, it should
be clearly communicated when climate change
impacts are presented without CO2 fertilization,
which is often the case with statistical papers and
sometimes with process-based models (for example,
Nelson et al 2014b).

Finally, this paper makes the connection between
models of crop productivity and economic welfare.
This is an essential step for informing damage
functions in the simple Integrated Assessment Models
(IAMs) such as DICE, PAGE, and FUND used to
calculate the SCC (NAS 2017). The economic impact
results further underscore the importance of the CO2

fertilization effect: global welfare effects at 1–2 degrees
of warming are negative without the CO2 fertilization
effect but slightly positive for cases that include it.
These results also show the complex connection
between yield and welfare change. Despite error
bounds on yield impacts being more or less
symmetric, these same yield impacts give rise to
highly asymmetric distributions over welfare changes,
with substantial probability of large welfare losses. This
asymmetry arises, despite the fact that the GTAP
modeling framework allows for a large number of
economic adaptations to moderate the adverse
consequences of productivity shocks including chang-
ing inputs, shifting crop areas, trade adjustments, and
consumption switching.
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