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Climate change poses an extremely wide-ranging set of risks, 
and in some cases benefits, to the things that people value and 
produce. Quantifying and aggregating these climate impacts 

in a meaningful way is extremely challenging, owing to the complex 
uncertainty that pervades the coupled human–Earth system, the long 
time horizon of the problem with temporal dynamics such as thermal 
inertia and other lags, and the heterogeneous nature of climate impacts 
across regions, sectors and generations. Nevertheless, estimating the 
economic damages of climate change is critically important for social 
decision-making: it tells us how the benefits of reducing greenhouse-
gas emissions stack up against the costs, as well as the value of spend-
ing on climate mitigation relative to other social investments.

The social cost of carbon (SCC) is a monetary estimate of the cli-
mate change damages to society over time from an additional tonne 
of carbon dioxide, including market impacts such as agricultural pro-
ductivity, energy costs and infrastructure damage as well as impacts on 
non-marketed goods such as ecosystems and human health. The SCC 
is increasingly being used to inform policy decisions ranging from the 
international to the local level. In the United States, federal agencies 
are required to account for the benefits of reductions in greenhouse-
gas emission as part of rulemaking cost–benefit analysis1, while other 
institutions such as state governments and public companies are also 
considering using the SCC. (Although a 2017 executive order termi-
nated the working group establishing official US  government SCC 
estimates, individual federal agencies must still consider the avoided 
costs of emissions as part of regulatory impact analysis.)

Alongside this growth in SCC application has come increased scru-
tiny of the modelling approaches involved, specifically a subset of inte-
grated assessment models (IAMs) that represent key Earth and human 
system components in order to monetize climate impacts2. Despite the 
important role of quantitative tools for policy and risk management, 
a clear disconnect exists between the current scientific literature on 
climate change impacts, adaptation and vulnerability (IAV) and the 
representation of climate change impacts in these cost–benefit mod-
els3–5. A National Academy of Sciences committee recently examined 
the four principal components of SCC estimation (the socioeconomic, 
climate, damage and discounting modules) and, with respect to the 
damage module, recommended improvements to the SCC IAMs so 
that the damage modules would reflect the current state of scientific 
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knowledge, characterize and quantify key uncertainties, and be trans-
parent, reproducible and clearly documented6. There is therefore both 
an opportunity and a need to improve the economic quantification 
of climate damages by integrating recent advances in climate impact 
research and empirical findings into IAMs. Here, we first review the 
existing state of damage functions in cost–benefit IAMs, then sum-
marize critiques of the current representation, and close by suggest-
ing pathways for improvement based on advances in IAV science. 
The goal is to link ongoing research into climate change impacts with 
the requirements of the global economic models used to produce the 
SCC, thereby highlighting near-term opportunities as well as areas for 
further development.

State of climate damage functions in IAMs
Climate change damages are represented in cost–benefit IAMs through 
a damage function, which relates climate variables (such as tempera-
ture, CO2 concentrations and sea-level rise (SLR)) to economic welfare. 
Although the function itself may be simple, it parameterizes a complex 
series of physical and socioeconomic relationships to aggregate the net 
impacts of climate change in a particular region and sector. The costs 
associated with a particular change in a climate driver (typically global 
or regional temperature change) depend on the exposure and sensitiv-
ity of the sector to the climate driver, the capacity for natural or techno-
logical adaptations, the available economic margins of adjustment and 
the structure of economic preferences in the sector (Fig. 1). Climate 
damages in an impact sector are the sum of the residual changes in 
welfare after these adjustments and the costs of adaptation.

We focus our review of damage functions on the three IAMs used by 
the US government to estimate the SCC: DICE (ref. 7), FUND (ref. 8) 
and PAGE (ref. 9). In contrast to the complexity of full-scale Earth sys-
tem models, these IAMs have simplified representations of the econ-
omy, climate and impact mechanisms in order to explore trade-offs in 
policy design and be computationally tractable; for example, DICE is 
typically run as an intertemporal optimization (that is, it chooses con-
sumption and other decision variables to maximize social welfare over 
the model time horizon, typically a century or more) with a nonlinear 
objective function, and FUND and PAGE often perform parametric 
uncertainty analysis using tens of thousands of runs in a Monte Carlo 
simulation. Despite common elements, the models differ substantially 
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in terms of their input assumptions and structure, notably in the 
degree of regional and sectoral disaggregation, formulation of climate 
damages, and treatment of adaptation and uncertainty (Table 1).

The defining characteristics summarized in Table 1 cause the mod-
els to project different damage outcomes for the same socioeconomic 
and climate conditions2,10. The models differ in the composition of 
damages across sectors and regions at 2 °C and 4 °C (Fig. 2a), as well 
as in aggregate, shown through the implied damage functions with 
respect to temperature (Fig. 2b). DICE and PAGE estimate similar lev-
els of total damages, but FUND projects very different impacts from 
climate change, with global net benefits at lower levels of warming. 
At 4  °C, projected damages from DICE and PAGE are substantially 
higher than those from FUND, about 4% of gross domestic product 
(GDP) compared with about 1% of GDP, respectively.

The DICE model projects most damages in the aggregate ‘non- sea-
level rise’ (non-SLR) damage category, with sea-level rise (SLR) com-
prising less than one-fifth of total damages over this century (Fig. 2a). 
The FUND model projects substantial net benefits from increased 
agricultural productivity and reduced heating demand (that is, avoided 
energy costs), while the dominant damages are due to increased cool-
ing costs and water resource damages. PAGE damages at low levels 
of warming are dominated by non-economic and SLR damages, as 
economic damages can be avoided by higher adaptation capacity, 
while PAGE’s discontinuity damage category shows up after crossing 
a threshold of 3 °C. The cost of adaptation in PAGE is constant, small 
and unresponsive to temperature.

In addition to the level of damages, the slopes of the implied damage 
functions of temperature (Fig. 2b) are particularly relevant for SCC esti-
mates, as they indicate the marginal damage response to incremental 
warming, which is what the SCC measures. The PAGE damage function 
is most responsive to warming, with the slope increasing substantially 
after 3 °C when the risk of a discontinuity is present and adaptation 
capacity is reduced. DICE damages increase smoothly with warming, 
reflecting the two quadratic damage functions of temperature and SLR. 
FUND projects net benefits below 2.5 °C (for example, avoided heat-
ing demand, agriculture benefits from CO2 fertilization) and impacts 
increase only gradually with temperature, in large part because higher 
per-capita incomes reduce damages in the health impact sectors over 
time, a characteristic termed ‘dynamic vulnerability’ in FUND11.

The role that these types of structural assumptions such as dynamic 
vulnerability and adaptation play in determining damage estimates 
can be illustrated by modifying the IAMs and recalculating dam-
ages. Dynamic vulnerability in FUND is formulated uniquely for each 
sector through both positive and negative income elasticities12. We 
introduce a comparable dynamic vulnerability effect into DICE and 
PAGE, with an aggregate income elasticity equivalent to the implied 
total response in FUND (Fig. 2c). We also estimate damages in a ver-
sion of FUND with static vulnerability, fixing income elasticities to 
zero, to compare to the standard DICE and PAGE results that have no 
explicit income elasticity of damages (see Supplementary Information 
for methods). Matching the vulnerability assumptions in the three 
models brings them into closer agreement and produces substantively 
similar damages. For example, comparing similar modes for dynamic 
vulnerability and static vulnerability reduces the spread at 4  °C by 
roughly a factor of three, indicating that different assumptions about 
whether higher incomes lead to lower sensitivity to climate change are 
an important driver of differences in aggregate damages. Removing 
adaptation from the two models that represent it explicitly has a much 
smaller effect on the damage function, although note that because 
SLR accumulates over time and damages are less sensitive to tem-
perature change, coastal adaptation has little impact on the damage 
function (Fig. 2d).

Irrespective of income elasticity and adaptation assumptions, the 
relatively low level of climate damages for all models, particularly at 
warming less than 3 °C, has long been a subject of discussion and 
debate in the arena of global carbon policy. A warming of 2 °C by 2100 
implies only a 1% GDP  loss in DICE and PAGE and modest bene-
fits in FUND, impacts that, given estimates of the cost of mitigation, 
are insufficient to justify the global temperature limit adopted by the 
international community13. These damage functions have also been 
the subject of criticism for more specific reasons, both technical and 
theoretical. Table 2 synthesizes some of the main critiques of existing 
damage functions from the economics literature (additional details in 
Supplementary Information).

Prospects for incorporating IAV research into IAMs
Although some of the critiques in Table 2 are difficult to address for 
reasons both conceptual and practical, there are opportunities for 
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Figure 1 | Schematic representation of the complex series of physical and socioeconomic processes and relationships encompassed by a damage 
function. a, Generalized stages involved in determining damages, where Δ represents the change in the parameter and numbered connections represent 
(1) biophysical sensitivity to climate driver, (2) adaptation effectiveness, (3) general-equilibrium effects, and (4) economic preferences. b, Specific 
example for the agriculture sector.
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Table 1 | Key dimensions and damage function characteristics of three IAMs. 

Model details 
 

Dynamic Integrated model 
of Climate and the Economy7 
(DICE2010)

Climate Framework for Uncertainty, 
Negotiation and Distribution8 (FUND v.3.8) 

Policy Analysis of the Greenhouse 
Effect9 (PAGE09)  

Regions One region (world) Sixteen regions Eight regions

Sectors Two sectors
Market: SLR, aggregate non-SLR
Non-market: aggregate non-SLR

Fourteen sectors
Market: SLR, agriculture, forests, heating, cooling, 
water resources, tropical and extratropical storm 
damages
Non-market: biodiversity, cardiovascular/
respiratory, vector-borne diseases, diarrhoea, 
morbidity, tropical and extratropical storm 
deaths, migration

Four sectors
Market: SLR, economic, discontinuity 
(for example, abrupt change or 
catastrophe)
Non-market: non-economic

Damage functional form Estimates damages D as a per cent 
loss of global GDP

Quadratic function of climate 
variable, for example:

= δ1 ΔT + δq ΔT 2D
Where δl and δq are linear and 
quadratic damage coefficients and 
ΔT is temperature change

Estimates damages D as a per cent change in 
regional productivity

Uniquely formulated by sector, with damage 
function ƒ scaled by a dynamic vulnerability term, 
for example:

= f (ΔT x)D YPCt
YPC0

)) –ε

Where x is the climate variable exponent, YPC 
is per capita income, t and 0 are the current and 
reference time periods, and ε is income elasticity

Estimates residual damages D after 
adaptation as a percent loss of regional 
GDP

Power function of residual climate 
variable plus adaptation costs C, for 
example:

= δΔ(T r – Tadapt)
x + CadaptD

Climate variable Global mean temperature change, 
global mean SLR

Global mean or regional temperature change 
(all), rate of warming (agriculture), CO2 
concentrations (agriculture, forestry, storms), 
global mean sea-level change (SLR), ocean 
temperature (storms)

Regional mean temperature change, 
global mean SLR

Socioeconomic drivers Global income Population, income, per capita income, 
population density, technological change, 
production cost, land value

‘Dynamic vulnerability’ allows climate resiliency 
or exposure to change over time in response to 
income growth or technological change12

Income, per capita income, regional 
adaptation capacity and costs, regional 
scaling factor relative to European 
Union, modest equity weights

Calibration DICE2010 is loosely calibrated 
to the IPCC (ref. 64) and a meta-
analysis of net damages for 1–3 °C 
(ref. 65) via RICE-2010 (ref. 13) 

Calibrated to sector-specific impact studies, 
mostly published between 1992 and 1998 (ref. 2)

SLR calibrated to ref. 66; economic and 
non-economic calibrated to a review 
of damage estimates for 3 °C (from 
four IAMs, including DICE, FUND and 
PAGE)67; discontinuity calibrated to 
refs 68 and 69

Adaptation Implicit: calibrated to estimates of 
damages net of adaptation

Explicit: agriculture includes lagged rate 
component that fades with adaptation, SLR 
assumes cost-effective adaptation with sea-walls 
or retreat
Implicit otherwise: calibrated to econometric 
studies of net response to warming

Explicit: two types of exogenous 
adaptation, modelled as fixed regional 
policies (constant regardless of climate 
change and socioeconomics) that 
reduce impacts for a cost

Uncertainty representation Deterministic design Probabilistic design represents parametric 
uncertainty with thin-tailed (for example normal) 
distributions 

Probabilistic design represents 
parametric uncertainty with triangular 
distributions

Catastrophic risk Implicit: net damage includes the 
expected value of catastrophic loss 
per Nordhaus expert survey68

Potential for catastrophic outcome through tails 
of parameter distributions

‘Discontinuity’ impact occurs with 
a positive probability linked to 
temperatures over 3 °C

Data shown are for the versions of the three IAMs7–9 used to calculate the most recent US government SCC estimates, adapted from ref. 2. Additional description and background provided in the Supplementary 
Information, including examples for agricultural and coastal damages.
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near-term and future advances using the large IAV literature that has 
developed since damage functions were first introduced. The empiri-
cal basis of IAM damage functions is necessarily constrained by the 
studies available in each region and sector. Despite recent growth in 
studies of climate change impacts, incorporating this research into 
current economic damage functions is not straightforward. Impact 
studies that can most readily inform IAM damage functions will ide-
ally meet these criteria: 

C1.	 Use a common framework with consistent assumptions around 
population growth, economic growth and technological change

C2.	 Report impacts with respect to physical climate driver such as 
temperature change, SLR, CO2 concentration or rate of change, 
and socioeconomics if possible, rather than (or in addition to) 
time-paths based on a particular emissions scenario or represent-
ative concentration pathway (RCP)

C3.	 Have global coverage

C4.	 Incorporate the effects of all the costs and benefits of climate 
change in a particular sector

C5.	 Consider inter-region and inter-sectoral interactions, to the 
extent possible

C6.	 Include the costs and benefits of available, cost-effective 
adaptations

C7.	 If applicable, account for general- or partial-equilibrium eco-
nomic adjustments to biophysical impacts

C8.	 Be reported in economic units, ideally as welfare changes;
C9.	 Quantify uncertainty in impacts

Although not necessarily possible or appropriate for every 
analysis, studies that meet many of these criteria will be most eas-
ily incorporated into IAMs, supporting the recommendations in the 
National Academies of Sciences report6 for traceable and transparent 
damage functions calibrated to current science. Below, we describe 
three main classes of IAV research that could be that could be used 
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Figure 2 | Damage estimates projected by the DICE, FUND and PAGE models at different levels of temperature change, corresponding to 2100 
socioeconomics. See Supplementary Information for methods. a, Decomposition of total damages for 2 °C and 4 °C above pre-industrial temperature 
by IAM region and sector for the standard model in deterministic mode. Regional abbreviations are as given in the IAMs; adapt., adaptation. b, Implied 
aggregate damage functions with respect to temperature change for each IAM, following ref. 2. c, Comparison of IAM damage functions modified with 
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Table 2 | Synthesis of published damage function critiques, with key references. 

Damage function 
characteristic 

Critique description Model examples and implications for damage estimates Key 
references

Extrapolation 
to high 
temperatures

Damage functions are calibrated based on impact 
studies of 1–3 °C warming, but extrapolated beyond this 
range when computing damages or SCC estimates for 
many emissions scenarios

Damage estimates for higher levels of warming are 
extremely speculative and do not inform the choice of 
functional form (for example linear or quadratic)

DICE and FUND are calibrated to impact estimates for 1–3 °C 
warming, PAGE to 3 °C

DICE damage function extrapolated to 6 °C and 12 °C implies 
yield global GDP losses of 8% and 26% respectively; Weitzman69 
suggests that this is implausibly low and finds that a steeper slope 
(50% and 99% loss at 6 °C and 12 °C respectively) raises the SCC

70–72

Extrapolation to 
other regions

IAMs estimate global damages, but underlying impact 
studies focus disproportionately on a few regions (for 
example the United States and European Union), which 
are then extrapolated to other regions for global coverage

PAGE applies ad hoc regional adjustments based on coastline 
length to scale damage functions that are calibrated to European 
Union impact studies

9, 67, 
73–75

Coverage of 
impact categories

Damage functions have incomplete coverage of climate 
change impact categories, often because underlying 
studies for calibration are lacking

Represented sectors may have secondary impacts that 
are omitted (for example health effects from malnutrition 
due to impacts in the agricultural sector)

Sectors with limited or missing representation include ocean 
acidification, wildfires, energy supply, labour and capital 
productivity, crime, infrastructure, geopolitical instability and 
cultural heritage

Many authors suggest that SCC estimates might thus be viewed 
as a lower bound, although some climate benefits are also missing 
from damage functions

3, 75–80

Treatment of 
inter-sectoral and 
inter-regional 
interactions

Damage functions tend to be independent (additive) 
across both regions and sectors and therefore do not 
capture interactions between climate impacts

Underlying impact studies often examine sectors 
individually without quantifying inter-sectoral 
interactions, meaning any interactions may also not be 
accounted for implicitly through calibration

Missing interactions from many damage functions include the 
effects of water scarcity, geopolitical conflicts, migration, and 
partial- or general-equilibrium responses to direct impacts

Many of these interactions have the potential to amplify damage 
estimates, although general equilibrium adjustments could be 
offsetting in some cases

FUND considers inter-regional migration driven by land inundation 
from SLR, although the costs are arbitrary and likely to be 
incomplete

14, 25, 75, 
76, 79, 81, 
82

Representation of 
adaptation 

Many damage functions implicitly include private 
adaptation, which assumes a smooth, instantaneous 
transition to equilibrium in a new climate state, ignoring 
adjustment costs, which may be substantial, and 
imperfect knowledge of future climate

Lack of data on the aggregated costs and benefits of 
adaptation makes explicitly incorporating adaptation 
decisions into IAMs challenging 

Some studies have attempted to represent adaptation explicitly 
in cost–benefit IAMs in order to examine trade-offs between 
adaptation and optimal mitigation policy

FUND assumes perfect foresight and efficient adaptation to SLR, 
neglecting market and other institutional barriers to adaptation

Market failures associated with learning about a changing climate 
or the development of adaptation technologies may be substantial, 
meaning that damages would be higher than under perfect 
adaptation 

4, 80, 
83–88

Outdated 
scientific 
understanding 

Damage projections fail to reflect the current 
understanding of climate impacts from the IAV 
community (see extended discussion in Supplementary 
Information)

Damage functions are often calibrated directly or indirectly to older 
literature, much dating back to the 1990s

2, 3, 5, 10

Representation of 
uncertainty

Damage functions fail to capture the full range of 
parametric and stochastic uncertainty

Underlying studies used for calibration typically estimate 
the effects of equilibrium changes in mean temperature 
(or sea level), but not necessarily the effects of extremes 
(such as heatwaves) or stochastic variability (storm-
surges)

DICE is formulated as deterministic optimization with perfect 
foresight; PAGE and FUND are designed for probabilistic analysis 
(Monte Carlo simulation)

The scientific basis of the parameter distributions as well as the 
choice of distribution (for example, tailed in FUND versus triangular 
in PAGE) is not documented

Tail events with very low probabilities but the potential for very high 
consequences can, under certain assumptions, greatly increase 
damages

2, 70, 80, 
89

Continued
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to inform damage functions, and the opportunities and challenges 
associated with each.

Detailed process impact IAMs
In contrast to the relatively simple and stylized cost–benefit IAMs that 
have been used to calculate the SCC, there is a class of IAMs with 
higher spatial and process resolution that couple biogeophysical and 
economic models to represent climate impacts at finer scales, referred 
to as detailed process IAMs by Weyant14. Examples of these types of 
IAMs include the Global Change Assessment Model (GCAM)15, the 
Integrated Global Systems Model (IGSM)16 and the Integrated Model 
to Assess the Global Environment (IMAGE)17, among others.

These models play an integral role in global scenario assess-
ments (for example the RCPs18 and shared socioeconomic pathways 
(SSPs)19), but have not typically been used to estimate economic risks 
directly because they report outcomes in terms of resources or other 
physical measures, as opposed to monetized impacts, consumption 
or welfare. However, using them to inform the calibration of IAM 

damage functions is promising because they meet several criteria 
outlined above. Specifically, these models are global in scope  (C3), 
their assumptions regarding population and economic growth are 
internally consistent  (C1), and because they incorporate partial- or 
general-equilibrium models of the economy they can account for eco-
nomic adjustments to biophysical changes (C7) and could be applied 
to produce results in terms of economic units  (C8). Moreover, as 
they incorporate multiple economic regions and sectors, they are a 
natural tool for accounting for inter-region and inter-sectoral interac-
tions (C5). Detailed process models offer improved characterization 
of the focus domain, although they are still prone to limitations in 
uncertainty characterization as well as system dynamics and thresh-
olds. Previous assessments of climate impacts in key sectors that could 
inform damage functions include agriculture20,21, energy demand22 

and water resources23,24. Where possible, reporting results of these 
studies in terms of changes in economic welfare (C8) in relation to 
global temperature change (C2) would aid the incorporation of these 
results into IAM damage functions.

Table 2 | (continued) 

Damage function 
characteristic

Critique description Model examples and implications for damage estimates Key 
references

System dynamics 
and thresholds

Damage functions ignore or inadequately represent 
potential tipping points within the Earth system or the 
socioeconomic system

Damage functions of current temperature change imply 
that climate impacts are the same whether warming is 
increasing or decreasing, effectively ruling out system 
irreversibilities or hysteresis 

Potential system irreversibilities that are not well captured include 
species extinction or ice-sheet disintegration, underestimating 
damages in ‘temperature overshoot’ scenarios

PAGE discontinuity represents an uncertain but high-impact 
irreversible tipping-point (taken in expectation)

Recent studies modify DICE to incorporate random tipping points 
and generally find this increases the SCC substantially

3, 67, 78, 
90–93

Damages to 
growth rates

Damages in IAMs affect economic output, but the 
underlying factors driving economic growth are largely 
specified exogenously and unaffected by temperature, 
counter to some empirical evidence that warmer 
temperatures slow growth rates, particularly in poorer 
countries 

The growth rate in a DICE optimization run is determined 
endogenously, meaning climate damages indirectly affect growth 
through savings

Proposed mechanisms for impacts on growth rates include slowing 
the productivity of research and development, and increasing the 
depreciation of capital

Impacts to economic growth are permanent and cumulative and 
therefore have the potential to substantially increase damage 
estimates 

5, 63, 71, 
94, 95

Substitutability 
of environmental 
goods

Damage functions assume that losses from climate 
impacts are perfectly substitutable with increased 
consumption (that is, that the costs of climate impacts 
can be fully compensated by higher incomes) which 
may be implausible for non-market impacts such as 
biodiversity or health

Measuring the degree of substitution between climate 
impacts and consumption is extremely difficult

Imperfect substitutability between climate impacts and increased 
consumption would increase damage estimates

96–98

Utility function 
preference 
parameters

Damage functions parameterize economic losses but 
the value of those economic losses depends on the utility 
function

The constant elasticity of substitution (CES) utility 
function has been most widely used, which uses a single 
parameter (η) to describe time preferences, risk aversion 
and inequality aversion.

(Discount rates are a preference parameter with a large 
effect on the SCC, but have been extensively discussed 
elsewhere and are not a focus of this Review) 

Recent evidence suggests that time and risk preferences are not 
the same. Using a utility function that separates these, calibrated to 
asset price data, substantially increases the SCC. Damages are also 
aggregated across people and regions with very different incomes. 
Aversion to inequality is a preference parameter that determines 
how these should be weighted and can have a substantial impact 
on the SCC

60, 70, 72, 
96, 99–105

Additional description and references are provided in the Supplementary Information, with discussion of related issues and implications for climate impact valuation.
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Multisector coordinated modelling projects
Several large multimodel efforts are underway to evaluate climate 
change impacts systematically either across multiple sectors25–27 or 
within a single sector28. These efforts are structured with interdisci-
plinary teams of physical, natural, and social scientists. These multi-
sector or model intercomparison projects are resource intensive but 
are a promising source for updating damage functions. Many such 
collaborations have been designed with consistent input assumptions 
and scenarios (C1), often using the RCPs and SSPs. This standardized, 
multimodel ensemble approach (pioneered in the climate modelling 
community29) strengthens uncertainty quantification and enables 
defensible error bars to be generated around impact estimates and the 
resulting damage functions (C9).

Although these projects advance understanding of climate change 
impacts, the direct applicability of results to IAM damage functions 
is mixed. While several projects are global25,30–33, some have a more 
limited geographical scope, typically in data-rich regions such as the 
United States26,34 and Europe35,36. In addition, although some projects 
monetize damages26,31,35, many quantify impacts in various non-mon-
etary units such as percentage changes to productivity or crop yields, 
number of people affected or coastal area flooded27. A subsequent 
analysis monetizing these results would be needed before they could 
inform damage functions, often requiring substantial further work6,37.

Empirical studies
A large and rapidly growing IAV literature uses statistical relation-
ships between socioeconomic outcomes and weather or climate 
variables to estimate the impacts of climate change38,39. Rather than 
explicitly modelling distinct processes, including the effects of indi-
vidual adaptations, or pathways by which climate change affects out-
comes of interest, this approach parameterizes impacts in a simple 
(reduced-form) relationship between climate and outcome. Although 
the exact pathway of impacts is a ‘black box’, impact estimates are 
derived directly from observed, real-world outcomes. Moreover, these 
approaches benefit from today’s data-rich environment and are rela-
tively inexpensive to implement. They can also offer the opportunity 
to study climate impacts in sectors that have previously been omitted 
from damage functions, such as conflict, political turnover or labour 
productivity40–43. Conversely, empirical studies can be challenging or 
impossible to implement for impacts that have no historical analogue 
or where the spatial or temporal variation of the climate driver is insuf-
ficiently large (such as ocean acidification, CO2 fertilization or SLR).

Relevant empirical studies can be divided into individual, sector-
specific studies and top-down, whole-economy studies. Empirical 
studies of the relationship between climate or weather and socioeco-
nomic outcomes are now wide-ranging and cover agriculture44–47, 
energy demand48,49, morbidity and mortality41,50–53, labour sup-
ply and productivity42,54,55, conflict40, politics43 and crime56. Results 
from several of these studies were recently combined57 with process 
models in certain sectors to estimate new damage functions for the 
United States. The empirical studies have largely focused on devel-
oped economies, partly owing to the data needs of statistical models. 
In particular, panel models that use fixed-effects (‘dummy variables’) 
to control for time-invariant differences between locations require 
long-term observations not available in all parts of the world. This 
means that empirically based damage functions may require global 
extrapolation (C3). 

The extent to which empirical models capture the net benefits of 
adaptations or equilibrium economic adjustments (C6, C7) depends 
on details of the statistical model used and the kinds of adaptation 
technologies available58. Sector-specific statistical studies often, 
although not exclusively44,59, report impacts in physical units (for 
example change in yield, additional deaths or illnesses, or change 
in likelihood of event). Monetizing the identified impacts  (C8) 
requires additional analysis that, in the case of non-market impacts 
such as conflict, crime, illness or mortality, may be contentious. The 

reduced-form of most empirical studies means that they integrate 
over multiple impact pathways to give the net effects of climate change 
in a particular region and/or sector (C4). In addition, statistical confi-
dence intervals on parameter estimates make quantifying uncertainty 
in damage estimates fairly straightforward (C9).

A smaller set of top-down empirical studies has used global data 
on GDP growth rates to estimate the relationship between tempera-
ture variation and total economic output60–62. Because these impact 
estimates have global coverage  (C3) and are reported in monetary 
units (C8), they can be readily incorporated into IAM damage func-
tions60,63. For instance, Moore and  Diaz63 used a damage function 
calibrated to empirical estimates of the relationship between tem-
perature fluctuations and GDP growth in a modified version of the 
DICE model. They showed that impacts to the growth-rate produced 
much larger losses than the conventional representation of dam-
ages to annual output. Using this aggregate approach partly avoids 
the need for explicit representation of individual impact sectors, and 
the related critiques of omission of impact types, interaction effects 
and adaptation  (C5). However, it fails to capture potentially very 
large welfare effects of non-market climate impacts, such as health or 
ecosystems, that are not included in GDP (C8), or the effect of cli-
mate variables that cannot be estimated empirically, such as SLR or 
ocean acidification.

Discussion
Damage functions play an important role in quantifying, compar-
ing, aggregating and communicating the many different economic 
risks that society faces from climate change, and serve to explore 
trade-offs between the welfare costs and benefits (avoided climate 
risks) of investing in greenhouse-gas mitigation. But this simplified 
representation of climate change impacts in cost–benefit IAMs suf-
fers from several limitations described here. Many of these gaps are 
further underscored by a disconnect between recent advances in our 
understanding of climate change impacts and their incorporation in 
IAM damage functions. Many IAV research streams present promis-
ing opportunities for improving damage functions, although there are 
challenges to closer integration. Continuing to strengthen the con-
nection between IAV literature and IAM damage functions will allow 
a more robust scientific basis for decision-making and policy for cli-
mate risk management.

Received 11 January 2017; accepted 11 September 2017; 
published online 2 November 2017.

References
1.	 Interagency Working Group on Social Cost of Carbon. Technical 

Support Document: Social Cost of Carbon for Regulatory Impact Analysis 
Under Executive Order 12866 1–50 (United States Government, 
Washington DC, 2010).

2.	 Rose, S. K., Diaz, D. B. & Blanford, G. J. Understanding the social cost of 
carbon: a model diagnostic and inter-comparison study. Clim. Chang. Econ. 
8, 1750009 (2017). 

	 An in-depth examination of the DICE, FUND and PAGE integrated 
assessment models used by the US Government to estimate the 
social cost of carbon with detailed decomposition and comparison of 
intermediate results.

3.	 Revesz, R. et al. Improve economic models of climate change. Nature 
508, 173–175 (2014).

4.	 Burke, M. et al. Opportunities for advances in climate change economics. 
Science 352, 292–293 (2016).

5.	 Stern, N. The structure of economic modeling of the potential impacts of 
climate change: grafting gross underestimation of risk onto already narrow 
science models. J. Econ. Lit. 51, 838–859 (2013).

6.	 National Academies of Sciences, Engineering, and Medicine. Valuing 
Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide 
(National Academies Press, 2017).

	 Comprehensive report examining potential approaches for updating 
the methodology for estimating the social cost of carbon dioxide for US 
regulatory analysis.

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

http://dx.doi.org/10.1038/nclimate3411


NATURE CLIMATE CHANGE | VOL 7 | NOVEMBER 2017 | www.nature.com/natureclimatechange	 781

REVIEW ARTICLENATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3411

7.	 Nordhaus, W. RICE-2010 and DICE-2010 Models (last accessed 20 March 2012); 
http://www.econ.yale.edu/~nordhaus/homepage/RICEmodels.htm

8.	 Anthoff, D. & Tol, R. S. J. FUND v.3.8 Scientific Documentation (2014);  
http://www.fund-model.org/versions

9.	 Hope, C. W. The PAGE09 Integrated Assessment Model: A Technical 
Description. Working Paper (Cambridge Judge Business School, 2011). 

10.	 Ackerman, F. & Munitz, C. Climate damages in the FUND model: 
a disaggregated analysis. Ecol. Econ. 77, 219–224 (2012).

11.	 Tol, R. S. J. Estimates of the damage costs of climate change, Part II. Dynamic 
estimates. Environ. Resour. Econ. 21, 135–160 (2002). 

	 A methodology for modeling dynamic factors such as socioeconomic levels 
affecting vulnerability for eight major climate impact categories.

12.	 Anthoff, D. & Tol, R. S. J. in Climate Change and Common Sense: Essays in 
Honour of Tom Schelling, 260–273 (Oxford Univ. Press, 2012).

13.	 Nordhaus, W. D. Economic aspects of global warming in a post-Copenhagen 
environment. Proc. Natl Acad. Sci. USA 107, 11721–11726 (2010).

14.	 Weyant, J. Some contributions of integrated assessment models of global 
climate change. Rev. Environ. Econ. Policy 11, 115–137 (2017). 

	 Comprehensive overview of the use of IAMs in global policy analysis, 
discussing challenges and open issues.

15.	 Calvin, K. et al. GCAM Wiki documentation (Pacific Northwest National 
Laboratory, 2011); http://jgcri.github.io/gcam-doc/

16.	 Sokolov, A., Schlosser, C., Dutkiewicz, S. & Paltsev, S. MIT Integrated 
Global System Model (IGSM) Version 2: Model Description and Baseline 
Evaluation (2005); https://dspace.mit.edu/handle/1721.1/29789

17.	 Stehfest, E., Vuuren, D. van, Bouwman, L. & Kram, T. Integrated Assessment 
of Global Environmental Change with Image 3.0: Model Description and Policy 
Applications (2014); http://dspace.library.uu.nl/handle/1874/308545

18.	 Moss, R. H. et al. The next generation of scenarios for climate change research 
and assessment. Nature 463, 747–756 (2010).

19.	 O’Neill, B. C. et al. A new scenario framework for climate change 
research: the concept of shared socioeconomic pathways. Climatic Change 
122, 387–400 (2014).

20.	 Calvin, K., Wise, M., Clarke, L., Edmonds, J. & Kyle, P. Implications of 
simultaneously mitigating and adapting to climate change: initial experiments 
using GCAM. Climatic Change 117, 545–560 (2013).

21.	 Kyle, P., Müller, C., Calvin, K. & Thomson, A. Meeting the radiative 
forcing targets of the representative concentration pathways 
in a world with agricultural climate impacts. Earth’s Future 2, 
http://dx.doi.org/10.1002/2013EF000199 (2014). 

22.	 Zhou, Y., Eom, J. & Clarke, L. The effect of global climate change, population 
distribution, and climate mitigation on building energy use in the US and 
China. Climatic Change 119, 979–992 (2013). 

23.	 Hejazi, M. I. et al. Integrated assessment of global water scarcity over 
the 21st century under multiple climate change mitigation policies. 
Hydrol. Earth Syst. Sci. 18, 2859–2883 (2014).

24.	 Blanc, E. et al. Modeling U. S. water resources under climate change. 
Earth’s Future 2, 197–224 (2014).

25.	 Huber, V. et al. Climate impact research: beyond patchwork. Earth Syst. Dyn. 
5, 399–408 (2014).

26.	 Waldhoff, S. T. et al. Overview of the special issue: a multi-model framework 
to achieve consistent evaluation of climate change impacts in the United States. 
Climatic Change 131, 1–20 (2015).

27.	 O’Neill, B. C. et al. The Benefits of Reduced Anthropogenic Climate changE 
(BRACE): a synthesis. Climatic Change https://doi.org/10.1007/s10584-017-
2009-x (2017). 

28.	 Rosenzweig, C. et al. Assessing agricultural risks of climate change 
in the 21st century in a global gridded crop model intercomparison. 
Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

29.	 Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. & Meehl, G. A. Challenges 
in combining projections from multiple climate models. J. Clim. 
23, 2739–2758 (2010).

30.	 Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project 
(ISI-MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014). 

	 Example of recent multisector coordinated modeling initiative using 
standardized scenarios and input assumptions.

31.	 Roson, R. & Sartori, M. Estimation of Climate Change Damage Functions for 
140 Regions in the GTAP9 Database (World Bank, 2016). 

32.	 Greenstone, M., Houser, T., Hsiang, S. M. & Kopp, R. E. Climate Impact Lab; 
http://www.impactlab.org/

33.	 Arnell, N. W. et al. The Impacts of Climate Change Avoided by Future 
Reductions in Emissions as Defined in the Intended Nationally-Determined 
Contributions (AVOID 2, UK Government, 2015). 

34.	 Houser, T., Hsiang, S., Kopp, R. & Larsen, K. Economic Risks of Climate 
Change: An American Prospectus (Columbia Univ. Press, 2015).

35.	 Ciscar, J.‑C. et al. Climate Impacts in Europe — The JRC PESETA II Project, 
Vol. 26586 (Publications Office of the European Union, 2014).

36.	 Bosello, F., Eboli, F. & Pierfederici, R. Assessing the economic impacts 
of climate change — an updated CGE point of view. SSRN Electron. J. 
http://dx.doi.org/10.2139/ssrn.2004966 (2012). 

37.	 Moore, F. C., Baldos, U., Hertel, T. W. & Diaz, D. B. New science of climate 
change impacts on agriculture implies higher social cost of carbon. 
Nat. Commun. (in the press); https://doi.org/10.1038/s41467-017-01792-x

38.	 Carleton, T. & Hsiang, S. Social and economic impacts of climate change. 
Science 353, aad9837 (2016).

39.	 Dell, M., Jones, B. F. & Olken, B. A. What do we learn from the weather? 
The new climate-economy literature. J. Econ. Lit. 53, 740–798 (2014). 

	 Comprehensive review of the growing empirical literature on weather 
effects using panel data, with implications for economic research. 

40.	 Hsiang, S. M., Burke, M. & Miguel, E. Quantifying the influence of climate on 
human conflict. Science 341, 1235367 (2013).

41.	 Fishman, R., Russ, J. & Carrillo, P. Long-Term Impacts of High Temperatures 
on Economic Productivity (2015); https://ideas.repec.org/p/gwi/
wpaper/2015-18.html

42.	 Seppanen, O., Fisk, W. J. & Lei, Q. Effect of Temperature on Task Performance 
in Office Environments (LBNL, 2006).

43.	 Obradovich, N. Climate change may speed democratic turnover. 
Climatic Change 140, 135–147 (2017).

44.	 Mendelsohn, R., Nordhaus, W. D. & Shaw, D. The impact of global warming 
on agriculture: a Ricardian analysis. Am. Econ. Rev. 84, 753–771 (1994).

45.	 Schlenker, W. & Roberts, D. L. Nonlinear temperature effects indicate severe 
damages to US corn yields under climate change. Proc. Natl Acad. Sci. USA 
106, 15594–15598 (2009).

46.	 Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US 
wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).

47.	 Lobell, D. B., Banziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects 
on African maize as evidenced by historical yield trials. Nat. Clim. Change 
1, 42–45 (2011).

48.	 Auffhammer, Maximilian and Anin Aroonruengsawat. Hotspots of Climate-
Driven Increases in Residential Electricity Demand: A Simulation Exercise 
Based on Household Level Billing Data for California. Publication number: 
CEC-500-2012-021 (California Climate Change Center, California Energy 
Commission, 2012).

49.	 Davis, L. W. & Gertler, P. J. Contribution of air conditioning adoption 
to future energy use under global warming. Proc. Natl Acad. Sci. USA 
112, 5962–5927 (2015).

50.	 Deschênes, O. & Greenstone, M. Climate change, mortality, and 
adaptation: evidence from annual fluctuations in weather in the US. 
Am. Econ. J. Appl. Econ. 3, 152–185 (2011).

51.	 Barreca, A., Clay, K., Deschenes, O., Greenstone, M. & Shapiro, 
J. S. Adapting to climate change: the remarkable decline in the US 
temperature–mortality relationship over the 20th century. J. Polit. Econ. 
124, 105–159 (2013).

52.	 Barreca, A. Climate change, humidity, and mortality in the United States. 
J. Environ. Econ. Manage. 63, 19–34 (2012).

53.	 Deschênes, O., Greenstone, M. & Guryan, J. Climate change and birth weight. 
Am. Econ. Rev. Pap. Proc. 99, 211–217 (2009).

54.	 Heal, G. & Park, J. Feeling the Heat: Temperature, Physiology & the Wealth of 
Nations (2013); http://www.nber.org/papers/w19725

55.	 Graff Zivin, J. & Neidell, M. Temperature and the allocation of time: 
implications for climate change. J. Labor Econ. 32, 1–26 (2014).

56.	 Ranson, M. Crime, weather, and climate change. J. Environ. Econ. Manage. 
67, 274–302 (2014).

57.	 Hsiang, S. et al. Estimating economic damage from climate change in the 
United States. Science 356, 1362–1369 (2017). 

	 Recent multisector assessment of US climate damages at high spatial 
resolution of both physical and economic impacts, with a focus on 
empirical support for sectoral damage functions.

58.	 Hsiang, S. Climate econometrics. Ann. Rev. Res. Econ. 8, 43–75 (2016).
59.	 Deschênes, O. & Greenstone, M. The economic impacts of climate change: 

evidence from agricultural output and random fluctuations in weather. 
Am. Econ. Rev. 97, 354–385 (2007).

60.	 Lemoine, D. & Kapnick, S. A top-down approach to projecting market impacts 
of climate change. Nat. Clim. Change 6, 51–55 (2016).

61.	 Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: 
evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).

62.	 Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature 
on economic production. Nature 527, 235–239 (2015).

63.	 Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant 
stringent mitigation policy. Nat. Clim. Change 5, 127–131 (2015).

64.	 IPCC: Summary for Policymakers. In Climate Change 2007: Impacts, Adaptation 
and Vulnerability (eds Parry, M. L. et al.) (Cambridge Univ. Press, 2007).

65.	 Tol, R. S. J. The economic effects of climate change. J. Econ. Perspect. 
23, 29–51 (2009).

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

http://dx.doi.org/10.1038/nclimate3411
http://www.econ.yale.edu/~nordhaus/homepage/RICEmodels.htm
http://www.fund-model.org/versions
http://jgcri.github.io/gcam-doc/
https://dspace.mit.edu/handle/1721.1/29789
http://dspace.library.uu.nl/handle/1874/308545
http://dx.doi.org/10.1002/2013EF000199
https://doi.org/10.1007/s10584-017-2009-x
https://doi.org/10.1007/s10584-017-2009-x
http://www.impactlab.org/
http://dx.doi.org/10.2139/ssrn.2004966
https://doi.org/10.1038/s41467-017-01792-x
https://ideas.repec.org/p/gwi/wpaper/2015-18.html
https://ideas.repec.org/p/gwi/wpaper/2015-18.html
http://www.nber.org/papers/w19725


782	 NATURE CLIMATE CHANGE | VOL 7 | NOVEMBER 2017 | www.nature.com/natureclimatechange

REVIEW ARTICLE NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3411

66.	 Anthoff, D., Nicholls, R. J., Tol, R. S. J. & Vafeidis, A. T. Global and 
Regional Exposure to Large Rises in Sea-Level: A Sensitivity Analysis (2006); 
http://www.tyndall.ac.uk/sites/default/files/wp96_0.pdf

67.	 Warren, R. et al. Spotlighting Impacts Functions in Integrated Assessment 
(Tyndall Centre for Climate Change Research, 2006). 

68.	 Nordhaus, W. D. Expert opinion on climatic change. Am. Sci. 
82, 45–51 (1994). 

69.	 Ackerman, F., Stanton, E. A., Hope, C. W. & Alberth, S. Did the Stern 
Review underestimate US and global climate damages? Energy Policy 
37, 2717–2721 (2009).

70.	 Weitzman, M. L. GHG targets as insurance against catastrophic climate 
damages. J. Public Econ. Theory 14, 221–244 (2012). 

	 Describes how fat-tailed climate risks affect the cost–benefit analysis of 
climate change, highlighting limitations in the treatment of: uncertainty, 
risk, discounting and welfare (in the face of catastrophic outcomes). 

71.	 Dietz, S. & Stern, N. Endogenous growth, convexity of damage and climate 
risk: how Nordhaus’ framework supports deep cuts in carbon emissions. 
Econ. J. 125, 574–620 (2015).

72.	 Ackerman, F. & Stanton, E. A. Climate risks and carbon prices: revising the 
social cost of carbon. Economics 6, 1–25 (2012).

73.	 van den Bergh, J. C. J. M. & Botzen, W. J. W. A lower bound to the social cost 
of CO2 emissions. Nat. Clim. Change 4, 253–258 (2014).

74.	 Nordhaus, W. D. To slow or not to slow: the economics of the greenhouse 
effect. Econ. J. 101, 920–937 (1991).

75.	 Warren, R. The role of interactions in a world implementing adaptation 
and mitigation solutions to climate change. Phil. Trans. R. Soc. A 
369, 217–41 (2011).

76.	 Marten, A. L. et al. Improving the assessment and valuation of climate 
change impacts for policy and regulatory analysis. Climatic Change 
117, 433–438 (2013).

77.	 Watkiss, P. Aggregate economic measures of climate change damages: 
explaining the differences and implications. Wiley Interdiscip. Rev. Clim. Change 
2, 356–372 (2011).

78.	 Howard, P. Omitted Damages: What’s Missing from the Social Cost of Carbon. 
(2014); http://go.nature.com/2wKYTcF

79.	 Watkiss, P. & Downing, T. E. The social cost of carbon: valuation 
estimates and their use in UK policy. Integr. Assess. J. Bridg. Sci. Policy 
8, 85–105 (2008). 

80.	 Neumann, J. E. & Strzepek, K. State of the literature on the economic 
impacts of climate change in the United States. J. Benefit Cost Anal. 
5, 411–443 (2014).

81.	 Kopp, R. E. & Mignone, B. B. K. The US government’s social cost of 
carbon estimates after their first two years: pathways for improvement. 
Economics E-Journal 6, 1–41 (2012).

82.	 Bell, A., Zhu, T., Xie, H. & Ringler, C. Climate–water interactions: challenges 
for improved representation in integrated assessment models. Energy Econ. 
46, 510–521 (2014).

83.	 Li, J., Mullan, M. & Helgeson, J. Improving the practice of economic analysis 
of climate change adaptation. J. Benefit Cost Anal. 5, 445–467 (2014).

84.	 de Bruin, K. C., Dellink, R. B. & Tol, R. S. J. AD-DICE: an implementation of 
adaptation in the DICE model. Climatic Change 95, 63–81 (2009).

85.	 Farmer, J. D., Hepburn, C., Mealy, P. & Teytelboym, A. A third wave in the 
economics of climate change. Environ. Resour. Econ. 62, 329–357 (2015).

86.	 Kelly, D., Kolstad, C. & Mitchell, G. Adjustment costs from environmental 
change. J. Environ. Econ. Manage. 50, 468–495 (2005). 

	 Conceptual framework for understanding adjustment costs and 
equilibrium response, with an empirical application for US agriculture.

87.	 Schneider, S. H., Easterling, W. E. & Mearns, L. O. Adaptation: sensitivity 
to natural variability, agent assumptions and dynamic climate changes. 
Climatic Change 45, 203–221 (2000).

88.	 Hornbeck, R. The enduring impact of the American Dust Bowl: short 
and long-run adjustments to environmental catastrophe. Am. Econ. Rev. 
102, 1477–1507 (2012).

89.	 Heal, G. & Millner, A. Reflections: uncertainty and decision making in climate 
change economics. Rev. Environ. Econ. Policy 8, 120–137 (2014).

90.	 Cai, Y., Judd, K. L., Lenton, T. M., Lontzek, T. S. & Narita, D. Environmental 
tipping points significantly affect the cost-benefit assessment of climate 
policies. Proc. Natl Acad. Sci. USA 112, 4606–4611 (2015).

	 Example of recent advances using stochastic dynamic programming to 
model uncertain climate thresholds with an endogenous hazard rate and 
incorporate catastrophic uncertainty into IAMs.

91.	 Lemoine, D. & Traeger, C. Watch your step: optimal policy in a tipping 
climate. Am. Econ. J. Econ. Policy 6, 137–166 (2014).

92.	 Diaz, D. B. & Keller, K. A potential disintegration of the West Antarctic 
Ice Sheet: implications for economic analyses of climate policy. 
Am. Econ. Rev. Pap. Proc. 106, 1–5 (2016).

93.	 Kopp, R. E., Shwom, R. L., Wagner, G. & Yuan, J. Tipping elements and 
climate–economic shocks: Pathways toward integrated assessment. 
Earth’s Future 4, 346–372 (2016).

94.	 Moyer, E., Woolley, M., Glotter, M. & Weisbach, D. Climate impacts on 
economic growth as drivers of uncertainty in the social cost of carbon. 
J. Legal Stud. 43, 401–425 (2014).

95.	 Pindyck, R. S. Climate change policy: what do the models tell us? J. Econ. Lit. 
51, 860–872 (2013).

96.	 Sterner, T. & Persson, U. M. An even sterner review: introducing relative 
prices into the discounting debate. Rev. Environ. Econ. Policy 2, 61–76 (2008).

97.	 Weitzman, M. L. On modelling and interpreting the economics of catastrophic 
climate change. Rev. Econ. Stat. 91, 1–19 (2009).

98.	 Weitzman, M. L. What is the ‘damages function’ for global warming — and 
what difference might it make? Clim. Chang. Econ. 1, 57–69 (2012).

99.	 Anthoff, D., Tol, R. S. J. & Yohe, G. W. Risk aversion, time preference, and the 
social cost of carbon. Environ. Res. Lett. 4, 24002 (2009).

100.	Anthoff, D., Hepburn, C. & Tol, R. S. J. Equity weighting and the marginal 
damage costs of climate change. Ecol. Econ. 68, 836–849 (2009).

101.	Dennig, F., Budolfson, M. B., Fleurbaey, M., Siebert, A. & Socolow, R. H. 
Inequality, climate impacts on the future poor, and carbon prices. 
Proc. Natl Acad. Sci. USA 112, 1513967112 (2015).

102.	Newbold, S. C. & Daigneault, A. Climate response uncertainty and the 
benefits of greenhouse gas emissions reductions. Environ. Resour. Econ. 
44, 351–377 (2009).

103.	Crost, B. & Traeger, C. P. Optimal CO2 mitigation under damage risk 
valuation. Nat. Clim. Change 4, 631–636 (2014).

104.	Jensen, S. & Traeger, C. P. Optimal climate change mitigation under long-term 
growth uncertainty: stochastic integrated assessment and analytic findings. 
Eur. Econ. Rev. 69, 104–125 (2014).

105.	Daniel, K. D., Litterman, R. B. & Wagner, G. Applying Asset Pricing Theory to 
Calibrate the Price of Climate Risk (2015); http://go.nature.com/2xw8SSL

Acknowledgements
A portion of this research was supported by the National Academies of Sciences, 
Engineering, and Medicine and the Electric Power Research Institute (EPRI) as part of 
an ancillary literature review of climate impacts and damages conducted as background 
to Chapter 5 of ref. 6. That work benefited from discussions with committee members 
M. Auffhammer and S. Rose. F.C.M. acknowledges support from US Department of 
Agriculture NIFA grant 2016-098. The views expressed in this paper are those of the 
individual authors and do not necessarily reflect those of a government agency, EPRI or 
its members.

Author contributions
D.B.D. and F.C.M. designed and wrote the manuscript. F.C.M. produced Fig. 1. D.B.D. 
performed the analysis and produced Fig. 2.

Additional information
Supplementary information is available in the online version of the paper. Reprints 
and permissions information is available at www.nature.com/reprints. Publisher’s note: 
Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations. Correspondence should be addressed to D.B.D.

Competing financial interests
The authors declare no competing financial interests.

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

http://dx.doi.org/10.1038/nclimate3411
http://www.tyndall.ac.uk/sites/default/files/wp96_0.pdf
http://go.nature.com/2wKYTcF
http://go.nature.com/2xw8SSL
http://dx.doi.org/10.1038/nclimate3411
http://www.nature.com/reprints

	_Hlk489417332
	_Hlk489432274
	_Hlk489716302
	_Hlk489429424
	Quantifying the economic risks of climate change
	State of climate damage functions in IAMs
	Prospects for incorporating IAV research into IAMs
	Figure 1 | Schematic representation of the complex series of physical and socioeconomic processes and relationships encompassed by a damage function. 
	Table 1 | Key dimensions and damage function characteristics of three IAMs. 

	Figure 2 | Damage estimates projected by the DICE, FUND and PAGE models at different levels of temperature change, corresponding to 2100 socioeconomics. 
	Table 2 | Synthesis of published damage function critiques, with key references. 
	Table 2 | (continued) 


	Detailed process impact IAMs
	Multisector coordinated modelling projects
	Empirical studies
	Discussion
	References
	Acknowledgements
	Author contributions
	Additional information
	Competing financial interests



