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Abstract—Interference management in current TV white space
and Citizens Broadband Radio Service networks is mainly
based on geographical separation of primary and secondary
users. This approach overprotects primary users at the cost
of available spectrum for secondary users. Potential solutions
include acquiring more primary user information, such as a
measurement-enhanced geographical database, and cooperative
primary user, such as the TV set feedback in the next generation
TV systems. However, one challenge of these solutions is to
effectively manage the aggregate interference at TV receivers
from interweaving secondary users. In this paper, a stochastic
geometry-based aggregate interference model is developed for
unlicensed spectrum shared by heterogeneous secondary users
that have various transmit powers and multi-antenna capabilities.
Moreover, an efficient computation approach is presented to
capture network dynamics in real-time via a down-sampling that
preserves high-quantile precision of the model. The stochastic
geometry-based model is verified experimentally in ISM band.
It is shown that the model enables separate control of admission
and transmit power of multiple co-located secondary networks
to protect primary users and maximize spectrum utilization.

Index Terms—Cognitive Radio Networks, Outage Analysis, TV
Black Space, TVWS, Stochastic Geometry, Power Control

I. INTRODUCTION

Interference management in Cognitive Radio Networks
(CRNs) such as TV white space (TVWS) [1] and Citizens
Broadband Radio Service (CRBS), is based on database-
driven dynamic spectrum access (DSA) with geographical
separation of primary users (PUs) and secondary users (SUs)
[2]. Geographical separation limits the benefits of CRNs in
many populated metropolitan cities (TVWS) [3], [4], and
coastal cities (CRBS) [2], where spectrum crisis is mostly
experienced [5]. Several approaches are proposed to reduce
the geographical separation. Measurement-enhanced spectrum
databases [6] enable Fine-Grained TVWS (FG-TVWS) in
urban environments, such as indoors and building-shadowed
areas. Moreover, TV set-assisted DSA enables SUs to access
active legacy TV channels, namely TV black-space (TVBS),
by leveraging the activity of TV receivers [4], [7]. TVBS
access becomes more feasible with the recent developments in
legacy systems. For example, ATSC 3.0 [8], standardizes TV
set feedback to enable interactive and personalized services.

A major challenge of FG-TVWS and TVBS is to manage
the interference from SUs to PUs (TV receivers). Restrictions
such as guard zone and individual SU footprint limit are insuf-
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Fig. 1. Spectrum management architecture for enhanced TV spectrum access.

ficient to protect PUs exposed to aggregated interference from
a number of SUs, especially given the favorable propagation
conditions in TV band. To address this problem, a spectrum
manager (global or local) is envisioned to schedule the DSA
of SUs and manage the interference (Fig. 1). The spectrum
manager is assumed to have real-time and/or statistical infor-
mation of both PUs and SUs. Based on network dynamics, the
spectrum manager can adaptively control the admission and
transmit power of SUs to manage the aggregated interference.

Aggregate interference can be obtained through cooperative
spectrum sensing [6], [9], and PU feedback, at the cost of
overhead in spectrum, backhaul, and energy. Its accuracy de-
pends on spatial sampling [6]. A parallel approach is statistical
modeling. Theoretical aggregate interference models [10]-
[17] mostly consider homogeneous transmitter profile, which
makes it difficult to manage spectrum shared by multiple SU
networks with different transmit power, density, and multi-
antenna profiles, such as WiFi, Bluetooth, Internet of Things,
Body Area Networks. Another challenge is to achieve accuracy
with low computational complexity. Moment matching-based
Lognormal approximation [18], has significant errors in outage
analysis, and is inconsistent under network dynamics, as
shown in Section V. Sophisticated models [10]-[17] require
high computational complexity for large dynamic range of
interference power, and could not capture heterogeneous SUs.

In this paper, an analytical interference model is developed
for scenarios in which spectrum is shared by passive PUs (no
transmitter) and co-located SUs with heterogeneous transmit-
ter profiles. Our contributions include: 1) We extend existing
models from unified transmitter profile to multiple classes of
transmit powers and Multiple Input Multiple Output (MIMO)
capabilities, under class-specific admission and power control
policies. 2) An efficient computation approach is developed



to evaluate existing stochastic geometry-based models in real-
time for large dynamic range of interference power. 3) To
the best of our knowledge, we conduct the first empirical
validation of the key modeling components shared by ours and
existing works [10]-[17]. The developed interference model
and efficient computation approach can potentially enhance
DSA techniques in TV band.

The rest of this paper is organized as follows: Related work
is discussed in Section II. System model is introduced in
Section III. In Section IV, the aggregate interference model,
admission and power control, and efficient computation ap-
proach are introduced. Simulation and experiment results are
presented in Sections V and VI, respectively. Finally, the paper
is concluded in Section VII.

II. RELATED WORK
A. TV Spectrum Management

Spectrum management in TVWS is mainly database-driven:
available channels are estimated based on radio propagation
models [3], and an SU queries the database with its geolo-
cation and radio profile (device type specified by antenna
height and transmit power [2]) for a list of available channels.
Geolocation database is extended to a 3-tier Spectrum Access
System (SAS) in CBRS that prioritize SUs of different tiers
with admission control [2]. Interference in TVWS and CBRS
is managed through geographical separation of PU and SU
based on a prescribed protection zone, and SU device types.

To address the over-protection of PU caused by the limits
of propagation model [3], spectrum sensing-enhanced geolo-
cation database (radio environment map) [6] is developed
to exploit FG-TVWS caused by shadowing of terrain. On
the other hand, cooperative PU-based TVBS access [4], [7]
requires real-time spectrum scheduling of SUs based on ac-
tivities of neighboring TV receivers. These approaches reduce
the geographical separation with more PU information.

Existing approaches mainly focus on PU information, while
leaving interference analysis in a static (e.g. worst case)
approach. However, for FG-TVWS and TVBS, static analysis
may not effectively enable sufficient spectrum for SUs while
protecting PU. This work extends estimation of available
channels from relying only on PU information to the activity
dynamics of SUs. Consequently, spectrum utilization can be
improved by adaptively controlling the admission and transmit
power of SUs based on network dynamics.

B. Stochastic Geometry-Based Interference Model

Modeling unplanned wireless networks is based on stochas-
tic geometry [10]. In this framework, aggregate interference
is modeled as a random sum of independent and identically
distributed (i.i.d.) individual interference (random interference)
emitted from transmitters following a Poisson Point Process
(PPP). With uniform transmit power and known transmitter
density, the characteristic function (CF) of aggregate interfer-
ence from Poisson transmitters is obtained from the CF of
the random interference. The first two moments are found by
Compbell’s theorem [18]. In [11], the interference model is

extended to CRNs with power control, contention, and their
hybrids. However, only a single PU receiver is considered in
[11], which limits it to low-PU-density scenarios.

In tiered networks, such as CRNs [12], Device-to-Device
(D2D), and Heterogeneous Networks (HetNets) [14], different
user tiers are modeled as independent PPPs. Transmitters re-
stricted by contention, repulsion, and guard zones, are modeled
as Hard Core Point Process (HCPP), Poisson Hole Process
(PHP) [12], [13], and their combinations [14]. Low-tier trans-
mitter follows a PHP, which has no known closed-form model,
but has closed-form bounds [14] and PPP-approximated mod-
els [12]. However, these works only consider the single
antenna case. Individual MIMO interference is modeled in
[19]. MIMO aggregate interference is modeled for cellular [15]
and HetNets [16], and CRNs [17]. In [17], massive MIMO and
power control are considered with a cellular-like PU network,
which is not applicable for TV spectrum with passive PUs.
Interference model in CRNs without stochastic geometry [20]
is limited by the need of instantaneous user density.

For spectrum management, existing models face three chal-
lenges. First, unlicensed spectrum is shared by multiple net-
works with different capabilities and of dynamic composites,
which is not captured by existing models. Based on the
underlying model in [10], [11], and the approach of modeling
multiple PUs and SUs in [12]-[14], [17], our model is able to
track interference in spectrum shared by peer networks with
heterogeneous transmit powers and MIMO capabilities.

The second challenge is the computational complexity. The
CF manipulation-based underlying mathematics [10] requires
(Inverse) Fourier Transform(s) in linear-domain. To cover a
total dynamic range of 120 dB individual and aggregated
interference, a sample size n = 10'? is required for linear-
domain functions, such as CFs and PDFs. This prohibits
real-time evaluation of existing models, which has a time
complexity of O(nlog(n)) and a space complexity of O(n).
The efficient computation approach introduced in Section IV-D
reduces the required sample size by 10° and enables sub-
second estimation, which opens the door for interference
model-assisted real-time spectrum management.

Third, to the best of our knowledge, there is no empirical
validation of the underlying mathematics of ours and existing
works [10]-[17], due to the difficulty of involving numerous
transmitters. A theory without empirical evidence might not
persuade any reforms in spectrum policy, which involves
various stakeholders. In Section VI, we present empirical
validation results for this shared baseline theory.

III. SYSTEM MODEL

We consider a CRN with numerous PUs and SUs. Their
activities and locations are known to a spectrum manager
(Fig. 1). First, an SU has to be admitted by the spectrum
manager. Then, the admitted SUs access the spectrum via
contention over-the-air (OTA) or within the spectrum manager.

A. Point Process Modeled Network

The primary network is consider as a broadcast network,
where PU is a passive receiver (e.g. OTA TV receivers). To
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Fig. 2. TV band CRN model with PU guard zone and SU contention.

model interference, a finite region with radius R centered
on an arbitrary PU is considered (Fig. 2). PUs and SUs
are modeled as two independent homogeneous Poisson Point
Processes (PPP) with densities A\, and A, respectively. There
is no minimum distance between PUs. Guard zone is a disk
centered on PU in which SU is not allowed to transmit. With
guard zones, SU transmitters are modeled as a Poisson Hole
Process (PHP) [13]. Moreover, SUs access spectrum based on
contention, which is modeled as a Hard Core Point Process
(HCPP). The radius of contention zone is 7., and the radius of
PU guard zone is r,. High traffic demand of SU is assumed
so that it will access the spectrum whenever possible.

The retention ratio of SU after the guard zone of PU equals
to the chance of no PU located within a distance of 7, from
SU, which can be found from Nearest Neighbor Function:

gp = €xp (—)\pm“zz,) . €))

The approximated retention ratio of SU contention, modeled
as a HCPP, is found in [11], [14]. SU transmitter as PHP over-
laid on HCPP is approximated by two independent thinning
processes on the underlying PPP of density A, [11], [14].

The spectrum can be shared by heterogeneous SUs with
different throughput and QoS requirements, and radio capa-
bilities. Heterogeneous SUs are modeled as K independent
classes of SUs, where an SU class k has a density A4, transmit
power pj, and certain MIMO capability (e.g. single v.s. mul-
tiple antenna(s)), where k € {1... K}, and \; = Zszl Ask.
Admission and transmit power control can be class-specific,
in order to maximize spectrum utilization.

B. Radio Propagation
Consider path loss and composite shadowing and fading,
the received power, y(d), at distance d from a transmitter is:

y(d)=p-Ud)-h,Y(d) =P+ L(d)+H, (2

where p is the emission power of transmitter, {(d) is path gain,
and h is fading. As a convention, their logarithmic counterparts
are denoted by capitalized symbols Y (d), P, L(d), and H in
(2). The path gain function is:

I(d) = lod™? | L(d) = Ly — 1081log,,(d) , (3)

where [y and L( are the reference path gains in linear and
logarithmic domains, respectively.

IV. AGGREGATE INTERFERENCE MODEL

We first introduce the mathematical framework of interfer-
ence from a single SU class, then extensions are provided for
MIMO, and multiple SU classes. Next, a power control scheme
based on the interference model is presented, followed by an
efficient computational approach.

A. Interference from a Single SU class

The aggregate interference u is modeled as the sum of N
i.i.d. random variables (r.v.s), y, which is the interference
from a random transmitter in the considered region. Since
SU transmitters are modeled as a PPP, N follows Poisson
distribution. The characteristic function (CF) of w is [10], [11]:

@, (w) = exp{Aic®y(w)} , )

where ), is SU transmitter density, ¢ = w(R? —r2) is the area
of considered region, and the CF of y is [11]:

B, (w) = /O h /0 T R L ) B iwph)dpdh . (5)

where fj,(z) and f,(x) are the PDFs of channel fading and
emission power toward PU, respectively. The PDF of an
uniform-distributed random transmitter located at distance, d,
from the origin point is fq(d) = Qicd, where r, < d < R [11].
The PDF of path gain [ from a random transmitter is
2 % (,2,1)
fi(h) = @lé A ,where [(r,) > 1 > I(R), (6)
its CF is found by Fourier Transform ®;(w) = F {f;(1)} (w).
We consider a limited scattering environment for MIMO
while leaving the rich scattering environment for future work.
An SU has an m-antenna array, b < m streams, and transmit
power of p’. The communication and interference channels
are uncorrelated, and noise is unknown. Transmitted signal for
each stream on the m antennas is assumed to be a complex
Gaussian random vector ~ CAN (0, %) [15], [16], [19]. For
each stream, the emission power follows Exponential(b/p’),
and the total emission power p follows a scaled Chi-square

distribution \/%’ X: with b degrees of freedom.

B. Multiple SU Classes

To control SU density, the spectrum manager admits an ar-
riving SU at probability p. Admission control is modeled as an
independent thinning process on the PPP of SU with retention
ratio p. The density of admitted SUs is pAs = Zszl PkAsks
where pj, is the admission probability of SU class k.

Assume a fair, identical contention across all SU classes,
based on the retention probability of SU contention given in
[11], the density of class k SU transmitter is:

~ GpPEAsk [1—exp(—pAsmr?)]
Ak (d ’

d>rp
=0, d<r,

pAsTr2

)

With CF of single SU class interference, @4 (w), from (4),
the CF of interference from heterogeneous SUs, us, is [21]:

K
Oys(w) = [ Pur(w) . (8)
k=1



Compared to using a PDF of emission power for all SU classes
[11], (7) and (8) can track interference from each SU class, and
further incorporate interference from and to adjacent channels
based on the emission mask of SU transmitter.

C. Secondary User Power Control

The CF of Signal-to-Interference Ratio (SIR) of PU, 1, is

B, (w) = /0 " ele)®u(wa)de ©)

where f¢(z) is the PDF of PU received signal strength (RSS) ¢
(e.g. TV signal). The outage rate of PU should be acceptable:

Pr ('Y < ’szn) = Omaz 5 (10)

where Vin and O, are the allowed minimum SIR and
maximum outage probability for PU, respectively. From (9)
and (10), the SU transmit power p’ can be found as:

Y

where p), . is the maximum allowable transmit power, and
F,(x) is the CDF of SIR at an arbitrary PU receiver.
D. Efficient Computation Approach

pl = min {’YminCF,Y_l(Omaa:)?p:nam} ’

Based on the logarithmic random interference Y in (2),
where L(d), P and H are independent r.v.s, the PDF of Y
can be found by chained convolutions [21]:

YY) =[(fr* fu)* fP](Y),

where fr, fp, and fg, are the PDFs of logarithmic path gain,
emission power, and the underlying normal distribution of log-
normal fading, respectively. Similarly, the PDF of logarithmic
SIR, I', can be found by:

fr(T) = (fz* f-v)(l') ,where f_y(z) = fu(—z), (13)

and fz and fy are the PDFs of logarithmic TV signal RSS
and aggregated Interference, respectively.

The PDF of linear domain random interference fy(x) is
obtained from (12) with a down-sampled interpolation, e.g. a
down-sample rate of 10° is used for the interested upper 70d B
(for aggregate interference) out of the total dynamic range
of 120dB. Required sample size in linear domain, n, is thus
reduced from 102 to 107. PDF of linear aggregate interference
fu(z) is obtained by applying ®,(w) = F {fy(x)} (w), 4),
and f,(r) = F~1{®,(w)} (x), which has a complexity of
O(nlog(n)). Reducing n from 10'2 to 107 can reduce the
computational complexity by 50,000 times. Logarithmic power
control has a complexity of O(In(n)) instead of O(n) for
linear domain. In Section V, this approach is shown to preserve
the precision of high quantiles of the estimated CDFs, which
are vital to outage analysis and power control.

V. SIMULATION RESULTS

12)

The developed model (Model) is evaluated by simulation of
a circular region with radius R = 3,000m. In the simulation,
PUs and SUs are generated by homogeneous PPPs with
specified densities. SU admission ratio is set to 100%. SUs
in the guard zones of PUs are firstly removed, then a random
contention keeps only one SU out of multiple SUs in a

contention zone [11]. Radiuses of guard zone and contention
zone are 100m and 20m, respectively. The reference transmit
power of SU is 16 dBm [1]. Propagation model of secondary
signal is ITU-R P.1411 with a path loss exponent of 4, and
logarithmic fading ~ N(0, (7.6dB)?). Logarithmic RSS of
TV signal in the region is assumed to follow a Normal
distribution A/ (—56dBm, (4.7dB)?). The center frequency is
set to 623 M H z (channel 39 in the U.S.). Allowable minimum
SIR for TV receiver 7, = 23dB, and maximum outage
rates, Opar € {0.1,0.05,0.01}, are used in power control.
TV RSS, individual and aggregated interference at the origin
point are collected. Each simulation contains 10,000 instances.

The model is benchmarked by 3 common lognormal ap-

proximations with low computational complexity:

1) Analytical Approximation (Approx.): The first two mo-
ments are found via Compbell’s Theorem [18], based on
the PDF of random interference from (5), and thinned
PPP in (7). The precision is impacted by the PPP ap-
proximation of PHP and computational dynamic range.

2) Empirical Fitting (Fitting): The first two moments
are from simulated empirical data. It can represent
measurement-based estimation, and reflect how far the
empirical interference is distorted from lognormal.

3) Extreme Location Analysis (Extreme Loc.): Interference
from a transmitter at a prescribed minimum distance, in
this case, r,. Attenuation includes fading and a fixed
path loss. It is a well-accepted simplification [3], [4].

We compare the estimation accuracy, outage rate of PU, and
SINR loss of SU in power control in the following.

A. Model Accuracy Under Network Dynamics

1) Homogeneous Secondary Users: Each SU is equipped
with an omni-directional antenna of OdBi gain, and transmit
power of 16dBm. 24 network conditions from the combi-
nations of PU densities {1,10,150} /km?, and SU densi-
ties {40, 80, 120, 160, 200, 240, 280, 320} /km? are simulated.
The dynamic range of aggregate interference in these config-
urations is -120 to -55dBm, and -180 to -80dBm for random
individual interference. The CDFs of aggregate interference
from simulation and estimations under 3 conditions, HPLS
(High PU density, Low SU density), HPHS, and LPHS, are
presented in Fig. 3(a). The median interferences of HPLS,
HPHS, and LPHS, are 15 and 16dB apart, respectively, since
PU reduces the spectrum opportunity of SUs. The Model is
accurate in high quantiles (as shown in Fig. 3(c) and discussed
later) while introducing a large error (> 1dB) in lower quantile
(F(z) < 0.6 for HPLS, F(z) < 0.3 for HPHS) (circled in
Fig. 3(a)) due to the approximation of PHP, and limits of
computational dynamic range (-120 to -50dBm).

2) Heterogeneous Secondary Users: This setting contains
2 classes of SUs: Class 1 is configured the same as Section
V-Al. Class 2 SU is equipped with a 4-antenna array. The den-
sities of SU and PU are fixed to 200 and 20/km?, respectively.
We evaluate 30 combinations from class 2 SU proportions
{0,0.25,0.5,0.75, 1}, transmit power {10, 16,20} dBm, and
stream numbers {1,4}. Detailed CDFs of interference from
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simulation and estimations for 4 SU composites is presented
in Fig. 3(b). In the case of 75% SUs are in class 2, with
4 streams, and transmit power of 10 dBm, interference is
reduced for about 3.7dB from the reference case (100% class
1 SU) which allows more SUs to be admitted. In the case of
25% SUs are in class 2, with 1 stream and transmit power of 22
dBm, interference increases by about 2dB from the reference
case. When all SUs are class 2, with 1 stream and identical
transmit power of reference case, the interference is very
close to reference case. In Fig. 3(b), aggregate interference is
shown to be dominated by transmit power, however, antenna
array causes stronger spurious interference in high quantile
(F(z) > 0.95) despite it lowers the median interference.
Moreover, in the case of 25% SU class 2 in Fig. 3(b),
with interference power of -60dBm, the outage rates from
simulation, Model, Approx., and Fitting are 3%, 3.5%, 10.4%,
and 1.5%, respectively. Outage rates predicted by lognormal
approaches are 346% and 50% of the simulation.

The precisions of model and benchmarks over large dy-
namics of densities of PU and SU (homogeneous SUs) and
SU composites (heterogeneous SUs) are evaluated via quantile
estimation error, £(z) = F.;(z) — F.;} (z), where 2 €
{0.9,0.95,0.99}, and F,s; and Fg;y, are CDFs from estima-
tion and simulation, respectively. The results are presented
in Fig. 3(c), with Root Mean Squares (RMS) in Table I.
Analytical approximation over-estimates the interference for
0.7 dB on average with the worst error £(0.9) = 2.4dB for
homogeneous SUs. Empirical fitting generally underestimates
the interference, with significant high quantile errors (Worst:
€(0.95) = —2.6dB, £(0.99) = —5.3dB). The Model consis-

Table I. Root Mean Square Estimation Errors at High Quantiles (Unit: dB)

Setting Homogeneous SUs Heterogeneous SUs
Quantile 09 095709 | 09 109571099
Model 022 | 0.28 | 0.27 | 0.17 | 0.20 | 0.38
Approx. || 0.77 | 0.63 | 0.39 | 0.72 | 0.86 | 0.77
Fitting 046 | 1.04 | 2.30 | 0.05 | 0.39 | 1.49

tently keeps RMS < 0.28d B for all 3 quantiles except a slight
increase to 0.38d B at quantile 0.99 in heterogeneous SUs.
In MATLAB, finding CDFs via (4) (shared by [10]-[17]) is
intractable for dynamic range > 90dB. However, by tracking
the upper 70 (80) dB out of 120dB range, our approach takes
0.78 (20) sec for a single SU class, and 1.57 (41) sec for 2
SU classes. Approx. (Fitting) only takes 0.21 (<0.001) sec.

B. Power Control Performance

Power control in (11) is evaluated under PU densities 1—
150/km? (e.g. varying hourly TV usage) and SU density of
200/km?. pl,.. is not applied for comparison purpose. The
model keeps PU outage rate (Fig. 4) in +5%, 10%,19% of
required rates of 0.1, 0.05, 0.01, respectively. Compared to
simulation-based ideal power control, the model only loses SU
SINR for £0.3dB. Fitting generally under-protects PU, with
the worst outage rate twice of required (0.01). Approx. gener-
ally over-protects PU by sacrificing SU SINR (up to 2.3 dB).
Performance loss due to lognormal approaches is significant.
Constant power (Extreme Loc.) either under-protects (low PU
density) or overprotects (high PU density) PU by sacrificing
SU SINR (up to 15dB for the highest PU density).

VI. EXPERIMENTAL EVALUATION

The core modeling component in (4) is validated by an
experiment of aggregating WiFi beacons in a residential area.
We choose this experiment because WiFi access points (APs)
in a residential area are unplanned and accessible. Each AP
broadcasts beacon frame every 100ms under CSMA/CA mech-
anism. Each received beacon can be viewed as an independent
collision-free transmission. Moreover, received beacon carries
the identity (SSID), number of streams (for MIMO AP), and
working band of its transmitter. The RSS and SNR of the
received beacons are measured by the receiver.

We collect beacons of nearby WiFi APs at 50 locations
in a residential area in the U.S. (Fig. 5(a)), where buildings
are mostly of 2—4 floors with wooden and brick structures.



N
o
w
o
=]

) E2.4CHz Band
) 9375CHz Band

(R

n
131
[=]

—Empi. R.I. 2.4GHz
----- Empi. AL 2.4GHz
0.8 H-B-Model R.I. 2.4GHz
-6-Model AL 2.4GHz

i
I
i
]
30| ¢t b
o & 200 —Empi. RL 5.0GHz| of
[ o 0.6 f== Empi. AL 5.0GHz| /
B 2 o -5 Model R.L 5.0GHz| /g
0 [ | £ 150 &  ||-e-Model A.L 5.0GHz
= r
5000 = 0.4 i
| 2 100 I8
100 1) ~ i
“ 02 p
5 il o
I ggrn
ot 0 -
0 50 100 2 4 -120 -110 -100 -90 -80 -70 -60 -50
No. of SSIDs Per Location No. of Streams Per SSID Power z (dB)

(a) (b) () (d)
Fig. 5. Experiments: (a) Locations, histograms of (b) SSIDs per location, (c) streams per unique SSID, (d) CDFs of random interference (R.I.) and aggregate

interference (A.L.). from empirical data (Empi.) and models.

At each location, a laptop with WiFi Scanner [22] updates  [2]
received beacons every 5 seconds, and lasts for a minute so
that no AP is missed. The histograms of the number of SSIDs
per location, and the number of streams per unique SSID, [3]
are shown in Figs. 5(b) and 5(c), respectively. On average, an
SSID in the 2.4GHz (5GHz) band has 2.26 (2.70) streams.
An individual beacon is treated as a random interference
(R.L), and the empirical aggregate interference (A.L) at each 9!
location is the sum of all R.I.s in each band. Next, R.I. and A.L.
are estimated via (5) and (4), respectively. For the parameters,  [6]
rp 18 set to 18m (half of the average width of streets), without
other PU. R is selected as 90m for 2.4GHz band, and 64m
for 5GHz. AP transmit power is assumed to 36dBm. Modified  [8]
ITU-R. P1411, with a 40dB gain bias, and logarithmic fading
~ N(0,(4.6dB)?), is used as the propagation model. Aic in g
(4) is set as the average number of SSIDs per location, 72.2
(17.2) in the 2.4GHz (5GHz) band. The distributions of R.I.
and A.L of all locations in 2.4GHz and 5GHz bands are shown
in Fig. 5(d). Limited by receiver sensitivity, empirical R.I. at
lower quantiles is significantly less than the model. However, [!1]
the empirical A.I. and model in both 2.4 and 5GHz bands are
well matched (RMS horizontal gaps of 0.17dB (2.4GHz) and [12]
0.19dB (5GHz) in upper quantiles F'(z) > 0.5). The results
show that with correct average number of SU transmitters, the ;3
underlying model in (4), which is also shared by [10]-[17],
can predict interference with high accuracy in upper quantiles.

VII. CONCLUSION

[7]

[10]

[14]

In this paper, we modeled the aggregate interference in [i5
cognitive radio networks with unplanned primary users and co-
located secondary users with heterogeneous power and MIMO
profiles, and provided an efficient computation approach.
Simulation shows the model has limited high-quantile error (-
0.5-0.8dB) over large network dynamics. Moreover, the core
stochastic geometry modeling component is validated experi-
mentally. With the model, interference to PU can be managed
by adaptively limiting SU density and transmit power, which
can potentially enhance future TV spectrum access.
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