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Abstract—Interference management in current TV white space
and Citizens Broadband Radio Service networks is mainly
based on geographical separation of primary and secondary
users. This approach overprotects primary users at the cost
of available spectrum for secondary users. Potential solutions
include acquiring more primary user information, such as a
measurement-enhanced geographical database, and cooperative
primary user, such as the TV set feedback in the next generation
TV systems. However, one challenge of these solutions is to
effectively manage the aggregate interference at TV receivers
from interweaving secondary users. In this paper, a stochastic
geometry-based aggregate interference model is developed for
unlicensed spectrum shared by heterogeneous secondary users
that have various transmit powers and multi-antenna capabilities.
Moreover, an efficient computation approach is presented to
capture network dynamics in real-time via a down-sampling that
preserves high-quantile precision of the model. The stochastic
geometry-based model is verified experimentally in ISM band.
It is shown that the model enables separate control of admission
and transmit power of multiple co-located secondary networks
to protect primary users and maximize spectrum utilization.

Index Terms—Cognitive Radio Networks, Outage Analysis, TV
Black Space, TVWS, Stochastic Geometry, Power Control

I. INTRODUCTION

Interference management in Cognitive Radio Networks

(CRNs) such as TV white space (TVWS) [1] and Citizens

Broadband Radio Service (CRBS), is based on database-

driven dynamic spectrum access (DSA) with geographical

separation of primary users (PUs) and secondary users (SUs)

[2]. Geographical separation limits the benefits of CRNs in

many populated metropolitan cities (TVWS) [3], [4], and

coastal cities (CRBS) [2], where spectrum crisis is mostly

experienced [5]. Several approaches are proposed to reduce

the geographical separation. Measurement-enhanced spectrum

databases [6] enable Fine-Grained TVWS (FG-TVWS) in

urban environments, such as indoors and building-shadowed

areas. Moreover, TV set-assisted DSA enables SUs to access

active legacy TV channels, namely TV black-space (TVBS),

by leveraging the activity of TV receivers [4], [7]. TVBS

access becomes more feasible with the recent developments in

legacy systems. For example, ATSC 3.0 [8], standardizes TV

set feedback to enable interactive and personalized services.

A major challenge of FG-TVWS and TVBS is to manage

the interference from SUs to PUs (TV receivers). Restrictions

such as guard zone and individual SU footprint limit are insuf-

Fig. 1. Spectrum management architecture for enhanced TV spectrum access.

ficient to protect PUs exposed to aggregated interference from

a number of SUs, especially given the favorable propagation

conditions in TV band. To address this problem, a spectrum

manager (global or local) is envisioned to schedule the DSA

of SUs and manage the interference (Fig. 1). The spectrum

manager is assumed to have real-time and/or statistical infor-

mation of both PUs and SUs. Based on network dynamics, the

spectrum manager can adaptively control the admission and

transmit power of SUs to manage the aggregated interference.

Aggregate interference can be obtained through cooperative

spectrum sensing [6], [9], and PU feedback, at the cost of

overhead in spectrum, backhaul, and energy. Its accuracy de-

pends on spatial sampling [6]. A parallel approach is statistical

modeling. Theoretical aggregate interference models [10]–

[17] mostly consider homogeneous transmitter profile, which

makes it difficult to manage spectrum shared by multiple SU

networks with different transmit power, density, and multi-

antenna profiles, such as WiFi, Bluetooth, Internet of Things,

Body Area Networks. Another challenge is to achieve accuracy

with low computational complexity. Moment matching-based

Lognormal approximation [18], has significant errors in outage

analysis, and is inconsistent under network dynamics, as

shown in Section V. Sophisticated models [10]–[17] require

high computational complexity for large dynamic range of

interference power, and could not capture heterogeneous SUs.

In this paper, an analytical interference model is developed

for scenarios in which spectrum is shared by passive PUs (no

transmitter) and co-located SUs with heterogeneous transmit-

ter profiles. Our contributions include: 1) We extend existing

models from unified transmitter profile to multiple classes of

transmit powers and Multiple Input Multiple Output (MIMO)

capabilities, under class-specific admission and power control

policies. 2) An efficient computation approach is developed



to evaluate existing stochastic geometry-based models in real-

time for large dynamic range of interference power. 3) To

the best of our knowledge, we conduct the first empirical

validation of the key modeling components shared by ours and

existing works [10]–[17]. The developed interference model

and efficient computation approach can potentially enhance

DSA techniques in TV band.

The rest of this paper is organized as follows: Related work

is discussed in Section II. System model is introduced in

Section III. In Section IV, the aggregate interference model,

admission and power control, and efficient computation ap-

proach are introduced. Simulation and experiment results are

presented in Sections V and VI, respectively. Finally, the paper

is concluded in Section VII.

II. RELATED WORK

A. TV Spectrum Management

Spectrum management in TVWS is mainly database-driven:

available channels are estimated based on radio propagation

models [3], and an SU queries the database with its geolo-

cation and radio profile (device type specified by antenna

height and transmit power [2]) for a list of available channels.

Geolocation database is extended to a 3-tier Spectrum Access

System (SAS) in CBRS that prioritize SUs of different tiers

with admission control [2]. Interference in TVWS and CBRS

is managed through geographical separation of PU and SU

based on a prescribed protection zone, and SU device types.

To address the over-protection of PU caused by the limits

of propagation model [3], spectrum sensing-enhanced geolo-

cation database (radio environment map) [6] is developed

to exploit FG-TVWS caused by shadowing of terrain. On

the other hand, cooperative PU-based TVBS access [4], [7]

requires real-time spectrum scheduling of SUs based on ac-

tivities of neighboring TV receivers. These approaches reduce

the geographical separation with more PU information.

Existing approaches mainly focus on PU information, while

leaving interference analysis in a static (e.g. worst case)

approach. However, for FG-TVWS and TVBS, static analysis

may not effectively enable sufficient spectrum for SUs while

protecting PU. This work extends estimation of available

channels from relying only on PU information to the activity

dynamics of SUs. Consequently, spectrum utilization can be

improved by adaptively controlling the admission and transmit

power of SUs based on network dynamics.

B. Stochastic Geometry-Based Interference Model

Modeling unplanned wireless networks is based on stochas-

tic geometry [10]. In this framework, aggregate interference

is modeled as a random sum of independent and identically

distributed (i.i.d.) individual interference (random interference)

emitted from transmitters following a Poisson Point Process

(PPP). With uniform transmit power and known transmitter

density, the characteristic function (CF) of aggregate interfer-

ence from Poisson transmitters is obtained from the CF of

the random interference. The first two moments are found by

Compbell’s theorem [18]. In [11], the interference model is

extended to CRNs with power control, contention, and their

hybrids. However, only a single PU receiver is considered in

[11], which limits it to low-PU-density scenarios.

In tiered networks, such as CRNs [12], Device-to-Device

(D2D), and Heterogeneous Networks (HetNets) [14], different

user tiers are modeled as independent PPPs. Transmitters re-

stricted by contention, repulsion, and guard zones, are modeled

as Hard Core Point Process (HCPP), Poisson Hole Process

(PHP) [12], [13], and their combinations [14]. Low-tier trans-

mitter follows a PHP, which has no known closed-form model,

but has closed-form bounds [14] and PPP-approximated mod-

els [12]. However, these works only consider the single

antenna case. Individual MIMO interference is modeled in

[19]. MIMO aggregate interference is modeled for cellular [15]

and HetNets [16], and CRNs [17]. In [17], massive MIMO and

power control are considered with a cellular-like PU network,

which is not applicable for TV spectrum with passive PUs.

Interference model in CRNs without stochastic geometry [20]

is limited by the need of instantaneous user density.

For spectrum management, existing models face three chal-

lenges. First, unlicensed spectrum is shared by multiple net-

works with different capabilities and of dynamic composites,

which is not captured by existing models. Based on the

underlying model in [10], [11], and the approach of modeling

multiple PUs and SUs in [12]–[14], [17], our model is able to

track interference in spectrum shared by peer networks with

heterogeneous transmit powers and MIMO capabilities.

The second challenge is the computational complexity. The

CF manipulation-based underlying mathematics [10] requires

(Inverse) Fourier Transform(s) in linear-domain. To cover a

total dynamic range of 120 dB individual and aggregated

interference, a sample size n = 1012 is required for linear-

domain functions, such as CFs and PDFs. This prohibits

real-time evaluation of existing models, which has a time

complexity of O(n log(n)) and a space complexity of O(n).
The efficient computation approach introduced in Section IV-D

reduces the required sample size by 105 and enables sub-

second estimation, which opens the door for interference

model-assisted real-time spectrum management.

Third, to the best of our knowledge, there is no empirical

validation of the underlying mathematics of ours and existing

works [10]–[17], due to the difficulty of involving numerous

transmitters. A theory without empirical evidence might not

persuade any reforms in spectrum policy, which involves

various stakeholders. In Section VI, we present empirical

validation results for this shared baseline theory.

III. SYSTEM MODEL

We consider a CRN with numerous PUs and SUs. Their

activities and locations are known to a spectrum manager

(Fig. 1). First, an SU has to be admitted by the spectrum

manager. Then, the admitted SUs access the spectrum via

contention over-the-air (OTA) or within the spectrum manager.

A. Point Process Modeled Network

The primary network is consider as a broadcast network,

where PU is a passive receiver (e.g. OTA TV receivers). To



Fig. 2. TV band CRN model with PU guard zone and SU contention.

model interference, a finite region with radius R centered

on an arbitrary PU is considered (Fig. 2). PUs and SUs

are modeled as two independent homogeneous Poisson Point

Processes (PPP) with densities λp and λs, respectively. There

is no minimum distance between PUs. Guard zone is a disk

centered on PU in which SU is not allowed to transmit. With

guard zones, SU transmitters are modeled as a Poisson Hole

Process (PHP) [13]. Moreover, SUs access spectrum based on

contention, which is modeled as a Hard Core Point Process

(HCPP). The radius of contention zone is rc, and the radius of

PU guard zone is rp. High traffic demand of SU is assumed

so that it will access the spectrum whenever possible.

The retention ratio of SU after the guard zone of PU equals

to the chance of no PU located within a distance of rp from

SU, which can be found from Nearest Neighbor Function:

qp = exp
(

−λpπr
2
p

)

. (1)

The approximated retention ratio of SU contention, modeled

as a HCPP, is found in [11], [14]. SU transmitter as PHP over-

laid on HCPP is approximated by two independent thinning

processes on the underlying PPP of density λs [11], [14].

The spectrum can be shared by heterogeneous SUs with

different throughput and QoS requirements, and radio capa-

bilities. Heterogeneous SUs are modeled as K independent

classes of SUs, where an SU class k has a density λsk, transmit

power p′k, and certain MIMO capability (e.g. single v.s. mul-

tiple antenna(s)), where k ∈ {1 . . .K}, and λs =
∑K

k=1 λsk.

Admission and transmit power control can be class-specific,

in order to maximize spectrum utilization.

B. Radio Propagation

Consider path loss and composite shadowing and fading,

the received power, y(d), at distance d from a transmitter is:

y(d) = p · l(d) · h , Y (d) = P + L(d) +H , (2)

where p is the emission power of transmitter, l(d) is path gain,

and h is fading. As a convention, their logarithmic counterparts

are denoted by capitalized symbols Y (d), P , L(d), and H in

(2). The path gain function is:

l(d) = l0d
−β , L(d) = L0 − 10β log10(d) , (3)

where l0 and L0 are the reference path gains in linear and

logarithmic domains, respectively.

IV. AGGREGATE INTERFERENCE MODEL

We first introduce the mathematical framework of interfer-

ence from a single SU class, then extensions are provided for

MIMO, and multiple SU classes. Next, a power control scheme

based on the interference model is presented, followed by an

efficient computational approach.

A. Interference from a Single SU class

The aggregate interference u is modeled as the sum of N
i.i.d. random variables (r.v.s), y, which is the interference

from a random transmitter in the considered region. Since

SU transmitters are modeled as a PPP, N follows Poisson

distribution. The characteristic function (CF) of u is [10], [11]:

Φu(w) = exp {λtcΦy(w)} , (4)

where λt is SU transmitter density, c = π(R2−r2p) is the area

of considered region, and the CF of y is [11]:

Φy(w) =

∫

∞

0

∫

∞

0

fh(h)fp(p)Φl(wph)dpdh , (5)

where fh(x) and fp(x) are the PDFs of channel fading and

emission power toward PU, respectively. The PDF of an

uniform-distributed random transmitter located at distance, d,

from the origin point is fd(d) =
2πd
c

, where rp ≤ d ≤ R [11].

The PDF of path gain l from a random transmitter is

fl(l) =
2π

cβ
l
2

β

0 l(−
2

β
−1) ,where l(rp) ≥ l ≥ l(R) , (6)

its CF is found by Fourier Transform Φl(w) = F {fl(l)} (w).
We consider a limited scattering environment for MIMO

while leaving the rich scattering environment for future work.

An SU has an m-antenna array, b ≤ m streams, and transmit

power of p′. The communication and interference channels

are uncorrelated, and noise is unknown. Transmitted signal for

each stream on the m antennas is assumed to be a complex

Gaussian random vector ∼ CN (0, p′

mb
) [15], [16], [19]. For

each stream, the emission power follows Exponential(b/p′),
and the total emission power p follows a scaled Chi-square

distribution

√

p′

b
χ2
b with b degrees of freedom.

B. Multiple SU Classes

To control SU density, the spectrum manager admits an ar-

riving SU at probability ρ. Admission control is modeled as an

independent thinning process on the PPP of SU with retention

ratio ρ. The density of admitted SUs is ρλs =
∑K

k=1 ρkλsk,

where ρk is the admission probability of SU class k.

Assume a fair, identical contention across all SU classes,

based on the retention probability of SU contention given in

[11], the density of class k SU transmitter is:

λtk(d)

{

≈
qpρkλsk[1−exp(−ρλsπr

2

c)]
ρλsπr2c

, d ≥ rp

= 0, d < rp
. (7)

With CF of single SU class interference, Φsk(w), from (4),

the CF of interference from heterogeneous SUs, us, is [21]:

Φus(w) =

K
∏

k=1

Φuk(w) . (8)



Compared to using a PDF of emission power for all SU classes

[11], (7) and (8) can track interference from each SU class, and

further incorporate interference from and to adjacent channels

based on the emission mask of SU transmitter.

C. Secondary User Power Control

The CF of Signal-to-Interference Ratio (SIR) of PU, γ, is

Φγ(w) =

∫

∞

0

fζ(x)Φu(wx)dx , (9)

where fζ(x) is the PDF of PU received signal strength (RSS) ζ
(e.g. TV signal). The outage rate of PU should be acceptable:

Pr (γ ≤ γmin) = Omax , (10)

where γmin and Omax are the allowed minimum SIR and

maximum outage probability for PU, respectively. From (9)

and (10), the SU transmit power p′ can be found as:

p′ = min
{

γminζF
−1
γ (Omax), p

′

max

}

, (11)

where p′max is the maximum allowable transmit power, and

Fγ(x) is the CDF of SIR at an arbitrary PU receiver.

D. Efficient Computation Approach

Based on the logarithmic random interference Y in (2),

where L(d), P and H are independent r.v.s, the PDF of Y
can be found by chained convolutions [21]:

fY (Y ) = [(fL ∗ fH) ∗ fP ] (Y ) , (12)

where fL, fP , and fH , are the PDFs of logarithmic path gain,

emission power, and the underlying normal distribution of log-

normal fading, respectively. Similarly, the PDF of logarithmic

SIR, Γ, can be found by:

fΓ(Γ) = (fZ ∗ f−U )(Γ) ,where f−U (x) = fU (−x) , (13)

and fZ and fU are the PDFs of logarithmic TV signal RSS

and aggregated Interference, respectively.

The PDF of linear domain random interference fy(x) is

obtained from (12) with a down-sampled interpolation, e.g. a

down-sample rate of 105 is used for the interested upper 70dB
(for aggregate interference) out of the total dynamic range

of 120dB. Required sample size in linear domain, n, is thus

reduced from 1012 to 107. PDF of linear aggregate interference

fu(x) is obtained by applying Φy(w) = F {fy(x)} (w), (4),

and fu(x) = F−1 {Φu(w)} (x), which has a complexity of

O(n log(n)). Reducing n from 1012 to 107 can reduce the

computational complexity by 50,000 times. Logarithmic power

control has a complexity of O(ln(n)) instead of O(n) for

linear domain. In Section V, this approach is shown to preserve

the precision of high quantiles of the estimated CDFs, which

are vital to outage analysis and power control.

V. SIMULATION RESULTS

The developed model (Model) is evaluated by simulation of

a circular region with radius R = 3, 000m. In the simulation,

PUs and SUs are generated by homogeneous PPPs with

specified densities. SU admission ratio is set to 100%. SUs

in the guard zones of PUs are firstly removed, then a random

contention keeps only one SU out of multiple SUs in a

contention zone [11]. Radiuses of guard zone and contention

zone are 100m and 20m, respectively. The reference transmit

power of SU is 16 dBm [1]. Propagation model of secondary

signal is ITU-R P.1411 with a path loss exponent of 4, and

logarithmic fading ∼ N (0, (7.6dB)2). Logarithmic RSS of

TV signal in the region is assumed to follow a Normal

distribution N (−56dBm, (4.7dB)2). The center frequency is

set to 623MHz (channel 39 in the U.S.). Allowable minimum

SIR for TV receiver γmin = 23dB, and maximum outage

rates, Omax ∈ {0.1, 0.05, 0.01}, are used in power control.

TV RSS, individual and aggregated interference at the origin

point are collected. Each simulation contains 10,000 instances.

The model is benchmarked by 3 common lognormal ap-

proximations with low computational complexity:

1) Analytical Approximation (Approx.): The first two mo-

ments are found via Compbell’s Theorem [18], based on

the PDF of random interference from (5), and thinned

PPP in (7). The precision is impacted by the PPP ap-

proximation of PHP and computational dynamic range.

2) Empirical Fitting (Fitting): The first two moments

are from simulated empirical data. It can represent

measurement-based estimation, and reflect how far the

empirical interference is distorted from lognormal.

3) Extreme Location Analysis (Extreme Loc.): Interference

from a transmitter at a prescribed minimum distance, in

this case, rp. Attenuation includes fading and a fixed

path loss. It is a well-accepted simplification [3], [4].

We compare the estimation accuracy, outage rate of PU, and

SINR loss of SU in power control in the following.

A. Model Accuracy Under Network Dynamics

1) Homogeneous Secondary Users: Each SU is equipped

with an omni-directional antenna of 0dBi gain, and transmit

power of 16dBm. 24 network conditions from the combi-

nations of PU densities {1, 10, 150} /km2, and SU densi-

ties {40, 80, 120, 160, 200, 240, 280, 320} /km2 are simulated.

The dynamic range of aggregate interference in these config-

urations is -120 to -55dBm, and -180 to -80dBm for random

individual interference. The CDFs of aggregate interference

from simulation and estimations under 3 conditions, HPLS

(High PU density, Low SU density), HPHS, and LPHS, are

presented in Fig. 3(a). The median interferences of HPLS,

HPHS, and LPHS, are 15 and 16dB apart, respectively, since

PU reduces the spectrum opportunity of SUs. The Model is

accurate in high quantiles (as shown in Fig. 3(c) and discussed

later) while introducing a large error (> 1dB) in lower quantile

(F (x) ≤ 0.6 for HPLS, F (x) ≤ 0.3 for HPHS) (circled in

Fig. 3(a)) due to the approximation of PHP, and limits of

computational dynamic range (-120 to -50dBm).

2) Heterogeneous Secondary Users: This setting contains

2 classes of SUs: Class 1 is configured the same as Section

V-A1. Class 2 SU is equipped with a 4-antenna array. The den-

sities of SU and PU are fixed to 200 and 20/km2, respectively.

We evaluate 30 combinations from class 2 SU proportions

{0, 0.25, 0.5, 0.75, 1}, transmit power {10, 16, 20} dBm, and

stream numbers {1, 4}. Detailed CDFs of interference from
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Fig. 4. PU outage rate by PU density under power control.

simulation and estimations for 4 SU composites is presented

in Fig. 3(b). In the case of 75% SUs are in class 2, with

4 streams, and transmit power of 10 dBm, interference is

reduced for about 3.7dB from the reference case (100% class

1 SU) which allows more SUs to be admitted. In the case of

25% SUs are in class 2, with 1 stream and transmit power of 22

dBm, interference increases by about 2dB from the reference

case. When all SUs are class 2, with 1 stream and identical

transmit power of reference case, the interference is very

close to reference case. In Fig. 3(b), aggregate interference is

shown to be dominated by transmit power, however, antenna

array causes stronger spurious interference in high quantile

(F (x) > 0.95) despite it lowers the median interference.

Moreover, in the case of 25% SU class 2 in Fig. 3(b),

with interference power of -60dBm, the outage rates from

simulation, Model, Approx., and Fitting are 3%, 3.5%, 10.4%,

and 1.5%, respectively. Outage rates predicted by lognormal

approaches are 346% and 50% of the simulation.

The precisions of model and benchmarks over large dy-

namics of densities of PU and SU (homogeneous SUs) and

SU composites (heterogeneous SUs) are evaluated via quantile

estimation error, ε(x) = F−1
est (x) − F−1

sim(x), where x ∈
{0.9, 0.95, 0.99}, and Fest and Fsim are CDFs from estima-

tion and simulation, respectively. The results are presented

in Fig. 3(c), with Root Mean Squares (RMS) in Table I.

Analytical approximation over-estimates the interference for

0.7 dB on average with the worst error ε(0.9) = 2.4dB for

homogeneous SUs. Empirical fitting generally underestimates

the interference, with significant high quantile errors (Worst:

ε(0.95) = −2.6dB, ε(0.99) = −5.3dB). The Model consis-

Table I. Root Mean Square Estimation Errors at High Quantiles (Unit: dB)

Setting Homogeneous SUs Heterogeneous SUs
Quantile 0.9 0.95 0.99 0.9 0.95 0.99

Model 0.22 0.28 0.27 0.17 0.20 0.38

Approx. 0.77 0.63 0.39 0.72 0.86 0.77

Fitting 0.46 1.04 2.30 0.05 0.39 1.49

tently keeps RMS < 0.28dB for all 3 quantiles except a slight

increase to 0.38dB at quantile 0.99 in heterogeneous SUs.

In MATLAB, finding CDFs via (4) (shared by [10]–[17]) is

intractable for dynamic range ≥ 90dB. However, by tracking

the upper 70 (80) dB out of 120dB range, our approach takes

0.78 (20) sec for a single SU class, and 1.57 (41) sec for 2

SU classes. Approx. (Fitting) only takes 0.21 (<0.001) sec.

B. Power Control Performance

Power control in (11) is evaluated under PU densities 1–

150/km2 (e.g. varying hourly TV usage) and SU density of

200/km2. p′max is not applied for comparison purpose. The

model keeps PU outage rate (Fig. 4) in ±5%, 10%, 19% of

required rates of 0.1, 0.05, 0.01, respectively. Compared to

simulation-based ideal power control, the model only loses SU

SINR for ±0.3dB. Fitting generally under-protects PU, with

the worst outage rate twice of required (0.01). Approx. gener-

ally over-protects PU by sacrificing SU SINR (up to 2.3 dB).

Performance loss due to lognormal approaches is significant.

Constant power (Extreme Loc.) either under-protects (low PU

density) or overprotects (high PU density) PU by sacrificing

SU SINR (up to 15dB for the highest PU density).

VI. EXPERIMENTAL EVALUATION

The core modeling component in (4) is validated by an

experiment of aggregating WiFi beacons in a residential area.

We choose this experiment because WiFi access points (APs)

in a residential area are unplanned and accessible. Each AP

broadcasts beacon frame every 100ms under CSMA/CA mech-

anism. Each received beacon can be viewed as an independent

collision-free transmission. Moreover, received beacon carries

the identity (SSID), number of streams (for MIMO AP), and

working band of its transmitter. The RSS and SNR of the

received beacons are measured by the receiver.

We collect beacons of nearby WiFi APs at 50 locations

in a residential area in the U.S. (Fig. 5(a)), where buildings

are mostly of 2–4 floors with wooden and brick structures.




