

1
2
3
4
5
6 **The relation between initial corneal hydration and stiffening effects**
7
8 **of collagen crosslinking treatment**
9
10
11

12 Hamed Hatami-Marbini, PhD¹, Sandeep M Jayaram, BSc
13
14

15 ¹Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL USA
16
17
18
19
20
21
22

23 **Short Title:** Biomechanics of preswollen collagen crosslinked cornea
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

- This project has been funded in whole or in part with fund from National Science Foundations.
- The authors have no financial or proprietary interest in a product, method, or material described herein.

39 **Corresponding Author:**
40
41 Hamed Hatami-Marbini
42
43 Associate Professor
44
45 Department of Mechanical & Industrial Engineering
46
47 University of Illinois at Chicago
48
49 842 West Taylor Street, Chicago, IL 60607
50
51 Tel: 312-413-2126, Fax: 312-413-0447
52
53 Email: hatami@uic.edu
54
55 Research Lab: <http://cbrl.lab.uic.edu/>
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5 **Abstract:** (250 words)
6
7

8 **Purpose:** To characterize the mechanical property improvement of riboflavin/UV corneal
9
10 collagen crosslinking procedure in samples that are artificially swollen prior to being treated.
11
12

13 **Setting:** Computational Biomechanics Research Laboratory, Mechanical & Industrial
14
15 Engineering Department, University of Illinois at Chicago, IL USA.
16
17

18 **Design:** Experimental study
19
20

21 **Methods:** Both porcine and human donor corneas were collagen crosslinked at different
22 hydration levels using riboflavin/dextran solutions of different osmolality. Four hydration groups
23 ($H_w = 3.3 \pm 0.2$, 4.0 ± 0.1 , 5.1 ± 0.1 , and $5.6 \pm 0.1 \text{ mg H}_2\text{O/mg dry tissue}$) were considered for porcine
24 samples and three hydration groups ($H_w = 3.2 \pm 0.1$, 3.9 ± 0.2 , $5.3 \pm 0.3 \text{ mg H}_2\text{O/mg dry tissue}$) for
25 human samples. The mechanical properties were measured by uniaxial tensile experiments,
26 during which the hydration of samples was the same as the hydration at which they were
27 crosslinked. Additional porcine samples were crosslinked at average hydration of 5.1 and 5.6 mg
28 $\text{H}_2\text{O/mg dry tissue}$ and their tensile properties were measured when their hydration was lowered
29 to $4.0 \text{ mg H}_2\text{O/mg dry tissue}$.
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44 **Results:** The collagen crosslinking procedure significantly increased the tensile properties of
45 both human and porcine samples in each hydration group ($P < 0.05$). The improvement in tensile
46 properties was hydration-dependent, i.e. samples that were crosslinked at higher hydration levels
47 had lower maximum tensile stress. The behavior of samples crosslinked at different initial
48 hydration but tested mechanically at similar hydration showed no significant difference ($P = 0.7$).
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4 **Conclusions:** Increasing the hydration of porcine and human corneal samples prior to the
5 collagen crosslinking treatment had insignificant influence on tensile property improvement, as
6 measured by testing the specimens at similar hydration.
7
8
9
10
11
12
13
14

15 **Keywords:** Uniaxial tensile experiments, pre-swollen, crosslinking, biomechanics, porcine and
16 human cornea
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 2 3 4 5 6 7 8 **Introduction** 9 10

11 Cornea is a load-bearing collagenous tissue that forms with sclera the outermost layer of the eye.
12
13 The cornea with the help of the lens refracts light rays such that they focus on the retina.
14
15 Keratoconus is an eye disease which results in blurry and distorted vision. In keratoconus, the
16 cornea thins out and becomes conical in shape. The progressive outward bulging of the cornea
17 results in visual disorders such as myopia, irregular astigmatism, and double vision. Though the
18 exact underlying cause of keratoconus has not yet been determined, it is associated with genetic
19 disorders such as familial inheritance, Down's syndrome, and environmental factors such as
20 excessive eye rubbing and hard contact lens wear ¹⁻³.
21
22

23 The riboflavin/UV collagen crosslinking (CXL) is a clinical treatment procedure, which
24 improves the mechanical strength of keratoconus cornea. Over the past decade, the effectiveness
25 of crosslinking treatment in stiffening the cornea and halting the keratoconus has been
26 established by different in vitro and in vivo studies ⁴⁻¹⁰. The common collagen crosslinking
27 procedure, often known as the Dresden protocol, has two steps. The first step involves removing
28 the corneal epithelium and soaking the stromal layer in a photosensitizer solution made up of
29 0.1% riboflavin and 20% dextran. Dextran prevents excessive swelling of the cornea during the
30 application of the riboflavin solution. In the second step, the tissue is exposed to UV rays while
31 drops of the photosensitizer solution are applied on the corneal surface ^{6,7}.
32
33

34 This treatment procedure is not recommended for patients with advanced keratoconus, whose
35 corneal thickness is less than 400 um, because UV irradiation will damage endothelial cells ⁸. In
36 a recent study, hypoosmolar riboflavin solution, that does not contain dextran, was used to
37 increase the thickness of thin corneas before CXL. This modified CXL treatment successfully
38
39

1
2
3
4 and without any complication arrested the progression of the disease in patients with thin corneas
5
6 ¹¹. Nevertheless, the exact biomechanical stiffening effects of the modified CXL treatment have
7
8 not yet been investigated.
9
10

11
12 The primary objective of the present study was to determine how hypoosmolar riboflavin
13 solution would influence the overall stiffening effect of the collagen crosslinking treatment. For
14 this purpose, we used riboflavin solutions of different osmolarity and crosslinked corneal
15 specimens at different levels of hydration. We then conducted strip extensometry tests to
16 measure tensile properties of the collagen crosslinked corneas and compared the results with the
17 mechanical properties of untreated samples. We used both human donor and porcine cadaver
18 corneas in order to characterize possible differences in the mechanical behavior of the cornea
19 from different species.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Materials and Methods

37
38 Both porcine corneas and human donor corneas were used in this study. Porcine corneas were
39 dissected from fresh porcine cadaver eyes and tested within a day. Human donor corneas had
40 been stored in Optisol solution for about one month post-mortem before they were brought to the
41 laboratory. In order to crosslink specimens at different hydration levels, we used sample
42 thickness as a surrogate for their hydration. The thickness-hydration relations of $H_w = 7.0 t -$
43 0.64 and $H_w = 3\ln(t/0.2)$ were used to estimate the hydration of porcine and human samples,
44 respectively ^{12, 13}. Here, H_w is the hydration in $mg\ H_2O/mg\ dry\ tissue$ and t is the thickness in
45 mm. The specimens were air-dried or artificially swelled by immersing in saline solution in order
46 to adjust their initial hydration before being crosslinked.
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 Five samples in each thickness group were crosslinked and five specimens were used as control.
5
6 The photosensitizer solution was prepared using riboflavin and dextran T-500. The blunt edge of
7
8 a scalpel was used to remove the epithelial layer from corneal specimens. All samples were
9
10 soaked for 30 minutes in the photosensitizer solution for complete penetration of riboflavin into
11
12 the corneal stroma. Then, 5 mm wide strips were punched in the nasal-temporal direction using a
13
14 custom built double bladed punch. Strips dissected from nasal-temporal direction were only used
15
16 in order to prevent variations in the experimental measurements due to the corneal anisotropic
17
18 response ^{14, 15}. The strips were exposed to UV rays of intensity 3mW/cm² at about 1-2 cm
19
20 distance for 30 minutes, while few drops of the photosensitizer solution were added every 5
21
22 minutes, Figure 1. The irradiance was measured using a radiometer (Solarmeter, Pennsylvania).
23
24 The crosslinking procedure was performed inside a dark room to minimize the exposure of the
25
26 specimens to white light. The samples in the control group were also soaked and treated with the
27
28 solution but the UV light was turned off during the treatment. These samples were referred to as
29
30 control in this work.
31
32
33
34
35
36
37

38 The concentration of dextran influences the osmolality of the riboflavin solution and
39
40 subsequently equilibrium thickness of the samples when they are immersed in this solution
41
42 during the crosslinking treatment. Thus, a pilot swelling study was performed to determine the
43
44 appropriate concentration of dextran T-500 (Sigma-Aldrich Co. LLC) in the photosensitizer
45
46 riboflavin/dextran solution such that unwanted hydration changes due to deturgescence effects of
47
48 dextran can be avoided. The objective of this preliminary study was to find the required dextran
49
50 concentration for which the thickness (hydration) remained almost constant when the samples
51
52 were immersed in the photosensitizer solution. Riboflavin/dextran solutions of different
53
54 osmolality were made by varying the concentration of dextran between from 2.5% to 20%. The
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 concentration of riboflavin-5-phosphate (Sigma-Aldrich Co. LLC) was kept at 0.1% in all
5 solutions. The specimens were immersed in riboflavin/dextran solutions with a known dextran
6 concentration and their thickness was measured at regular time intervals using a digital
7 pachymeter (DGH Pachette 3, DGH Technology Inc., Pennsylvania). Using this study, we used
8 dextran concentration of 20%, 10%, 5%, and 2.5% for porcine samples and divided them into
9 four groups. Due to the limited number of available human donor tissue, we did not do this pilot
10 swelling study on these samples and used dextran concentrations of 20%, 15%, and 10% in order
11 to divide the samples into three groups. Table 1 gives the average thickness, hydration, and
12 dextran concentration of porcine and human specimens.
13
14

15 Before starting the mechanical tests, the thickness of treated and the control samples was
16 measured using a digital pachymeter, and the width of strips was measured using a digital
17 calliper (Mitutoyo Corp. Japan). A DMA machine (RSA-G2, TA Instruments, Delaware, USA)
18 was used to perform uniaxial tensile tests and measure the biomechanical properties of the strips.
19 Sand papers were used to ensure that there was no slippage. The strips were mounted at a loading
20 gap of about 7 mm. After mounting the strips, a force of 20 mN was applied to remove any slack
21 from the specimens ^{14, 16}. The length of samples at this stage was noted as their initial length L_0
22 for strain calculations. The strips were then stretched to a strain level of 10% using a
23 displacement rate of 2mm/min. The tensile stress was obtained by dividing the experimentally
24 measured force by the cross-sectional area of the strips.
25
26

27 The experimental stress-strain curves were curve-fitted using an exponential expression
28 $\sigma = A(e^{B\varepsilon} - 1) + \sigma_0$, where ε is the strain, σ is the stress, σ_0 is the tare stress, and A and B are fit
29 constants. The goodness of these numerical fits was assessed by calculating the coefficients of
30 determinations R^2 . Furthermore, the tangent modulus and the tensile stress at 6%, 8%, and 10%
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 strain were calculated and reported as mean \pm standard deviation. The maximum tensile, σ_{\max} , is
5 defined as the stress at 10% strain, $\varepsilon_{\max}=10\%$. One-way ANOVA with a p-value of 0.05 was
6 performed in order to determine the significant difference between the mechanical behaviour of
7 various groups.
8
9
10
11
12
13
14
15
16
17

18 Results

19
20
21

22 Figures 2-3 shows the stress-strain behavior of crosslinked and control porcine and human
23 samples. It is seen that with increasing the hydration (thickness), the mechanical response of both
24 human and porcine specimens became softer. The numerical values of the maximum tensile
25 stress for control porcine and human samples is given in Table 1. The difference between various
26 hydration porcine groups was significant ($P<0.05$). Furthermore, except for group H1 and group
27 H2 ($P=0.15$), the difference between individual human groups was significant ($P<0.05$).
28 Furthermore, samples which were crosslinked using more hypotonic riboflavin solution had a
29 lower peak tensile stress compared to those treated with less hypotonic or isoosmolar solution.
30 The maximum tensile stress for crosslinked porcine and human samples is also given in Table 1.
31 The difference between various hydration porcine groups was significant ($P<0.05$). For
32 crosslinked human samples, except for group H1 and group H2 ($P=0.2$), the difference between
33 all other individual groups was significant ($P<0.05$). Comparing the tensile stress for crosslinked
34 and control samples within each hydration group showed that the collagen crosslinking
35 procedure significantly improved biomechanical properties of the cornea ($P<0.05$). Finally,
36 comparing the maximum tensile stress of human and porcine groups of almost similar hydration
37 showed that human samples had significantly stronger tensile properties than those of the porcine
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 strips (P<0.05). Table 1-2 give the tangent modulus and tensile stress of different groups at 6%,
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 strips (P<0.05). Table 1-2 give the tangent modulus and tensile stress of different groups at 6%,
8%, and 10% strain. The exponential mathematical function was able to successfully curve-fit
the stress-strain curves of all porcine and human hydration groups, the solid lines in Figures 2-3
represent the numerical fits. The fitting parameters and the coefficients of determination are
given in Table 2.

Discussion

In the corneal crosslinking treatment method, the corneal tissue is first soaked in the photosensitizer solution and is then subjected to UV rays. The soaking step is included to ensure sufficient penetration of riboflavin into the corneal stroma. Riboflavin, by production of singlet oxygen molecules upon exposure to UV rays, enables creation of crosslinks.

In the corneal crosslinking treatment procedure, the thickness of the cornea should not be less than 400 μ m in order to avoid damage to the endothelial cells because of UV radiation ^{8, 17}. Avedro, Inc., which received FDA approval in 2016 for its crosslinking device called KXL system, lists that in cases where the thickness of the cornea goes below 400 μ m after the soaking period, 0.1% riboflavin solution without dextran needs to be used. This process is expected to cause corneal swelling and increase the thickness to the required minimum of 400 μ m.

The corneal extracellular matrix is primarily composed of collagen fibrils and proteoglycans ¹⁸. The proteoglycans consist of negatively charged glycosaminoglycans, which are ionized at physiological pH. Thus, a net negative fixed charge density exists inside the stroma. Because of these negative charges, the cornea could swell significantly when immersed in an ionic solution ^{12, 13}. In the common crosslinking protocol, dextran is used to prevent corneal swelling and keep

1
2
3
4 its thickness unchanged. In the modified collagen crosslinking procedure, dextran is not added to
5 the riboflavin solution in order to allow free swelling of the cornea.
6
7

8
9 In a recent study, the modified CXL procedure was performed on twenty patients whose corneal
10 thickness was between 320 um and 400 um and no complication was reported ¹¹. There were
11 other clinical studies in which hypotonic riboflavin solutions were used to treat thin corneas with
12 success ¹⁹⁻²¹. However, the important question that yet remains unanswered in the field is that
13 whether the stiffness of the crosslinked swollen corneas is different than the stiffness of the
14 corneas which are crosslinked at their normal thickness. This is an important question because it
15 has been shown that corneal mechanical properties are a function of hydration ^{9, 16, 22}.
16
17

18 The primary objective of the current study was to characterize how artificially swelling the
19 cornea before collagen crosslinking would affect the improvement of tensile properties due to
20 this procedure. To this end, we conducted mechanical experiments on both human and porcine
21 corneas, which were crosslinked at different initial hydration levels, and compared their
22 mechanical response to the behavior of control samples with similar hydration.
23
24

25 Consistent with previous studies on bovine corneas ^{16, 22}, Figures 2-3 show an inverse relation
26 between hydration level and the tensile strength in porcine and human cornea. Furthermore, the
27 maximum tensile stress of crosslinked strips was significantly higher than the maximum tensile
28 stress of control strips with the same hydration, Table 1. The samples in the control groups were
29 subjected to the same testing conditions as their respective crosslinked strips with the exception
30 of being exposed to UV rays. Consistent with previous reports ⁶, Figure 2 shows that the collagen
31 crosslinking treatment increased corneal tensile stress at 6% by about 70%. Additionally, it is
32 observed that the increase in tensile properties is hydration-dependent and depends on the
33 hydration at which the samples are crosslinked. For instance, at 6% strain level, the increase in
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 tensile stress was equal to about 77%, 51%, 38% and 16 % for porcine samples crosslinked at
5 average hydration of 3.3, 4.0, 5.1, and 5.6 mg water/mg dry tissue, respectively. Furthermore, in
6 human donor samples, we observed an increase of 58%, 55% and 30% increase in the tensile
7 stress at 6% strain in hydration groups 3.2, 3.9 and 5.3 mg H_2O/mg dry tissue respectively. In the
8 following, we attempt to explain this behavior in terms of the inhomogeneous microstructure and
9 swelling properties of the corneal extracellular matrix as well as the depth dependence of corneal
10 stiffening due to the collagen crosslinking procedure.
11
12

13 It has been shown that anterior collagen lamellae in the corneal stroma interweave while the
14 posterior lamellae are almost parallel to each other ^{18, 23, 24}. Previous studies have also shown that
15 the crosslinking procedure improves significantly the mechanical properties of the anterior 200
16 um of the cornea and it has a lesser effect on biomechanics of the remaining posterior layer.
17 Kohlhaas et al. crosslinked porcine cornea using the Dresden protocol and measured the tensile
18 properties of anterior 200 um flaps dissected from the crosslinked samples ²⁵. They observed that
19 the stiffening effect was much more significant in these anterior flaps. This observation was
20 attributed to the fact that about 65%-70% of UV radiations is absorbed in the anterior 200 μm
21 and the rest is absorbed in the posterior region. It is also known that the swelling behavior of
22 cornea is inhomogeneous and the posterior stroma swells more than the anterior stroma ^{26, 27}.
23 This behavior is because collagen lamellae in the anterior part are tightly interwoven, and
24 therefore, are resistant to swelling. Thus, we believe that the stiffening effect of the CXL
25 procedure is hydration dependent because the ratio of the crosslinked thickness and the total
26 thickness is decreased with increasing the hydration, Figure 4. Also note that, as shown in
27 previous studies, mechanical properties of the cornea become softer with increasing thickness
28 (hydration) because the bonds between the collagen fibrils and proteoglycans break ^{16, 22}.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Considering the above discussion and the experimental results of the present work, we hypothesize that increasing the hydration of samples prior to collagen crosslinking does not significantly affect the portion of the cornea that is crosslinked, Figure 4. If this hypothesis is true, the observed difference in tensile properties of specimens crosslinked at different hydration (thickness) should be mainly because of hydration-dependent mechanical properties of the cornea^{16, 22, 28}. To test this hypothesis, we crosslinked five porcine corneal strips with the average initial hydration of 5.1 mg H₂O/mg dry tissue and another five at H_w=5.6 mg H₂O/mg dry tissue, air dried them until their hydration reached 4.0 mg H₂O/mg dry tissue (hydration of group P2), and then measured their tensile properties. We observed that the tensile behavior of these specimens matched those of samples which were crosslinked at initial hydration of 4.0 mg H₂O/mg dry tissue, Figure 5. This finding confirms that the effectiveness of crosslinking treatment does not significantly change if the samples are pre-swollen. Nevertheless, future studies are required to test this hypothesis *in vivo* and especially on keratoconus corneas. Furthermore, future imaging studies are required to determine the effective depth of collagen crosslinking in artificially swollen samples. Also, crosslinking using hypoosmolar solution may have important effects on other aspects of corneal properties, e.g. viscoelasticity, that have not been considered in the present work.

At the same hydration levels, human donor corneas showed a stiffer tensile response compared to porcine corneas. For instance, at hydration of about 3.2-3.3 mg H₂O / mg dry tissue, the tangent modulus at 6% strain for control and crosslinked human samples was 5.6 ± 1.5 MPa and 3.2 ± 0.7 MPa while it was 2.4±0.3 MPa and 1.4±0.2 MPa in control and crosslinked porcine samples, respectively. The stronger tensile behaviour of human donor tissue in comparison to porcine cornea is in agreement with previous studies^{6, 29}. Nevertheless, it is noted that the

1
2
3
4 mechanical properties of cornea vary with age and hydration ^{28, 30}. Although this work
5 characterized the tensile behaviour of human cornea as a function of hydration, it did not
6 characterize the effects of age of samples on their mechanical properties because their age was
7 not known. Another limitation is that the donor samples were in optisol for one month prior to
8 being used in this study.
9
10
11
12
13
14
15
16

17 In our previous work on hydration-dependent properties of the cornea and some other related
18 work in the literature, samples were preconditioned prior to the mechanical tests ^{9, 14, 22, 29}.
19 However, the specimens were not preconditioned here to reduce the time of experiments. In
20 order to characterize the effect of preconditioning procedure, we tested additional porcine
21 samples with an initial preconditioning step ¹⁴. Five untreated and five crosslinked samples with
22 average hydration of $3.3 \text{ mg H}_2\text{O/ mg dry tissue}$ were used. The preconditioning included five
23 loading/unloading cycles upto 10% strain and three relaxation steps. Figure 6 compares the
24 stress-strain behavior of preconditioned and not preconditioned samples. The CXL treatment
25 increased tensile stress of preconditioned and not preconditioned samples by about 70% and
26 77%, respectively. The results shown in Figure 6 imply that similar conclusions would have been
27 reached if a preconditioning step had been used to measure the tensile properties of artificially
28 swollen crosslinked cornea.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47 Furthermore, since the duration of the experiments in the current study was short, no bathing
48 solution was used. However, oil has often been used as the bathing solution in order to ensure
49 that the hydration (thickness) of samples remains constant during the mechanical tests ^{9, 14}. We
50 tested a group of crosslinked human samples in oil in order to show that using a bathing solution
51 was not required in this study, Figure 7. No significant dehydration would occur between the
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 end of crosslinking and the end of the tensile tests; this was confirmed by measuring the
5 specimen thickness at the end of mechanical tests.
6
7
8
9

10 Finally, in an effort to estimate the tensile behavior of corneal samples with arbitrary hydration
11 from the stress-strain behavior of corneal samples with known hydration, we plotted the
12 normalized stress $\bar{\sigma} = (\sigma - \sigma_0) / (\sigma_{\max} - \sigma_0)$ and normalized strain $\bar{\varepsilon} = \varepsilon / \varepsilon_{\max}$ for the results
13 shown in Figures 2-3. Here, σ_{\max} is maximum stress at $\varepsilon_{\max}=10\%$. We observed that the stress-
14 strain data for different hydration groups in each figure collapsed onto a universal curve
15 represented by the equation $\bar{\sigma} = (e^{\bar{B}\bar{\varepsilon}} - 1) / (e^{\bar{B}} - 1)$ where $\bar{B} \approx 2.07$ and 2.17 for pseudo-
16 crosslinked and crosslinked porcine samples (Figure 2), and $\bar{B} \approx 2.27$, and 2.61 for pseudo-
17 crosslinked and crosslinked human samples (Figure 3), respectively. It is noted that the present
18 work shows that these universal curves at least exists for the range of hydration considered here;
19 its presence outside this range needs future studies. However, we expect that the lower limit to be
20 around hydration $1-1.5 \text{ mg } H_2O/\text{mg dry tissue}$ where the variation in hydration has been
21 reported to cause significant changes to the ultrastructure of the cornea ³¹. The underlying
22 mechanisms for this interesting experimental observation need to be investigated in future works.
23
24

25 In summary, this work characterized the improvement in mechanical properties of human and
26 porcine corneas due to the riboflavin/UV collagen crosslinking treatment as a function of
27 hydration. The concentration of dextran (a deturgescence agent) in riboflavin solution was varied
28 to control the hydration (thickness) prior to the collagen crosslinking treatment. The
29 improvement in tensile properties due to the collagen crosslinking treatment was significant in
30 all groups ($P < 0.05$) but it was inversely proportional to the initial hydration of the specimens.
31 Furthermore, the tensile behavior of specimens which were treated at different hydration but
32
33

1
2
3
4 tested at similar hydration was similar. This suggests that hydration-dependent biomechanical
5 properties of the cornea should be why a significant difference was observed in tensile properties
6 of specimens that were crosslinked at different hydration. Future studies are required to check
7 whether collagen crosslinked corneas using isoosmolar and hypoosmolar riboflavin solutions
8 show similar response in vivo conditions.
9
10
11
12
13
14

21 **Acknowledgements:**

22
23
24 The authors acknowledge support for this work in part from NSF-CMMI-1635290
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7
WHAT WAS KNOWN:

8 The riboflavin/UV collagen crosslinking treatment improves the biomechanical properties of the
9 cornea. In order to avoid toxic effects of UV irradiation on corneal endothelial cells, the corneal
10 stroma should be at least 400 um thick. In patients with thin corneas, a hypoosmolar riboflavin
11 solution can be used to swell preoperatively the cornea to a thickness of larger than 400 um.
12 Nevertheless, considering the hydration-dependent biomechanical properties of the cornea,
13 possible influence of the above procedure on stiffening effects of collagen crosslinking
14 procedure is not known.
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
WHAT THIS PAPER ADDS:
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

This paper showed that the tensile stiffening effect of collagen crosslinking treatment was dependent on the initial hydration of corneal samples. In particular, crosslinking the specimens at higher initial water content resulted in lower improvement in their tensile stress and tangent modulus. Nevertheless, the tensile properties of corneas treated at different hydration but tested mechanically at similar hydration was similar. Thus, corneal pre-swelling had an insignificant effect on the tensile property improvement caused by collagen crosslinking method; the difference is due to corneal hydration-dependent mechanics.

Figure and Table Captions:

Figure 1. Schematic plot for the corneal collagen crosslinking treatment. The samples were placed on a hemisphere stand and were exposed to UV rays while few drops of the riboflavin solution were added.

Figure 2. The tensile stress-strain behavior of a) control and b) crosslinked porcine samples. The hydration and thickness of different groups are given in Table 1. The solid lines represent the numerical exponential fits. The fit parameters are given in Table 4. Hydration of groups P1, P2, P3, and P4 is $H_w = 3.3 \pm 0.2$, 4.0 ± 0.1 , 5.1 ± 0.1 , and $5.6 \pm 0.1 \text{ mg H}_2\text{O/mg dry tissue}$, respectively.

Figure 3. The tensile stress-strain behavior of a) control and b) crosslinked human samples. The hydration and thickness of different groups are given in Table 1. The solid lines represent the numerical exponential fits. The fit parameters are given in Table 4. Hydration of groups H1, H2, and H3 is $H_w = 3.2 \pm 0.1$, 3.9 ± 0.2 , $5.3 \pm 0.3 \text{ mg H}_2\text{O/mg dry tissue}$, respectively.

Figure 4. A schematic plot that describes the possible reason for the experimentally measured hydration dependent stiffening of the collagen crosslinking procedure. a) The microstructure of the cornea is anisotropic through the thickness: h and h_a denote the thickness of whole and anterior part of the cornea, respectively. b) When the cornea is swollen, the amount of swelling is not uniform and the anterior region swells less compared to the posterior part: h' and h'_a denote the thickness of whole and anterior part of the swollen cornea, respectively. c) The collagen crosslinking affects primarily the top layers of the cornea, denoted by h_{cxl} and red vertical crosslinks. Thus, the crosslinking is limited to the anterior layers. d) When the corneal hydration is reduced to the normal amount, the effective crosslinking depth is almost remains unchanged and as if the sample was crosslinked at its normal hydration.

1
2
3
4 **Figure 5.** The tensile stress and tangent modulus at 6% strain of porcine strips crosslinked at
5 different hydration level but all tested at the same average hydration ($H_w \sim 4.0 \text{ mg H}_2\text{O/mg dry}$
6 tissue) of the control group. It is seen that amount of stiffening is independent of the initial
7 hydration of specimens when they are crosslinked.
8
9
10
11
12
13
14

15 **Figure 6.** The effect of preconditioning procedure on the tensile stress and tangent modulus at
16 6% strain for control and collagen crosslinked porcine cornea.
17
18
19

20 **Figure 7.** The effect of bathing fluid on tensile stress and tangent modulus at 6% strain of human
21 corneas.
22
23
24
25

26 **Table 1.** Dextran concentration, thickness, and hydration, and tensile stress in KPa at 6%, 8%,
27 and 10% strain for control and treated porcine and human corneal strips..
28
29
30
31
32
33
34
35
36
37

38 **Table 2.** Tangent modulus in MPa at 6%, 8%, and 10% strain, and the fit parameters for control
39 and treated porcine and human corneal strips. The coefficients of determination were larger than
40 99% for all groups. The hydration and thickness of different groups are given in Table 1.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

References

- 1 Nowak DM, Gajecka M. The genetics of keratoconus. Middle East African journal of
ophthalmology 2011; 18: 2
- 2 Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal
thinning disorders. Survey of ophthalmology 1984; 28: 293-322
- 3 Nielsen K, Hjortdal J, Pihlmann M, Corydon TJ. Update on the keratoconus genetics. Acta
ophthalmologica 2013; 91: 106-113
- 4 Randleman JB, Khandelwal SS, Hafezi F. Corneal cross-linking. Survey of ophthalmology
2015; 60: 509-523
- 5 Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against
enzymatic digestion. Current eye research 2004; 29: 35-40
- 6 Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas
after riboflavin–ultraviolet-A-induced cross-linking. Journal of Cataract & Refractive
Surgery 2003; 29: 1780-1785
- 7 Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A–induced collagen crosslinking for
the treatment of keratoconus. American journal of ophthalmology 2003; 135: 620-627
- 8 Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA-riboflavin cross-linking
of the cornea. Cornea 2007; 26: 385-389
- 9 Hatami-Marbini H, Rahimi A. Interrelation of hydration, collagen cross-linking treatment,
and biomechanical properties of the cornea. Current eye research 2016; 41: 616-622
- 10 Hatami-Marbini H, Rahimi A. Collagen cross-linking treatment effects on corneal dynamic
biomechanical properties. Experimental eye research 2015; 135: 88-92

1
2
3
4 11 Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and
5 hypoosmolar riboflavin solution in thin corneas. *Journal of Cataract & Refractive Surgery*
6 2009; 35: 621-624
7
8 12 Hatami-Marbini H, Etebu E, Rahimi A. Swelling pressure and hydration behavior of porcine
9 corneal stroma. *Current eye research* 2013; 38: 1124-1132
10
11 13 Hedbys BO, Mishima S. The thickness-hydration relationship of the cornea. *Experimental*
12 eye research 1966; 5: 221-228
13
14 14 Hatami-Marbini H, Rahimi A. Effects of bathing solution on tensile properties of the cornea.
15 Experimental eye research 2014; 120: 103-108
16
17 15 Elsheikh A, Brown M, Alhasso D, Rama P, Campanelli M, Garway-Heath D. Experimental
18 assessment of corneal anisotropy. *Journal of refractive surgery (Thorofare, NJ : 1995)* 2008;
19 24: 178-187
20
21 16 Hatami-Marbini H, Rahimi A. The relation between hydration and mechanical behavior of
22 bovine cornea in tension. *Journal of the mechanical behavior of biomedical materials* 2014;
23 36: 90-97
24
25 17 Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking
26 with and without epithelial debridement. *Journal of Cataract & Refractive Surgery* 2009; 35:
27 540-546
28
29 18 Maurice DM. The cornea and sclera. In: Davason H ed, *The eye*. Academic Press, 1984; 1-
30 184
31
32 19 Hirji N, Sykakis E, Lam F, Petrarca R, Hamada S, Lake D. Corneal collagen crosslinking for
33 keratoconus or corneal ectasia without epithelial debridement. *Eye* 2015; 29: 764
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 20 Raiskup F, Spoerl E. Corneal cross-linking with hypo-osmolar riboflavin solution in thin
5 keratoconic corneas. American journal of ophthalmology 2011; 152: 28-32. e21
6
7 21 Mark T, Ngounou F, Tamon J, Marx-Gross S, Preussner PR. Modulatory effect of different
8 riboflavin compositions on the central corneal thickness of African keratoconus corneas
9 during collagen crosslinking. Middle East African journal of ophthalmology 2014; 21: 66-71
10
11 22 Hatami-Marbini H. Hydration dependent viscoelastic tensile behavior of cornea. Annals of
12 biomedical engineering 2014; 42: 1740-1748
13
14 23 Komai Y, Ushiki T. The three-dimensional organization of collagen fibrils in the human
15 cornea and sclera. Investigative ophthalmology & visual science 1991; 32: 2244-2258
16
17 24 Morishige N, Petroll WM, Nishida T, Kenney MC, Jester JV. Noninvasive corneal stromal
18 collagen imaging using two-photon-generated second-harmonic signals. Journal of Cataract
19 & Refractive Surgery 2006; 32: 1784-1791
20
21 25 Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE. Biomechanical evidence
22 of the distribution of cross-links in corneastreated with riboflavin and ultraviolet A light.
23
24 Journal of Cataract & Refractive Surgery 2006; 32: 279-283
25
26 26 Lee D, Wilson G. Non-uniform swelling properties of the corneal stroma. Current eye
27 research 1981; 1: 457-461
28
29 27 Muller LJ, Pels E, Vrensen GF. The specific architecture of the anterior stroma accounts for
30 maintenance of corneal curvature. The British journal of ophthalmology 2001; 85: 437-443
31
32 28 Hatami-Marbini H, Etebu E. Hydration dependent biomechanical properties of the corneal
33 stroma. Experimental eye research 2013; 116: 47-54
34
35 29 Elsheikh A, Alhasso D, Rama P. Biomechanical properties of human and porcine corneas.
36
37 Exp Eye Res 2008; 86: 783-790

1
2
3
4 30 Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM. Characterization of age-related
5 variation in corneal biomechanical properties. *Journal of the Royal Society, Interface* 2010;
6
7 7: 1475-1485
8
9
10
11 31 Fratzl P, Daxer A. Structural transformation of collagen fibrils in corneal stroma during
12
13 drying. *An x-ray scattering study. Biophys J* 1993; 64: 1210-1214
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1

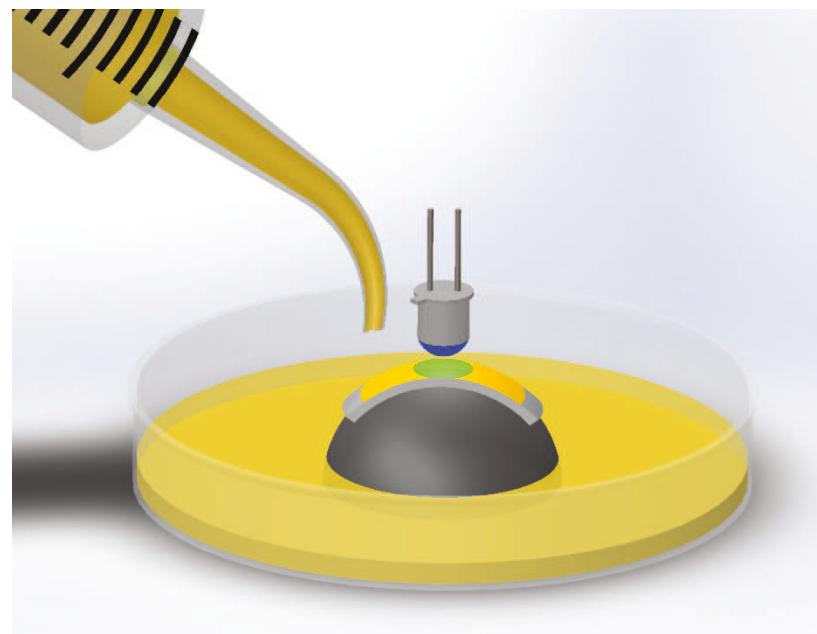
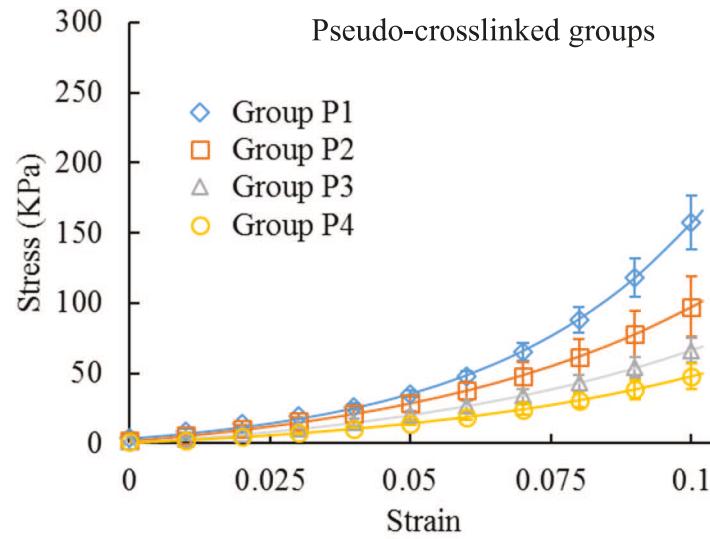



Figure 2

a)

b)

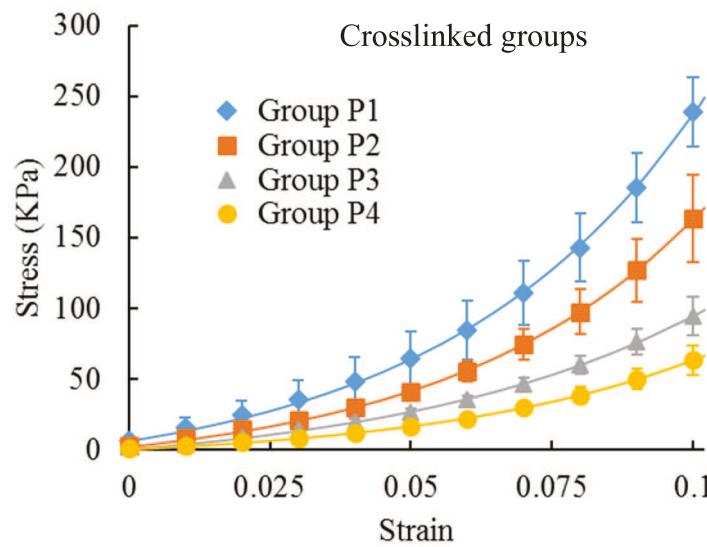
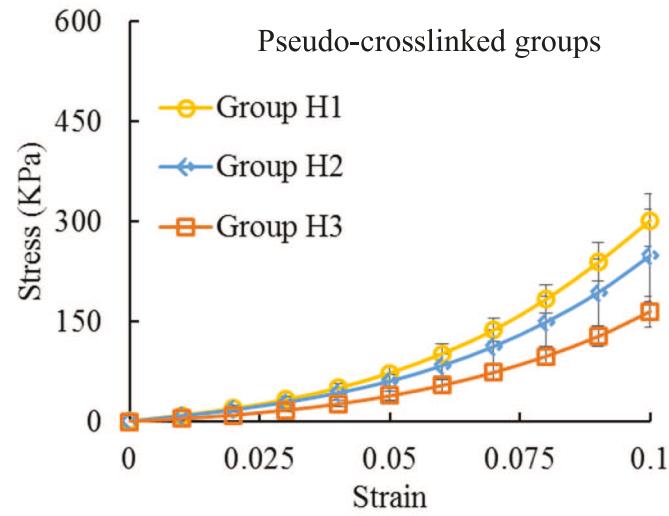



Figure 3

b)

a)

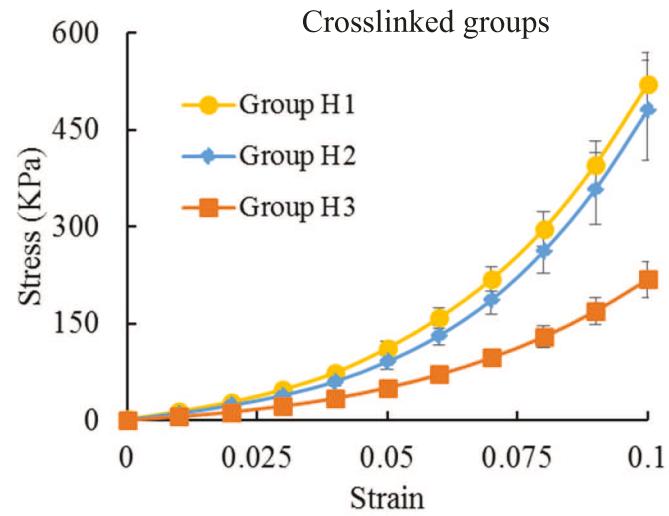


Figure 4

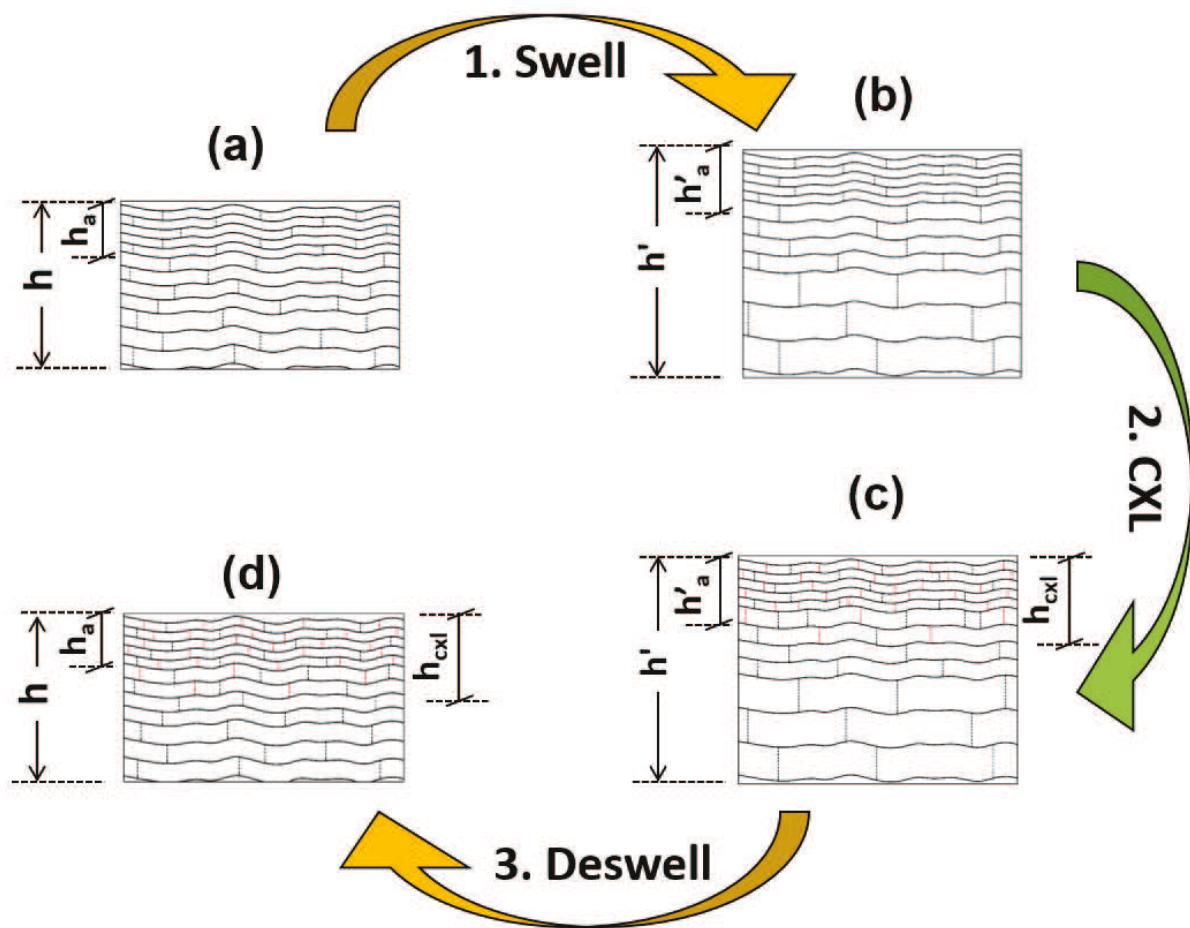
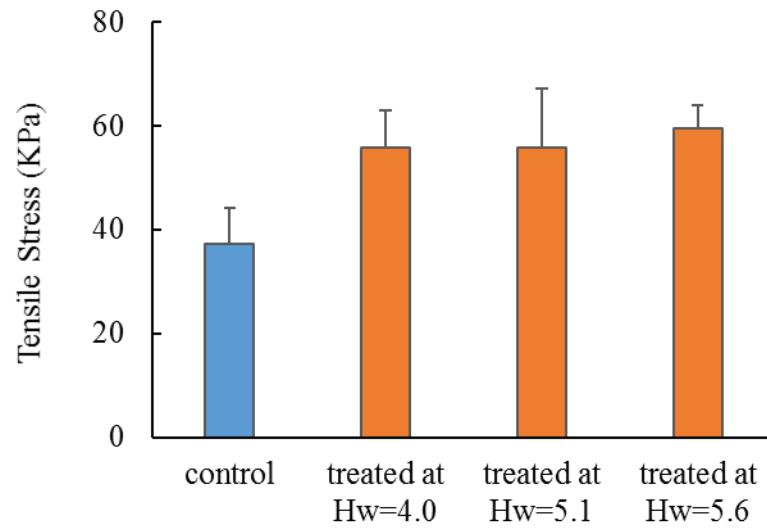



Figure 5

a)

b)

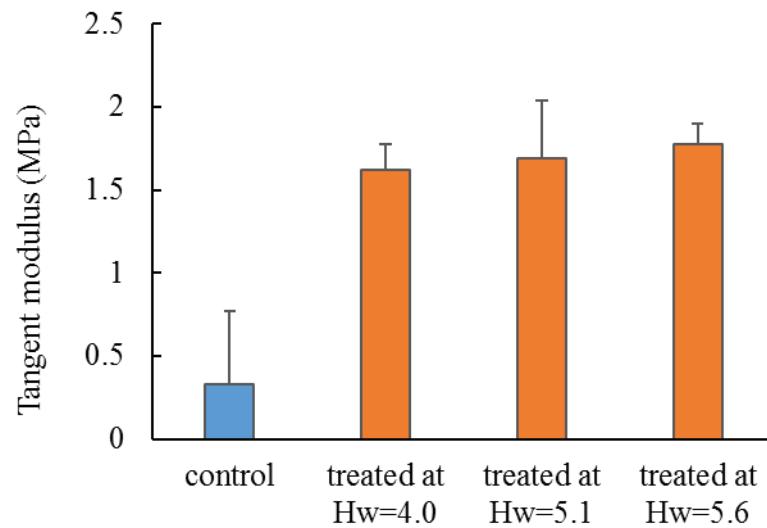
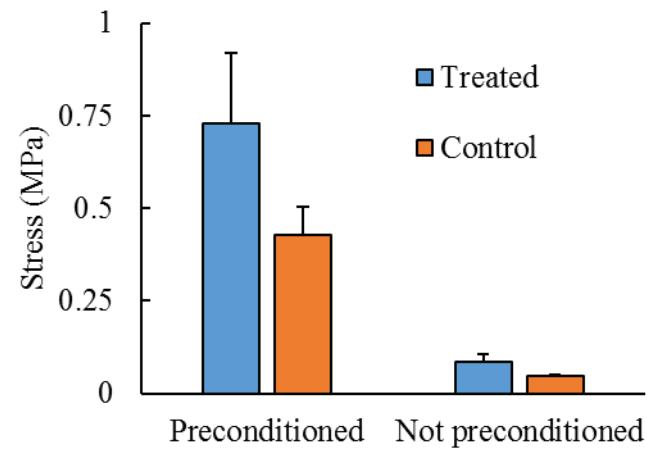



Figure 6

a)

b)

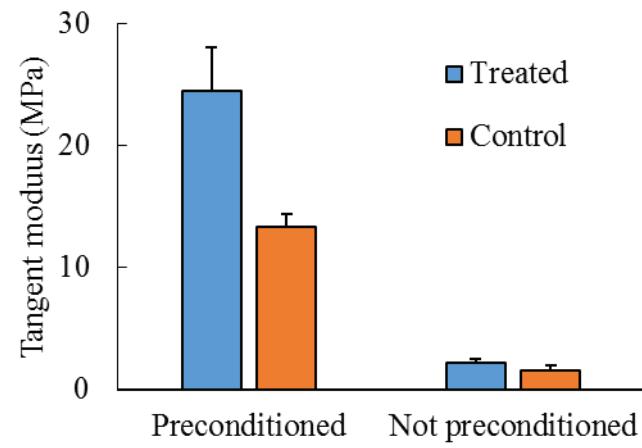
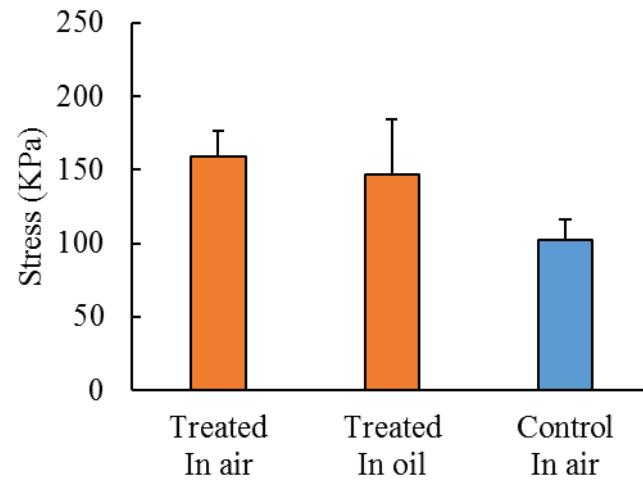
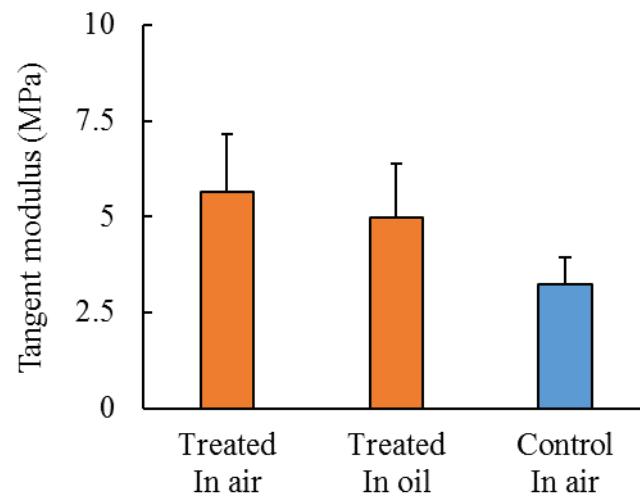




Figure 7

a)

b)

Groups			Dextran Concentration	Thickness (μm)	Hydration	$\varepsilon=6\%$	$\varepsilon=8\%$	$\varepsilon=10\%$
Porcine samples	P1	treated control	20%	600 ± 40	3.3 ± 0.2	85 ± 21 48 ± 4	143 ± 24 88 ± 9	239 ± 25 158 ± 19
	P2	treated control	10%	760 ± 25	3.3 ± 0.2	56 ± 7 37 ± 7	98 ± 16 62 ± 13	163 ± 31 97 ± 21
	P3	treated control	5%	1085 ± 25	5.1 ± 0.1	36 ± 3 26 ± 4	60 ± 6 43 ± 6	94 ± 13 66 ± 9
	P4	treated control	2.5%	1300 ± 50	5.6 ± 0.1	22 ± 3 19 ± 2	39 ± 6 31 ± 5	63 ± 10 48 ± 9
Human samples	H1	treated control	20%	550 ± 15	3.2 ± 0.1	159 ± 16 101 ± 14	296 ± 27 184 ± 22	521 ± 48 302 ± 40
	H2	treated control	15%	650 ± 30	3.9 ± 0.2	132 ± 15 85 ± 16	262 ± 34 150 ± 38	481 ± 77 249 ± 70
	H3	treated control	10%	850 ± 45	5.3 ± 0.3	71 ± 8 55 ± 9	129 ± 17 98 ± 13	218 ± 28 166 ± 23

Table 1. Dextran concentration, thickness, and hydration, and tensile stress in KPa at 6%, 8%, and 10% strain for control and treated porcine and human corneal strips.

Groups			$\varepsilon=6\%$	$\varepsilon=8\%$	$\varepsilon=10\%$	A(KPa)	B
Porcine samples	P1	treated	2.35 \pm 0.32	4.04 \pm 0.39	5.89 \pm 0.51	28 \pm 8	22.3 \pm 2.0
		control	1.36 \pm 0.22	2.43 \pm 0.42	4.03 \pm 0.62	15 \pm 1	24.2 \pm 1.6
	P2	treated	1.56 \pm 0.34	2.57 \pm 0.68	4.29 \pm 0.81	19 \pm 1	22.4 \pm 1.6
		control	1.21 \pm 0.39	1.64 \pm 0.42	2.33 \pm 0.64	10 \pm 0	22.7 \pm 1.2
	P3	treated	0.98 \pm 0.17	1.45 \pm 0.34	2.12 \pm 0.43	12 \pm 1	21.8 \pm 2.0
		control	0.68 \pm 0.15	1.02 \pm 0.17	1.34 \pm 0.24	7 \pm 1	23.0 \pm 1.4
	P4	treated	0.65 \pm 0.08	1.03 \pm 0.26	1.41 \pm 0.40	9 \pm 3	20.5 \pm 2.9
		control	0.44 \pm 0.15	0.73 \pm 0.27	0.98 \pm 0.32	6 \pm 1	21.5 \pm 1.9
Human samples	H1	treated	5.64 \pm 1.50	11.39 \pm 2.40	15.86 \pm 2.75	42 \pm 3	26.0 \pm 1.4
		control	3.24 \pm 0.71	5.21 \pm 1.36	8.03 \pm 2.80	27 \pm 5	24.7 \pm 1.6
	H2	treated	4.54 \pm 0.84	8.89 \pm 2.19	13.45 \pm 2.36	38 \pm 7	25.8 \pm 1.5
		control	2.57 \pm 0.91	3.94 \pm 1.21	6.19 \pm 2.23	25 \pm 5	23.5 \pm 1.3
	H3	treated	2.41 \pm 0.51	3.30 \pm 0.56	5.58 \pm 0.92	20 \pm 1	24.3 \pm 0.8
		control	1.64 \pm 0.29	2.50 \pm 0.23	4.61 \pm 2.11	18 \pm 6	23.4 \pm 3.6

Table 2. Tangent modulus in MPa at 6%, 8%, and 10% strain, and the fit parameters for control and treated porcine and human corneal strips. The coefficients of determination were larger than 99% for all groups. The hydration and thickness of different groups are given in Table 2.