

# Influence of microstructure on stiffening effects of corneal collagen crosslinking

Hamed Hatami-Marbini

Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago,  
IL USA

## 9 **Running Title:** Crosslinking of posterior/anterior corneal flaps

10

11 • This project has been funded in whole or in part with fund from National Science Foundations.

12 • The author declares no conflict of interest.

13

14

15

## 16 Corresponding Author:

17 Hamed Hatami-Marbini

## 18 Associate Professor

19 Department of Mech

20 University of Illinois at Chicago

21 842 West Taylor Street, Chicago

22 Tel: 312-413-2126, Fax: 312-413-0447

23 Email: hatami@uic.edu

24 Research Lab: <http://cbi>

2. Research East: <http://www.orientalists.org>

25 **Abstract**

26

27 **Background/Objectives:** The corneal collagen crosslinking (CXL) has become a new treatment  
28 procedure for stopping the progression of keratoconus. This treatment procedure has widely been  
29 studied in order to optimize its commonly used protocols and improve patient comfort.  
30 Nevertheless, many of these studies were not successful in clinics because the exact underlying  
31 mechanisms of this procedure are not still fully understood. The present study investigates the  
32 stiffening effects of CXL on tensile properties of anterior and posterior corneal flaps in order to  
33 provide new data on the working principle behind this treatment option.

34 **Methods:** A DSAEK system was used to prepare anterior and posterior flaps from porcine  
35 corneas. The flaps were subjected to UVA/riboflavin collagen crosslinking treatment and their  
36 mechanical behavior was assessed by conducting uniaxial tensile experiments. Furthermore, full  
37 thickness corneas were crosslinked from the posterior and anterior side and their tensile behavior  
38 was measured.

39 **Results:** It was found that CXL procedure significantly improved the biomechanical properties  
40 of the anterior flaps ( $p<0.05$ ). Nevertheless, it did not have any significant effect on the tensile  
41 properties of posterior flaps. Furthermore, it was observed that crosslinking full thickness  
42 porcine corneal stroma from the posterior part had no significant stiffening effect.

43 **Conclusions:** The stiffening effect of the collagen crosslinking therapy significantly depends on  
44 the composition and microstructure of corneal extracellular matrix.

45 **Introduction**

46 Keratoconus is a progressive eye disease in which the cornea thins and starts to become conical  
47 in shape. Although the etiology of this eye disease is not fully known, it significantly reduces the  
48 mechanical strength of the tissue<sup>1</sup>. Corneal collagen cross-linking (CXL) procedure is a  
49 relatively new treatment which is currently used to halt the progression of this eye disease<sup>2,3</sup>.  
50 This therapeutic intervention uses the photosensitizer riboflavin solution and ultraviolet A light  
51 (UVA) to enhance the mechanical properties of the cornea by inducing cross-links in corneal  
52 extracellular matrix. There has been great progress in characterizing the effect of this treatment  
53 option on corneal hydrodynamic behavior, collagen fibril diameter, keratocytes, and endothelial  
54 cells among others<sup>4-8</sup>. Nevertheless, its exact molecular mechanisms are not fully understood. A  
55 complete understanding of the working principle of riboflavin/UVA collagen crosslinking  
56 therapy is crucial for being able to propose new modified protocols for this treatment option<sup>9-14</sup>.  
57

58 The mechanical properties of the cornea are mainly dependent on its extracellular matrix  
59 (stroma), which makes up about 90% of its thickness and includes the majority of collagen and  
60 proteoglycan content of the tissue<sup>15-17</sup>. Inside the stroma, collagen fibrils are organized into 1-2  
61 um thick sheet-like lamellae, which show a depth dependent organization, i.e. the anterior  
62 lamellae are interwoven while the posterior ones are arranged parallel to the surface. In addition  
63 to the inhomogeneous microstructure of the corneal stroma, it has been shown that the riboflavin  
64 solution uptake is limited to the anterior stroma<sup>18</sup>. Thus, it has been hypothesized that the  
65 collagen crosslinking therapy should have an inhomogeneous stiffening effect over the corneal  
66 thickness. This hypothesis has been tested before and been proven true by characterizing the  
67 stiffening effect of collagen crosslinking in different depths of the stroma. To the best of our

68 knowledge, all of these previous studies have been done by crosslinking full thickness corneas<sup>8</sup>,  
69<sup>19-22</sup>.

70  
71 In the present study, anterior flaps and posterior flaps were excised from porcine corneas and  
72 were crosslinked separately in order to determine possible stiffening effects of cross-linking with  
73 riboflavin and UVA on posterior and anterior flaps. Although crosslinking of posterior flaps may  
74 not be common *in vivo*, it will provide new data on the collagen crosslinking procedure and can  
75 be considered as a step forward to better understand the mechanisms involved in collagen  
76 crosslinking and could assist researchers who are working in modifying CXL clinical protocols.

77

## 78 **Materials and Methods**

79  
80 This study used porcine eyes from a local slaughterhouse. A DSAEK system was used to excise  
81 anterior corneal flaps from corneoscleral rings obtained from the eyes, Figure 1. The thickness of  
82 all corneal samples was brought to 800 um before cutting the flaps. The thickness of the anterior  
83 flaps and the remaining posterior portion was measured by a digital pachymeter (DGH  
84 Technology Inc., Pennsylvania) immediately after dissection. 5 mm wide nasal-temporal strips  
85 were prepared using a double-bladed cutting device from anterior and posterior flaps.

86

87 Both anterior and posterior strips were soaked in photosensitizer solution composed of 10 mg  
88 riboflavin-5-phosphate in 10 mL 10% dextran T500 until their thickness reached equilibrium.  
89 Higher concentration of dextran (20%) was also tried and similar results were found. During this  
90 period, the thickness of strips was measured occasionally using the pachymeter. The strips were

91 placed on plastic semi spheres and were subjected to a UVA irradiance of 3 mW/cm<sup>2</sup> for 30  
92 minutes. The UVA light (370 nm) source was at a distance of about 2 cm from the samples and  
93 drops of photosensitizer solution were continuously applied to the cornea during the treatment  
94 period.

95

96 The crosslinked strips were immediately mounted in a DMA machine (TA instruments,  
97 Maryland) after measuring their thickness. First, 20 mN tare load was applied to remove any  
98 slack. The displacement rate was 2 mm/min and the samples were stretched to 10% strain. The  
99 experiments took less than a minute to complete; thus no bathing solution was used (Note the  
100 thickness was measured after the experiments and no significant dehydration was observed, i.e.  
101 no hydration effect on mechanical measurements is expected<sup>23, 24</sup>). The stress-strain was plotted  
102 in order to compare the behavior of different groups. One way analysis of variance with a  
103 significance level of 0.05 was used to compare statistically the experimental data.

104

## 105 **Results**

106

107 Figure 2 shows the stress strain response of anterior and posterior flaps. Comparing the behavior  
108 of anterior and posterior flaps from the control group shows that anterior corneal flaps had a  
109 stiffer tensile response compared to that of the posterior ones ( $p<0.05$ ). Furthermore, it was  
110 found that the crosslinking treatment increased the tensile properties of the anterior flaps  
111 ( $p<0.05$ ). However, it had an insignificant effect on the biomechanical properties of the posterior  
112 flaps. Figure 3 reports the maximum tensile stress and tangent modulus of the flaps from the

113 crosslinking and control groups. For the anterior groups, both the stress and the tangent modulus  
114 increased significantly after collagen crosslinking therapy ( $P<0.05$ ).

115

116 **Discussion**

117

118 Collagen crosslinking with riboflavin and ultraviolet A light is a relatively new treatment option  
119 to arrest the progression of keratoconus. In this work, we investigated the effect of the collagen  
120 crosslinking therapy on the biomechanics of flaps obtained from the anterior and posterior  
121 regions in order to provide more data on possible molecular mechanisms responsible for corneal  
122 collagen crosslinking.

123

124 McCall et al. found that the presence of carbonyl groups and reactive oxygen species are  
125 necessary in cross-linking treatment<sup>25</sup>. The formation of crosslinking in the corneal stroma  
126 requires reactive oxygen species, which are created when UVA photosensitizes riboflavin<sup>26</sup>.  
127 Zhang et al. showed that collagen crosslinking procedure creates crosslinks between collagen  
128 molecules themselves as well as between core proteins of the proteoglycans<sup>26</sup>. Nevertheless,  
129 strong crosslinks between collagen and proteoglycan core proteins have not been observed.  
130 Furthermore, Hayes et al.'s study suggested that cross-links should mainly occur at the surface of  
131 collagen fibrils and in the proteoglycan network surrounding them<sup>4</sup>.

132

133 Figure 2 showed that the collagen crosslinking procedure significantly improved the mechanical  
134 properties of the anterior flaps but it had little effect on the tensile properties of the posterior  
135 flaps. First it is noted that the results in this plot showed that anterior flaps had much stiffer

136 tensile properties compared to the posterior flaps, which is in agreement with previous studies.  
137 Randleman et al. found that the anterior stroma had significantly higher cohesive tensile strength  
138 than the posterior stroma <sup>27</sup>. Scarcelli et al. used Brillouin Optical Microscopy in order to show  
139 that anterior portion of the stroma has the highest elastic modulus in the cornea <sup>28</sup>. Indentation  
140 techniques were also used to show that the Young's modulus of anterior stroma was significantly  
141 larger than the Young's modulus of posterior stroma <sup>29,30</sup>. Furthermore, Kohlhaas et al. reached  
142 the same conclusion by running uniaxial tensile experiments on posterior and anterior flaps <sup>19</sup>. It  
143 is noted that these previous studies captured the depth dependent corneal mechanical property;  
144 nevertheless, the actual qualitative values vary from one study to another because of different  
145 species, experimental protocols, and techniques that have been used.

146

147 The corneal stroma is composed of collagen fibrils embedded in a proteoglycan matrix. The  
148 proteoglycans (PGs) are attached to the collagen fibrils through their core proteins while the  
149 interaction between their negatively charged glycosaminoglycan (GAG) side chains holds the  
150 collagen fibrils at the quasi-uniform spacing. The collagen fibrils are organized into 1-2 um thick  
151 sheet-like lamellae, which are stacked parallel to the surface of the cornea. The arrangement of  
152 the lamellae changes through the thickness and anterior lamellae interweave markedly more than  
153 the posterior ones <sup>15,17</sup>. This inhomogeneous architecture of the corneal stroma affects its  
154 biomechanics such that anterior layers show much higher elastic modulus than the posterior  
155 portion of the stroma <sup>19,27-30</sup>.

156

157 Previous studies have exclusively focused on characterizing the stiffening effect of collagen  
158 crosslinking when full thickness corneas were used, which replicates what is done in clinics. The

159 commonly used crosslinking protocol has been designed such that it affects primarily the anterior  
160 300 um of the cornea in order to avoid UV light damage to endothelial cells. Thus, it is natural to  
161 expect the stiffening effect of collagen crosslinking procedure to be depth dependent, too. There  
162 have been various studies in the literature confirming this conclusion. Brillouin microscopy of  
163 collagen crosslinked samples showed that anterior portion of the stroma accommodated the  
164 majority of the mechanical stiffening <sup>20</sup>. Mechanical tests such as uniaxial tension and indentation  
165 testing on samples excised from anterior and posterior crosslinked stroma showed crosslinking  
166 caused a significant increase in anterior stroma stiffness but an insignificant change in posterior  
167 stroma stiffness <sup>19, 29</sup>. Indirect methods have also been done to reach the same conclusion <sup>8, 22</sup>.  
168 For instance, it was found that keratocyte apoptosis was primarily located in the anterior stroma  
169 when the usual surface irradiance of 3 mW/cm<sup>2</sup> was used <sup>8</sup>. These previous studies discussed the  
170 depth dependent collagen crosslinking primarily in terms of the absorption behavior of the  
171 riboflavin-treated cornea for UVA. Kohlhaas et al.'s study showed that about seventy percent to  
172 of UVA irradiation was absorbed within the anterior part of the cornea <sup>19</sup>. Furthermore,  
173 Sondergaard et al. determined the riboflavin distribution in the corneal distribution and  
174 concluded that riboflavin uptake is limited to the anterior layers independent of the concentration  
175 and application time of the riboflavin solution <sup>18</sup>. The astonishing finding of the present study  
176 was that collagen crosslinking therapy did not improve the tensile property of posterior flaps.  
177  
178 The imaging techniques have clearly shown that there are distinctive differences between the  
179 collagen lamella organization in the anterior and posterior stroma, i.e. significantly more  
180 intertwining of fibers exists in the anterior layers. In addition, electron micrographs of normal  
181 corneal samples showed that the density of collagen fibrils in the anterior stroma was

182 significantly larger compared to the posterior stroma. Nevertheless, the density of proteoglycans  
183 was larger in the posterior stroma. The increase in concentration of proteoglycans in the posterior  
184 layers has been used to explain the larger center-to-center collagen inter fibrillar spacings in the  
185 posterior stroma. It is also proposed that keratoconus disease involves overproduction of  
186 proteoglycans, which enhances disorganization and slippage of the collagen lamellae.  
187 Considering that previous studies suggested that crosslinks are either at the surface of the fibrils  
188 or within the proteoglycan matrix surrounding them, it is not clear why collagen crosslinking did  
189 not stiffen the posterior flaps. Here, in order to collect additional data on this confusing finding,  
190 we crosslinked additional five whole porcine corneal stromas from the endothelium side (Group  
191 A) and five whole thickness stromas from the epithelium side (group B). We mechanically  
192 measured the tensile behavior of these samples and compared them with the tensile properties of  
193 five control samples (Group C). Control samples were subjected to the same treatment as  
194 specimens in groups A and B except that the UV light was turned off during the treatment  
195 procedure. The crosslinking therapy and the uniaxial tests were conducted as they were described  
196 in the Materials and Methods section with the only difference that we used full-thickness corneas  
197 here. Figure 4 compares the mechanical response of these three groups. It is seen that the  
198 collagen crosslinking procedure significantly improved the mechanical properties of full  
199 thickness porcine corneas only when these samples were treated from the anterior side. We also  
200 did another study in which we crosslinked 5 anterior flaps from the rear side following the exact  
201 procedure that described in previous sections (results are not shown). It was found that the  
202 collagen crosslinking had a similar stiffening effect on these samples as it did on those which  
203 were crosslinked from their top surface (epithelium side). The present study clearly showed that  
204 the mechanical testing method, which is normally used to prove the success of collagen

205 crosslinking treatment and its various alteration, did not show any stiffening of these layers  
206 when they were subjected to this treatment procedure. Future studies are required to use  
207 alternative methods and investigate whether crosslinks occur in the posterior layers in order to be  
208 able to fully explain the underlying mechanisms. Nevertheless, we can still provide an  
209 explanation for the observed behavior using the results of previous studies stating that crosslinks  
210 mainly occur at the collagen fibril surface and in the protein network surrounding the collagen  
211 fibrils <sup>4</sup>.

212  
213 The corneal stroma is composed of collagen fibrils and proteoglycan matrix. Recent studies  
214 suggested that proteoglycans behave as interfibrillar spacers and connect to the neighboring  
215 collagen fibrils through their core proteins <sup>31,32</sup>. They interact with each other by their highly  
216 sulphated glycosaminoglycan side chains and form a soft hydrophilic coating around the fibrils.  
217 Despite being negatively charged, if they are held close to each other, glycosaminoglycans could  
218 form supramolecular organizations and act as structural bridges between neighboring fibrils <sup>31,32</sup>.  
219 The corneal extracellular matrix can be modelled as a composite material composed of collagen  
220 fibril reinforcements and a hydrated proteoglycan matrix <sup>33</sup>. Collagen crosslinking therapy  
221 increases the mechanical properties of the proteoglycan coating surrounding the collagen fibrils.  
222 However, the relative distance between the GAG side chains is not short enough for them to be  
223 entangled sufficiently. Thus, collagen crosslinking causes an insignificant increase in the  
224 biomechanical properties of the posterior lamellae. Nevertheless, collagen lamellae interweave in  
225 the anterior flaps and stronger supramolecular organizations are formed, which significantly  
226 improve their tensile properties.

227

228 Collagen crosslinking of the posterior lamellae are not common. Nevertheless, it is noted that it  
229 could be used in vitro and for donor tissues. Furthermore, there are previous studies, which tried  
230 to combine crosslinking with other refractive surgical procedures. For example, laser-assisted in  
231 situ keratomileusis (LASIK) is a refractive laser surgery, in which the surgeon severs the anterior  
232 portion of the cornea in order to alter central corneal curvature. This procedure could reduce  
233 corneal biomechanical stability because it alters the microstructure of the tissue by cutting and  
234 ablation of collagen lamellae. One possible complication of LASIK is corneal ectasia<sup>34</sup>. It has  
235 been suggested to use collagen crosslinking treatment to increase the stiffness of the remaining  
236 cornea<sup>35, 36</sup>. The results presented here suggest that extra care should be taken in such  
237 approaches as the collagen crosslinking seems to have limited effect on posterior layers. Future  
238 studies could possibly introduce the thickness of residual stromal bed as the inclusion criteria for  
239 such therapeutic options. More importantly, many studies on different aspects of the collagen  
240 crosslinking treatment have been done using normal cornea; primarily from animals and to lesser  
241 amount from human donors. It is important to realize that the effect of this treatment procedure  
242 may be different on diseased tissue. It has been shown that keratoconus affects the corneal  
243 collagen microstructure and the proteoglycan content<sup>37, 38</sup>. The main difference between  
244 posterior and anterior layers are their ultrastructure. Here, an insignificant effect of corneal  
245 collagen crosslinking on posterior flaps was observed. Thus, we hypothesize that conclusions  
246 and protocol modifications that have been proposed using animal and/or healthy donor tissue  
247 should not be generalized and be used as a rational for future human studies in clinics. In other  
248 words, surgeons should be careful in practicing such ideas on their patients without any further in  
249 vitro studies on keratoconus corneas.

250

251 In summary, the present study provided enough evidence to conclude that corneal collagen  
252 crosslinking had an insignificant effect on biomechanical properties of posterior layers of the  
253 porcine cornea. Since these layers were directly crosslinked, this peculiar observation should not  
254 be due to insufficient riboflavin uptake. The microstructure of the collagen lamellae, and the  
255 specifications of collagen fibrils and proteoglycans are different in posterior and anterior regions.  
256 We are currently investigating in more details this problem in our laboratory and will present our  
257 findings in future publications.

258

259 **Acknowledgements:**

260 The author acknowledges the support for this work in part from NSF-CMMI-1635290 and would  
261 also like to thank members of computational biomechanics laboratory at the University of the  
262 Illinois at Chicago.

263

264 **Conflict of Interest**

265 None

266 **Funding**

267 This project has been funded in part with fund from National Science Foundations

268 **Figure Legends:**

269 **Figure 1.** Schematic plot showing the anterior and posterior flaps. A DSAEK system was used to  
270 excise an anterior flap from the porcine cornea. The posterior flap was the remaining of the  
271 tissue after dissection of the anterior flap. From the flap, corneal strips were punched and were  
272 crosslinked using a custom made crosslinking device. The thickness of both anterior and  
273 posterior flaps were almost 400 microns.

274 **Figure 2.** Tensile stress-strain behavior of anterior and posterior flaps excised from porcine  
275 cornea. The anterior flaps showed a stiffer response than the posterior flaps. Furthermore,  
276 collagen crosslinking enhanced the biomechanical properties of the anterior flaps. However, it  
277 had no significant effect on the tensile behavior of posterior flaps.

278 **Figure 3.** Maximum tensile stress and tangent modulus of strips excised from the posterior and  
279 anterior region. A significant amount of stiffening was observed in anterior flaps ( $p<0.05$ ) but  
280 posterior flaps were not stiffened by collagen crosslinking. Furthermore, anterior flaps showed a  
281 significantly stronger tensile properties than the posterior flaps ( $p<0.05$ ).

282 **Figure 4.** Tensile stress-strain behavior of full thickness porcine corneas which were crosslinked  
283 from the anterior (top) or posterior (bottom) side. The collagen crosslinking therapy improved  
284 the tensile properties only when it was performed from the anterior (top) side.

285

286 **References**

287

288 1. Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and  
289 normal corneas. *Experimental eye research* 1980; **31**(4): 435-441.

290

291 2. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas  
292 after riboflavin-ultraviolet-A-induced cross-linking. *Journal of Cataract & Refractive  
293 Surgery* 2003; **29**(9): 1780-1785.

294

295 3. Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. *Experimental eye  
296 research* 1998; **66**(1): 97-103.

297

298 4. Hayes S, Kamma-Lorger CS, Boote C, Young RD, Quantock AJ, Rost A *et al.* The effect of  
299 riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour  
300 of the ungulate and rabbit corneal stroma. *PLoS One* 2013; **8**(1): e52860.

301

302 5. Bottós KM, Dreyfuss JL, Regatieri CV, Lima-Filho AA, Nader HB, Schor P *et al.*  
303 Immunofluorescence confocal microscopy of porcine corneas following collagen cross-  
304 linking treatment with riboflavin and ultraviolet A. *Journal of Refractive Surgery* 2008;  
305 **24**(7): S715-S719.

306

307 6. Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA-riboflavin cross-linking  
308 of the cornea. *Cornea* 2007; **26**(4): 385-389.

309

310 7. Wollensak G, Aurich H, Pham D-T, Wirbelauer C. Hydration behavior of porcine cornea  
311 crosslinked with riboflavin and ultraviolet A. *Journal of Cataract & Refractive Surgery*  
312 2007; **33**(3): 516-521.

313

314 8. Wollensak G, Spoerl E, Wilsch M, Seiler T. Keratocyte apoptosis after corneal collagen  
315 cross-linking using riboflavin/UVA treatment. *Cornea* 2004; **23**(1): 43-49.

316

317 9. Hashemi H, Miraftab M, Seyedian MA, Hafezi F, Bahrmandy H, Heidarian S *et al.* Long-  
318 term results of an accelerated corneal cross-linking protocol (18 mW/cm<sup>2</sup>) for the treatment  
319 of progressive keratoconus. *American journal of ophthalmology* 2015; **160**(6): 1164-1170.  
320 e1161.

321

322 10. Vinciguerra P, Rechichi M, Rosetta P, Romano MR, Mastropasqua L, Scorcia V *et al.* High  
323 fluence iontophoretic corneal collagen cross-linking: in vivo OCT imaging of riboflavin  
324 penetration. *Journal of Refractive Surgery* 2013; **29**(6): 376-377.

325

326 11. Raiskup F, Pinelli R, Spoerl E. Riboflavin osmolar modification for transepithelial corneal  
327 cross-linking. *Current eye research* 2012; **37**(3): 234-238.

328

329 12. Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and  
330 hypoosmolar riboflavin solution in thin corneas. *Journal of Cataract & Refractive Surgery*  
331 2009; **35**(4): 621-624.

332

333 13. Hatami-Marbini H, Jayaram SM. Effect of UVA/Riboflavin Collagen Crosslinking on  
334 Biomechanics of Artificially Swollen Corneas. *Investigative ophthalmology & visual science*  
335 2018; **59**(2): 764-770.

336

337 14. Mazzotta C, Traversi C, Caragiuli S, Rechichi M. Pulsed vs continuous light accelerated  
338 corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and  
339 corneal OCT. *Eye (London, England)* 2014; **28**(10): 1179-1183.

340

341 15. Maurice DM. The cornea and sclera. *The eye* 1984; 1-158.

342

343 16. Maurice DM. The structure and transparency of the cornea. *The Journal of Physiology* 1957;  
344 **136**(2): 263-286.261.

345

346 17. Meek KM. The Cornea and Sclera. In: Fratzl P (ed). Collagen: Structure and Mechanics.  
347 Springer US: Boston, MA; 2008. pp 359-396.

348

349 18. Søndergaard AP, Hjortdal J, Breitenbach T, Ivarsen A. Corneal distribution of riboflavin  
350 prior to collagen cross-linking. *Current eye research* 2010; **35**(2): 116-121.

351

352 19. Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE. Biomechanical evidence  
353 of the distribution of cross-links in corneal treated with riboflavin and ultraviolet A light.

354 *Journal of Cataract & Refractive Surgery* 2006; **32**(2): 279-283.

355

356 20. Scarcelli G, Kling S, Quijano E, Pineda R, Marcos S, Yun SH. Brillouin microscopy of  
357 collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus.

358 *Investigative ophthalmology & visual science* 2013; **54**(2): 1418-1425.

359

360 21. Schumacher S, Mrochen M, Wernli J, Bueeler M, Seiler T. Optimization model for UV-  
361 riboflavin corneal cross-linking. *Investigative Ophthalmology & Visual Science* 2012; **53**(2):  
362 762-769.

363

364 22. Seiler T, Hafezi F. Corneal cross-linking-induced stromal demarcation line. *Cornea* 2006;  
365 **25**(9): 1057-1059.

366

367 23. Hatami-Marbini H. Hydration dependent viscoelastic tensile behavior of cornea. *Annals of*  
368 *biomedical engineering* 2014; **42**(8): 1740-1748.

369

370 24. Hatami-Marbini H, Etebu E. Hydration dependent biomechanical properties of the corneal  
371 stroma. *Exp Eye Res* 2013; **116**: 47-54.

372

373 25. McCall AS, Kraft S, Edelhauser HF, Kidder GW, Lundquist RR, Bradshaw HE *et al.*

374 Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin

375 and long-wavelength ultraviolet radiation (UVA). *Invest Ophthalmol Vis Sci* 2010; **51**(1):

376 129-138.

377

378 26. Zhang Y, Conrad AH, Conrad GW. Effects of ultraviolet-A and riboflavin on the interaction

379 of collagen and proteoglycans during corneal cross-linking. *The Journal of biological*

380 *chemistry* 2011; **286**(15): 13011-13022.

381

382 27. Randleman JB, Grossniklaus HE, Dawson DG, McCarey BE, Edelhauser HF. Depth-

383 dependent cohesive tensile strength in human donor corneas: implications for refractive

384 surgery. *Journal of refractive surgery* 2008; **24**(1): S85-S89.

385

386 28. Scarcelli G, Pineda R, Yun SH. Brillouin optical microscopy for corneal biomechanics.

387 *Investigative ophthalmology & visual science* 2012; **53**(1): 185-190.

388

389 29. Dias JM, Ziebarth NM. Anterior and posterior corneal stroma elasticity assessed using

390 nanoindentation. *Experimental eye research* 2013; **115**: 41-46.

391

392 30. Winkler M, Chai D, Kriling S, Nien CJ, Brown DJ, Jester B *et al.* Nonlinear optical

393 macroscopic assessment of 3-D corneal collagen organization and axial biomechanics.

394 *Investigative ophthalmology & visual science* 2011; **52**(12): 8818-8827.

395

396 31. Scott JE. Morphometry of cupromeronic blue-stained proteoglycan molecules in animal  
397 corneas, versus that of purified proteoglycans stained in vitro, implies that tertiary structures  
398 contribute to corneal ultrastructure. *Journal of anatomy* 1992; **180** ( Pt 1): 155-164.

399

400 32. Lewis PN, Pinali C, Young RD, Meek KM, Quantock AJ, Knupp C. Structural interactions  
401 between collagen and proteoglycans are elucidated by three-dimensional electron  
402 tomography of bovine cornea. *Structure (London, England : 1993)* 2010; **18**(2): 239-245.

403

404 33. Hatami-Marbini H, Rahimi A. Effects of bathing solution on tensile properties of the cornea.  
405 *Exp Eye Res* 2014; **120**: 103-108.

406

407 34. Randleman JB, Russell B, Ward MA, Thompson KP, Stulting RD. Risk factors and  
408 prognosis for corneal ectasia after LASIK. *Ophthalmology* 2003; **110**(2): 267-275.

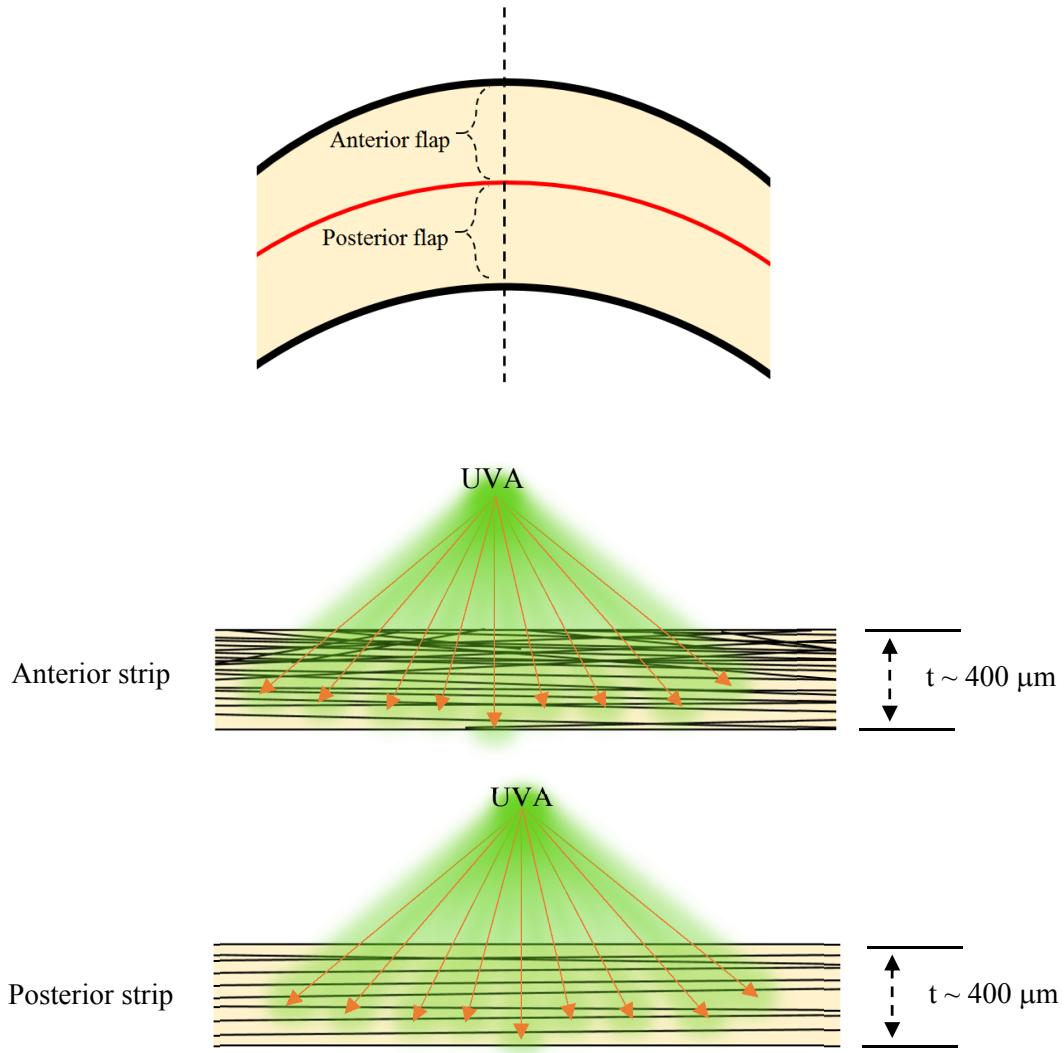
409

410 35. Richoz O, Mavrakanas N, Pajic B, Hafezi F. Corneal collagen cross-linking for ectasia after  
411 LASIK and photorefractive keratectomy: long-term results. *Ophthalmology* 2013; **120**(7):  
412 1354-1359.

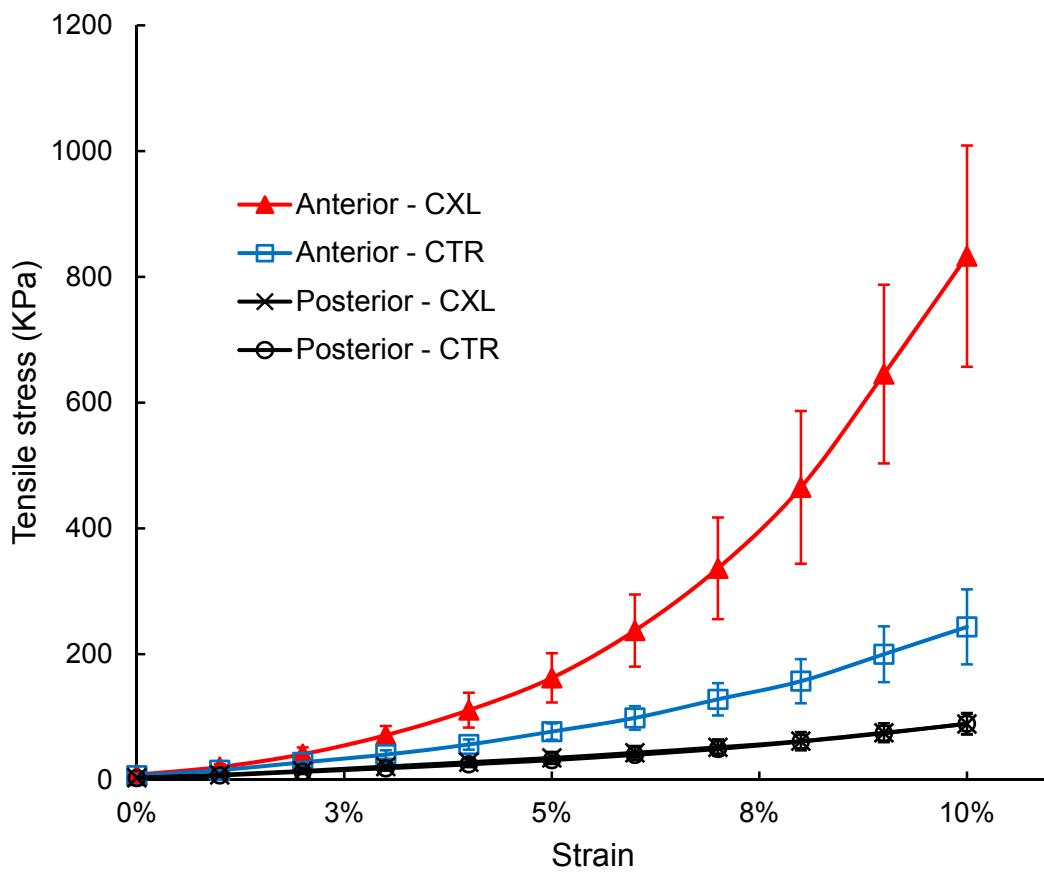
413

414 36. Wu Y, Tian L, Wang L-q, Huang Y-f. Efficacy and Safety of LASIK Combined with  
415 Accelerated Corneal Collagen Cross-Linking for Myopia: Six-Month Study. *BioMed*  
416 *Research International* 2016; **2016**: 5083069.

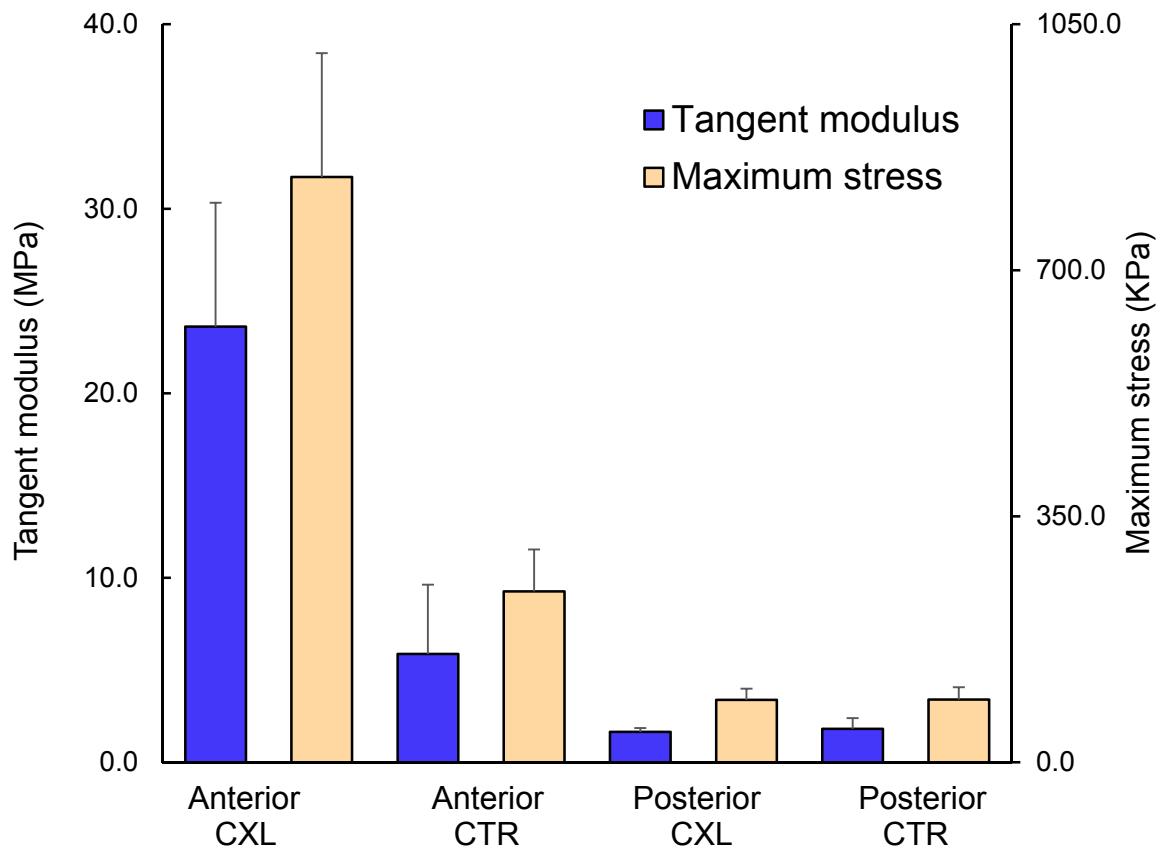
417


418 37. Meek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH *et al.* Changes in Collagen  
419 Orientation and Distribution in Keratoconus Corneas. *Investigative Ophthalmology & Visual  
420 Science* 2005; **46**(6): 1948-1956.

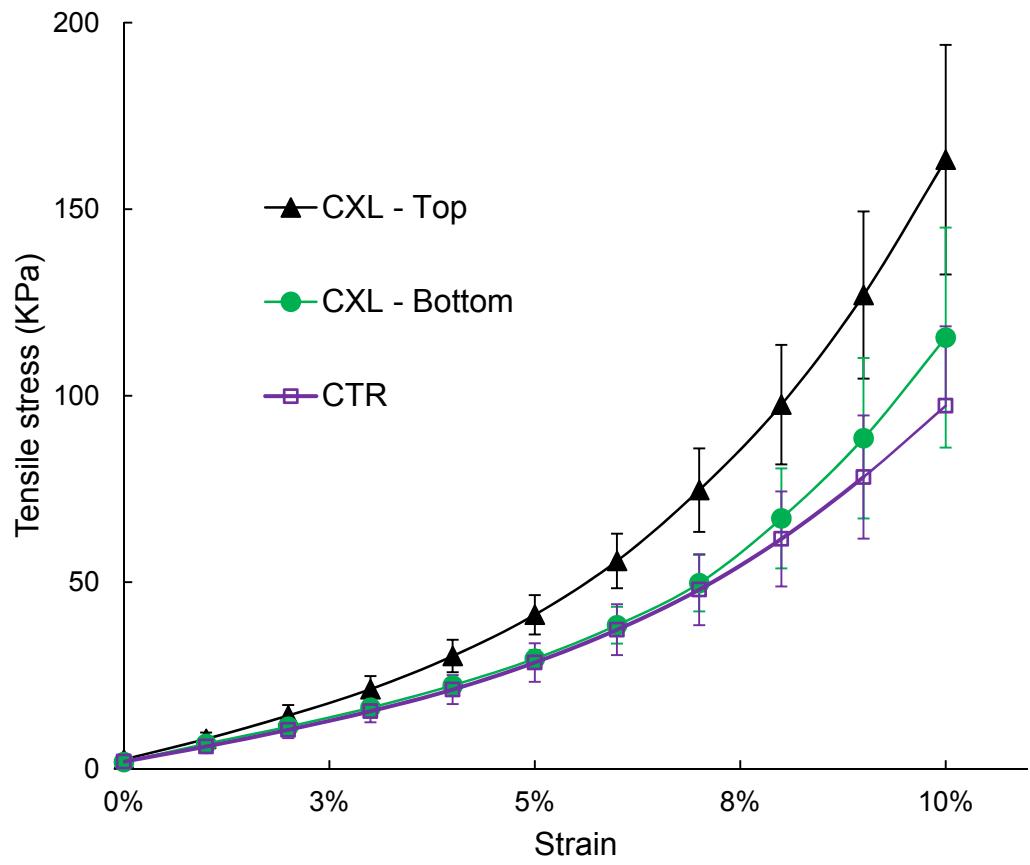
421


422 38. Akhtar S, Bron AJ, Salvi SM, Hawksworth NR, Tuft SJ, Meek KM. Ultrastructural analysis  
423 of collagen fibrils and proteoglycans in keratoconus. *Acta ophthalmologica* 2008; **86**(7): 764-  
424 772.

425


426




**Figure 1** Schematic plot showing the anterior and posterior flaps. A DSAEK system was used to excise an anterior flap from the porcine cornea. The posterior flap was the remaining of the tissue after dissection of the anterior flap. From the flap, corneal strips were punched and were crosslinked using a custom made crosslinking device. The thickness of both anterior and posterior flaps were almost 400 microns.



**Figure 2** Tensile stress-strain behavior of anterior and posterior flaps excised from porcine cornea. The anterior flaps showed a stiffer response than the posterior flaps. Furthermore, collagen crosslinking enhanced the biomechanical properties of the anterior flaps. However, it had no significant effect on the tensile behavior of posterior flaps.



**Figure 3** Maximum tensile stress and tangent modulus of strips excised from the posterior and anterior region. A significant amount of stiffening was observed in anterior flaps ( $p<0.05$ ) but posterior flaps were not stiffened by collagen crosslinking. Furthermore, anterior flaps showed a significantly stronger tensile properties than the posterior flaps ( $p<0.05$ ).



**Figure 4** Tensile stress-strain behavior of full thickness porcine corneas which were crosslinked from the anterior (top) or posterior (bottom) side. The collagen crosslinking therapy improved the tensile properties only when it was performed from the anterior (top) side.