2018 IEEE International Conference on Smart Computing

Mobilytics- An Extensible, Modular and Resilient
Mobility Platform

Chinmaya Samal
Vanderbilt University
Nashville, TN, USA

chinmaya.samal.1 @vanderbilt.edu

Abstract—Transportation management platforms provide com-
munities the ability to integrate the available mobility options and
localized transportation demand management policies. A central
component of a transportation management platform is the mo-
bility planning application. Given the societal relevance of these
platforms, it is necessary to ensure that they operate resiliently.
Modularity and extensibility are also critical properties that are
required for manageability. Modularity allows to isolate faults
easily. Extensibility enables update of policies and integration of
new mobility modes or new routing algorithms. However, state
of the art mobility planning applications like open trip planner,
are monolithic applications, which makes it difficult to scale
and modify them dynamically. This paper describes a microser-
vices based modular multi-modal mobility platform Mobilytics,
that integrates mobility providers, commuters, and community
stakeholders. We describe our requirements, architecture, and
discuss the resilience challenges, and how our platform functions
properly in presence of failure. Conceivably, the patterns and
principles manifested in our system can serve as guidelines for
current and future practitioners in this field.

Index Terms—Urban Mobility; Microservices; Reliability; Re-
silient platform; Extensible Platform

I. INTRODUCTION

Emerging trends and challenges. With increasing urban
population, moving people from one place to another is be-
coming an increasingly complex challenge. According to U.S.
Census Bureau 2013 survey reports [1], [2], about 86 percent
of all commuters commuted to work by personal vehicles,
either driving alone or carpooling. The fact that the majority
of personal vehicles used by commuters are single occupancy
only serves to exacerbate the issue [3]. metropolitan cities are
increasing their investment in public transit to provide better
mobility options to the residents of the city. However, public
transit networks have its limitations because they use existing
infrastructure to provide build public transit networks.

Technological innovations have enabled shared mobility
options which are increasingly being used by commuters often
in lieu of a personal vehicle. To support the demand for such
options, companies such as Uber and Lyft are increasingly
investing in making shared mobility services readily available
to the user on-demand in urban environments. While such
services may be deemed more convenient than riding public
transit due to their on-demand nature, reports show that they
do not necessarily decrease the congestion in major cities [4].
So, there is a need for shared mobility mechanisms in the
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city, where commuters can judiciously mix multiple modes
of transportation for their commute. This problem of route
planning involving different modes of transportation is called
multi-modal route planning [5].

To fix these problems, many cities in the United States have
started implementing Transportation Demand Management
programs (TDM) whose goal is to understand how commuters
make transportation decisions and to increase the efficiency of
the transportation system by providing innovative technology-
based services. A mobility platform not only provides routing
services to people but also gives access to holistic information
which can be utilized by the city officials to understand the
mobility patterns of people in the city to improve services
and researchers to study and develop efficient algorithms for
transportation. Given the societal relevance of this platform, it
is necessary to ensure that they operate resiliently. Modularity
and extensibility are also critical properties that are required
for manageability. Modularity allows to isolate faults easily.
Extensibility enables update of policies and integration of new
mobility modes or new routing algorithms. However, state of
the art mobility planning applications like open trip planner,
are monolithic applications, which makes it difficult to scale
and modify them dynamically.

Contributions. In this paper, we propose Mobilytics- a
platform that integrates mobility providers, commuters, and
community stakeholders. The novelty of Mobilytics Platform
lies in three aspects: (1) a modular microservices-based ar-
chitecture that integrates services provided by multiple stake-
holders through loose-coupling of interfaces, (2) an extensible
platform that can add new data sources and build services on
top of it without affecting the entire system (3) a resilient
platform that has a set of decentralized coordinators for
orchestrating services and managing the entire system without
failing.

Paper outline. Section II gives an overview of Mobilytics
platform. Section III, Section IV, Section V describes how our
platform enables modularity, extensibility, resiliency, respec-
tively. Section VI gives an overview of the current literature
on mobility platforms. We discuss our approach, future work
and present concluding remarks in Section VII
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Fig. 1: This figure shows different abstract mode-types that are

categorized as per the relation of a user with the mode.
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Fig. 2: This figure shows an abstract view of multi-modal graph which
can be realized as combination of uni-modal graphs where user can
switch from one mode to another using Switch Nodes and edges
connecting such switch nodes are called Switch edge.

II. MOBILYTICS PLATFORM

In this section, we will provide a brief description of Mo-
bilytics- a holistic platform that integrates mobility providers,
commuters, and community stakeholders. Some key logical
layers of our platform are:

A. Database Layers

)

2)

Geospatial Layer: This layer contains geospatial infor-
mation, which contains relationships between the points,
lines, and polygons that represent the features of a
geographic region. Each geometric feature consists of
a unique geographical identification code, topological
information such as coordinates and some optional prop-
erties of the feature such as buildings, roads, monuments,
etc. In case of roads, the properties also contain infor-
mation on type of road (residential, motorway, highway,
transit), number of lanes on a road etc. This layer can
be built from different types of Geographic Informa-
tion System (GIS) file formats such as OpenStreetMap
(OSM), GeolJson, Shapefile etc. Some optional user-
defined properties can be added too, such as real-time
congestion, flow information etc.

Abstract Modal Layer: This layer abstracts mode-
specific information from the Geospatial Layer and hence
provides a clear separation of static topological data
present in Geospatial Layer. To make our platform modu-
lar and extensible we need different layers of our platform
to be mode-independent so that addition and deletion
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of a mode don’t affect other services. So, we need to
find common properties between different modes and
define a mode-type such that each mode having same
properties belong to the same mode-type. Figure 1 shows
different modes and the categories they belong to. A
mode can be pedestrian, non-motorized, motorized or
transit. Mobility services can be categorized as per the
relation of a user with the mode. They are Ownership
and Control. Ownership can be Public if the mode is
not owned by user otherwise it’s Private. Control can be
shared if the user is not in control of the mode else it’s
Non-shared. So, based on these categories, Pedestrian is
private, non-shared while transit is public, shared. Rental
services are public, non-shared because user drives the
vehicle but doesn’t have ownership of it. Associated with
different mode-types are a set of rules and conditions
by which they can update the Geospatial layer, such
as mode-capacity, mode-specific lanes, accessibility of
modes, temporal rules for specific modes (no heavy-
vehicles in morning), availability of modes at certain
nodes etc.

Concrete Modal Layer: In this layer concrete classes
of mode-types mentioned in Abstract Modal Layer, are
defined. As shown in Figure 1, we can categorize specific
modes such as Car, Walk, Bike, B-cycle, Transit, Lyft
etc. to their specific mode-types. If a given mode can be
mapped to one of the mode-type in Abstract Modal Layer,
then that mode can be added dynamically by just updating
the Geospatial Layer. But if we cannot map a new
mode, then we have to change the Abstract Modal Layer
to define new mode-type and rules associated with it.
Such mode-specific information needs to be in a standard
format for better integration and interoperability. GIS files
such as OSM, GeolJson provides some standard rules for
Pedestrian, Non-Motorized and Motorized mode-types,
while Static General Transit Feed Specification (GTES)
[6] provides some standard rules for Transit mode-type.
So, Geospatial layer along with Abstract Modal Layer
and Concrete Modal Layer can be visualized as com-
bination of uni-modal graphs where switch nodes are
candidate nodes where we merge and link the uni-modal
graphs, as shown in Figure 2. As shown in Figure 2,
Switch nodes are the candidate nodes where user can
switch from one mode to another and edges connecting
switch nodes are called Switch edge. Associated with
each switch edge are list of pre-conditions, that needs
to be satisfied to traverse that edge. Such conditions are
called the Switch condition module (SCM) and depend on
the user preferences, geospatial information in Geospatial
Layer and mode-specific rules, conditions in Abstract
Modal Layer. Such conditions along with its associated
costs are encoded in the switch condition module (SCM)
present in each switch node.



B. Real-time Sensor Layer

This layer contains Real-time sensor information. Some
sensors are mode-specific and some are not. For example, real-
time GTFS updates the Geospatial layer for only a specific
transit agency with the help of Abstract Modal layer. However,
some real-time such as sensors such as Traffic sensors give an
aggregate information on state of the network and Weather
sensors give weather information for a given area. These
sensors don’t depend on mode-types and thus update the
Geospatial layer directly.

C. Service Layers

1) Routing Layer: This layer contains state of the art
algorithms for multi-modal routing. They are variants
of goal-directed search methods such as ALT [7] and
contraction techniques such as highway hierarchies [8], to
speed-up the shortest path computation. These techniques
depend on Abstract Modal Layer and Geospatial layer
to suggest routes to user for their commute. Since this
layer uses mode-types defined in Abstract Modal Layer,
it doesn’t depend on concrete modes and hence improves
modularity of our platform. These routing algorithms
use the abstract mode-types present in Abstract Modal
Layer and switch junctions present in Geospatial Layer
in making multi-modal routing decisions.

Analytic Service Layer: This layer contains analytical
services that use historical data and data collected by
the platform. These services are used internally by the
platform and some are used by various stakeholders to get
holistic information. Our traffic speed prediction service
gives a time-variant predicted speed information for a
given link and is based on our previous works [9], [10].
Simulation Service Layer: This layer helps in analysis
of Urban traffic dynamics such as congestion, vehicular
emissions by doing agent-based simulation with help of
MATSim [11].

Our platform has a lot of similarity with the services
provided by OTP and the algorithms implemented in OTP.
However, it only solves part of the problem. Firstly, all the core
components in OTP are mode-specific. So, adding or deleting
a completely new mode becomes difficult because the code
needs to be updated and re-deployed again to add a new mode.
This process is one of the reasons why OTP cant be easily
deployed in regions it is not properly configured for. Secondly,
OTP is a monolithic application. So, integrating services from
different stakeholders becomes increasingly complex because
each service providers should be independent and not affected
by external services. Since a monolithic application like OTP
needs to redeployed with each addition of new services,
managing and maintaining becomes difficult with scale. So, we
need a mobility platform that is modular— integrates services
provided by multiple stakeholders through loose-coupling of
interfaces, extensible— can add new data sources and build
services on top of it without affecting the entire system and
resilient— can manage the entire system without failing.
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III. ENABLING MODULARITY

A modular system can be characterized by functional
partitioning into discrete reusable components with rigorous
use of well-defined modular interfaces and making use of
industry standards for interfaces. We need our platform to
be modular so that different stakeholders can integrate their
services without being much dependent on other services.
There are some dependencies, of course, because modules may
need certain features of the core library, but looser coupling
of interfaces will help in quickly coordinating such changes.
To this end, we follow a microservices-based architecture style
[12] where a single application is developed as a suite of small
services, each running in its own process and communicating
with lightweight mechanisms such as ZeroMQ or HTTP. In
a microservices architecture, services should be fine-grained
and the benefit of decomposing an application into different
smaller services is that it improves modularity and makes
the application easier to understand, develop and test. It
also parallelizes development by enabling small autonomous
teams to develop, deploy and scale their respective services
independently [12].

Routing Abstract Geospatial
Layer Modal Layer Layer

| 1

! Routing !

: request '

Get graph

Fig. 3: This sequence diagram shows the interactions between various
layers, to serve a routing request from client.

In our platform, each logical layer can be interpreted as
an independent module with loose coupling between other
layers. So, we can make changes to each layer with only the
interfaces provided by each layer. Geospatial Layer contains
topological information of a region and hence, we can change
how this information is actually stored without affecting the
upper layers, as long as the interfaces are same. For example,
we can use different geospatial database for this layer such
as MongoDB, PostGIS etc. Abstract Modal Layer abstracts
the mode-specific information from the Geospatial Layer.
Figure 3 shows a sequence diagram that details the interactions
between various layers, to serve a routing request from client.
Routing algorithms in Routing Layer use the abstract mode-
types present in Abstract Modal Layer and switch junctions
present in Geospatial Layer to make multi-modal routing
decisions. So, changing Routing algorithms in Routing Layer
may require update in Abstract Modal Layer. Different layers
can be discovered dynamically in platform.



IV. ENABLING EXTENSIBILITY

The platform should be designed in such a way that it
evolves as the underlying technology and requirements change
and should be able to support new standards and services
in the future. It should also enable addition and removal
of different modes of transportation, services from different
stakeholders. For example, new modes can be added by
updating the Concrete Modal Layer and Abstract Modal Layer.
New services can be creating new service in Service Layers.
Figure 4 shows a sequence diagram that details the interactions
between various layers, to add a bike mode to our platform.
This is initiated by a service provider such as a rental bike
owner who wants to add bike mode and integrate it’s bike
services with the platform, at run-time without any change to
the source code.

E3 EEa EE E
Provider Modal Layer Modal Layer Layer

1 1
1 1
1 Add bike mode ]
1

i i

I 1
1 Add bike mode ] !

e e

i i 1
| ! 1 Get mode-type(bike) 1
| i 1 i
I I 1
{ ! ! Check constraints(bike) |
I i i
1 1 I 1
1 i ] i
i ; ! Add mode(bike, mode-type) !
1 i i i
1 1 1 1
1 1 1 1
; ! . S—— !
1 1 ) 1
i l€ - - - -response_ _ __ __ i :
lq - -Tesponse _ _ i i 1
! 1

Fig. 4: This sequence diagram shows the interactions between various
layers, to add a bike mode to our platform.

Evaluation. For testing code efficiency, we took an example
of adding a new mode to the system and then deleting the
mode added. For OTP, more than 40 classes and interfaces
were changed, but with our platform, less than 5 classes were
changed, to build the graph and serve routing requests to
clients with new mode. Additionally, for OTP we have to
redeploy the application every time code is updated, while
the same doesn’t happen on our platform. This improved
efficiency will make it easier to extend and expand community.
Because starting new projects and getting releases out faster
should make it easier to join, get started and productive, and
thereby lower threshold for participation.

V. ENABLING RESILIENCE

The platform should be able to elastically cope with
problems and recover itself during failures so that it can
provide mobility services to users without any disruptions.
Each module of our platform, as mentioned in Section III,
can be independently deployed in container such as Docker,
LXC etc. Figure 5 shows various components of our platform
during deployment. The Service Providers contains services
from various stakeholders. All the modules are deployed in
multiple nodes, in a distributed manner.
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Fig. 5: This figure shows various shows various components of our
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We need our deployments to be reconfigured automatically
so that they can deployed quickly in resource-constrained envi-
ronments. In our prior work on CHARIOT [13], we developed
a self-adaptive and resilient Deployment and Configuration
(D&C) infrastructure for highly dynamic component-based
CPS operating in resource-constrained environments. However
this self-reconfiguration approach was policy-based and later
in [14] we improved upon our existing work on CHARIOT by
proposing a framework for formulating the system reliability
as a dependence problem derived from the software component
dependencies, functional requirements and physical system
dependencies. This framework is codified in a domain-specific
modeling language and is used to make reconfiguration deci-
sions at runtime. This makes our deployments resilient and
reliable.

Each node has a container which has modules and a Node
Manager that coordinates communication between various
containers. Each node manager has a centralized service called
Consul [15] for service discovery and allows for coordination
among various services in different layers, through their update
managers. We use Consul for (a) Storing globally persistent
data, (b) Watching changes and monitoring the system, (c)
Get notified whenever a microservice fails and (d) Register
and de-register services dynamically.

It should be noted that we have a thin layer of reliable cloud
layer, which contains core services such as Resource Manager
that is responsible for deployment of our modules among
various resources available in our platform. When any module
fails or any module needs scaling due to a large number of
requests, Consul gets notified and it interacts with Resource
manager to deploy same instance of services in another
container. This makes our platform resilient and scales with
increasing number of requests. Whenever a failure happens,
both platform goes through multiple phases before they are
able to process requests again. The phases are (a) Failure
Detection phase occurs right after a system failure. During
this phase Consul detects failure of a system component and
identifies the standby service that needs to be started and
configured in a new node, (b) Configure new node phase
occurs after Failure detection phase, and in this phase Consul
starts and configure the new node so that the identified service
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Fig. 6: This figure shows response times of all the requests made to
both OTP and Mobilytics platform.

Phase OpenTrip Planner Mobilytics

mean (min) sdv (min) mean (min) sdv (min)
Failure Detection 1.07 0.3 1.2 0.17
Configure new node 2.24 0.26 2.5 0.21
Restart Service 3.97 0.4 1.47 0.11

TABLE I: This table shows the mean and standard deviation time of
various phases during failures. The mean time for Failure Detection
and Configure new node phase is marginally higher for Mobilytics
platform than OTP, while there is a significant difference in mean
time of Restart service phase, between both platforms.

can be deployed, (c) Restart Service phase is the final phase
which is responsible for starting the service and make it ready
for serving web requests.

Evaluation. We setup OTP and Mobilytics services with
Nashville OSM data and one GTFS feed of Nashville
Metropolitan Transit Authority (MTA). Since OTP is not
resilient, we modified OTP so that a new OTP instance starts
automatically in presence of failure with the help of Consul.
From a client terminal, we queried both the services with
a total of 360 requests, sent discretely with 30 requests per
I-minute interval. The requests are generated by combining
a range of routing parameters (time of day, maximum walk
distance, transportation modes) with endpoints chosen ran-
domly but located within 2km of a transit stop. Response
times reported, represent the full round-trip time of a request
to the REST API. Figure 6 response times of all the requests
made to both OTP and Mobilytics platform. As shown in the
figure, the response times of requests made to OTP platform
are less than the requests made to our Mobilytics platform,
which we expected since we are using a different graph model
and routing algorithm for queries. OTP has better performance
in routing because of the fast algorithms and optimization
they use, which we don’t have yet. However, the advantage of
resilience and extensibility offsets this minor disadvantage.

Table I shows the mean and standard deviation time of
various phases during a failure. As shown in the table, mean
time for Failure Detection phase of OTP is marginally less
than Mobilytics platform. It’s because Mobilytics is made
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up of multiple microservices and distributed among multiple
nodes, hence more communication is needed during failure
detection than OTP, where there is only one active instance
of OTP. The mean time for Configure new node phase is
marginally higher for Mobilytics platform because of some
extra dependencies that were required to be installed on our
platform. This result can vary with varying implementations.
Most significant difference was noted in mean time of Restart
service phase, because a new instance for just the Routing
layer microservice is started in Mobilytics platform which
requires less initialization time of 1.47 minutes and memory of
1.4GB, while a new instance is started for OTP which required
higher initialization time of 3.97 minutes and memory of 6GB.

VI. RELATED RESEARCH

Architecture The mobilytics platform described in this pa-
per is a cyber-physical system. Such systems are increasingly
being used in several domains of technology, engineering,
and medicine such as smart power systems, smart buildings,
smart public transportation, to name a few. It has been pre-
viously established that the design of these systems should
be modular with an emphasis on resilience [16]. Component-
based software engineering (CBSE) has been accepted as a
standard practice to develop robust, modular and maintainable
software stacks for embedded systems [17]. The guiding
principles of CBSE are interfaces with well defined execution
models [18], compositional semantics [19] and model driven
analysis [20]. In the past, our group has developed several such
frameworks, including ARINC-653 component model [21],
[22], which combines the principle of spatial and temporal
partitioning with the interaction patterns derived from the
CORBA Component Model (CCM) [23]. DREMS (Distributed
Real-Time Embedded Managed Systems) component model
[24] extended ACM to networked cyber-physical systems that
can be used by several concurrent users, by allowing config-
urable real-time scheduling policies in addition to configurable
secure information flow policies. The micoservices based
architecture described in this paper is an extension of these
embedded system component models towards the enterprise
system models. Design of common interfaces and abstractions
is a crucial step in enabling this architecture [17].

Resilient System Design Reliability and Resilience are crit-
ical properties of computation platforms that need to provide
critical service to humans. While reliability is a measure of the
likelihood of of a failure, resilience is the measure of overall
availability, a ratio of mean time to failure and mean time to
recovery [25]. Our concept of using monitors and Consul to
reconfigure the system dynamically upon failure is principally
similar to the concept of “runtime reconfiguration”. In [26],
the authors present middleware that supports timely reconfig-
uration in distributed real-time and embedded systems based
on services. At design-time, the schedulability and complexity
of a system is analyzed and fine-tuned to bound sources of
unpredictability. The resulting Scheduled Expanded Graph is
used at runtime to determine the Execution Graph, which
represents the application in execution. Although this approach



is flexible and relies on runtime search of the execution graph
for viable reconfiguration solutions, the predictability and
schedulability analysis is conducted at design-time, so system
resources cannot be modified at runtime. In contrast, our
approach supports runtime modification required for systems
with dynamic resources.

Dynamic Software Product Lines (DSPLs) have also been
suggested for dynamic reconfiguration. In [27], the authors
present a survey of the state-of-the-art techniques that attempt
to address many challenges of runtime variability mechanisms
in the context of DSPLs. The authors also provide a potential
solution for runtime checking of feature models for variability
management, which motivates the concept of configuration
models. A configuration model acts as a database that stores
a feature model along with all possible valid states of the
feature model. Ontology-based reconfiguration work has been
presented in [28], [29], where the analytical redundancy of
computational components is made explicit. On the basis of
this ontology, the system can be reconfigured by identifying
suitable substitutes for the failed services. Our architecture
relies on the use of consul and goal-based reconfiguration
[30].

VII. CONCLUSION

In this paper, we described a microservice architecture
which made our mobility platform modular, resilient, and scal-
able. We also discussed the advantages of this architecture over
a monolith application like OTP. As part of our ongoing work,
we are using this platform for developing a socially optimal
routing solution to the multi-modal routing problem. To that
end, we are following a game-theoretic approach to study the
multi-modal routing problem and devise solutions that will
benefit society as a whole and not just individual users. We
are also designing incentive mechanisms to encourage users
to take public transport more often. We are also extending our
data to include parking lots, rental vehicles, and ride-share
services like Uber and Lyft.
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